WorldWideScience

Sample records for surface wave velocities

  1. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  2. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  3. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  4. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  5. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  6. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  7. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  8. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  9. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  10. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. Surface wave group velocity tomography of East Asia, part 1

    Science.gov (United States)

    Wu, Francis T.

    1993-07-01

    Group velocities of both Rayleigh and Love waves are used in a tomographic inversion to obtain group velocity maps of East Asia (60 deg E-140 deg E and 20 deg N-50 deg N). The period range studied is 30-70 seconds. For periods longer than 40 seconds, a high group velocity gradient clearly exists along longitude 105 deg E; the velocities are noticeably higher east of this longitude than west of this longitude. The Tibetan Plateau appears as a prominent low velocity (about 15%) structure in this area; central Tibet appears as the area with the lowest velocity. The North China Plain is an area of high velocities, probably as a result of thin crust. The variability of deep crustal and upper mantle structures underneath the different tectonic provinces in the study can clearly be seen. In a separate study, using the dataset above and that from the former Soviet Union, we have derived the Rayleigh tomographic images of a larger area (40 deg E-160 deg E and 20 deg N-70 deg N). While the Tibetan plateau still remains to be the most prominent low velocity features, two other features are also clear, a very high velocity Siberian platform and a high velocity ridge extending from Lake Baikal to Central Mongolia. These studies are useful in delineating tectonics.

  12. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  13. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  14. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  15. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  16. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  17. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    Science.gov (United States)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  18. Estimation of the p-wave velocity profile of elastic real data based on surface wave inversion

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Recently, we proposed an analytical approach to invert for a smoothly varying near-surface P-wave velocity profile that has a squared slowness linearly decreasing with depth. The exact solution for such a velocity profile in the acoustic approximation can be expressed in terms of Airy functions and

  19. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  20. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  1. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  2. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  3. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils

    Institute of Scientific and Technical Information of China (English)

    Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE

    2008-01-01

    The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.

  4. Seismic tomography of Yunnan region using short-period surface wave phase velocity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 苏伟; 叶太兰

    2004-01-01

    The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.

  5. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  6. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  7. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography

    Science.gov (United States)

    Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa

    2017-01-01

    The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.

  8. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    Science.gov (United States)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  9. Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis

    Science.gov (United States)

    Pillet, R.; Rouland, D.; Roult, G.; Wiens, D. A.

    1999-02-01

    Direct earthquake-to-station Rayleigh and Love wave data observed on high gain broadband records are analyzed in order to improve the lateral resolution of the uppermost mantle in the southwest Pacific region. We used data of nine permanent Geoscope and Iris stations located in the southern hemisphere and nine other stations as part of two temporary networks, the first one installed in New Caledonia and Vanuatu (hereafter named Cavascope network) by ORSTOM and the EOST from Louis Pasteur University in Strasbourg (France) and the second one installed in the Fiji, Tonga and Niue islands (hereafter named Spase network) by Washington University in St. Louis (USA). In order to collect more significant details on the surficial structures, we included the analysis of short period waves down to 8 s. A multiple frequency filtering technique has been used to recover phase velocities of Rayleigh and Love waves for selected earthquakes with magnitude greater than 5.5 and with known centroid moment tensor (CMT). About 1100 well-distributed seismograms have been processed in the period range 8-100 s and corrections for topography and water depth have been applied to the observed phase velocities. The geographical distribution of phase velocity anomalies have then been computed using the tomographic method developed by Montagner [Montagner, J.P., 1986a. Regional three-dimensional structures using long-period surface waves. Ann. Geophys. 4 (B3), 283-294]. Due to a poor knowledge of dense, well-distributed, crustal thickness values and corresponding velocity models, we did not perform or speculate on the construction of an S-wave 3D velocity model; therefore, we limited this study to the interpretation of the phase velocity distribution. The location of phase velocity anomalies are well determined and the deviations are discussed within the framework of the geological context and compared with other tomographic models. At long periods, from 40 s to 100 s, our results agree well

  10. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  11. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  12. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2014-08-01

    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  13. Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto

    2015-04-01

    Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.

  14. Near Surface Shear Wave Velocity Model of the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Shuler, S.; Craig, M. S.; Hayashi, K.; Galvin, J. L.; Deqiang, C.; Jones, M. G.

    2015-12-01

    Multichannel analysis of surface wave measurements (MASW) and microtremor array measurements (MAM) were performed at twelve sites across the Sacramento-San Joaquin Delta to obtain high resolution shear wave velocity (VS) models. Deeper surveys were performed at four of the sites using the two station spatial autocorrelation (SPAC) method. For the MASW and MAM surveys, a 48-channel seismic system with 4.5 Hz geophones was used with a 10-lb sledgehammer and a metal plate as a source. Surveys were conducted at various locations on the crest of levees, the toe of the levees, and off of the levees. For MASW surveys, we used a record length of 2.048 s, a sample interval of 1 ms, and 1 m geophone spacing. For MAM, ambient noise was recorded for 65.536 s with a sampling interval of 4 ms and 1 m geophone spacing. VS was determined to depths of ~ 20 m using the MASW method and ~ 40 m using the MAM method. Maximum separation between stations in the two-station SPAC surveys was typically 1600 m to 1800 m, providing coherent signal with wavelengths in excess of 5 km and depth penetration of as much as 2000 m. Measured values of VS30 in the study area ranged from 97 m/s to 257 m/s, corresponding to NEHRP site classifications D and E. Comparison of our measured velocity profiles with available geotechnical logs, including soil type, SPT, and CPT, reveals the existence of a small number of characteristic horizons within the upper 40m in the Delta: levee fill material, peat, transitional silty sand, and eolian sand at depth. Sites with a peat layer at the surface exhibited extremely low values of VS. Based on soil borings, the thickness of peat layers were approximately 0 m to 8 m. The VS for the peat layers ranged from 42 m/s to 150 m/s while the eolian sand layer exhibited VS ranging from of 220 m/s to 370 m/s. Soft near surface soils present in the region pose an increased earthquake hazard risk due to the potential for high ground accelerations.

  15. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  16. Estimation of Elastic Constants from Surface Acoustic Wave Velocity by Inverse Analysis using the Downhill Simplex Method

    Science.gov (United States)

    Sato, Harumichi; Nishino, Hideo; Cho, Hideo; Ogiso, Hisato; Yamanaka, Kazushi

    1998-05-01

    The measurement of surface acoustic wave (SAW) velocity is used to estimate the surface properties because the velocity depends on the elastic properties near the surface.To estimate the elastic constants, we developed a new inverse method combining the Monte Carlo method and the downhill simplex method.The initial values are determined using many random numbers, instead of an arbitrarily chosen several sets of values, in order to reduce the risk of trapping by the local pseudo minima.We confirm that the estimated elastic constants agree well with the reported elastic constants of Si and the experimental SAW velocity is quite well reproduced.We estimate the elastic constants of quartz for application purposes.

  17. Estimation of seismic wave velocity at seafloor surface and sound source localization based on transmitted wave observation with an ocean bottom seismometer offshore of Kamaishi, Japan

    Science.gov (United States)

    Iwase, Ryoichi

    2016-07-01

    An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.

  18. Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization

    Science.gov (United States)

    Rahman, Md. Zillur; Siddiqua, Sumi; Kamal, A. S. M. Maksud

    2016-11-01

    The average shear wave velocity of the near-surface materials down to a depth of 30 m (Vs30) is essential for seismic site characterization to estimate the local amplification factor of the seismic waves during an earthquake. Chittagong City is one of the highest risk cities of Bangladesh for its seismic vulnerability. In the present study, the Vs30 is estimated for Chittagong City using the multichannel analysis of surface waves (MASW), small scale microtremor measurement (SSMM), downhole seismic (DS), and correlation between the shear wave velocity (Vs) and standard penetration test blow count (SPT-N). The Vs30 of the near-surface materials of the city varies from 123 m/s to 420 m/s. A Vs30 map is prepared from the Vs30 of each 30 m grid using the relationship between the Holocene soil thickness and the Vs30. Based on the Vs30, the near-surface materials of Chittagong City are classified as site classes C, D, and E according to the National Earthquake Hazards Reduction Program (NEHRP), USA and as site classes B, C, and D according to the Eurocode 8. The Vs30 map can be used for seismic microzonation, future planning, and development of the city to improve the earthquake resiliency of the city.

  19. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  20. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  1. Near-Surface Shear Wave Velocity Versus Depth Profiles, VS30, and NEHRP Classifications for 27 Sites in Puerto Rico

    Science.gov (United States)

    Odum, Jack K.; Williams, Robert A.; Stephenson, William J.; Worley, David M.; von Hillebrandt-Andrade, Christa; Asencio, Eugenio; Irizarry, Harold; Cameron, Antonio

    2007-01-01

    In 2004 and 2005 the Puerto Rico Seismic Network (PRSN), Puerto Rico Strong Motion Program (PRSMP) and the Geology Department at the University of Puerto Rico-Mayaguez (UPRM) collaborated with the U.S. Geological Survey to study near-surface shear-wave (Vs) and compressional-wave (Vp) velocities in and around major urban areas of Puerto Rico. Using noninvasive seismic refraction-reflection profiling techniques, we acquired velocities at 27 locations. Surveyed sites were predominantly selected on the premise that they were generally representative of near-surface materials associated with the primary geologic units located within the urbanized areas of Puerto Rico. Geologic units surveyed included Cretaceous intrusive and volcaniclastic bedrock, Tertiary sedimentary and volcanic units, and Quaternary unconsolidated eolian, fluvial, beach, and lagoon deposits. From the data we developed Vs and Vp depth versus velocity columns, calculated average Vs to 30-m depth (VS30), and derived NEHRP (National Earthquake Hazards Reduction Program) site classifications for all sites except one where results did not reach 30-m depth. The distribution of estimated NEHRP classes is as follows: three class 'E' (VS30 below 180 m/s), nine class 'D' (VS30 between 180 and 360 m/s), ten class 'C' (VS30 between 360 and 760 m/s), and four class 'B' (VS30 greater than 760 m/s). Results are being used to calibrate site response at seismograph stations and in the development of regional and local shakemap models for Puerto Rico.

  2. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.

    Science.gov (United States)

    Zhang, Haifeng; Kosinski, John A; Zuo, Lei

    2016-09-01

    In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants.

  3. Investigation of the low-depression velocity layer in desert area by multichannel analysis of surface-wave method

    Science.gov (United States)

    Cheng, S.; Tian, G.; Xia, J.; He, H.; Shi, Z.; ,

    2004-01-01

    The multichannel analysis of surface-wave method (MASW) is a newly development method. The method has been employed in various applications in environmental and engineering geophysics overseas. However, It can only be found a few case studies in China. Most importantly, there is no application of the MASW in desert area in China or abroad. We present a case study of investigating the low-depression velocity in Temple of North Taba Area in Erdos Basin. The MASW method successfully defined the low-depression velocity layer in the desert area. Comparing results obtained by the MASW method with results by refraction seismic method, we discussed efficiency and simplicity of applying the MASW method in the desert area. It is proved that the maximum investigation depth can reach 60m in the study area when the acquisition and procession parameters are carefully chosen. The MASW method can remedy the incompetence of the refraction method and the micro-seismograph log method in low-depression velocity layer's investigation. The MASW method is also a powerful tool in investigation of near-surface complicated materials and possesses many unique advantages.

  4. Shear Wave Velocity Profiles Determined from Surface Wave Measurements at Sites Affected by the August 15th, 2007 Earthquake in Peru

    Science.gov (United States)

    Rosenblad, B. L.; Bay, J. A.

    2008-05-01

    The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed

  5. Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station

    Science.gov (United States)

    Yamanaka, Hiroaki; Kato, Kei; Chimoto, Kosuke; Tsuno, Seiji

    2015-09-01

    A procedure for estimation of Rayleigh wave phase velocities from microtremor observations, using an array with a reference station, is investigated in this study. Simultaneous observation of microtremors at a reference station and at a strong motion observation array in the Kanto Basin, Japan, was carried out. We first calculated cross correlations between records at the reference station and those at stations in the array using a seismic interferometric processing method on a 4300-h data series. After identifying dispersive Rayleigh waves from results of multiple filtering analysis of the cross correlations, semblance analysis of the cross correlations for different segments was carried out to estimate phase velocities for fundamental and higher-mode Rayleigh waves. The phase velocities from the proposed method are more appropriate than those from conventional methods at long periods as they avoid contamination by higher mode Rayleigh waves. The fundamental Rayleigh wave phase velocities were inverted to an S-wave velocity profile for deep sedimentary layers. We also examined the variations in the phase velocity with decreasing data duration. The phase velocities at periods less than 3 s from 6-h records are similar to those from 4300-h records, suggesting that our method is possibly applicable in microtremor exploration.

  6. Surface Acoustic Wave Velocity and Electromechanical Coupling Coefficient of GaN Grown on (0001) Sapphire by Metal-Organic Vapour Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; LI Hong-Lang; YAN Li; CHEN Xiao-Yang; LU Da-Cheng; WANG Xiao-Hui; LIU Xiang-Lin; HAN Pei-De; YUAN Hai-Rong; WANG Du; WANG Zhan-Guo; HE Shi-Tang

    2001-01-01

    High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital trans ducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667m/s and 1.9% by the pulse method.

  7. S-wave velocities down to 1 km below the Peteroa volcano, Argentina, obtained from surface waves retrieved by means of ambient-noise seismic interferometry

    Science.gov (United States)

    Lepore, Simone; Gomez, Martin; Draganov, Deyan

    2015-04-01

    The main force driving the tectonics in South America is the subduction of the Nazca Plate below the South American plate. The subduction process generated numerous volcanoes in both Chile and Argentina, of which the majority is concentrated along the Chilean Argentine border. The recent explosive eruptions of some volcanoescaused concern of the population in both countries. At the beginning of 2012, a large temporary array was installed in the Malargüe region, Mendoza, Argentina, with the purpose of imaging the subsurface and monitoring the tectonic activity. The array was deployed until the end of 2012 to record continuously ambient noise and the local, regional, and global seismicity. It consisted of 38 seismic stations divided in two sub arrays, namely the PV array of six stations located on the east flank of the Peteroa volcano, and the T array of thirty two stations spread out on a plateau just north east of the town of Malargüe. Here,the focus will be on the PV array, which has a patch-like shape. Due to the intra-station distances, we chose to use for surface-wave retrieval the bands 0.8 Hz ÷ 4.0 Hz, 10 Hz ÷ 25 Hz. At the investigated area, most of the year there is little anthropogenic noise, which normally dominates frequencies above 1 Hz, meaning that the selected frequency bands can be used for surface-wave retrieval from noise. Using beamforming, we showed that for these bands, the noise is illuminating the stations from the west. This means that a correct surface-wave arrivals can be retrieved for station pairs oriented in that direction. Because of this, we used for retrieval only such station pairs. We cross-correlated the recordings on the vertical components and retrieved Rayleigh waves. By manual picking, we estimated for both bands velocity dispersion curves from the retrieved surface-wave arrivals. The curves were then inverted to obtain the velocity structure under the stations. The obtained S wave velocity depth profiles for the 10 Hz

  8. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    Science.gov (United States)

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  9. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  10. Shear wave velocity structure of the Bushveld Complex, South Africa

    CSIR Research Space (South Africa)

    Kgaswane, EM

    2012-07-01

    Full Text Available across the Bushveld Complex. Group velocities for 2–15 s periods were obtained from surface wave tomography using local and regional events, while group velocities for 20–60 s periods were taken from a published model. 1-D shear wave velocity models...

  11. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    Science.gov (United States)

    Ghorbanpour Arani, A.; Roudbari, M. A.

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  12. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  13. P and S Wave Velocity Structure of the Crust and Upper Mantle Under China and Surrounding Areas From Body and Surface Wave Tomography

    Science.gov (United States)

    2008-03-31

    1.9 to 1.45 s, after the inversion. [14] High velocities dominate in western China. Beneath several large depressed basins, such as the Tarim...velocity image of Moho discontinuity beneath the Weihe fault depression and its adjacent areas obtained by inversion of travel-time data of Sn waves...the crust and upper mantle. Geo- phys. J. Int. 151, 1–18. Sol, S.J., Meltzer , A., Zurek, B., Zhang, X., Zhang, J., 2004. Insight into the

  14. A new scheme for joint surface wave and earthquake travel-time inversion and resulting 3-D velocity model for the western North Island, New Zealand

    Science.gov (United States)

    Eberhart-Phillips, Donna; Fry, Bill

    2017-08-01

    We have developed a joint inversion of surface wave group velocity (U) and local earthquake travel-time (LET) data and applied it to the North Island, New Zealand, to improve the existing New Zealand wide 3-D seismic velocity model. This approach takes full advantage of the differing sensitivities of surface and body waves. The data are complementary, particularly at shallow depths where LET tomography suffers from vertical smearing and surface wave tomography is susceptible to horizontal smearing. The employed U observations are 2-D models at discrete periods which were developed for Rayleigh wave dispersion curves measured from the 1744 interstation Green's Functions obtained by stacked cross-correlations of broadband ambient noise data. In the volume surrounding each U observation, we distribute numerous points for relating the U observation to the gridded 3-D tomography model, analogous to points along a raypath. The partial derivatives at the points are computed using the U sensitivity kernels for Vp and Vs, with Vs related to Vp and Vp/Vs perturbations. Thus, the U observations are included along with the travel-time observations in a joint inversion to best fit the data and the existing tomography model. The resulting model favors the U where there is little travel-time resolution. The combined inversion used 2949 U observations at 6-16 s period and LET from 1509 earthquakes that extend to 370 km depth, and improved the model fit by reducing the U residual data variance by 62% and the LET by 9%. The resulting model generally has better constrained depth of shallow anomalies, with decreased velocity in the upper 2 km in the western North Island, and slight focusing of crustal high velocity features at 8 km depth. Significantly, the increased resolution in the shallowest 5 km of the model improves the utility of the 3-D model for use in seismic hazard assessment, wave propagation studies, and studies comparing seismic velocities to geological mapping.

  15. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  16. Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities

    Science.gov (United States)

    Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.

    2011-01-01

    The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the

  17. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  18. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity

    Science.gov (United States)

    Kakuma, Seiichi

    2017-02-01

    A frequency-modulated continuous-wave (FMCW) laser radar capable of real-time displaying the distance to a target object and its radial velocity as their corresponding frequency spectra is developed. The system employs a pair of oppositely frequency-swept vertical-cavity surface-emitting laser diodes (VCSELs). This makes possible simultaneous detection of beat signals induced by the increment (up-ramp) and decrement (down-ramp) in laser frequencies. By mixing these two beat signals, their sum and difference frequencies are directly obtained without arithmetic processing such as averaging and subtraction. Results of the test experiments adopting axially moving block gauges as target objects show that both the distance and given velocities are accurately determined from the spectrum of the frequency mixer.

  19. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  20. Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region

    Science.gov (United States)

    Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro

    2016-04-01

    Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.

  1. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  2. Benchmarking Passive Seismic Methods of Imaging Surface Wave Velocity Interfaces Down to 300 m — Mapping Murray Basin Thickness in Southeastern Australia

    Science.gov (United States)

    Gorbatov, A.; Czarnota, K.

    2015-12-01

    In shallow passive seismology it is generally thought that the spatial autocorrelation (SPAC) method is more robust than the horizontal over vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Drilled depths of this interface are between 27 and 300 m. A three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium compact broadband seismometers was deployed at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighborhood algorithm of Sambridge (1999) implemented in geopsy by Wathelet et al (2005). The HVSR technique yielded depth estimates, of the target interface (Vs > 1000 m/s), generally within 20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments. Half of the SPAC estimates showed significantly higher errors than obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low degrees of anthropogenic noise at the benchmark sites. At a few sites SPAC curves showed clear overtones suggesting that more reliable SPAC estimates maybe obtained utilizing a multi modal inversion. Nevertheless, our study seems to indicate that reliable basin thickness estimates in remote Australia can be obtained utilizing HVSR data from a single seismometer, without a priori knowledge of the surface-wave velocity of the basin material, thereby negating the need to deploy cumbersome arrays.

  3. Multichannel analysis of surface waves

    Science.gov (United States)

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  4. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  5. Convertion Shear Wave Velocity to Standard Penetration Resistance

    Science.gov (United States)

    Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.

    2016-07-01

    Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.

  6. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    Science.gov (United States)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  7. The upper and middle crustal velocity structure of the northern part of Hebei plain inferred from short period surface wave dispersion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on short period Rayleigh wave data recorded by Beijing Seismic Telemetered Network, the dispersion curves of Raleigh wave phase velocity, with period from 2 s to 18 s, are calculated by means of two-station method, for 5 paths across the earthquake zone located in the Beijing graben and the Hebei plain. According to the dispersion features, the upper and middle crustal S wave velocity structures are respectively obtained for the northern segment of Beijing graben and the northern part of Hebei plain. The results show that there is an obvious interface at the depth of 9 km in the Beijing graben, the velocity varies little with depth in the middle crust, and there is a low-velocity-zone, with a thickness of 5 km and a buried depth of 14.6 km, in the middle crust of the Hebei plain.

  8. Group velocity of neutrino waves

    Science.gov (United States)

    Indumathi, D.; Kaul, Romesh K.; Murthy, M. V. N.; Rajasekaran, G.

    2012-03-01

    We follow up on the analysis of Mecozzi and Bellini (arxiv:arXiv:1110.1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.

  9. Group velocity of neutrino waves

    CERN Document Server

    Indumathi, D; Murthy, M V N; Rajasekaran, G

    2011-01-01

    We follow up on the analysis of Mecozzi and Bellini (arXiv:1110:1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. However, the explanation of the OPERA result is outside this possibility. This result, if confirmed by other experiments, can be explained through matter effects via a possible new interaction.

  10. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    Science.gov (United States)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  11. Pulse Wave Velocity in the Carotid Artery

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jensen, Julie Brinck; Udesen, Jesper;

    2008-01-01

    The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from...... distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV...

  12. Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity

    Science.gov (United States)

    Hirsch, A. C.; Dalton, C. A.

    2014-12-01

    In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and

  13. Multichannel Analysis of Surface Waves and Down-Hole Tests in the Archeological "Palatine Hill" Area (Rome, Italy): Evaluation and Influence of 2D Effects on the Shear Wave Velocity

    Science.gov (United States)

    Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.

    2016-05-01

    A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.

  14. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.

    2016-03-21

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical simulations on noise-free and noisy cases are provided in order to show the effectiveness of the proposed method.

  15. VELOCITY FIELD IN SHIP WAVES ON THE VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    刘敏嘉; 陶明德

    2002-01-01

    From the Navier-Stokes equations, the integral expressions of the free-surface elevation and the velocity field in ship waves of a moving waterborne body are obtained.Next, Lighthill's two-stage scheme is employed to change the above-mentioned integral expressions to algebraic expressions.Compared with the results obtained when the seawater is idealized to an inviscid fluid, the singularities are dispelled or weakened, and the accuracy of the digit information of ship waves is improved.

  16. Lightning location with variable radio wave propagation velocity

    Science.gov (United States)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  17. Monte Carlo search techniques applied to the measurement of higher mode phase velocities and anisotropic surface wave tomography. Geologica Ultraiectina (285)

    NARCIS (Netherlands)

    Visser, K.

    2008-01-01

    In this thesis we present all three stages of the inversion approach proposed by Kennett and Yoshizawa (2002). The three stage inversion approach consists of obtaining fundamental and higher mode Love and Rayleigh wave phase velocity measurements through waveform fitting in the first stage, combinin

  18. Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation

    Directory of Open Access Journals (Sweden)

    Parvizi Saeed

    2015-10-01

    Full Text Available Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.

  19. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  20. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  1. Signal processing method for shear wave velocity measurement

    Institute of Scientific and Technical Information of China (English)

    Hou Xingmin; Qu Shuying; Shi Xiangdong

    2007-01-01

    Soil shear wave velocity (SWV) is an important parameter in geotechnical engineering. To measure the soil SWV, three methods are generally used in China, including the single-hole method, cross-hole method and the surface-wave technique. An optimized approach based on a correlation function for single-hole SWV measurement is presented in this paper. In this approach, inherent inconsistencies of the artificial methods such as negative velocities, and too-large and too-small velocities, are eliminated from the single-hole method, and the efficiency of data processing is improved. In addition, verification using the cross-hole method of upper measuring points shows that the proposed optimized approach yields high precision in signal processing.

  2. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special conditi...

  3. Hammering Yucca Flat, Part Two: Shear-Wave Velocity

    Science.gov (United States)

    Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II

    2015-12-01

    In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  5. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    P R Sengupta; Sisir Nath

    2001-08-01

    The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the fibre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.

  6. Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We assembled approximately 328 seismic records. The data set wasfrom 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2°′2°) discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with 2check-board2 resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.

  7. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  8. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...

  9. Databases of surface wave dispersion

    Directory of Open Access Journals (Sweden)

    L. Boschi

    2005-06-01

    Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.

  10. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  11. Superdirected Beam of the Surface Spin Wave

    CERN Document Server

    Annenkov, Alexander Yu; Lock, Edwin H

    2016-01-01

    Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.

  12. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    Science.gov (United States)

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  13. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  14. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  15. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  16. Aortic pulse wave velocity improves cardiovascular event prediction

    DEFF Research Database (Denmark)

    Ben-Shlomo, Yoav; Spears, Melissa; Boustred, Chris;

    2014-01-01

    To determine whether aortic pulse wave velocity (aPWV) improves prediction of cardiovascular (CVD) events beyond conventional risk factors.......To determine whether aortic pulse wave velocity (aPWV) improves prediction of cardiovascular (CVD) events beyond conventional risk factors....

  17. S-wave velocity structures of the Taipei Basin, Taiwan, using microtremor array measurements

    Science.gov (United States)

    Huang, Huey-Chu; Wu, Cheng-Feng; Lee, Feng-Mei; Hwang, Ruey-Der

    2015-04-01

    The S-wave velocity structures of the Taipei Basin in Taiwan are investigated using the array records of microtremors at 15 sites. Dispersion curves at these sites are calculated using the frequency-wavenumber (F-K) spectrum method. The S-wave velocity structures in the Taipei Basin are then estimated by employing surface wave inversion technique. Harder strata sites have higher phase velocities than softer sites. If the S-wave velocity of the Tertiary Basement is assumed to be 1000 m/s, then the Quaternary alluvial thicknesses in the Taipei Basin are between about 100 m and 650 m. The thickness of the alluvium gradually increases from the southeast to the northwest. The inversion results are also in good agreement with well-logging data and seismic reflection studies of the Taipei Basin. The study concludes that microtremor array measurement is a useful tool for estimating S-wave velocity structure.

  18. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  19. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    M D Sharma; Neetu Garg

    2006-04-01

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase velocities.These derivatives are,further,used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium.Effect of initial stress on wave propagation is observed through the deviations in phase velocity,group velocity and ray direction for each of the quasi-waves.The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry.

  20. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    ) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  1. Structure of the airflow above surface waves

    Science.gov (United States)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  2. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    Science.gov (United States)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  3. Strong lateral variations of S-wave velocity in the upper mantle across the western Alps

    Science.gov (United States)

    Lyu, Chao; Pedersen, Helle; Paul, Anne; Zhao, Liang

    2016-04-01

    Absolute S-wave velocity gives more insight into temperature and mineralogy than relative P-wave velocity variations (ΔV p/ V p) imaged by teleseismic traveltime tomography. Moreover, teleseismic P-wave tomography has poor vertical but good horizontal resolution. By contrast, the inversion of surface waves dispersion data gives absolute S-wave velocity with a good vertical but relatively poor horizontal resolution. However, the horizontal resolution of surface wave imaging can be improved by using closely spaced stations in mini-arrays. In this work, we use Rayleigh wave phase velocity dispersion data to measure absolute S-wave velocities beneath the CIFALPS profile across the French-Italian western Alps. We apply the array processing technique proposed by Pedersen et al. (2003) to derive Rayleigh wave phase dispersion curves between 20 s and 100 s period in 15 mini-arrays along the CIFALPS line. We estimate a 1-D S-wave velocity model at depth 50-150 km beneath each mini-array by inverting the dispersion curves jointly with receiver functions. The joint inversion helps separating the crustal and mantle contributions in the inversion of dispersion curves. Distinct lithospheric structures and marked lateral variations are revealed beneath the study region, correlating well with regional geological and tectonic features. The average S-wave velocity from 50 to 150 km depth beneath the CIFALPS area is ˜4.48km/s, almost the same as in model AK135, indicating a normal upper mantle structure in average. Lateral variations are dominated by relatively low velocities (˜4.4km/s) in the mantle of the European plate, very low velocities (4.0km/s, i.e. approximately 12% lower than AK135) beneath the Dora Maira internal crystalline massif and high velocities (˜ 5.0km/s, i.e. 12% higher than AK135) beneath the Po plain. The lateral variations of S-wave velocity perturbation show the same features as the P wave tomography (Zhao et al., submitted), but with different amplitudes

  4. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan;

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...

  5. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  6. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  7. S-Wave Velocity Structures of the Northern Taichung Area, Taiwan, Using Microtremor Array Data

    Science.gov (United States)

    Huang, H. C.; Shih, T. H.; Wu, C. F.

    2016-12-01

    S-wave velocities have widely been used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures at the northern Taichung area, Taiwan are investigated using the array records of microtremors at 24 sites. The dispersion curves at these sites are calculated using the F-K method (Capon, 1969); then, the S-wave velocity structures at the Taichung area are estimated by employing the surface wave inversion technique (Herrmann, 1991). At most sites, observed phase velocities are almost flat with the phase velocity of about 1000 m/sec in the frequency range from 0.5 to 2Hz. This suggests that a thickness layer with an S-wave velocity of about 1100 1400m/sec was deposited. If the S-wave velocity of the Tertiary bedrock is assumed to be 1500m/sec, the depth of the alluvium at the northern Taichung area is about 270 m 1400 m. The depth of the alluvium gradually increases from east to west. The S-wave velocity decreases from east to west while the depth is larger than 400 m at the area.

  8. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  9. The group velocity variation of Lamb wave in fiber reinforced composite plate.

    Science.gov (United States)

    Rhee, Sang-Ho; Lee, Jeong-Ki; Lee, Jung-Ju

    2007-12-01

    Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not the same as the theoretical group velocities which is calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude correction in addition to direction correction. In this study, S0 mode phase velocity dispersion curves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity could be calculated from the slowness surface. The recalculated group velocities with consideration of the magnitude and direction from the slowness surface are compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

  10. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  11. Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor

    Science.gov (United States)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten; Lange, Dietrich

    2016-12-01

    Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s-1. The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s-1. We find a slight increase of the total crustal thickness from

  12. The influence of wafer dimensions on the contact wave velocity in silicon wafer bonding

    DEFF Research Database (Denmark)

    Bengtsson, S.; Ljungberg, Karin; Vedde, Jan

    1996-01-01

    The contact wave velocity in silicon wafer bonding is experimentally found to decrease with wafer thickness and to be only weakly dependent on wafer diameter. Wafers of different thicknesses ranging from 270 to 5000 mu m, were dipped in HF:H2O before bonding to give the surfaces hydrophobic...... stored in the material is increased, and the contact wave velocity is decreased. (C) 1996 American Institute of Physics....

  13. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  14. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  15. Cardiac Shear Wave Velocity Detection in the Porcine Heart.

    Science.gov (United States)

    Vos, Hendrik J; van Dalen, Bas M; Heinonen, Ilkka; Bosch, Johan G; Sorop, Oana; Duncker, Dirk J; van der Steen, Antonius F W; de Jong, Nico

    2017-04-01

    Cardiac muscle stiffness can potentially be estimated non-invasively with shear wave elastography. Shear waves are present on the septal wall after mitral and aortic valve closure, thus providing an opportunity to assess stiffness in early systole and early diastole. We report on the shear wave recordings of 22 minipigs with high-frame-rate echocardiography. The waves were captured with 4000 frames/s using a programmable commercial ultrasound machine. The wave pattern was extracted from the data through a local tissue velocity estimator based on one-lag autocorrelation. The wave propagation velocity was determined with a normalized Radon transform, resulting in median wave propagation velocities of 2.2 m/s after mitral valve closure and 4.2 m/s after aortic valve closure. Overall the velocities ranged between 0.8 and 6.3 m/s in a 95% confidence interval. By dispersion analysis we found that the propagation velocity only mildly increased with shear wave frequency.

  16. Middle and upper crust shear-wave velocity structure of the Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    FENG Mei; AN Mei-jian

    2007-01-01

    In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle- and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing'an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ~105°E longitude corresponds to the N-S strong seismic belt of central China.

  17. AN ASYMPTOTIC SOLUTION OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    WU Yun-gang; TAO Ming-de

    2006-01-01

    The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.

  18. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.;

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  19. A STUDY OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Searching ships on the ocean with the technique of the oceanic remote sensing, one must be requensted to know not only the amplitude of ship waves, but also horizontal velocities. In this article Lighthill’s two-stage scheme was employed to change the integral expressions into algebraic expressions for the velocity components, so the obtained results are very succinct.

  20. A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 李东永

    2002-01-01

    This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.

  1. Ship waves on uniform shear current at finite depth: wave resistance and critical velocity

    CERN Document Server

    Li, Yan

    2016-01-01

    We present a comprehensive theory for linear gravity-driven ship waves in the presence of a shear current with uniform vorticity, including the effects of finite water depth. The wave resistance in the presence of shear current is calculated for the first time, containing in general a non-zero lateral component. While formally apparently a straightforward extension of existing deep water theory, the introduction of finite water depth is physically non-trivial, since the surface waves are now affected by a subtle interplay of the effects of the current and the sea bed. This becomes particularly pronounced when considering the phenomenon of critical velocity, the velocity at which transversely propagating waves become unable to keep up with the moving source. The phenomenon is well known for shallow water, and was recently shown to exist also in deep water in the presence of a shear current [Ellingsen, J.~Fluid Mech.\\ {\\bf 742} R2 (2014)]. We derive the exact criterion for criticality as a function of an intrin...

  2. River dykes investigation using seismic surface waves

    Science.gov (United States)

    Bitri, Adnand; Jousset, Philippe; Samyn, Kévin; Naylor, Adam

    2010-05-01

    Natural underground caves such as karsts are quite common in the region "Centre", France. These subsurface perturbations can be found underneath the protection dykes around "the Loire" River and the damage caused can create routes for floods. Geophysical methods such as Multi-channel Analysis of Surface Waves (MASW) can be used for locating voids or karsts systems, but its efficiency on surface with strong topography such as dykes is not certain. Three dimensional Rayleigh wave modelling was used to understand the role of topography in the propagation of surface waves and with the aim of determining the best way for MASW investigations of surfaces with strong topography such as river dykes. Numerical modelling shows that surface waves propagation is not strongly affected by topography for an array parallel to the dyke. For homogeneous models with topography, a diminution of surface waves amplitude is observed while higher propagation modes are amplified in the dispersion curves in the case of heterogeneous models with topography. For an array perpendicular to the dyke, numerical modeling shows that Rayleigh waves' velocity is lower. MASW investigations can then be applied if lateral variations of the topography are not too strong along the seismic line. Diffraction hyperbolas created by a full of water cavity were identified in numerical modelling with topography. According to these elements, a MASW survey has been performed on the dykes of "the Loire" river close to a collapsed cavity and potential karstic systems were discovered.

  3. Tamm-Langmuir surface waves

    Science.gov (United States)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  4. Tamm-Langmuir surface waves

    CERN Document Server

    Golenitskii, K U; Bogdanov, A A

    2016-01-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  5. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

    Institute of Scientific and Technical Information of China (English)

    Jianping Wu; Yuehong Ming; Lihua Fang; Weilai Wang

    2009-01-01

    The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic re-gion, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldem. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con-sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.

  6. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  7. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  8. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  9. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: I - Phase velocity maps

    NARCIS (Netherlands)

    Yao, H.; Hilst, R.D. van der; Hoop, M.V. de

    2006-01-01

    Empirical Green’s functions (EGFs) between pairs of seismographs can be estimated from the time derivative of the long-time cross-correlation of ambient seismic noise. These EGFs reveal velocity dispersion at relatively short periods, which can be used to resolve structures in the crust and uppermos

  10. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  11. Shear-wave Velocity Model from Rayleigh Wave Group Velocities Centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon B.; Erdem, Jemile

    2017-06-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths, the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  12. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    Recent studies have likened the seasonal observations of ice flow at the marginal regions of the Greenland Ice Sheet (GrIS) to those found on smaller alpine and valley counterparts. These similarities highlight the need for further small scale studies of seasonal evolution in the hydrological...... and dynamic structure of valley glaciers, to aid interpretation of observations from the margins of the GrIS. This thesis aims to collate a large suit of glacio-hydrological data from the outlet glacier Engabreen, Norway, in order to better understand the role the subglacial drainage configuration has...... on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...

  13. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  14. Do gravitational waves travel at light velocity?

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; De Lorenci, V.A. [Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro CEP 22290-180-RJ (Brazil); de Freitas, L.R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao-CT-Bloco A, Rio de Janeiro-RJ (Brazil)

    1997-02-01

    We extend the standard Feynman{endash}Deser approach of field theoretical derivation of Einstein{close_quote}s gravitational theory. We show that it is possible to obtain a theory that incorporates a great part of general relativity (GR) and can be interpreted in the standard geometrical way like GR, as far as the interaction of matter to gravity is concerned. The most important distinction of the new theory concerns the gravity-to-gravity interaction. This theory satisfies all standard tests of gravity and leads to new predictions about gravitational propagation. Since there is a strong expectation that the detection of gravitational waves will occur in the near future, the question of which theory describes nature better will probably be settled soon. {copyright} 1997 Academic Press, Inc.

  15. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  16. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  17. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    Science.gov (United States)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  18. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  19. Simultaneous inversion of layered compressional velocity and shear velocity by using plane wave seismogram

    Institute of Scientific and Technical Information of China (English)

    宋海斌; 马在田; 张关泉

    1996-01-01

    A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.

  20. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  1. Wave equation based microseismic source location and velocity inversion

    Science.gov (United States)

    Zheng, Yikang; Wang, Yibo; Chang, Xu

    2016-12-01

    The microseismic event locations and velocity information can be used to infer the stress field and guide hydraulic fracturing process, as well as to image the subsurface structures. How to get accurate microseismic event locations and velocity model is the principal problem in reservoir monitoring. For most location methods, the velocity model has significant relation with the accuracy of the location results. The velocity obtained from log data is usually too rough to be used for location directly. It is necessary to discuss how to combine the location and velocity inversion. Among the main techniques for locating microseismic events, time reversal imaging (TRI) based on wave equation avoids traveltime picking and offers high-resolution locations. Frequency dependent wave equation traveltime inversion (FWT) is an inversion method that can invert velocity model with source uncertainty at certain frequency band. Thus we combine TRI with FWT to produce improved event locations and velocity model. In the proposed approach, the location and model information are interactively used and updated. Through the proposed workflow, the inverted model is better resolved and the event locations are more accurate. We test this method on synthetic borehole data and filed data of a hydraulic fracturing experiment. The results verify the effectiveness of the method and prove it has potential for real-time microseismic monitoring.

  2. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  3. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  4. STRENGTH AND WAVE VELOCITY TEST ON ARTIFICIALLY FROZEN SOILS

    Institute of Scientific and Technical Information of China (English)

    马芹永

    1998-01-01

    Theoretical analysis conducted of uniaxial compressive strength and tensile strength ofartificially frozen soil and P waves and S waves and of the relationship between the two. Experi-ments are made on frozen sand and frozen clay respectively at the temperature of - 7 ℃, - 12 ℃and - 17 ℃. Of the data obtained, regression analysis and gray-system correlation are conduct-ed. As indicated by the results, the frozen soil tensile strength is closely correlated with the Pwave velocity and the compressive with the S wave, hence the former is well described by thelatter.

  5. The influence of physical properties on propagation velocity of seismic waves of the rocks

    Directory of Open Access Journals (Sweden)

    Radoslav Schügerl

    2010-01-01

    Full Text Available Dynamic load are very important for determination physical properties of the rocks. Dynamic load propagates in the rocks by seismic waves (subsurface waves – longitudinal and transverse, and surface – Rayleigh´s waves. Laboratory (ultrasound machine and hydraulic jack and field methods (cross – hole, down – hole and up – hole on the determination to propagation velocity of seismic waves of the rocks can be used. This article presents selected problems of the research of the influence of physical properties (bulk density, porosity, change of temperature, stage of saturation on propagation velocity of seismic waves of the rocks and compares the values of dynamic modulus of elasticity Edyn obtain by means of ultrasound machine and by hydraulic jack. These parameters were obtained by laboratory testing of sandstone samples from locality of Jánovce – Jablonov (Šibenik tunnel.

  6. Determining surface wave arrival angle anomalies

    Science.gov (United States)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  7. Normal Wave Propagation Velocity in a Static Web.

    Science.gov (United States)

    1986-12-01

    34 " " ’ . " . " . " " . " , " " . " -" " " " . " " . " " " " . " * . - " " " , 4 . " . " . " " " . " " "." "-" "." " . . . . . " " " " -w A- INah . . . . . . - - 1 NORMAL WAVE PROPAGATION VELOCITY IN A STATIC WEB By

  8. Particle Velocity Measurement for Spherical Wave in Solid

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xue-feng; WANG Zhan-jiang; LIN Jun-de; SHEN Jun-yi

    2006-01-01

    An experimental technique for research on spherical divergent wave propagation in a solid has been developed,in which the source of generating spherical wave is a center initiating explosive charge designed in a mini-spherical shape with yield equivalent to 0.125 g and 0. 486 g TNT and a set of circular electromagnetic particle velocity gages is used to record the particle velocity histories. By using the circular electromagnetic particle velocity gages, the signal outputs not only are unattenuated due to the geometrical divergence, but also represent the average of the measured dynamic states of the medium over a circle on the wavefront. The distinctive features of this technique are very useful for the study of spherical divergent wave propagation in a solid, especially in an inhomogeneous solid, and the corresponding material dynamics.Many experimental measurements were conducted in polymethylmethacrylate (PMMA) and granite by means of the technique, and the reproducibility of tests was shown to be good. The measurement technique of the circular electromagnetic particle velocity gages is also suitable to the case of cylindrical wave.

  9. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  10. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  11. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  12. Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 丁志峰; 叶太兰; 孙为国; 张乃铃

    2002-01-01

    Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18((54(N, 70(~140(E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30(N, 38(N, 90(E and 120(E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.

  13. Upper mantle shear wave velocity structure of the east Anatolian-Caucasus region

    Science.gov (United States)

    Skobeltsyn, Gleb Anatolyevich

    The Eastern Anatolian-Caucasus region is a relatively young part of the Alpine- Himalayan orogenic belt and has been formed as the result of the ongoing continental collision of Arabia and Eurasia. In spite of a number of geological studies that have been conducted in this area, there is still no consensus within the geoscience community about the regional tectonic settings and a model for the late Cenozoic tectonic evolution of the Anatolian Plateau. Knowledge of the upper mantle velocity structure in this region can provide the geological community with important constraints that are crucial for developing an understanding of the regional geology and the processes associated with early stages of mountain building. In the present dissertation, I describe two studies of the regional upper mantle S wave velocity structure. In order to derive the absolute velocity structure of the upper mantle, I have applied surface wave tomography to model Rayleigh wave phase velocities as a function of period. Then I inverted the Rayleigh phase velocities to obtain S wave velocities as a function of depth. The resulted high-resolution 3-D S wave velocity model of the regional upper mantle is characterized by a better depth resolution than any preexisting tomographic models. I also conducted an S wave splitting analysis using traditional methods and developed a two-layer grid search algorithm in order to infer the upper mantle anisotropic structure. The results of the S wave splitting analysis for the stations located in Azerbaijan are the first in the region. (Abstract shortened by ProQuest.).

  14. Parallel Algorithm in Surface Wave Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.

  15. Range of wavelengths possible to estimate phase velocities of surface waves in microtremors; Bido tansaho ni okeru suitei kanona bidochu no hyomenha iso sokudo no hacho han`i

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, K.; Okada, H.; Ling, S. [Hokkaido University, Sapporo (Japan)

    1996-05-01

    To specify the maximum wavelength of the phase velocities that can be estimated by the spatial autocorrelation (SPAC) method or F-K method in microtremor exploration, investigations were conducted using numerical simulation. In view of feasibility, an equilateral triangle array was employed, the maximum radius of the array having 7 observation points being 0.10km. The dispersion curve of the Rayleigh wave basic mode was calculated from an underground structure model. White noise was used as the incident wave, and, in case the waves came in from multiple directions, a different phase spectrum was assigned to each direction. In searching for the maximum wave length of phase velocities that could be estimated, a limit was imposed upon estimation, and it was prescribed that the wavelength be the limit if the difference between the theoretical value and estimated phase velocity was 5% or higher. As the result, it was found that it is possible to estimate the phase velocity when the wavelength is up to approximately 10 times longer than the array maximum radius in the SPAC method, and up to approximately 5 times longer in case of the F-K method. 10 refs., 5 figs., 1 tab.

  16. Broad-band Rayleigh wave phase velocity maps (10-150 s) across the United States from ambient noise data

    Science.gov (United States)

    Zhao, Kaifeng; Luo, Yinhe; Xie, Jun

    2017-02-01

    In this study, we demonstrate the feasibility of imaging broad-band (10-150 s) Rayleigh wave phase velocity maps on a continental scale using ambient noise tomography (ANT). We obtain broad-band Rayleigh waves from cross-correlations of ambient noise data between all station pairs of USArray and measure the dispersion curves from these cross-correlations at a period band of 10-150 s. The large-scale dense USArray enables us to obtain over 500 000 surface wave paths which cover the contiguous United States densely. Using these paths, we generate Rayleigh wave phase velocity maps at 10-150 s periods. Our phase velocity maps are similar to other reported phase velocity maps based on ambient noise data at short periods (phase velocity maps from ANT can be used to construct 3-D lithospheric and asthenospheric velocity structures.

  17. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    Science.gov (United States)

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements.

  18. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-06-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of a pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g. horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  19. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Science.gov (United States)

    Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.

    2013-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  20. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-10-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  1. Non-Gaussian properties of second-order wave orbital velocity

    CERN Document Server

    Alberello, Alberto; Gramstad, Odin; Babanin, Alexander V; Toffoli, Alessandro

    2015-01-01

    A stochastic second-order wave model is applied to assess the statistical properties of wave orbital velocity in random sea states below the water surface. Directional spreading effects as well as the dependency of the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-harmonics dominate the second-order contribution to orbital velocity. We show that a notable set-down occurs for the most energetic and steepest groups. This engenders a negative skewness in the temporal evolution of the orbital velocity. A substantial deviation of the upper and lower tails of the probability density function from the Gaussian distribution is noticed, velocities are faster below the wave trough and slower below the wave crest when compared with linear theory predictions. Second-order nonlinearity effects strengthen with reducing the water depth, while weaken with the broadening of the wave spectrum. The results are confirmed by laboratory data. Corresponding experiments have b...

  2. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  3. Multipoint Vernier VISAR Interferometer System for Measuring Mass Velocity in Shock Wave Experiments

    Science.gov (United States)

    Gubskii, K. L.; Koshkin, D. S.; Mikhaylyuk, A. V.; Korolev, A. M.; Pirog, V. A.; Kuznetsov, A. P.

    The results of development of a laser interferometer designed to measure the mass velocity of condensed substances in shock wave experiments in the field of high energy density physics are presented. The developed laser system allows measurements of the velocity of free surfaces of samples in shockwave experiments with accuracy no worse than 10 m/s for the entire range of velocities attained experimentally. The time resolution of measurements is limited by the response speed of the used PMTs and amounts to 2.5 ns.

  4. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  5. Particle velocity non-uniformity and steady-wave propagation

    Science.gov (United States)

    Meshcheryakov, Yu. I.

    2017-03-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  6. Measurements of parallel electron velocity distributions using whistler wave absorption.

    Science.gov (United States)

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  7. Migration velocity modeling based on common reflection surface gather

    Institute of Scientific and Technical Information of China (English)

    李振春; 姚云霞; 马在田; 王华忠

    2003-01-01

    The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.

  8. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    Science.gov (United States)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  9. Surface wave propagation in a fluid-saturated incompressible porous medium

    Indian Academy of Sciences (India)

    Rajneesh Kumar; B S Hundal

    2007-06-01

    A study of surface wave propagation in a fluid-saturated incompressible porous half-space lying under a uniform layer of liquid is presented. The dispersion relation connecting the phase velocity with wave number is derived. The variation of phase velocity and attenuation coefficients with wave number is presented graphically and discussed. As a particular case, the propagation of Rayleigh type surface waves at the free surface of an incompressible porous half-space is also deduced and discussed.

  10. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  11. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  12. Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity

    CERN Document Server

    Tlili, S; Li, B; Cardoso, O; Ladoux, B; Delanoë-Ayari, H; Graner, F

    2016-01-01

    Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. In the monolayer bulk, the cell velocity is a function of the cell density, namely it increases as a linear function of the cell radius. At least ten periods of propagating velocity waves are detected with a high signal-to-noise ratio, enabling for their quantitative spatio-temporal analysis. Cell density displays waves, in phase opposition with the velocity, as predicted by mass conservation; similarly, cell-substrate force appear to display small amplitude waves, in phase quadrature with respect to ve...

  13. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    Science.gov (United States)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  14. Attenuation of Rayleigh Surface Waves in a Porous Material

    Institute of Scientific and Technical Information of China (English)

    DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek

    2012-01-01

    Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.

  15. [Nerve conduction velocity of repeater F-waves is identical to that of M-waves].

    Science.gov (United States)

    Hasegawa, O; Matsumoto, S; Gondo, G; Arita, T; Iwasawa, H

    2001-12-01

    F-wave normally varies in latency and waveform from one response to the next. But the number of identical responses in a series of F-waves may be increased with neurogenic atrophy consistent with a decreased number of motoneurons capable of responding to antidromic stimulation. They are called "repeater F-waves". We herein demonstrate some repeater F-waves observed in three patients with moderate or slight diabetic polyneuropathy. In their motor nerve conduction studies on the peroneal nerve the maximum conduction velocity was 33 m/sec in patient 1, 36 m/sec in patient 2 and 48 m/sec in patient 3. A total of 6 delayed indirect potentials were repeatedly evoked after nerve trunk stimulation. They fulfilled the characteristics of F-wave. Their conduction velocities in the leg segment were 27, 26, 23 m/sec in patient 1, 34, 33 m/sec in patient 2 and 46 m/sec in patient 3. Repeater F-waves are occasionally observed in patients with amyotrophic lateral sclerosis, cervical spondylosis or entrapment neuropathies, in which the number of motoneuron is decreased. In diabetic polyneuropathy some repeater F-waves were also observed in patients not only with moderate to severe neuropathy but also with normal nerve conduction. F-waves are generated by an antidromic backfiring of motor neurons, and they occur preferentially in large motor neurons. Larger motor neurons inhibit smaller axons through the activation of Renshaw cells. In our 3 patients conduction velocities of the repeated F-waves were all identical to the main component of M-wave. These observations reconfirmed the hypothesis that relatively large motor neurons generating F-waves are preferentially activated also in repeater F-waves.

  16. Surface wave chemical detector using optical radiation

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  17. Wave Generated by the NACA4412 Hydrofoil near Free Surface

    Directory of Open Access Journals (Sweden)

    Hassan Ghassemi

    2013-01-01

    Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.

  18. The radiation of surface wave energy: Implications for volcanic tremor

    Science.gov (United States)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  19. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  20. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  1. Broadband surface-wave transformation cloak

    Science.gov (United States)

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-01-01

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  2. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  3. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  4. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    Science.gov (United States)

    Tang, Zheng; Julià, Jordi; Mai, P. Martin

    2016-04-01

    We are utilizing receiver function and surface wave dispersion data to investigate the lithospheric shear-wave velocity structure of Saudi Arabia. The Arabian plate consists of the western Arabian shield and the eastern Arabian platform. The Arabian shield is a complicated mélange of several Proterozoic terrains, separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (so-called harrats). The Arabian platform is covered by thick Paleozoic, Mesozoic and Cenozoic sedimentary rocks. To understand the geo-dynamics and present-day geology in western Saudi Arabia, the origin and activity of the harrats needs to be investigated: are they controlled primarily by a local mantle plume underneath western Saudi Arabia or by lateral mantle flow from the Afar and (perhaps) Jordan hotspots? In our study, we first estimate Vp/Vs ratios by applying the H-κ stacking technique and construct local shear-wave velocity-depth profiles by jointly inverting teleseismic P-receiver functions and Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). Our results reveal significant lateral variations in crustal thickness, S-velocity, and bulk Vp/Vs ratio. The Arabian shield has, on average a ~34 km thick crust with Vs ~3.72 km/s and Vp/Vs ~1.73. Thinner crust (~25 - 32 km thick) with strong lateral variations is present along the Red Sea coast. In contrast, the Arabian platform reveals a ~41 km thick crust with Vs ~3.52 km/s and Vp/Vs ~1.77. We find anomalously high Vp/Vs ratios at Harrat Lunayyir, interpreted as solidified magma intrusions. Slow shear-velocities in the upper-mantle lid throughout the southernmost and northernmost Arabian shield suggest lateral heating from hot mantle upwellings centered beneath Afar and (perhaps) Jordan. Our findings on crustal S-velocity structures, Vp/Vs ratios, and upper-mantle lid velocities support the hypothesis of lateral mantle flow from the Afar and (perhaps

  5. Three Dimensional P Wave Velocity Model for the Crust Containing Aftershocks of the Bhuj, India Earthquake

    Science.gov (United States)

    Powell, C. A.; Vlahovic, G.; Bodin, P.; Horton, S.

    2001-12-01

    A three-dimensional P wave velocity model has been constructed for the crust in the vicinity of the Mw=7.7 January 26th Bhuj, India earthquake using aftershock data obtained by CERI away teams. Aftershocks were recorded by 8 portable, digital K2 seismographs (the MAEC/ISTAR network) and by a continuously recording Guralp CMG40TD broad-band seismometer. Station spacing is roughly 30 km. The network was in place for 18 days and recorded ground motions from about 2000 aftershocks located within about 100 km of all stations. The 3-D velocity model is based upon an initial subset of 461 earthquakes with 2848 P wave arrivals. The initial 1-D velocity model was determined using VELEST and the 3-D model was determined using the nonlinear travel time tomography method of Benz et al. [1996]. Block size was set at 2 by 2 by 2 km. A 45% reduction in RMS travel time residuals was obtained after 10 iterations holding hypocenters fixed. We imaged velocity anomalies in the range -2 to 4%. Low velocities were found in the upper 6 km and the anomalies follow surface features such as the Rann of Kutch. High velocity features were imaged at depth and are associated with the aftershock hypocenters. High crustal velocities are present at depths exceeding 20 km with the exception of the crust below the Rann of Kutch. The imaged velocity anomaly pattern does not change when different starting models are used and when hypocenters are relocated using P wave arrivals only. The analysis will be extended to an expanded data set of 941 aftershocks.

  6. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  7. Shear-wave velocity profiling according to three alternative approaches: A comparative case study

    Science.gov (United States)

    Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.

    2016-11-01

    The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.

  8. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    Science.gov (United States)

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  9. Resonant surface acoustic wave chemical detector

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  10. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  11. Exact Solitary-wave Solutions and Periodic Wave Solutions for Generalized Modified Boussinesq Equation and the Effect of Wave Velocity on Wave Shape

    Institute of Scientific and Technical Information of China (English)

    Wei-guo Zhang; Shao-wei Li; Wei-zhong Tian; Lu Zhang

    2008-01-01

    By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Bonssinesq equation. We also discuss the boundedness of these solutions. More over,we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.

  12. Correlation of seismic wave velocities with fracture densities: Implications for the critical zone in mountain watersheds

    Science.gov (United States)

    Peters, M. P.; Holbrook, W. S.; Flinchum, B. A.; Pasquet, S.

    2016-12-01

    Despite increasing scientific interest in the critical zone, the accurate determination of fracture density in the subsurface remains difficult as access and costs can prohibit ground-truthing through drilling. A more precise characterization of the fracturing process provides critical insight in to subsurface structures. This is particularly important in determining the point at which protolithic rock becomes fractured bedrock and then degrades to soil through the process of weathering. We studied outcrops in the Laramie Range of southeastern Wyoming were studied and fracture densities were correlated with seismic pressure (P) wave velocities. We used the Differential Effective Medium (DEM) rock physics model to validate our findings and provide a more robust characterization of the role of P-wave velocities acquired on outcrops play in critical zone science. This approach marks a significant departure from previous research, which has not applied P-wave fracture relationships in outcrops onto the critical zone for subsurface characterization. We compared our results with borehole data to establish a relationship between surface outcrops and subsurface rock structures. We found a clear, inverse relationship between a decrease in P-wave velocity and an increase in fracture density consistent with borehole data in the studied area. Our findings suggest that outcrops can be used to determine fracture density in the critical zone. We show that the use of seismic refraction surveys on outcrops provides a non-invasive, highly transferrable method through which we can predict fracturing densities in the subsurface.

  13. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  14. Linear surface capillary-gravity short-crested waves on a current

    Institute of Scientific and Technical Information of China (English)

    HUANG Hu

    2008-01-01

    One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.

  15. Irregular Wave-Induced Velocities in Shallow Water

    Science.gov (United States)

    1992-09-01

    and Acceleration of the Surface of Wind Waves," Rep. Res. Inst. Appl . Mech. (Kyushu Univ.), 24, No. 76, 31-48. 19, Hughes, S.A. (1991) "Estimating...8217 siilk 2 i- (D½ 0 0 411 0 Ursoll No. 0.1 10 100 1000 10000 Ursell No. W (.), z-mid-depth W (#), z-bottom W (-), z-mid-depth W (-), z-bottom (b) Figure 72

  16. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  17. On the Origin of High Shear Wave Velocities in the Deep Roots of Cratons

    Science.gov (United States)

    Zeng, L.; Duncan, M. S.; Garber, J. M.; Hernandez, J. A.; Maurya, S.; Zhang, H.; Faul, U.; McCammon, C. A.; Montagner, J. P.; Moresi, L. N.; Romanowicz, B. A.; Rudnick, R. L.; Stixrude, L. P.

    2016-12-01

    Some seismic models derived from tomographic studies indicate very high shear wave velocities around 150 km depth, which cannot be explained by standard cratonic peridotite compositions derived from kimberlites, even under the assumption of very cold geotherms (i.e. 28mW/m3 surface heat flux). We present the results of a multi-disciplinary study conducted at the CIDER Summer 2016 program in Santa Barbara (CA), in which we have reviewed various geophysical and petrological constraints on the nature of cratonic roots (seismic velocities, electrical conductivity, gravity, lithologies) and explored a range of possible solutions. We find that matching the high shear wave velocities requires a large proportion of eclogite that is not matched by observed eclogite proportions in kimberlite samples. The high shear velocity of diamond makes it a viable candidate to account for such high velocities, in a proportion that is compatible with the global carbon budget. Our most recent results will be presented as well as suggestions for possible mechanisms for diamond formation and emplacement.

  18. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  19. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  20. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    Science.gov (United States)

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  1. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  2. Dispersive surface waves along partially saturated porous media

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100 Hz–1 MHz). A modified Biot theory of poromechanics is implemented which takes into account the interact

  3. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  4. Three-dimensional shear wave velocity structure in the Atlantic upper mantle

    Science.gov (United States)

    James, Esther Kezia Candace

    Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for

  5. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    Science.gov (United States)

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  6. Identification of surface wave higher modes using a methodology based on seismic noise and coda waves

    Science.gov (United States)

    Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna

    2015-11-01

    Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.

  7. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  8. Parabolic Wave Equation for Surface Water Waves.

    Science.gov (United States)

    1986-11-01

    extended to wave propagation problems in other fields of physical sciences, such as nonlinear optics ( Svelto , 1974), plasma physics (Karpman, 1975...34 Journal of Fluid Mechanics, Vol. 72, pp. 373-384. Svelto , 0., 1974, Progress in Optics, North-Holland Pub., Chapter 1, pp. 1-51. Tappert, F.D., 1977, "The

  9. Velocity Map Imaging the Scattering Plane of Gas Surface Collisions

    CERN Document Server

    Hadden, David J; Leng, Joseph G; Greaves, Stuart J

    2016-01-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D sacattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was demonstrated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the systems capabilities the velocity distributions of ammonia molecules scattered from a PTFE surface have been measured for multiple product rotational states.

  10. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  11. Video measurements of fluid velocities and water levels in breaking waves

    CSIR Research Space (South Africa)

    Govender, K

    2002-01-01

    Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...

  12. An Undersea Mining Microseism Source Location Algorithm Considering Wave Velocity Probability Distribution

    OpenAIRE

    2014-01-01

    The traditional mine microseism locating methods are mainly based on the assumption that the wave velocity is uniform through the space, which leads to some errors for the assumption goes against the laws of nature. In this paper, the wave velocity is regarded as a random variable, and the probability distribution information of the wave velocity is fused into the traditional locating method. This paper puts forwards the microseism source location method for the undersea mining on condition o...

  13. Observations and Modelling of Winds and Waves During the Surface Wave Dynamics Experiment

    Science.gov (United States)

    1994-03-01

    l’Environnement Terrestre et Planitalre (CRPE), France; Dr. Will M. Drennan, National Water Research Institute, CCIW; Dr. Lynn "Nick" K. Shay, RSMAS; Dr...250 m), and the orbital velocities of the low-frequency surface wave components. A summary of the results from SWADE are described in Shay (1993). 18

  14. Inverse method for the determination of elastic properties of coating layers by the surface ultrasonic waves

    Institute of Scientific and Technical Information of China (English)

    CHANG Jun; YANG Zhen; XU Jin-quan

    2005-01-01

    As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space,an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.

  15. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....

  16. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  17. Study on Shear Wave Velocity Structure and Velocity Ratio Beneath Ordos Block and Its Eastern and Southern Margins

    Institute of Scientific and Technical Information of China (English)

    Zhang Xuemin; Diao Guiling; Shu Peiyi

    2004-01-01

    Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity ( Vs = 3.90km/s) lower than that at the same depth in its eastern and southern areas (Vs ≥ 4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and Iow velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer ( Vs = 3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the Vi/Vs ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60)in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively,and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.

  18. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  19. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  20. Study on S wave velocity structure beneath part stations in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    张学民; 束沛镒; 刁桂苓

    2003-01-01

    Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.

  1. Dyakonov surface waves in lossy metamaterials

    CERN Document Server

    Sorni, A J; Zapata-Rodríguez, C J; Miret, J J

    2015-01-01

    We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.

  2. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  3. Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations

    Science.gov (United States)

    Manea, Elena Florinela; Michel, Clotaire; Poggi, Valerio; Fäh, Donat; Radulian, Mircea; Balan, Florin Stefan

    2016-11-01

    Large earthquakes from the intermediate-depth Vrancea seismic zone are known to produce in Bucharest ground motion characterized by predominant long periods. This phenomenon has been interpreted as the combined effect of both seismic source properties and site response of the large sedimentary basin. The thickness of the unconsolidated Quaternary deposits beneath the city is more than 200 m, the total depth of sediments is more than 1000 m. Complex basin geometry and the low seismic wave velocities of the sediments are primarily responsible for the large amplification and long duration experienced during earthquakes. For a better understanding of the geological structure under Bucharest, a number of investigations using non-invasive methods have been carried out. With the goal to analyse and extract the polarization and dispersion characteristics of the surface waves, ambient vibrations and low-magnitude earthquakes have been investigated using single station and array techniques. Love and Rayleigh dispersion curves (including higher modes), Rayleigh waves ellipticity and SH-wave fundamental frequency of resonance (f0SH) have been inverted simultaneously to estimate the shear wave velocity structure under Bucharest down to a depth of about 8 km. Information from existing borehole logs was used as prior to reduce the non-uniqueness of the inversion and to constrain the shallow part of the velocity model (<300 m). In this study, we use data from a 35-km diameter array (the URS experiment) installed by the National Institute for Earth Physics and by the Karlsruhe Institute of Technology during 10 months in the period 2003-2004. The array consisted of 32 three-component seismological stations, deployed in the urban area of Bucharest and adjacent zones. The large size of the array and the broad-band nature of the available sensors gave us the possibility to characterize the surface wave dispersion at very low frequencies (0.05-1 Hz) using frequency-wavenumber techniques

  4. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  5. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  6. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  7. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  8. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    Science.gov (United States)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    frequency range of 0.25-1 Hz. First-higher mode Love-waves are similarly slower than first-higher mode Rayleigh waves. This is incompatible with synthetic dispersion curves we calculate using isotropic, layered velocity models appropriate for Ruapehu and Tongariro, in which Love waves travel more quickly than Rayleigh waves of the same period. The Love-Rayleigh discrepancy is likely due to structures such as dykes or cracks in the vertical plane having increased influence on surface-wave propagation. However, several measurements at Ruapehu have Love-wave group velocities that are faster than Rayleigh-wave group velocities. The differences between the Love- and Rayleigh-wave dispersion curves also vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Significant azimuthal dependence of both Love and Rayleigh-wave velocities are also observed. This suggests azimuthal anisotropy within the volcanic structures, which coupled with radial anisotropy, makes the Vs structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic or lower order symmetry. We suggest that further work to determine three-dimensional volcanic structures should include provisions for such anisotropy.

  9. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  10. Numerical simulation of floating bodies in extreme free surface waves

    Science.gov (United States)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  11. Wave heave spectra from radar Doppler velocities at extreme low grazing angles

    Science.gov (United States)

    Flampouris, Stylianos; Seemann, Joerg; Ziemer, Friedwart

    2013-04-01

    The ground based microwaves radar systems are used for the measurement of the sea surface phenomena for more than three decades. By calibrating the radar cross section, the extraction of the wave spectral characteristics is a well established empirical methodology (Ziemer et al. 1993) with theoretical background (Alpers et al. 1978) and commercial applications (Nieto et al. 2004), which provides comparable measurements with wave buoys. The transfer function is necessary mainly due to the imaging mechanisms, like shadowing and or tilt modulation (Seemann 1997). To avoid the obligatory use of a transfer function, instead of the radar cross section, the Doppler velocity, which is a direct measurement of the sea surface, could be used. In this poster, a methodology for the determination of heave spectra based on time series of Doppler velocity acquired under extreme low grazing angle conditions, is presented. We prove that for the determination of the peak frequency the analysis of the binary shadow mask is sufficient, but for the calculation of the spectral density, a transfer function is necessary because of the gaps of the time series due to the shadowing. The physical and technical limitations are discussed and the algorithm is tested with in situ measurements from the coastal area of German Bight. Both properties, peak frequency and significant wave height from radar, have significant correlation with buoy measurements.

  12. Fluorescent beeswax for surface flow velocity observations

    Science.gov (United States)

    Grimaldi, S.; Tauro, F.; Petroselli, A.; Mocio, G.; Capocci, I.; Rapiti, E.; Rapiti, R.; Cipollari, G.; Porfiri, M.

    2012-12-01

    Watershed surface processes control downstream runoff phenomena, waste and pollutant diffusion, erosion mechanics, and sediment transport. A quantitative understanding of the flow physics is currently limited by the lack of effective tracing techniques suitable for basin-scale observations. More specifically, field experiments require environmentally resilient, non-invasive, and low cost measurement systems that can potentially operate in remotely-controlled or unmanned conditions. Traditional tracing methodologies are largely not capable to cope with extreme in-situ conditions, including practical logistic challenges as well as inherent flow complexity. Specifically, most of available technologies need physical sampling to estimate the tracer concentration and do not allow for continuous-time measurements. In addition, commonly used tracers, such as isotopes, dyes, and chemicals, are not directly applicable to monitor surface hillslope processes and large-scale microchannel networks due to elaborate detection processes and dispersion issues. In this context, the feasibility of using buoyant fluorescent microspheres as particle tracers in natural water flows is investigated. Specifically, a novel fabrication methodology is designed to manufacture particles from natural beeswax and a highly diluted solution of a nontoxic fluorescent red dye. The fabrication procedure allows for adjusting the size of the particles from tens of microns up to a few millimeters and their density from positively to negatively-buoyant with respect to water. An array of experimental techniques is employed to conduct a thorough characterization of the fluorescence and morphology of the tracers. In addition, ad-hoc experiments are designed to assess the fluorescence response due to Ultra Violet (UV) exposure and thermal processes. Proof-of-concept laboratory analysis are conducted to illustrate the integration of the novel particle tracers in existing tracing methods for surface flow

  13. Three-Dimensional Modeling of Shallow Shear-Wave Velocities for Las Vegas, Nevada, Using Sediment Type

    Institute of Scientific and Technical Information of China (English)

    Barbara Luke; Helena Murvosh; Wanda Taylor; Jeff Wagoner

    2009-01-01

    A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile b developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.

  14. Surface Shear, Persistent Wave Groups and Rogue Waves

    CERN Document Server

    Chafin, Clifford

    2014-01-01

    We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.

  15. Improvements on Mean Free Wave Surface Modeling

    Institute of Scientific and Technical Information of China (English)

    董国海; 滕斌; 程亮

    2002-01-01

    Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).

  16. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  17. Measurement of surface recombination velocity on heavily doped indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  18. A Wave Modulation Model of Ripples over Long Surface Waves

    Institute of Scientific and Technical Information of China (English)

    CONG Peixiu; ZHENG Guizhen

    2011-01-01

    A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.

  19. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  20. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  1. Multichannel analysis of surface wave method with the autojuggie

    Science.gov (United States)

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  2. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  3. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection

    Science.gov (United States)

    Guanghui Li; Xiping Wang; Hailin Feng; Jan Wiedenbeck; Robert J. Ross

    2014-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  4. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...

  5. Imaging Rayleigh Wave Attenuation and Phase Velocity beneath North America with USArray

    Science.gov (United States)

    Bao, X.; Dalton, C. A.; Jin, G.; Gaherty, J. B.

    2014-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle of United States at a novel scale. The majority of mantle models derived from USArray data contain spatial variations in velocity; however, little is known about the attenuation structure of the North American upper mantle. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity, and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. In this study, Rayleigh wave travel time and amplitude are measured using an interstation cross-correlation version of the Generalized Seismological Data Functional algorithm, which takes advantage of waveform similarity at nearby stations. Our data are from 670 large teleseismic earthquakes that occurred from 2006 to 2014 and were recorded by 1,764 Transportable Array stations. More than 4.8 million measurements at periods between 20 and 100 s are collected into our database. Isolating the signal of attenuation in the amplitude observations is challenging because amplitudes are sensitive to a number of factors in addition to attenuation, such as focusing/defocusing and local site amplification. We generate several Rayleigh wave attenuation maps at each period, using several different approaches to account for source and receiver effects on amplitude. This suite of attenuation maps allows us to distinguish between the robust features in the maps and the features that are sensitive to the treatment of source and receiver effects. We apply Helmholtz surface-wave tomography (Lin et al., 2012) to determine velocity and attenuation maps. A significant contrast in velocity and attenuation is observed in the transition between the western and central United States along the Rocky Mountain front. We find low Q values in the western US, along the eastern coast, and the Gulf plain. These areas are also

  6. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  7. On the cascade mechanism of short surface wave modulation

    Directory of Open Access Journals (Sweden)

    M. Charnotskii

    2002-01-01

    Full Text Available Modulation of short surface ripples by long surface or internal waves by a cascade mechanism is considered. At the first stage, the orbital velocity of the long wave (LW adiabatically modulates an intermediate length nonlinear gravity wave (GW, which generates a bound (parasitic capillary wave (CW near its crest in a wide spatial frequency band. Due to strong dependence of the CW amplitude on that of the GW, the resulting ripple modulation by LW can be strong. Adiabatic modulation at the first stage is calculated for an arbitrarily strong LW current. The CWs are calculated based on the Lonquet-Higgins theory, in the framework of a steady periodic solution, which proves to be sufficient for the cases considered. Theoretical results are compared with data from laboratory experiments. A discussion of related sea clutter data is given in the conclusion.

  8. Joint analysis of shear wave velocity from SH-wave refraction and MASW techniques for SPT-N estimation

    Directory of Open Access Journals (Sweden)

    Sawasdee Yordkayhun

    2014-06-01

    Full Text Available Horizontally polarized shear wave (SH refraction and multichannel analysis of surface wave (MASW methods have been carried out in Hatyai City, southern Thailand, a pilot study for site classification, part of the National Earthquake Hazards Reduction Program (NEHRP. The objectives of this study are the comparison of the efficiencies of different shear wave velocity (Vs determination techniques and the use of Vs measurements of the prediction of standard penetration resistance (SPT-N. Good correlation between all Vs profiles and SPT-N values and local lithology are observed. However, there are systematic differences between SH-refraction based-Vs and MASW based-Vs, which might be explained by possible converted waves, limitations of the assumptions used, poor quality of the acquired data, and limitations of the inversion procedures of the methods applied. From the integrated use of Vs from both methods an empirical formula to describe the correlation between Vs and SPT-N values has been proposed and can be used to estimate geotechnical parameters in areas where no borehole or geophysical investigation exist.

  9. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  10. The Body Wave Velocity Structure in the Upper Crust of Fujian Estimated by Noise Records

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Jin Xing; Bao Ting; Lin Shu; Wei Yongxiang; Zhang Hongcai

    2012-01-01

    In this paper, the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore, the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part, but in the deep part, inversion accuracy for the wave velocity structure is low, which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part, but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion, we finally present a new velocity model, and the theoretical travel time calculated with the new model matches the explosion travel time very well.

  11. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  12. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  13. Experimental research on acoustic wave velocity of frozen soils during the uniaxial loading process

    Institute of Scientific and Technical Information of China (English)

    DongQing Li; Xing Huang; Feng Ming; Yu Zhang; Hui Bing

    2015-01-01

    Ultrasonic P-wave tests of frozen silt and frozen sand were conducted during uniaxial loading by using an RSM®-SY5(T) nonmetal ultrasonic test meter to study the velocity characteristics of P-waves. The experimental results indicate that the P-wave velocity is affected by soil materials, temperature, and external loads, so the P-wave velocity is different in frozen silt and frozen sand, but all decrease with an increase of temperature and increase at first and then decrease with strain during the loading process. There is an exponential relationship between uniaxial compressive strength and P-wave ve-locity, and the correlation between them is very good. The characteristic parameters of acoustic waves can, to some extent, reflect the development of internal cracks in frozen soils during loading.

  14. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    T N Singh; A K Verma; Tanmay Kumar; Avi Dutt

    2011-02-01

    Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed. Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of for shaly sandstone may be attributed to the fact that its surface had a greater number of pronounced asperities. Rubbing between the surfaces does not mean that surface becomes smoother. This is because of variation of friction between surfaces.

  15. Solar Wind Driving of Magnetospheric ULF Waves: Pulsations Driven by Velocity Shear at the Magnetopause

    CERN Document Server

    Claudepierre, S G; Wiltberger, M; 10.1029/2007JA012890

    2010-01-01

    We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailwa...

  16. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew

    2017-01-11

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the.

  17. Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    Science.gov (United States)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-10-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  18. Lapse-time dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    Science.gov (United States)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-07-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  19. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  20. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  1. Wave Equations about Displacement, Velocity, Stress and Strain in FGM with Constituents Varied Continuously and Smoothly

    Institute of Scientific and Technical Information of China (English)

    ZUO Hongxin; ZHANG Qingjie

    2008-01-01

    The wave equations about displacement, velocity, stress and strain in functionally gradient material (FGM) with constituents varied continuously and smoothly were established. Four kinds of waves are of linear second-order partial differential equation of hyperbolic type and have the same characteristic curve at the plane of X,t. In general, the varying mode of stress is different from that of displacement and velocity at the front of wave. But in a special case that the product of density p and elastic modulus E of the material remains unchanged, the three wave equations have a similar expression and they have a similar varying mode in the front of wave.

  2. A proper methodology aimed at surface wave tomography

    Directory of Open Access Journals (Sweden)

    J. Badal

    1997-06-01

    Full Text Available When applying a methodology for obtaining the 3D shear-wave velocity structure of a medium from surface wave dispersion data, the problem must be considered with caution since one inverts path-averaged velocities and the use of any inversion method entails some drawbacks such as lack of uniqueness, unwarranted stability and constraints affecting the data. In order to avoid the application of consecutive inversions and to overcome these drawbacks, we propose alternative mapping methods, for example spatial prediction methods, or else the use of an algorithm that, from a mathematical viewpoint, can be understood through the application of the orthogonal projection theorem onto convex sets (POCS. Among the first ones, we try inverse weighted distance interpolation. The POCS algorithm we have used discretises a second order differential equation for the velocity field with boundary conditions. All these imaging techniques aimed at volumetric modelling and the visualisation of data are discussed, and finally we show some results based on ray path velocities obtained previously by inversion of phase and group velocities of Rayleigh waves propagating across the Iberian peninsula.

  3. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  4. Topographic Influence on Near-Surface Seismic Velocity in southern California

    Science.gov (United States)

    Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.

    2016-12-01

    Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment

  5. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  6. Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formulation of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply surface-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave-mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The balance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.

  7. The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spence, W.L.

    1985-04-01

    A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)

  8. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    Science.gov (United States)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  9. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  10. Determination of wave intensity in flexible tubes using measured diameter and velocity.

    Science.gov (United States)

    Feng, J; Khir, A W

    2007-01-01

    Wave intensity (WI) is a hemodynamics index, which is the product of changes in pressure and velocity across the wave-front. Wave Intensity Analysis, which is a time domain technique allows for the separation of running waves into their forward and backward directions and traditionally uses the measured pressure and velocity waveforms. However, due to the possible difficulty in obtaining reliable pressure waveforms non-invasively, investigating the use of wall displacement instead of pressure signals in calculating WI may have clinical merits. In this paper, we developed an algorithm in which we use the measured diameter of flexible tube's wall and flow velocity to separate the velocity waveform into its forward and backward directions. The new algorithm is also used to separate wave intensity into its forward and backward directions. In vitro experiments were carried out in two sized flexible tubes, 12mm and 16mm in diameters, each is of 2 m in length. Pressure, velocity and diameter were taken at three measuring sites. A semi-sinusoidal wave was generated using a piston pump, which ejected 40cc water into each tube. The results show that separated wave intensity into the forward and backward directions of the new algorithm using the measured diameter and velocity are almost identical in shape to those traditionally using the measured pressure and velocity. We conclude that the new algorithm presented in this work, could have clinical advantages since the required information can be obtained non-invasively.

  11. Aortic pulse wave velocity measurement in systemic sclerosis patients

    Directory of Open Access Journals (Sweden)

    M. Sebastiani

    2012-12-01

    Full Text Available Background. Systemic sclerosis (SSc is characterized by endothelial dysfunction and widespread microangiopathy. However, a macrovascular damage could be also associated. Aortic pulse wave velocity (aPWV is known to be a reliable indicator of arterial stiffness and a useful prognostic predictor of cardiovascular events. Moreover, aPWV may be easily measured by non-invasive, user-friendly tool. Aim of our study was to evaluate aPWV alterations in a series of SSc patients. Methods. The aPWV was evaluated in 35 consecutive female SSc patients and 26 sex- and age-matched healthy controls. aPWV alterations were correlated with cardiopulmonary involvement. Results. A significant increase of aPWV was observed in SSc patients compared to controls (9.4±3.2 m/s vs 7.3±1 m/s; P=0.002. In particular, 14/35 (40% SSc patients and only 1/26 (4% controls (P=0.0009 showed increased aPWV (>9 m/s cut-off value. Moreover, echocardiography evaluation showed an increased prevalence of right atrial and ventricular dilatation (atrial volume: 23.6±6.2 mL vs 20.3±4.3 mL, P=0.026; ventricular diameter 19.5±4.9 mm vs 15.9±1.6 mm; P=0.001 associated to higher values of pulmonary arterial systolic pressure (PAPs in SSc patients (31.5±10.4 mmHg vs 21.6±2.9 mmHg; P50 years old. Furthermore, altered aPWV was more frequently associated with limited cutaneous pattern, longer disease duration (≥5 years, and/or presence of anticentromere antibody (ACA. Conclusions. A significantly higher prevalence of abnormally increased aPWV was evidenced in SSc patients compared to healthy controls. The possibility of more pronounced and diffuse vascular damage in a particular SSc subset (ACA-positive subjects with limited cutaneous scleroderma and longer disease duration might be raised.

  12. Estimating Stream Surface Flow Velocities from Video Clips

    Science.gov (United States)

    Weijs, S. V.; Brauchli, T.; Chen, Z.; Huwald, H.

    2014-12-01

    Measuring surface flow velocities in streams can provide important information on discharge. This information is independent of water level, the most commonly used proxy for discharge and therefore has significant potential to reduce uncertainties. Advances in cheap and commonly used imaging devices (e.g. smartphone cameras) and image processing techniques offer new opportunities to get velocity information. Short video clips of streams can be used in combination with optical flow algorithms to get proxies for stream surface velocities. Here some initial results are presented and the main challenges are discussed, especially in view of using these techniques in a citizen science context (specifically the "WeSenseIt" project, a citizen observatory of water), where we try to minimize the need for site preparation and additional equipment needed to take measurements.

  13. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  14. Study on estimate method of wave velocity and quality factor to fault seals

    Institute of Scientific and Technical Information of China (English)

    LI Zhensheng; LIU Deliang; LIU Bo; YANG Qiang; LI Jingming

    2005-01-01

    Based on ultrasonic test of fault rocks, the responses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and mechanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally offered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and compresso-shear fault rocks that are obviously anisotropic compared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave velocity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to foliation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock's lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the enhancement of three-dimensional seismic prospecting work.

  15. Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays

    Science.gov (United States)

    Lontsi, A. M.; Ohrnberger, M.; Krüger, F.

    2016-07-01

    We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the

  16. Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method

    Science.gov (United States)

    Su, L.; Xu, X.; Liao, H.; Geng, X.-Y.

    2015-09-01

    The depth and geometry of potential failure surface is the fundamental for evaluating the mechanisms of a landslide. Traditional techniques to acquire information on potential sliding surface are mainly drilling, pitting, and trenching, but these techniques are time consuming and expensive. In this study, microtremor signals and the dispersion curves of surface wave are extracted from the vertical component of microtremor records using the spatial autocorrelation (SPAC) method to estimate shear wave velocity structure. The results suggest that the buried depth of phyllite bedrock is approximately 47.4m, and the thickness of weathered bedrock layer is about 9.9m at about 57.3m deep, which could be interpreted as the potential sliding surface of this landslide, in accordance with borehole data. The microtremor survey method (MSM) is flexible, non-invasive, relatively quick and deployable on the landslide. It clearly demonstrat that it is an effective tool to improve the drilling success rate, and hence allow a large scale and high density investigation of structure characteristics of a deep seated landslide.

  17. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    Science.gov (United States)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  18. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  19. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...

  20. Velocity selective trapping of atoms in a frequency-modulated standing laser wave

    CERN Document Server

    Argonov, V Yu

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We propose that in a real experiment with cold atomic gas this effect may decrease the velocity distribution of atoms (the field traps the atoms with such specific velocities while all other atoms leave the field)

  1. Ruts and waves in the road surface.

    NARCIS (Netherlands)

    Tromp, J.P.M.

    1989-01-01

    The characteristics of a road and a road surface should not unexpectedly change, if the traffic process is to be kept safe and under control. Knowledge on accidents, in which ruts and waves played a part does not seem to exist. Knowledge on driver behaviour due to the occurrence of waves or ruts is

  2. Shock wave velocity measuring system based on vernier VISAR-type interferometers

    Science.gov (United States)

    Gubskii, K. L.; Koshkin, D. S.; Antonov, A. S.; Mikhailuk, A. V.; Pirog, V. A.; Kuznetsov, A. P.

    2015-11-01

    The paper presents a multi-line diagnostic system for measuring the surface velocity in shock physics experiments. This system is designed for simultaneous measurement of surface velocity at multiple points. It is free from ambiguity caused by harmonic dependence of interference signals on the velocity and has a time resolution of 0.8 ns.

  3. Langasite surface acoustic wave gas sensors: modeling and verification

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  4. Multiple-frequency surface acoustic wave devices as sensors

    Science.gov (United States)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  5. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  6. Comparing dynamic surface tilt with velocity using an LDV

    Science.gov (United States)

    Bruce, Robert A.

    2004-06-01

    If a laser Doppler vibrometer (LDV) probe beam is normally incident on a resonating metal strip with a mirror-finish, the retro-reflected beam has corresponding dynamic deflections. These lateral beam offsets are proportional to the dynamic surface tilt and can be measured along with the LDV velocity using a separating beam-splitter and a two-dimensional position sensitive detector (PSD). On a thin unbound strip resonating with 'pure mode' deformation, these derivative motions, velocity and tilt, are completely complementary. On a thin unbound plate resonating with 'hybrid mode' deformation, velocity and now two orthogonal tilts are nearly complementary. Maximal tilt has zero velocity, and maximum deformation or velocity has zero tilt. Intermediate values range in complementary fashion except near 'cross-nodes' zones. Here both motion types drop to zero at these cross-node locations. Both velocity and tilt signals are compared simultaneously using a special test fixture. This fixture consists of a stainless steel strip supported on its edges in the center, which can be excited by small speakers at the ends. Two comparison/calibration approaches are demonstrated with a pure 3-0 mode. Significant modal details are also demonstrated by analyzing multiple modes from pulsed excitation, and mapping a 3-1 mode-shape using the combined sensing approaches.

  7. Velocity model optimization for surface microseismic monitoring via amplitude stacking

    Science.gov (United States)

    Jiang, Haiyu; Wang, Zhongren; Zeng, Xiaoxian; Lü, Hao; Zhou, Xiaohua; Chen, Zubin

    2016-12-01

    A usable velocity model in microseismic projects plays a crucial role in achieving statistically reliable microseismic event locations. Existing methods for velocity model optimization rely mainly on picking arrival times at individual receivers. However, for microseismic monitoring with surface stations, seismograms of perforation shots have such low signal-to-noise ratios (S/N) that they do not yield sufficiently reliable picks. In this study, we develop a framework for constructing a 1-D flat-layered a priori velocity model using a non-linear optimization technique based on amplitude stacking. The energy focusing of the perforation shot is improved thanks to very fast simulated annealing (VFSA), and the accuracies of shot relocations are used to evaluate whether the resultant velocity model can be used for microseismic event location. Our method also includes a conventional migration-based location technique that utilizes successive grid subdivisions to improve computational efficiency and source location accuracy. Because unreasonable a priori velocity model information and interference due to additive noise are the major contributors to inaccuracies in perforation shot locations, we use velocity model optimization as a compensation scheme. Using synthetic tests, we show that accurate locations of perforation shots can be recovered to within 2 m, even with pre-stack S/N ratios as low as 0.1 at individual receivers. By applying the technique to a coal-bed gas reservoir in Western China, we demonstrate that perforation shot location can be recovered to within the tolerance of the well tip location.

  8. Surface waves propagation on a turbulent flow forced electromagnetically

    CERN Document Server

    Gutiérrez, Pablo

    2015-01-01

    We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...

  9. Accurate source location from P waves scattered by surface topography

    Science.gov (United States)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  10. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves

    Science.gov (United States)

    Shi; Yifei; Ni; Chenyin; Shen; Zhonghua; Ni; Xiaowu; Lu; Jian

    2008-05-01

    High frequency surface acoustic waves (SAWs) are excited by a pulsed laser and detected by a specially designed poly(vinylidene fluoride) (PVDF) transducer to investigate surface stress distribution. Two kinds of stressed surfaces are examined experimentally. One is a steel plate elastically deformed under simple bending forces, where the surface stress varies slowly. The other is a welded steel plate for which the surface stress varies very rapidly within a small area near the welding seam. Applying a new signal processing method developed from correlation technique, the velocity distribution of the SAWs, which reflects the stress distribution, is obtained in these two samples with high resolution.

  11. Hall-magnetohydrodynamic surface waves in solar wind flow-structures

    Science.gov (United States)

    Miteva, Rossitsa; Zhelyazkov, Ivan; Erdélyi, Robert

    2004-02-01

    This paper investigates the parallel propagation of agnetohydrodynamic (MHD) surface waves travelling along an ideal steady plasma slab surrounded by a steady plasma environment in the framework of Hall magnetohydrodynamics. The magnitudes of the ambient magnetic field, plasma density and flow velocity inside and outside the slab are different. Two possible directions of the relative flow velocity (in a frame of reference co-moving with the ambient flow) have been studied. In contrast to the conventional MHD surface waves which are usually assumed to be pure surface or pseudo-surface waves, the Hall-MHD approach makes it necessary to treat the normal MHD slab's modes as generalized surface waves. The latter have to be considered as a superposition of two partial waves, one of which is a pure/pseudo-surface-wave whereas the other constitutive wave is a leaky one. From the two kinds of surface-wave modes that can propagate, notably sausage and kink ones, the dispersion behaviour of the kink mode turns out to be more complicated than that of the sausage mode. In general, the flow increases the waves' phase velocities comparing with their magnitudes in a static Hall-MHD plasma slab. The applicability of the results to real solar wind flow-structures is briefly discussed. EHPRG Award Lecture.

  12. Extracting the Group Velocity of Rayleigh Waves from the Cross Correlation of the Ambient Seismic Noise Between Two Seismic Stations

    Institute of Scientific and Technical Information of China (English)

    Jin Xing; Li Jun; Lin Shu; Zhou Zhengrong; Kang Lanchi; Ou Yiping

    2008-01-01

    This paper uses the 8 broad-band stations' microseism data recorded by the Seismic Monitoring Network of Fujian Province to calculate the vertical correlation coefficient between two stationsat intervals of 5 minutes. According to the time intervals technique we obtain the different coefficients and then add the correlative coefficients. Depending on this, we extract the group velocity of Rayleigh waves from the cross correlation of the ambient seismic noise between two seismic stations and figure out the group velocity' spatial distribution. The results show that the signal noise ratio (SNR) increases proportionally to the superposition times, but the results from different days are similar to one another. Synchronously, the arrival-time is also stable and there is no obvious change when coming across typhoons. It is found the velocity of the surface wave is 2.9~3. 1km/s in Fujian Province, which is close to the observationally attained value.

  13. Evaluation of the depth of surface deterioration for concrete structure using dispersion characteristics of surface wave

    Science.gov (United States)

    Hsu, Keng-Tsang; Cheng, Chia-Chi; Tao, Hung-Yu; Chiang, Chih-Hung

    2017-02-01

    Surface waves generated by an impact are used to assess depth of deterioration for concrete plate. The proposed method uses one receiver positioned away from the impacting source. The spectrogram of the group velocity obtained from the signal recorded from the receiver is calculated by Short-Time Fourier Transform and the reassignment technique. Experiments were conduct on the concrete plate with top mortar layer to simulate concrete with serious aggregate segregation and bleeding. In the experiment, the responses corresponding to different source-receiver distance were explored. The results were shown by both slowness spectrogram and velocity profile. In the slowness spectrogram, substantial increase of velocity at low frequency domain is found. The velocity profile shows the change of wave speed is at the wave length about 1.2 times the mortar thickness. The results also show the lower velocity corresponding to the weak layer may be identified for source-receiver distance as short as 0.5 m but the wave speed may be underestimated.

  14. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions.

  15. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  16. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    Science.gov (United States)

    Moran, Seth C.; Lees, Jonathan M.; Malone, Stephen D.

    1999-05-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ˜10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics.

  17. The wave phase velocity in superconducting transmission lines near T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhakhmetov, A.R.; Lobov, G.D.; Shtykov, V.V.; Zhgoon, S.A. [Moscow Power Engineering Inst. (Russian Federation). Radio Engineering Dept.

    1998-06-01

    A peculiarity in behavior of electromagnetic waves phase velocity ({nu}{sub ph}), propagating in superconducting planar transmission lines, in the vicinity of the transition temperature (T{sub c}) was observed in experiment and deduced theoretically. (orig.) 5 refs.

  18. S-Wave Velocity Structure of Taipei Basin by Using the Simulation of Microtremor H/V Ratios

    Science.gov (United States)

    Cheng-Yi, Lin; Kuo-Liang, Wen; Che-Min, Lin

    2014-05-01

    In this report here the investigation of the S-wave velocity structures of the Taipei basin which is located in the northern Taiwan. Previous study, the dense microtremor measurement analysis have been confirmed in Taipei Basin. However, within the basin around the layer effects on seismic site characterization and contribution have still needed to clarify more details, as the strata in Taipei basin with reference to estimate ground motion prediction. The detail site response all over the Taipei basin has been studied by using the H/V ratios of dense microtremor surveys. In this study, a method, GA-Haskell, combining Genetic Algorithm and Thomson-Haskell propagator matrix was used to simulate the microtremor H/V ratios according to the previous results of dense microtremor surveys. The near-surface S-wave velocity structures of over 400 sites in the Taipei basin were evaluated by the simulations of the H/V ratios. Through the numerous microtremor data are helpful to figure the S-wave velocity and thickness of the Sungshan Formation and the other deeper formations which control the seismic site-effect in the basin. While many strong motion stations have also been performed microtremor measurement and single station spectrum to understand the earthquake site characteristics analysis. Compared with other research results, confirmed the applicability of the method for estimating the velocity structure in Taipei Basin. Finally, accord with the actual site earthquake and microtremor response, established a complete and detailed S-wave velocity model of the Taipei basin. It will benefit the strong motion prediction and simulation in the future. Key Words: Taipei Basin, Microtremor, H/V Ratio, S-wave Velocity, Site Effect

  19. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    Science.gov (United States)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  20. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  1. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  2. Surface waves of Min-proteins

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  3. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  4. Magnetostatic surface waves in an FM/LH/FM sandwiched structure

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jianing; Li Hua; Zhang Qiang; Yin Yongqi; Wang Xuanzhang, E-mail: limjn@126.co [Provincial Key Laboratory for Advanced Functional Material and Excited States Processes, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2010-07-15

    Properties of magnetostatic surface waves in a magnetic structure with one left-handed material (LHM) film sandwiched between two ferromagnetic (FM) films are discussed, where FM films are magnetized to be saturated by an external field parallel to the film surfaces and the LHM film has a constant and negative magnetic permeability. Besides the surface magnetostatic wave lying in the same frequency range as that of a single film, two new branches of surface magnetostatic waves with negative group velocity are found in different frequency ranges. The new branches propagate along the inner surface of an FM film, but the other propagates along the outer surface.

  5. Site characterization studies along coastal Andhra Pradesh—India using multichannel analysis of surface waves

    Science.gov (United States)

    Trupti, S.; Srinivas, K. N. S. S. S.; Pavan Kishore, P.; Seshunarayana, T.

    2012-04-01

    Multichannel analysis of surface waves (MASW) technique was employed for site characterization studies at the identified lineament locations along coastal regions of Andhra Pradesh covering ~ 600 km to measure the shear wave velocity. The shear (S)-wave velocity of near surface materials (such as soil, rocks and pavement) and its effect on seismic wave propagation are of fundamental interest in many groundwater, engineering and environmental studies. Geologically, the study area comprises of Precambrian basement over which younger rocks commencing with Jurassic, Cretaceous, Tertiary and Quaternary have given rise to varying sequences in different parts. The study has been conducted along the lineaments and these were selected based on the analysis of IRS-1D LISS-IV satellite images and the field geological investigation. The average shear wave velocity, stiffness and the liquefaction potential were evaluated by using the obtained shear wave velocities. Soils are classified into four categories as soft soils, stiff soils, dense soils/soft rock and hard rock based on the obtained shear wave velocities. The factor of safety (FS) against liquefaction is determined and it is found that the sites with low shear wave velocity have FS canal alignments, and cross-drainage structures.

  6. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-08-25

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.

  7. Shallow Shear Wave Velocity Structure of Adapazari (Turkey) Region by MASW And MAM Measurements and Some Implications

    Science.gov (United States)

    Ozcep, T.; Ozcep, F.; Ozel, O.

    2009-04-01

    Wave-propagation method to generate the near-surface Vs profile are called spectral analysis of surface waves that uses the spectral analysis of ground roll generated by an impulsive source and recorded by a pair of receivers. This method has been widely and effectively used in many shallow shear wave velocity structure. The 17 August 1999 Izmit earthquake (Mw=7.4) ruptured a 140 km segment of the North Anatolian Fault, extending from the Izmit bay in the west to Akyazi in the east, and caused about 20,000 loss of life and totally 20,000 collapsed buildings. In the study area, the shear wave velocities are obtained by multi channel analysis of surface wave for 100 points in study area. The phase velocity-dispersion curve for each point and shear wave velocity are obtained by inversion distance profile for first 50 meters of soil. The records that are depending on field conditions with different geophone intervals are taken. Passive source when it is compared by active source reaches deeper parts of soils, because the lower frequency of natural noises are recorded different noises that are given more information from the deeply distance. After the data are collected from the field, data-processing are carried out, the phase velocities for the different frequency are obtained by using a computer program and after the process dispersion curve is obtained. During the field studies, the seismic refraction data are also collected. The initial model that obtained from these data is used the initial model data. By using both forward and inverse solutions algorithm, S wave velocities are calculated and drown depending on distance. For 100 sites, soil classifications are mapped according to the Eurocode-8, UBC (NEHRP) and the Turkish Seismic Design Code. The site classification, based on Vs30 in seismic design codes, are compared with fundamental periods and amplification values that obtained by using real earthquake data obtained from region. This study was supported by

  8. True propagation paths of surface waves from regional and teleseismic earthquakes across AlpArray Austria

    Science.gov (United States)

    Kolínský, Petr; Fuchs, Florian; Gröschl, Gidera; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    We utilize array beamforming techniques to investigate deterministic surface waves from regional and teleseismic earthquakes. Because the signal is well recognized and the fundamental mode for both Love and Rayleigh waves is separated before the beamforming, instead of searching for energy of all possible signals, we identify the frequency dependence of surface wave phase velocity and the true backazimuths of propagation. Using the dense AlpArray seismic broadband network distributed in the greater Alpine region across Europe with interstation distances around 40 km, we consider each station as a centre of an array of neighboring 5 to 6 stations. This allows us to calculate the local phase velocity dispersion curves for individual regions with diameter of approximately 80 - 100 km. By the beamforming, phase velocities are corrected for the true propagation backazimuth, which is slightly frequency dependent for each event. We invert the dispersion curves for S and P wave velocity distribution with depth. Measuring the phase velocity from different events distributed around the world, azimuthal dependence of the phase velocity is estimated and thus anisotropy constrained for particular depths. Beamforming of the signals in the time window sliding along the coda after the fundamental mode allows us to detect deterministic late surface-wave signals coming from certain directions dissimilar from the direct fundamental mode backazimuths for some of the events - these can be considered as surface wave reflections from lateral heterogeneities and vertical boundaries.

  9. On the time varying horizontal water velocity of single, multiple, and random gravity wave trains

    NARCIS (Netherlands)

    Wells, D.R.

    1964-01-01

    In this dissertation some characteristics of the horizontal water velocity for single, multiple, and random gravity wave trains are studied. This work consists of two parts, an analogue study and hydraulic measurements. An important aspect in this work is to suggest the horizontal water velocity asy

  10. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  11. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  12. Surface and downhole shear wave seismic methods for thick soil site investigations

    Science.gov (United States)

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  13. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.|info:eu-repo/dai/nl/304835773

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  14. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  15. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  16. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  17. Optimal control of oscillation wave energy system using velocity premonition

    Institute of Scientific and Technical Information of China (English)

    CUI; Xiao

    2015-01-01

    Recently ocean wave energy draw much more attention for its widespread,abundant and highly energy flux density properties.Extracting energy from incident wave however,is limited for the random and unstable power input.Motion control for WEC is a promising method to improve the energy absorption and some practical applications are also verified such as latching control.In this paper,an active control strategy is proposed to achieve maximum energy capture.The mathematical description shows that the active control has the characteristic of anti-causal and the wave premonition is necessary for controller design.But the fact of premonition time horizon is still unclear.In this paper,the premonition nature is described mathematically based on hydrodynamic theory.Furthermore,a simulation is also performed to study the impacting of premonition time horizon on WEC’s properties and give a more insightful understanding of WEC active control.

  18. Bidirectional surface wave splitter at visible frequencies.

    Science.gov (United States)

    Gan, Qiaoqiang; Bartoli, Filbert J

    2010-12-15

    We experimentally demonstrate a metal-film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green-red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.

  19. Waveform synthesis of surface waves in a laterally heterogeneous earth by the Gaussian beam method

    Science.gov (United States)

    Yomogida, K.; Aki, K.

    1985-01-01

    The present investigation is concerned with an application of the Gaussian beam method to surface waves in the laterally heterogeneous earth. The employed method has been developed for ray tracing and synthesizing seismograms of surface waves in cases involving the laterally heterogeneous earth. The procedure is based on formulations derived by Yomogida (1985). Vertical structure of the wave field is represented by the eigenfunctions of normal mode theory, while lateral variation is expressed by the parabolic equation as in two-dimensional acoustic waves or elastic body waves. It is demonstrated that a large-amplitude change can result from a slight perturbation in the phase velocity model.

  20. Seismic wave attenuation and velocity dispersion in UAE carbonates

    Science.gov (United States)

    Ogunsami, Abdulwaheed Remi

    Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact

  1. Negative group velocity and three-wave mixing in dielectric crystals

    CERN Document Server

    Slabko, Vitaly V; Shalaev, Mikhail I; Popov, Alexander K

    2011-01-01

    Extraordinary features of optical parametric amplification of Stokes electromagnetic waves are investigated, which originate from three-wave mixing of two ordinary electromagnetic and one backward phonon wave with negative group velocity. A similarity with the counterpart in the negative-index plasmonic metamaterials and differences with those utilizing contra-propagating ordinary electromagnetic waves as well as electromagnetic and acoustic phonon waves are shown. They stem from backwardness of optical phonons with negative dispersion. Nonlinear-optical photonic devices with the properties similar to those predicted for the negative-index metamaterials are proposed.

  2. High resolution applications of seismic tomography: low velocity anomalies and static corrections using wave-equation datuming

    Science.gov (United States)

    Flecha, I.; Marti, D.; Escuder, J.; Perez-Estaun, A.; Carbonell, R.

    2003-04-01

    A detailed characterization of the internal structure and physical properties of shallow surface can be obtained using high-resolution seismic tomography. Two applications of high resolution seismic tomography are presented in this study. Several synthetics simulations have been carried out to asses the resolving power of this methodology in different cases. The first studied case is the detection of low velocity anomalies in the shallow subsoil. Underground cavities (mines), water flows (formation wich loose sand), etc., are geological features present in the shallow subsurface characterized by low seismic velocities, and are targets of considerable social interest. We have considered a 400m×50m two dimensional velocity model consisting of a background velocity gradient in depth from 3 to 4 Km/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The inversions schemes provided estimates of the velocity, however the tomograms and the ray tracing diagrams indicated a low resolution for the anomaly. In the second case we have applied wave-equation datuming to pre-stack layer replacement. The standard seismic data processing applies a vertical time shift to the data traces. However, it is not a good option when we are dealing with rugged topography or bathymetry, and when the media presents a high heterogeneity. Wave-equation datuming extrapolates seismic time data to some level datum keeping consistency between raypaths and wavefield propagation. It improves considerably seismic reflectors imaging. In order to implement this technique a velocity model is required, and usually a constant velocity is used to propagate the wavefield; instead of it we have used seismic tomography to provide an accurate velocity model.

  3. Surface-Wave Tomography of Yucca Flat, Nevada

    Science.gov (United States)

    Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.

    2016-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Surface wave dynamics in orbital shaken cylindrical containers

    Science.gov (United States)

    Reclari, M.; Dreyer, M.; Tissot, S.; Obreschkow, D.; Wurm, F. M.; Farhat, M.

    2014-05-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction, or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications.

  5. Surface wave dynamics in orbital shaken cylindrical containers

    CERN Document Server

    Reclari, Martino; Tissot, Stéphanie; Obreschkow, Danail; Wurm, Florian Maria; Farhat, Mohamed

    2014-01-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications. Copyright (2014) American Institute of Physics. This article may be downloaded ...

  6. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  7. CHANGES OF MEAN VELOCITY PROFILES IN THE WAVE-CURRENT COMBINED FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a mathematical model is developed to simulate thechange in mean velocity for the coexistent case of waves and current. The experimental results of mean velocity profile in a wave-current flume have shown following features: Eulerian mean current profile for following current is more uniformly distributed than the corresponding pure current case, whereas, the case of an opposing current leads to the more straight profile. This model is based on Eulerian mean framework, and motions of wave and current are solved simultaneously. The comparisons of numerical results and experimental data show that the mathematical model presented in this paper is reasonable and feasible.

  8. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  9. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu

    2017-08-17

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source-domain FTI is capable of automatically generating a background velocity that can kinematically match the reconstructed plane-wave sources of early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging aspects of ray-based first-arrival tomographic inversion. Moreover, compared with conventional Born-based methods, source-domain FTI can distinguish between slower or faster initial model errors via providing the correct sign of the model gradient. In addition, this method does not need estimation of the source wavelet, which is a requirement for receiver-domain wave-equation velocity inversion. The model derived from source-domain FTI is then used as input to early-arrival waveform inversion to obtain the short-wavelength velocity components. We have tested the workflow on synthetic and field seismic data sets. The results show source-domain FTI can generate reasonable background velocities for early-arrival waveform inversion even when subsurface velocity reversals are present and the workflow can produce a high-resolution near-surface velocity model.

  10. Accurate source location from waves scattered by surface topography

    Science.gov (United States)

    Wang, Nian; Shen, Yang; Flinders, Ashton; Zhang, Wei

    2016-06-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (>100 m). In this study, we explore the use of P coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example to provide realistic topography. A grid search algorithm is combined with the 3-D strain Green's tensor database to improve search efficiency as well as the quality of hypocenter solutions. The strain Green's tensor is calculated using a 3-D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are obtained based on the least squares misfit between the "observed" and predicted P and P coda waves. The 95% confidence interval of the solution is provided as an a posteriori error estimation. For shallow events tested in the study, scattering is mainly due to topography in comparison with stochastic lateral velocity heterogeneity. The incorporation of P coda significantly improves solution accuracy and reduces solution uncertainty. The solution remains robust with wide ranges of random noises in data, unmodeled random velocity heterogeneities, and uncertainties in moment tensors. The method can be extended to locate pairs of sources in close proximity by differential waveforms using source-receiver reciprocity, further reducing errors caused by unmodeled velocity structures.

  11. Visualizing 3D velocity fields near contour surfaces. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  12. Visualizing 3D velocity fields near contour surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  13. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  14. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  15. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  16. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Science.gov (United States)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  17. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  18. Interaction of Streamwise and Wall-Normal Velocities in Combined Wave-Current Motion

    Institute of Scientific and Technical Information of China (English)

    Shu-Qing YANG; In-Soo KIM; Daniel S. KOH; Young-Chae SONG

    2005-01-01

    The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been comprehensively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. -ρ(uv)only, this study demonstrates that the momentum flux caused by mean velocities, i.e.,(u)and(v) , is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.

  19. Blackfolds, plane waves and minimal surfaces

    OpenAIRE

    Armas, Jay; Blau, Matthias

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...

  20. Precise Measurement of Subsurface Seismic Velocity Variation by Coda Wave Interferometry

    Institute of Scientific and Technical Information of China (English)

    Xia Yu; Wang Baoshan; Ge Hongkui; Chen Yong

    2008-01-01

    A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the theoretical error.The velocity variation during this period is up to 10-3.The relationship between velocity variation and changes in air temperature,barometric pressure and solid earth tide was analyzed with linear least square fitting.The velocity has no dependence on air temperature,but displayed change of the order of 10-6~10-7 when the barometer or earth tide changed one Pa.

  1. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  2. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    Science.gov (United States)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  3. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency

    Science.gov (United States)

    Li, Y.-G.; Vidale, J.E.

    1996-01-01

    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  4. A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves

    Science.gov (United States)

    Jamali, M.; Lawrence, G. A.; Seymour, B. R.

    2002-12-01

    Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.

  5. A note on the resonant interaction between a surface wave and two interfacial waves

    Science.gov (United States)

    Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian

    2003-09-01

    Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.

  6. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  7. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity.

    Science.gov (United States)

    Krueger, R R; Krasinski, J S; Radzewicz, C; Stonecipher, K G; Rowsey, J J

    1993-07-01

    Shadow photography of shock waves excited by means of a xenon chloride excimer laser was performed to determine the shock wave propagation velocity in air, nitrogen and helium. Energy densities between 500 and 2,000 mJ/cm2 were used to ablate a rotating rubber cylindrical target and porcine corneas. In ablating the rubber cylinder, a shock wave velocity of 3.3 km/s was generated in air and nitrogen at 40 ns; this decreased to 1.4 km/s at 320 ns. When helium was blown on the target, the velocity increased by a factor of approximately two, to 5.9 km/s at 40 ns and 2.7 km/s at 320 ns. We suggest that blowing helium on the surface of the cornea during excimer laser ablation may speed the dissipation of high-energy acoustic waves and gaseous particles, and thus reduce the exposure and transfer of heat energy to the surrounding tissue.

  8. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  9. Three-dimensional P-wave velocity structure of the crust beneath Hainan Island and its adjacent regions, China

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-xiong; LEI Jian-she; ZHAO Da-peng; WU Batee; SHEN Fan-luan; QIU Xue-lin

    2008-01-01

    Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999-2005, a 3-D P-wave velocity model of the crest under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone, corresponding to the depressed areas in north Hainan Island, where many volcanoes are frequently active and geothermal values are relatively higher, and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan, possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults, i.e., the Puqian-Qinglan fault, may be shallower, while the E-W Wangwu-Wenjiao fault may be deeper, which perhaps extends down to Moho depth or deeper.

  10. Estimation of Shallow S-Wave Velocity Structure of Two Practical Sites from Microtremors Array Observation in Tangshan Area

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched. The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method. Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities, and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex. The results are compared with the PS logging data of the two sites, showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.

  11. The energy of waves in the photosphere and lower chromosphere: 1. Velocity statistics

    CERN Document Server

    Beck, C; Rezaei, R; Collados, M

    2009-01-01

    Acoustic waves are one of the primary suspects besides magnetic fields for the chromospheric heating process to temperatures above radiative equilibrium (RE). We derived the mechanical wave energy as seen in line-core velocities to obtain a measure of mechanical energy flux with height for a comparison with the energy requirements in a semi-empirical atmosphere model. We analyzed a 1-hour time series and a large-area map of Ca II H spectra on the traces of propagating waves. We analyzed the velocity statistics of several spectral lines in the wing of Ca II H, and the line-core velocity of Ca II H. We converted the velocity amplitudes into volume and mass energy densities. For comparison, we used the increase of internal energy necessary to lift a RE atmosphere to the HSRA temperature stratification. We find that the velocity amplitude grows in agreement with linear wave theory and thus slower with height than predicted from energy conservation. The mechanical energy of the waves above around z~500 km is insuf...

  12. Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity

    Directory of Open Access Journals (Sweden)

    Mohammadreza Hemmati Nourani

    2017-04-01

    Full Text Available Engineering rock mass classification, based on empirical relations between rock mass parameters and engineering applications, is commonly used in rock engineering and forms the basis for designing rock structures. The basic data required may be obtained from visual observation and laboratory or field tests. However, owing to the discontinuous and variable nature of rock masses, it is difficult for rock engineers to directly obtain the specific design parameters needed. As an alternative, the use of geophysical methods in geomechanics such as seismography may largely address this problem. In this study, 25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks I, III and IV-2 of the Choghart iron mine. Moreover, rock joint measurements and sampling for laboratory tests were conducted. The results show that the rock mass rating (RMR and Q values have a close relation with P-wave velocity parameters, including P-wave velocity in field (VPF, P-wave velocity in the laboratory (VPL and the ratio of VPF to VPL (i.e. KP = VPF/VPL. However, Q value, totally, has greater correlation coefficient and less error than the RMR. In addition, rock mass parameters including rock quality designation (RQD, uniaxial compressive strength (UCS, joint roughness coefficient (JRC and Schmidt number (RN show close relationship with P-wave velocity. An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%. The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass.

  13. A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.

    Science.gov (United States)

    Choi, Sun-Ho; Kim, Yong-Jung

    2017-02-01

    We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.

  14. Inversion of Love wave phase velocity using smoothness-constrained least-squares technique; Heikatsuka seiyakutsuki saisho jijoho ni yoru love ha iso sokudo no inversion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, S. [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1996-10-01

    Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.

  15. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  16. Characteristics of group velocities of backward waves in a hollow cylinder.

    Science.gov (United States)

    Cui, Hanyin; Lin, Weijun; Zhang, Hailan; Wang, Xiuming; Trevelyan, Jon

    2014-06-01

    It is known that modes in axially uniform waveguides exhibit backward-propagation characteristics for which group and phase velocities have opposite signs. For elastic plates, group velocities of backward Lamb waves depend only on Poisson's ratio. This paper explores ways to achieve a large group velocity of a backward mode in hollow cylinders by changing the outer to inner radius ratio, in order that such a mode with strong backward-propagation characteristics may be used in acoustic logging tools. Dispersion spectra of guided waves in hollow cylinders of varying radii are numerically simulated to explore the existence of backward modes and to choose the clearly visible backward modes with high group velocities. Analyses of group velocity characteristics show that only a small number of low order backward modes are suitable for practical use, and the radius ratio to reach the highest group velocity corresponds to the accidental degeneracy of neighboring pure transverse and compressional modes at the wavenumber k = 0. It is also shown that large group velocities of backward waves are achievable in hollow cylinders made of commonly encountered materials, which may bring cost benefits when using acoustic devices which take advantage of backward-propagation effects.

  17. Shear-wave velocity of surficial geologic sediments in Northern California: Statistical distributions and depth dependence

    Science.gov (United States)

    Holzer, T.L.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.

    2005-01-01

    Shear-wave velocities of shallow surficial geologic units were measured at 210 sites in a 140-km2 area in the greater Oakland, California, area near the margin of San Francisco Bay. Differences between average values of shear-wave velocity for each geologic unit computed by alternative approaches were in general smaller than the observed variability. Averages estimated by arithmetic mean, geometric mean, and slowness differed by 1 to 8%, while coefficients of variation ranged from 14 to 25%. With the exception of the younger Bay mud that underlies San Francisco Bay, velocities of the geologic units are approximately constant with depth. This suggests that shear-wave velocities measured at different depths in these surficial geologic units do not need to be normalized to account for overburden stress in order to compute average values. The depth dependence of the velocity of the younger Bay mud most likely is caused by consolidation. Velocities of each geologic unit are consistent with a normal statistical distribution. Average values increase with geologic age, as has been previously reported. Velocities below the water table are about 7% less than those above it. ?? 2005, Earthquake Engineering Research Institute.

  18. Chiral Surface Waves for Enhanced Circular Dichroism

    CERN Document Server

    Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2016-01-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  19. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  20. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  1. Surface acoustic wave propagation in graphene film

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  2. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct......The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium molecular dynamics. Unlike previous equilibrium molecular dynamics...

  3. Gas sensing with surface acoustic wave devices

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  4. Liquefaction assessment based on combined use of CPT and shear wave velocity measurements

    Science.gov (United States)

    Bán, Zoltán; Mahler, András; Győri, Erzsébet

    2017-04-01

    Soil liquefaction is one of the most devastating secondary effects of earthquakes and can cause significant damage in built infrastructure. For this reason liquefaction hazard shall be considered in all regions where moderate-to-high seismic activity encounters with saturated, loose, granular soil deposits. Several approaches exist to take into account this hazard, from which the in-situ test based empirical methods are the most commonly used in practice. These methods are generally based on the results of CPT, SPT or shear wave velocity measurements. In more complex or high risk projects CPT and VS measurement are often performed at the same location commonly in the form of seismic CPT. Furthermore, VS profile determined by surface wave methods can also supplement the standard CPT measurement. However, combined use of both in-situ indices in one single empirical method is limited. For this reason, the goal of this research was to develop such an empirical method within the framework of simplified empirical procedures where the results of CPT and VS measurements are used in parallel and can supplement each other. The combination of two in-situ indices, a small strain property measurement with a large strain measurement, can reduce uncertainty of empirical methods. In the first step by careful reviewing of the already existing liquefaction case history databases, sites were selected where the records of both CPT and VS measurement are available. After implementing the necessary corrections on the gathered 98 case histories with respect to fines content, overburden pressure and magnitude, a logistic regression was performed to obtain the probability contours of liquefaction occurrence. Logistic regression is often used to explore the relationship between a binary response and a set of explanatory variables. The occurrence or absence of liquefaction can be considered as binary outcome and the equivalent clean sand value of normalized overburden corrected cone tip

  5. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  6. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  7. Deep ReMi Imaging - Mapping Shear-Wave Velocities to 1 km Depth and Greater Using Refraction Microtremor

    Science.gov (United States)

    Louie, J. N.; Pancha, A.; Munger, D.; Law, C.; Adams, D.; Mick, T. M.; Pullammanappallil, S. K.

    2016-12-01

    The Refraction Microtremor (ReMi) surface-wave technique, in use since 2002, has become a standard tool for assessing urban shear-wave velocities for engineering applications. ReMi is effective for site-class studies as well as assessing ground conditions, including 1D and 2D velocity-depth profiling to shallow depths of approximately 100 m. Over the last few years, we have successfully extended the application of the method to depths greater than 1 km. The use of deep ReMi, which relies primarily on ambient noise, for estimation of shear-wave velocities to kilometer depths, allows for mapping the thickness and velocity of deep urban basins. Accurate 3D modeling and calibration of recorded earthquake ground motions in urban areas is one use of deep ReMi results. Such models have the potential to be an essential part of seismic hazard evaluation. We present results from several deep ReMi studies conducted in the Reno-area and Tahoe basins of Nevada and California. Wireless instruments coupled with low-frequency geophones deployed in 3-km-long arrays across the densely populated urban environment acquired data in 2012, 2014, and 2015. In addition to mapping basement as deep as 900 m, the lateral velocity variations reveal deep-seated fault structure in the initial studies. A study of the Reno-area basin in 2016 employed arrays of 90 IRIS-PASSCAL Texans, 15 and 22 km long. This data set appears to constrain a sub-basin interface between Tertiary volcanics and Mesozoic basement at 1-2 km depth. Characterization of shear velocity at greater than 100 m depth, to basement, along with previously unknown faults, is vital towards quantifying earthquake ground motion and seismic hazard potential in geologically complex urban basins. Our measurements will allow Nevada communities to become more resilient against natural hazards.

  8. Deep S-wave velocity structure at Hawaii Islands obtained by microtremor array measurements

    Science.gov (United States)

    Hayashi, K.

    2015-12-01

    Microtremor array measurements and three-component microtremor measurements have been performed at the west coast of Hawaii Island (Figure.1). Two seismographs with three-component accelerometers were used for data acquisition. At each site, one seismograph was fixed in one place and data was acquired at that location for the entire survey. Data was acquired by a second seismograph at larger separations ranging from 5 to 3403m from the fixed seismograph. Data acquisition was repeated at each new separation. In each measurement, 10 to 60 minutes of ambient noise was recorded. As the separations of seismographs increased, the record length of ambient noise was increased. The sampling interval used was 10msec. An entire measurement took several hours. Data acquisition was performed in the day-time and the seismographs were placed in relatively quiet places such as in parks or residential areas. A spatial autocorrelation was used for calculating phase velocity and a clear dispersion curve (Figure 2a) was obtained in frequency range from 0.2 to 30 Hz. A joint inversion was applied to the observed dispersion curve, and H/V spectrum, and S-wave velocity model was analyzed for the site. In the inversion, phase velocities of the dispersion curve and the absolute value and peak frequencies of the H/V spectra were used as observation data. The unknown parameters were layer thickness and S-wave velocity. A Genetic Algorithm was used for optimization. Theoretical H/V spectra and phase velocities are generated by calculating the weighted average of the fundamental mode and higher modes (up to the 5th mode) based on medium response. Figure 2b shows an S-wave velocity model obtained by the inversion. We can see that a low velocity layer with S-wave velocity from 250 to 700 m/s exists to a depth of 90 m. A velocity layer with S-wave velocity from 900 to 1500 m/s exists at a depth range of 90 to 1300 m. Bedrock with S-wave velocity about 3000 m/s exists at a depth of 2200 m.

  9. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  10. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  11. Stern Gerlach spin filter using surface acoustic waves

    Science.gov (United States)

    Santos, Paulo V.; Nitta, Junsaku; Ploog, Klaus H.

    2004-12-01

    We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.

  12. Sample Disturbance in Resonant Column Test Measurement of Small-Strain Shear-Wave Velocity

    Science.gov (United States)

    Chiara, Nicola; Stokoe, K. H.

    The accurate assessment of dynamic soil properties is a crucial step in the solution process of geotechnical earthquake engineering problems. The resonant column test is one of the ordinary procedures for dynamic characterization of soil. In this paper, the impact of sample disturbance on the resonant column test measurement of small-strain S-wave velocity is examined. Sample disturbance is shown to be a function of the ratio of the laboratory to field S-wave velocities: Vs, lab/Vs,field. The influence of four parameters - soil stiffness, soil plasticity index, in-situ sample depth and in-situ effective mean confining pressure - on sample disturbance is investigated both qualitatively and quantitatively. The relative importance of each parameter in predicting the small-strain field S-wave velocity from the resonant column test values is illustrated and predictive equations are presented.

  13. A P-wave velocity model of the upper crust of the Sannio region (Southern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1998-06-01

    Full Text Available This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia

  14. Unified Approach of Unmanned Surface Vehicle Navigation in Presence of Waves

    Directory of Open Access Journals (Sweden)

    Oren Gal

    2011-01-01

    Full Text Available Most of the present work for unmanned surface vehicle (USV navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.

  15. Internal wave pressure, velocity, and energy flux from density perturbations

    CERN Document Server

    Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L

    2016-01-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...

  16. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi

    2015-08-01

    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.

  17. Stiffness matrix determination of composite materials using lamb wave group velocity measurements

    Science.gov (United States)

    Putkis, O.; Croxford, A. J.

    2013-04-01

    The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.

  18. Temporal change of phase velocity beneath Mt. Asama, Japan, inferred from coda wave interferometry

    Science.gov (United States)

    Nagaoka, Y.; Nishida, K.; Aoki, Y.; Takeo, M.

    2010-12-01

    Recent studies have revealed that cross-correlation of seismic random wavefield, such as ambient noise or coda waves is capable of delineating seismic structure of the subsurface. This idea is also suitable of detecting subtle temporal changes of local internal structure. Here we estimated the temporal changes of phase velocity of Rayleigh waves extracted from cross correlations of S-coda waves recorded at 12 stations around Mt. Asama, Japan, between October 2005 and February 2009, during which minor and small eruption occurred in August 2008 and February 2009, respectively. We first extracted a Rayleigh wave averaged over 315 regional earthquakes by taking cross-correlations of S-coda waves. The dispersion curve of the Rayleigh wave thus generated was measured and compared with the one extracted from 18 days of ambient seismic noise. We found that both dispersion curves are consistent with each other, demonstrating the dominance of the fundamental Rayleigh waves. We then divided the entire time period into sub-periods, each of which consists of 80 earthquakes, to measure the temporal changes at frequencies from 0.3 to 0.6 Hz. The result shows that the onset of the velocity reduction started in the middle of 2007, marking the minumum with 1.5 % reduction with repsect to the reference value in early 2008. The phase velocity then quickly recovered to approximately the reference value before the August 2008 eruption. Our result is not, in fact, consistent with geodetic observation which indicate the magma intrusion at about 1.5 km below sea level and the shallow (shallower than sea level) pressurization both commenced in the middle of 2008, about a month before the 2008 eruption. The velocity recovery well precedes the magma intrusion detected by geodetic observation. This inconsistency would indicate that the velocity changes are sensitive to something other than the mass transport detected by deformation measurements. This fact also implies that the velocity changes

  19. Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    Akihiko; Osaki; Tomoyuki; Kubota; Takeshi; Suda; Masato; Igarashi; Keisuke; Nagasaki; Atsunori; Tsuchiya; Masahiko; Yano; Yasushi; Tamura; Masaaki; Takamura; Hirokazu; Kawai; Satoshi; Yamagiwa; Toru; Kikuchi; Minoru; Nomoto; Yutaka; Aoyagi

    2010-01-01

    AIM:To investigate whether a noninvasive measurement of tissue strain has a potential usefulness for management of nonalcoholic steatohepatitis(NASH).METHODS:In total 26 patients,23 NASHs and 3 normal controls were enrolled in this study.NASH was staged based on Brunt criterion.At a region of interest(ROI),a shear wave was evoked by implementing an acoustic radiation force impulse(ARFI),and the propagation velocity was quantif ied.RESULTS:Shear wave velocity(SWV) could be reproducibly quantified at all ROIs...

  20. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper.It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/diffusion balance time scale,defined as the ratio between the kinematic viscosity and the square of the receding velocity.At a time much larger than the diffusion/recession balance time scale,the role of the surface receding is rather important:instead of being pushed into the liquid at the receding velocity,the development of the Stokes layer is effectively prohibited by surface receding.

  1. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper. It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/ditftmion balance time scale, defined as the ratio between the kinematic viscosity and the square of the receding velocity. At a time much larger than the diffusion/recession balance time scale, the role of the surface receding is rather important: instead of being pushed into the liquid at the receding velocity, the development of the Stokes layer is effectively prohibited by surface receding.

  2. ESTIMATION OF S-WAVE VELOCITY STRUCTURE OF FUKUI PLAIN BASED ON MICROTREMOR ARRAY OBSERVATION

    Science.gov (United States)

    Kojima, Keisuke; Moto, Koudai

    The precise evaluations of Quaternary structure of the region are indispensable in order to accurately predict the seismic damage. However, deep borehole, PS-logging and elastic wave exploration have been executed only on limited points around the Fukui Plain. The problem analyzed in this study is statistical estimation of the 3D S-wave velocity structure down to the Tertiary bedrock of the Fukui Plain based on the data from 75 microtremor array observation sites. The Rayleigh wave phase velocities at each array site were calculated by the spatial autocorrelation method. The phase velocities at each site were inverted to a 1D S-wave profile using a genetic inversion. The 3-components single-site microtremor observations were carried out to compensate the array observations. The 3D S-wave velocity structure around the Fukui plain have been interpolated by using Kriging and Co-Kriging techniques. In the Co-Kriging procedure, the correlations between the estimated depths of Quaternary and the observed predominant periods of the sites were taken into account. The validity of the estimated structure from the microtremor observation was confirmed by comparing with the density structure and with the existing PS-logging data.

  3. Surface Wave Propagation in non--ideal plasmas

    CERN Document Server

    Pandey, B P

    2015-01-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...

  4. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  5. NUMERICAL STUDY OF WAVE EFFECTS ON SURFACE WIND STRESS AND SURFACE MIXING LENGTH BY THREE-DIMENSIONAL CIRCULATION MODELING

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2006-01-01

    The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A three- dimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.

  6. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    Science.gov (United States)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.

    2013-12-01

    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  7. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  8. Surface waves on arbitrary vertically-sheared currents

    CERN Document Server

    Smeltzer, Benjamin K

    2016-01-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of arbitrary depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past in 2D, and we herein extend and apply it to 3D problems. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving Fourier transformations in the horizontal plane. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between a concave down profile when compared to a constant shear profile with equal depth-averaged vorticity. New insight is given concerning the nature of extra spurious solution...

  9. Elastic wave velocities and Poisson`s ratio in reservoir rocks; Choryugan no danseiha sokudo to Poisson hi

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Y. [Japan National Oil Corp., Tokyo (Japan)

    1998-04-01

    This paper discusses the relationship between elastic wave velocities and physical properties of reservoir rocks. For sandstones, the elastic wave velocity decreases with increasing the porosity and the content of clay minerals. For rocks containing heavy oil, the P-wave velocity decreases with increasing the temperature. The P-wave velocity under dry condition is much more lower than that under water saturated condition. When there are a few percent of gas in pores against the water saturated condition, the P-wave velocity decreases rapidly. It is almost constant under the lower water saturation factor. The S-wave velocity is almost constant independent of the water saturation factor. Accordingly, the water saturation factor can not be estimated from the elastic wave velocity at the water saturation factor between 0% and 96%. The Poisson`s ratio also greatly decreases at the water saturation factor between 96% and 100%, but it is almost constant under the lower water saturation factor. The elastic wave velocity increases with increasing the pressure or increasing the depth. Since closure of cracks by pressure is inhibited due to high pore pressure, degree of increase in the elastic wave velocity is reduced. 14 refs., 6 figs.

  10. Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence

    Science.gov (United States)

    Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.

    2016-02-01

    Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.

  11. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    Science.gov (United States)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  12. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Kousaka, Hiroyuki; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2003-05-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy.

  13. NUMERICAL STUDY ON EFFECT OF WAVING BED ON THE SURFACE WAVE

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ren; CHENG You-liang; WANG Song-ling

    2006-01-01

    The effect of the waving bed on the surface wave was investigated. The wave equation was reduced from the potential flow theory with the perturbation technique, and then was solved by using the pseudo-spectral method. The waterfall of the surface wave was simulated with the Matlab. It is shown that for the waving bed, an additional harmonic wave appears on the surface together with the solitary wave existing for the non-waving bed, and two kinds of waves do not interfere with each other. With the development of time, the waveform for the waving bed is kept invariable, and just the amplitude is reduced gradually. Wave-breaking phenomenon for the non-waving bed does not appear, so the waving bed seems useful to prevent the breaking of the wave.

  14. Lithospheric structure of the Sea of Japan from surface wave tomography

    Science.gov (United States)

    Fry, B.; Sato, H.; Takeda, T.; Chen, Q. F.; Okaya, D. A.; Wang, K.

    2015-12-01

    We investigate the surface wave and shear wave velocity structure of the Sea of Japan based on group and phase velocity measurements made on broad-band, cross-correlated ambient noise. Continuous data from terrestrial broadband stations surrounding the sea are filtered, cross correlated on a day-by-day basis, and then stacked. The correlation functions are processed with multiple filters and group velocities are manually selected from 7s to 50s. Subsequent to multiple filtering, we apply phase-matched filtering and unwrap the phase of the resulting signal. This phase is then used to determine phase velocities by selecting an appropriate number of wave-cycles appropriate for the average velocity structure. The interstation dispersion curves are then inverted for 2D isotropic and anisotropic surface wave maps at discrete periods. In a second stage of inversion, the 2D isotropic inversion results are combined at each spatial node to create a "1D" dispersion curve. We use a linearized, iterative process to model the 1D dispersion at each node for depth-dependent shear-wave velocities. The 1D models are then combined to form at 3D model of shear wave velocity. We image slow shear-wave anomalies under the central basin and relatively fast velocities under the Yamamoto and Japan Basins and offshore of the western Japan shelf. Current estimates of azimuthal anistoropy from our inversions are poorly constrained due to sparse data distribution. Ongoing efforts are aimed at refining anisotropy estimates by increasing data density from noise correlations by increasing the spatial coverage of our database. Our isotropic and anisotropic models will be presented, as will a first attempt at defining lithospheric thickness based on radial anisotropy determined from our inversions.

  15. Velocity Diagnosis of Critical Surface at Microwave Band in Laser-Induced Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Ying; WANG Junyan; BAI Shunbo; CHEN Jianping; CHU Ran; YUN Xiaohua; NI Xiaowu

    2008-01-01

    The velocity of critical surface at microwave band in laser-induced plasma was mea-sured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.

  16. Identification of Upper Crustal Structures Beneath Central Java, Indonesia from of Surface Wave Dispersion Inversion

    Science.gov (United States)

    Zulhan, Zulfakriza; Saygin, Erdinc; Cummins, Phil; Widiyantoro, Sri; Nugraha, Andri Dian; Luehr, Birger-G.; Bodin, Thomas

    2015-04-01

    Our previous study on MERAMEX data (Zulfakriza et al., 2014) obtained features of the tomographic images which correlate well with the surface geology of central Java in periods between 1 to 12 sec. Kendeng Basin and active volcanoes in the central part of this region are clearly imaged with low group velocities with values around 0.8 km/sec, while the carbonate structures in the southern part of the region correspond to higher group velocities in the range of 1.8 to 2.0 km/sec. In this current study, we invert dispersion curves obtained from seismic noise tomography to estimate shear wave-depth profiles of the region. The results are used to discuss the spatial variation of shear wave velocities for a depth range down from the surface to upper crust. Most of the shear wave velocity anomalies, including the upper crustal areas of the Kendeng basin and active volcanoes, are consistent with our previous study of Rayleigh wave group velocities and fit to the regional geology. Keywords: Dispersion Inversion; shear wave velocity; Central Java, Indonesia. Reference: Zulfakriza, Z., Saygin, E., Cummins, P., Widiyantoro, S., Nugraha, A., Luehr, B.-G., Bodin, T., 2014. Upper crustal structure of central Java, Indonesia, from transdimensional seismic ambient noise tomography. Geophys. J. Int. 197.

  17. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  18. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva

    1997-06-01

    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  19. A DAMAGE ACCUMULATING MODELING OF FAILURE WAVES IN GLASS UNDER HIGH VELOCITY IMPACT

    Institute of Scientific and Technical Information of China (English)

    刘占芳; 姚国文; 詹先义

    2001-01-01

    The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damageaccumulating model to describe the failure delay in the interior of materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.

  20. Pulse wave velocity in patients with severe head injury a pilot study.

    Science.gov (United States)

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  1. Regional Body-Wave Corrections and Surface-Wave Tomography Models to Improve Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W R; Pasyanos, M E; Rodgers, A J; Meyeda, K M; Sicherman, A

    2003-07-18

    multivariate combinations of ratios for their discrimination power. We also make use of the MDAC2 spectra and the noise spectra to determine the expected signal-to-noise value of each phase and use that to optimize the multivariate discriminants as a function of location. We quantify the discrimination power using the misidentified event trade-off curves and an equi-probable measure. In addition to the traditional phases, we are also exploring the application of coda amplitudes in discrimination. Coda-derived spectra can be peaked due to Rg-to-coda scattering, which can indicate an unusually shallow source. For surface waves we have a new high-resolution regional Rayleigh-Wave tomography for the Yellow Sea and Korean Peninsula Region, based on measuring thousands of seismograms. We also continue to make new measurements for our regional Rayleigh and Love wave group velocity tomography models of Western Eurasia and North Africa. These tomography models provide high-resolution maps of group velocity from 10- to 100-s period. The maps also provide estimates of the expected phase spectra of new events that can be used in phase-match filters to compress the expected signals and improve the signal-to-noise ratio on surface wave magnitude (Ms) estimates. Phase match filters in combination with regional Ms formulas can significantly lower the threshold at which Ms can be measured, extending the Ms-mb discriminant. We have measured Ms in western Eurasia for thousands of events at tens of stations, with and without phase match filtering, and found a marked improvement in discrimination. Here we start to quantify the improvement to both discrimination performance and the Ms threshold reduction. The group velocity models also provide constraints on velocity structure, particularly in low seismicity regions. For example we are working with Dr. Bob Henmann and Dr. Charles Ammon to combine tomography derived group velocity curves with station based receiver functions in joint inversions to

  2. The critical velocity and 1500-m surface performances in Finswimming.

    Science.gov (United States)

    Oshita, K; Ross, M; Koizumi, K; Kashimoto, S; Yano, S; Takahashi, K; Kawakami, M

    2009-08-01

    The purpose of this investigation was to determine whether the concepts of critical velocity (CV) and anaerobic swimming capacity (ASC) could be used by coaches as a reliable index in order to monitor 1500-m Surface (SF) performances in Finswimming. Thirteen Finswimmers (6 males and 7 females, 24+/-6 years), members of the Japanese national team, were instructed to swim three different swimming distances (400-, 800-, and 1500-m) at maximal effort in a 50m long course swimming pool. CV and the ASC were calculated using 400-m and 800-m swim times. Mean height and body mass were 170.2 cm and 69.7 kg in male and 160.5 and 61.0 kg in female. A highly positive correlation was found between the CV and the mean velocity of 1500-m SF (V1500) (r=0.91, P<0.01), but no correlation was found between the ASC and V1500. (r=0.46, P=0.11). However, a high correlation was found between the ASC and the residual error of V1500, calculated from the relationship between V1500 and the CV (r=0.89, P<0.01). These results suggest that the CV is a useful method for evaluating 1500-m SF performance and an aerobic performance expressed as the CV contributes to 1500-m SF performance.

  3. Blackfolds, Plane Waves and Minimal Surfaces

    CERN Document Server

    Armas, Jay

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...

  4. Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of

  5. Modeling the propagation of electromagnetic waves over the surface of the human body

    Science.gov (United States)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  6. Associations between plasma fibulin-1, pulse wave velocity and diabetes in patients with coronary heart disease

    DEFF Research Database (Denmark)

    Hansen, Maria Lyck; Rasmussen, Lars Melholt

    2015-01-01

    BACKGROUND: Diabetes is related to increased risk of cardiovascular disease, and arterial stiffness and its consequences may be the factor connecting the two. Arterial stiffness is often measured by carotid-femoral pulse wave velocity (cf-PWV), but no plasma biomarker reflecting arterial stiffnes...

  7. Technique of calculating and studying stability of three dimensional velocity fields of longitudinal waves

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarova, N.B.; Slavina, L.B.

    1981-01-01

    The features of a technique for determining the velocity of spread of longitudinal waves in the epicenter zone are briefly formulated. Results are presented from studying the technique in the example of model and experimental data in the focal zone of Kamchatka.

  8. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  9. Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in Soils

    Science.gov (United States)

    1987-09-01

    in Terms of Characteristic Indices of Soil," Butsuri- Tanko (Geophysical Exploration) (in Japanese), Vol 29, No. 4, pp 34-41. . 1978a. "Empirical Shear...34Physical Background of the Statistically Obtained S-Wave Velocity Equation in Terms of Soil Indexes," Butsuri- Tanko (Geophysical Explo- ration) (in Japanese

  10. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    Science.gov (United States)

    Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583

  11. Clinical characteristic of pulse wave velocity and arterial compliance in elderly patients with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    张红

    2013-01-01

    Objective To explore the clinical characteristics of pulse wave velocity,arterial compliance and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus.Methods A total of 363 patients were selected and divided into 4 groups:diabetic group,diabetic

  12. An Analysis of Pulsed Wave Ultrasound Systems for Blood Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, J. A.

    1995-01-01

    Pulsed wave ultrasound systems can be used for determining blood's velocity non-invasively in the body. A region of interest is selected, and the received signal is range gated to measure data from the region. One complex sample value is acquired for each pulse emission after complex demodulation...

  13. Watching surface waves in phononic crystals.

    Science.gov (United States)

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  15. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  16. The influence of the initial velocity on the anomalous wave dynamics in expanding fireball

    Science.gov (United States)

    Konyukhov, A. V.; Likhachev, A. P.

    2016-11-01

    The quark-gluon plasma fireball expansion, appearing in the collision of relativistic heavy ions, can be accompanied by the wave anomalies associated with the quark-hadron phase transition. Namely, the composite rarefaction wave, which includes the rarefaction shock, can arise instead of a simple rarefaction wave. The emphasis of the given work is focused on the special features of these wave processes induced by nonzero quark-gluon plasma velocity at the beginning of the hydrodynamic stage of the fireball expansion. The simulation has been conducted in the framework of relativistic hydrodynamics. The equation of state used is based on the variant of the MIT-bag model. The initial conditions are formulated under the assumption that the distributions of the energy density and the baryon number density are uniform, while the radial velocity changes linearly from zero at the center to the assigned value at the fireball border. The results of the calculations have shown the strong dependence of the wave phenomena observed on the initial velocity distribution.

  17. Velocities and Displacements of Shrapnel and a Shock Wave during Blast

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-hui; TIAN Da-zhan; XU Jin-yu; ZHANG Hai-rong

    2007-01-01

    It is important to minimize the destruction of defense works when blasted. In our opinion,information in the available literature is very deficient. We now present our research results on better and simpler formulas for calculating the velocities and displacements of shrapnel and a shock wave;these formulas are indispensable for understanding the destruction of blast. Formulas now available in China are too complicated. In this paper, we derive Equation (13) as the formula for calculating the velocity of shrapnel and Equation (18) as that for calculating the velocity of a shock wave. We used the test data of Denver Research Institute, as reported in Reference 4, as numerical example and found that our Equations (13) and (18) give calculated results that agree well with their test data in two respects: (1) both test data and our calculations show that at first a shock wave is ahead of shrapnel,then their displacements are equal, and finally shrapnel is ahead of the shock wave; (2) when the displacements of shrapnel and shock wave are equal, the time is 0.34 s according to test data and 0.31 s according to our calculations.

  18. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    Science.gov (United States)

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  19. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  20. Condition Assessment of PC Tendon Duct Filling by Elastic Wave Velocity Mapping

    Directory of Open Access Journals (Sweden)

    Kit Fook Liu

    2014-01-01

    Full Text Available Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.

  1. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    Science.gov (United States)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  2. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  3. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  4. Megaquakes, prograde surface waves and urban evolution

    Science.gov (United States)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  5. Rayleigh wave group velocity tomography of Gujarat region, Western India and its implications to mantle dynamics

    Science.gov (United States)

    de Lorenzo, Salvatore; Michele, Maddalena; Emolo, Antonio; Tallarico, Andrea

    2017-02-01

    In the present study, fundamental Rayleigh waves with varying period from 10 to 80 s are used to obtain group velocity maps in the northwest Deccan Volcanic Province of India. About 350 paths are obtained using 53 earthquakes (4.8 ≤ M ≥ 7.9) recorded by the SeisNetG (Seismic Network of Gujarat). Individual dispersion curves of group velocity of Rayleigh wave for each source-station path are estimated using multiple filter technique. These curves are used to determine lateral distribution of Rayleigh wave group velocity by tomographic inversion method. Our estimated Rayleigh group velocity at varying depths showed conspicuous corroboration with three tectonic blocks [Kachchh Rift Basin (KRB), Saurashtra Horst (SH), and Mainland Gujarat (MG)] in the region. The seismically active KRB with a thicker crust is characterized as a low velocity zone at a period varying from 10 to 30 s as indicative of mantle downwarping or sagging of the mantle beneath the KRB, while the SH and MG are found to be associated with higher group velocities, indicating the existence of the reduced crustal thickness. The trend of higher group velocity was found prevailed adjacent to the Narmada and Cambay rift basins that also correspond to the reduced crust, suggesting the processes of mantle upwarping or uplifting due to mantle upwelling. The low velocities at periods longer than 40 s beneath the KRB indicate thicker lithosphere. The known Moho depth correlates well with the observed velocities at a period of about 30 s in the Gujarat region. Our estimates of relatively lower group velocities at periods varying from 70 to 80 s may correspond to the asthenospheric flow beneath the region. It is interesting to image higher group velocity for the thinner crust beneath the Arabian Sea adjacent to the west coast of Gujarat at the period of 40 s that may correspond to the upwarped or upwelled mantle beneath the Arabian Sea. Our results have better resolution estimated by a radius of equivalent

  6. A Variable-resolution Surface Wave Dispersion Study of Eurasia, North Africa, and Surrounding Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2005-03-21

    This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, and have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant

  7. S-wave velocity structure inferred from receiver function inversion in Tengchong volcanic area

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2004-01-01

    Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow position, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.

  8. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  9. Assessment of a geological model by surface wave analyses

    Science.gov (United States)

    Martorana, R.; Capizzi, P.; Avellone, G.; D'Alessandro, A.; Siragusa, R.; Luzio, D.

    2017-02-01

    A set of horizontal to vertical spectral ratio (HVSR) and multichannel analysis of surface waves (MASW) measurements, carried out in the Altavilla Milicia (Sicily) area, is analyzed to test a geological model of the area. Statistical techniques have been used in different stages of the data analysis, to optimize the reliability of the information extracted from geophysical measurements. In particular, cluster analysis algorithms have been implemented to select the time windows of the microseismic signal to be used for calculating the spectral ratio H/V and to identify sets of spectral ratio peaks likely caused by the same underground structures. Using results of reflection seismic lines, typical values of P-wave and S-wave velocity were estimated for each geological formation present in the area. These were used to narrow down the research space of parameters for the HVSR interpretation. MASW profiles have been carried out close to each HVSR measuring point, provided the parameters of the shallower layers for the HVSR models. MASW inversion has been constrained by extrapolating thicknesses from a known stratigraphic sequence. Preliminary 1D seismic models were obtained by adding deeper layers to models that resulted from MASW inversion. These justify the peaks of the HVSR curves due to layers deeper than MASW investigation depth. Furthermore, much deeper layers were included in the HVSR model, as suggested by geological setting and stratigraphic sequence. This choice was made considering that these latter layers do not generate other HVSR peaks and do not significantly affect the misfit. The starting models have been used to limit the starting research space for a more accurate interpretation, made considering the noise as a superposition of Rayleigh and Love waves. Results allowed to recognize four main seismic layers and to associate them to the main stratigraphic successions. The lateral correlation of seismic velocity models, joined with tectonic evidences

  10. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  11. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  12. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  13. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  14. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  15. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  16. Crust and upper mantle velocity structure of the northwestern Indian Peninsular Shield from inter-station phase velocities of Rayleigh and Love waves

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2015-06-01

    Full Text Available We measure the inter-station Rayleigh and Love wave phase velocities across the northwestern Indian Peninsular shield (NW-IP through cross-correlation and invert these velocities to evaluate the underneath crust and upper mantle velocity structure down to 400 km. We consider a cluster of three stations in the northern tip of the Peninsula and another cluster of eight stations in the south. We measure phase velocities along 28 paths for Rayleigh waves and 17 paths for Love waves joining two stations with one from each cluster and using broadband records of earthquakes which lie nearly on the great circle joining the pair of stations. The phase velocities are in the period range of 10 to 275 s for Rayleigh waves and of 10 to 120 s for Love waves. The isotropic model obtained through inversion of the phase velocities indicates 199.1 km thick lithosphere with 3-layered crust of thickness 36.3 km; the top two layers have nearly same velocities and both constitute the upper crust with thickness of 12.6 km. The upper crust is mafic, whereas the lower crust is felsic. In the mantle lid, velocities increase with depth. The velocities of mantle lid beneath NW-IP is lower than those beneath south Indian Peninsula showing the former is hotter than the later perhaps due to large Phanerozoic impact on NW-IP. The significant upper mantle low velocity zone beneath NW-IP indicates high temperature which could be attributed to the past existence of a broad plume head at the west-central part of the Peninsula.

  17. Wave propagation in double-porosity dual-permeability materials: Velocity and attenuation

    Science.gov (United States)

    Sharma, M. D.

    2017-08-01

    This study considers the propagation of harmonic plane waves in a double-porosity solid saturated by a viscous fluid. Two different porosities are supported with different permeabilities to facilitate the wave-induced fluid-flow in this composite material. The variation of the fluid content in the pores due to the wave-induced flow is expressed in terms of the dilatation of constituent particles in the porous aggregate. This fluid-flow can be considered through the constitutive relations with modified anelastic coefficients. The modified coefficients, being frequency dependent and complex, illustrate the dispersive and anelastic behaviour of double-porosity dual-permeability materials. Relevant equations of motion are solved to explain the propagation of three longitudinal waves and one transverse wave in double-porosity dual-permeability medium. A numerical example is considered to illustrate dispersion in velocity and attenuation of the four waves. Effect of wave-induced fluid-flow is analysed with changes in wave-inhomogeneity, pore-fluid viscosity and double-porosity structure.

  18. Pulse Wave Velocity and Electroneurophysiological Evaluation in patients of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Geetanjali Sharma

    2011-07-01

    Full Text Available Rheumatoid arthritis is a chronic systemic inflammatory disease of undetermined etiology involving the synovial membranes and articular structures of multiple joints and is also associated with carditis, pleuritis, hepatitis, peripheral neuropathy and vasculitis. The present study was undertaken to investigate arterial stiffness using carotid-radial and femoral-dorsalis pedis pulse wave velocity measurements and electrophysiological tests for peripheral nervous system involvement. 25 patients (aged between 20-60 years with rheumatoid arthritis according to the criteria of the American College of Rheumatology and 25 control subjects of the same age and sex were recruited. In the motor conduction studies, out of 25 patients of Rheumatoid arthritis, 6 had clinical evidence of peripheral neuropathy. 11 patients showed pure sensory neuropathy (44%, 10 showed mixed sensory motor neuropathy (40% while 4 showed normal motor and sensory conduction velocity. Two patients (8% showed features of entrapment neuropathy of median nerve i.e. feature of Carpal tunnel syndrome. In the pulse wave velocity evaluation statistically significant increase in pulse wave velocity between femoral-dorsalis pedis and carotid-radial artery segments was observed in Rheumatoid arthritis patients as compared to the control group. Measurement of carotid-radial and femoral-dorsalis pedis PWV may provide a simple and non-invasive technique for identifying patients at increased risk of vascular disease in Rheumatoid arthritis.

  19. Non-triggered quantification of central and peripheral pulse-wave velocity

    Directory of Open Access Journals (Sweden)

    Langham Michael C

    2011-12-01

    Full Text Available Abstract Purpose Stiffening of the arteries results in increased pulse-wave velocity (PWV, the propagation velocity of the blood. Elevated aortic PWV has been shown to correlate with aging and atherosclerotic alterations. We extended a previous non-triggered projection-based cardiovascular MR method and demonstrate its feasibility by mapping the PWV of the aortic arch, thoraco-abdominal aorta and iliofemoral arteries in a cohort of healthy adults. Materials and Methods The proposed method "simultaneously" excites and collects a series of velocity-encoded projections at two arterial segments to estimate the wave-front velocity, which inherently probes the high-frequency component of the dynamic vessel wall modulus in response to oscillatory pressure waves. The regional PWVs were quantified in a small pilot study in healthy subjects (N = 10, age range 23 to 68 yrs at 3T. Results The projection-based method successfully time-resolved regional PWVs for 8-10 cardiac cycles without gating and demonstrated the feasibility of monitoring beat-to-beat changes in PWV resulting from heart rate irregularities. For dul-slice excitation the aliasing was negligible and did not interfere with PWV quantification. The aortic arch and thoracoabdominal aorta PWV were positively correlated with age (p Conclusion The PWV map of the arterial tree from ascending aorta to femoral arteries may provide additional insight into pathophysiology of vascular aging and atherosclerosis.

  20. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    , along with a RAR modulation transfer function (MTF) with a larger amplitude. Eventually, an optimization of the RAR MTF is carried out by making use of the co-located database and the dependency of the optimized parameters on the wind velocity is studied. In the last three articles. Lagrangian models for ocean surface waves are investigated, and the main results are the following. In Article III, ocean surface properties such as the slope and the curvature are studied for linear irregular waves, and the difference between the Eulerian and the Lagrangian wave spectra is illustrated. In addition, some features of the second-order Lagrangian solution for irregular long-crested waves are presented. Then, in Article IV, the Lagrangian equations of motion, as given in Lamb (1932), are extended to include the irrotational flow assumption and simplified by eliminating the pressure. The first-order solution for two-dimensional irregular waves given by Pierson (1961) is modified through a change of variables that makes the mass conservation equation be fulfilled exactly, instead of being correct to the first order only. The resulting waves show higher sharp crests than in Pierson's solution, in which some water locally and temporary disappears in the vicinity of the surface. Furthermore, a three-dimensional second-order irrotational solution is derived. Monte Carlo simulations of irregular long-crested waves reveal that the fronts of some waves may steepen, while the fluid located on their back side and near the surface is hurled forward, in a way similar to an early stage breaking wave. Then, it is demonstrated that at the second order, short-crested waves develop curved crests owing to a non-uniform current field. Finally, the ability of the Lagrangian formalism to describe capillary waves is investigated in Article V. Assuming that surface tension is the only restoring force, the profile of the first-order monochromatic solution is the same as for gravity waves, with

  1. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices.

  2. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  3. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-10-01

    Full Text Available surface current velocities for oceanographic research are assessed. ASAR surface current velocities are compared to surface drifter data and merged altimetry observations. Maps of sea surface temperature are used to establish the ASAR’s capacity to capture...

  4. Trapping of surface gravity waves by a vertical flexible porous plate near a wall

    Science.gov (United States)

    Kaligatla, R. B.; Koley, S.; Sahoo, T.

    2015-10-01

    The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled based on the Euler-Bernoulli beam equation. Using the Green's function technique to the plate equation and associated boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green's second identity to the free-surface Green's function and the scattered velocity potentials on the two sides of the plate, a system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities of physical interest. Utilizing Green's identity, explicit expressions for the reflection coefficients are derived in terms of the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is more effective for trapping of water waves

  5. Mapping crustal S-wave velocity structure with SV-component receiver function method

    Institute of Scientific and Technical Information of China (English)

    邹最红; 陈晓非

    2003-01-01

    In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA station by using the SV-component receiver function inversion method.

  6. Simultaneous Local and Teleseismic P-Wave Velocity Tomography in Western Mexico

    Science.gov (United States)

    Escudero, C. R.; Alarcon, E.; Ochoa, J.; Nuñez-Cornu, F. J.

    2015-12-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To improve the current tomographic images of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local and teleseismic earthquakes along with the Fast Marching Method tomography technique. Our traveltime datasets include 2100 local earthquakes P-wave arrival times and 5,062 P-wave relative arrival time residuals of teleseismic earthquakes. The local earthquake phase picking was manually corrected and the relative arrival time residuals were estimated using the Multi-Channel Cross-Correlation method. All earthquakes occurred between 2006 and 2007 and were recorded by seismic stations deployed during the Mapping the Rivera Subduction Zone (MARS) experiment. The temporal seismic network consisted of 50 stations equipped with Streckeisen STS-2 and Quanterra Q330. We use an iterative nonlinear tomographic procedure and the fast marching method to map the residual patterns as P wave velocity anomalies. We followed an inversion scheme consisting of: (1) selection of a local and teleseismic earthquake, (2) estimation of improved 1-D reference velocity model, and (3) checkerboard testing to determine the optimum configuration of the velocity nodes, and inversion parameters, finally (4) perform final tomography and results analysis.

  7. In vivo noninvasive method for measuring local wave velocity in femoral arteries of pig

    Science.gov (United States)

    Zhang, Xiaoming; Kinnick, Randall; Pislaru, Cristina; Fatemi, Mostafa; Greenleaf, James

    2005-09-01

    We have proposed generating a bending wave in the arterial wall using ultrasound radiation force and measuring the wave velocity along the arterial wall [Zhang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 642-652 (2005)]. Here, we report the results of in vivo studies on pigs. The pig was anesthetized, and a micromanometer tip catheter was inserted into the femoral artery to measure luminal pressure. A water bath was created on the animal's groin to allow unimpeded access of the ultrasound beams to the femoral artery. The femoral artery was first located using a 13-MHz linear-array transducer. Then, a vibro-acoustography image was obtained to ensure precise positioning of the excitation force relative to the artery. The artery was excited by the force transducer and the resulting vibration of the arterial wall was measured by a sensing Doppler transceiver. Measured wave velocity was 3.1 m/s at 300 Hz. With this new method wave velocity over a distance of 5 mm, and therefore stiffness of arteries, can be measured locally and non-invasively. Measurement time is short in a few tens of milliseconds, which allows pressure dependence and pharmacological effect on the wall properties to be measured at different cardiac times.

  8. Combined Resistivity and Shear Wave Velocity Soil-type Estimation Beneath a Coastal Protection Levee.

    Science.gov (United States)

    Lorenzo, J. M.; Goff, D.; Hayashi, K.

    2015-12-01

    Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.

  9. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    Science.gov (United States)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  10. Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean

    Science.gov (United States)

    Godfrey, K. E.; Dalton, C. A.; Ritsema, J.

    2016-12-01

    Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.

  11. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  12. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel

    2009-01-01

    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  13. Experimental Evaluation of the Atmospheric Energy Input to Sea Surface Waves

    Science.gov (United States)

    2011-09-30

    with sonic anemometers , cups , vanes, measuring airflow velocity, sensitive barometers. Instruments for GPS and inertial navigation were positioned...constant, Ω is the Instruments Quantity measured Height/Location 7 Sonic Anemometers Wind velocity, Air temperature On the mast 5 RMY Prop... Anemometers Wind speed & direction At 5 levels on the mast 8 Pressure Instruments Atmospheric pressure On the mast 2 Wave Wires Sea surface elevation At

  14. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO 3

    Science.gov (United States)

    Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y.

    2017-01-01

    We investigated surface acoustic wave propagation in a Ni/LiNbO3 hybrid device. We found that the absorption and phase velocity are dependent on the sign of the wave vector, which indicates that the surface acoustic wave propagation has nonreciprocal characteristics induced by simultaneous breaking of time-reversal and spatial inversion symmetries. The nonreciprocity was reversed by 180∘ rotation of the magnetic field. The origin of the nonreciprocity is ascribed to interference of shear-type and longitudinal-type magnetoelastic couplings.

  15. Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation

    Directory of Open Access Journals (Sweden)

    Polkowski Marcin

    2015-06-01

    Full Text Available Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units - the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.

  16. Measurements of electrical impedance and elastic wave velocity of reservoir rock under fluid-flow test

    Science.gov (United States)

    Sawayama, Kazuki; Kitamura, Keigo; Fujimitsu, Yasuhiro

    2017-04-01

    The estimation of water saturation under the ground is essential in geothermal fields, particularly for EGS (enhanced geothermal system). To estimate water saturation, recently, electromagnetic exploration using Magnetotelluric (MT) method has been applied in the geothermal fields. However, the relationship between electrical impedance obtained from this method and water saturation in the reservoir rock has not been well known. Our goal is to elucidate this basic relationship by fluid-flow experiments. As our first step to this goal, we developed the technique to measure and analyze the electrical impedance of the cracked rock in the geothermal reservoir. The fluid-flow test has been conducted as following procedures. At first, reservoir rock sample (pyroxene andesite, Makizono lava formation, Japan) was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure. This nitrogen gas imitates the overheated steam in the geothermal fields. Then, brine (1wt.%-KCl, 1.75 S/m) which imitates the artificial recharge to the reservoir was injected to the samples. After flow rate of drainage fluid becomes stable, injection pressure was increased (11, 12, 14, 16, 18 MPa) and decreased (18, 16, 14, 12, 11 MPa) to vary the water saturation in the samples. During the test, water saturation, permeability, electrical impedance (10-2-105 Hz of frequency) and elastic wave velocity were measured. As a result of andesite, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine. After the brine injection, electrical impedance decreased with injection pressure (small change of water saturation) by up to 40% while P-wave velocity was almost constant (less than 1%). This decrease of electrical impedance with injection pressure could be related to the flow to the narrow path (microcrack

  17. 3D shear-wave velocity structure of the eastern Tennessee seismic zone from ambient noise correlation data

    Science.gov (United States)

    Arroucau, Pierre; Kuponiyi, Ayodeji; Vlahovic, Gordana; Powell, Chris

    2013-04-01

    The Eastern Tennessee Seismic Zone (ETSZ) is an intraplate seismic region characterized by frequent but low magnitude earthquakes and is the second most active seismic area in the United States east of the Rocky Mountains. One key question in the ETSZ is the actual relationship between earthquake distribution and geological structure at depth. Seismicity is mostly confined in the Precambrian basement, below the Paleozoic cover of the southern Appalachian foreland fold-and-thrust belt and shows little to no correlation with surface geological features. Since the middle of the seventies, the Center for Earthquake Research and Information (CERI) has installed and maintained several seismic networks in central and eastern United States. In this work, we use Rayleigh wave group and phase velocity dispersion information obtained from cross-correlation of seismic ambient noise at 24 short-period stations located in the vicinity of the ETSZ. The 3D velocity structure is estimated in four steps. First, dispersion curves are obtained for simultaneously recording station pairs for periods ranging from 2 to 20 s. Then, 2D group and phase velocity maps are determined for each period. Those maps are further used to reconstruct dispersion curves at fixed, regularly spaced locations. For each of these locations, a 1D shear-wave velocity profile is finally inverted for, that takes velocity information from previous studies into account. By providing new information about the upper crustal structure of this region, this work is a contribution to the understanding of the seismic activity of the ETSZ, and -to a broader extent- of the structure and evolution of the North American lithosphere.

  18. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    , along with a RAR modulation transfer function (MTF) with a larger amplitude. Eventually, an optimization of the RAR MTF is carried out by making use of the co-located database and the dependency of the optimized parameters on the wind velocity is studied. In the last three articles. Lagrangian models for ocean surface waves are investigated, and the main results are the following. In Article III, ocean surface properties such as the slope and the curvature are studied for linear irregular waves, and the difference between the Eulerian and the Lagrangian wave spectra is illustrated. In addition, some features of the second-order Lagrangian solution for irregular long-crested waves are presented. Then, in Article IV, the Lagrangian equations of motion, as given in Lamb (1932), are extended to include the irrotational flow assumption and simplified by eliminating the pressure. The first-order solution for two-dimensional irregular waves given by Pierson (1961) is modified through a change of variables that makes the mass conservation equation be fulfilled exactly, instead of being correct to the first order only. The resulting waves show higher sharp crests than in Pierson's solution, in which some water locally and temporary disappears in the vicinity of the surface. Furthermore, a three-dimensional second-order irrotational solution is derived. Monte Carlo simulations of irregular long-crested waves reveal that the fronts of some waves may steepen, while the fluid located on their back side and near the surface is hurled forward, in a way similar to an early stage breaking wave. Then, it is demonstrated that at the second order, short-crested waves develop curved crests owing to a non-uniform current field. Finally, the ability of the Lagrangian formalism to describe capillary waves is investigated in Article V. Assuming that surface tension is the only restoring force, the profile of the first-order monochromatic solution is the same as for gravity waves, with

  19. Shear-wave velocity structure of the south-eastern part of the Iberian Peninsula from Rayleigh wave analysis

    Science.gov (United States)

    Corchete, V.; Chourak, M.

    2011-10-01

    In this study, we present the lithospheric structure of the south-eastern part of the Iberian Peninsula by means of a set of 2D images of shear velocity, for depths ranging from 0 to 50 km. This goal will be attained by means of the inversion of the Rayleigh wave dispersion. For it, the traces of 25 earthquakes occurred on the neighbouring of the study area, from 2001 to 2003, will be considered. These earthquakes have been registered by 11 broadband stations located on Iberia. All seismic events have been grouped in source zones to get an average dispersion curve for each source-station path. The dispersion curves have been measured for periods between 2 and 45 s, by combination of two digital filtering techniques: Multiple Filter Technique and Time Variable Filtering. The resulting set of source-station averaged dispersion curves has been inverted according to the generalized inversion theory, to get S-wave velocity models for each source-station path. Later, these models have been interpolated using the method of kriging, to obtain a 2D mapping of the S-wave velocity structure for the south-eastern part of Iberia. The results presented in this paper show that the techniques used here are a powerful tool to investigate the crust and upper mantle structure, through the dispersion analysis and its inversion to obtain shear velocity distributions with depth. By means of this analysis, principal structural features of the south-eastern part of Iberia, such as the existence of lateral and vertical heterogeneity in the whole study area, or the location of the Moho discontinuity at 30 km of depth (with an average S-velocity of uppermost mantle of 4.7 km/s), have been revealed. Other important structural features revealed by this analysis have been that the uppermost of Iberian massif shows higher velocity values than the uppermost of the Alpine domain, indicating that the massif is old and tectonically stable. The average velocity of the crust in Betic cordillera is of

  20. A Method for Determination of in Run-Up Front Velocities on Dikes in Oblique and Short-Crested Waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Nørgaard, Jørgen Harck; Burcharth, Hans F.

    2011-01-01

    This paper presents a physical model test study to improve description of run-up events on dikes in oblique long and short-crested waves in terms of flow depth, flow velocities and overtopping. The paper focus on the flow velocities and a new method is proposed for determining flow velocities...

  1. Group Velocity Reduction of Light Pulses in Photorefractive Two-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    张国权; 董嵘; 许京军

    2003-01-01

    We show theoretically that the group velocity of light pulses can be reduced significantly by use of the steep dispersion properties of the phase coupling effect in the photorefractive two-wave mixing process. The group velocity of light pulses of the order of 0.1 m/s can be achieved in typical photorefractive BSOcrystals with an appropriate externally applied electric field and moving gratings of appropriate speeds. It is also shown that the slowly propagating light pulses can be set to be amplified after passing through the photorefractive material.

  2. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  3. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  4. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    CERN Document Server

    Zhidkov, A; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  5. Characteristics of Light Reflected from a Dense Ionization Wave with a Tunable Velocity

    Science.gov (United States)

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J.; Bulanov, S. V.

    2009-11-01

    An optically dense ionization wave (IW) produced by two femtosecond (˜10/30fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  6. How linear surface waves are affected by a current with constant vorticity

    CERN Document Server

    Ellingsen, Simen Å

    2013-01-01

    The interaction of surface waves with Couette-type current with uniform vorticity is a well suited problem for students approaching the theory of surface waves. The problem, although mathematically simple, contains rich physics, and is moreover important in several situations from oceanography and marine technology to microfluidics. We here lay out a simple two-dimensional theory of waves propagating upon a basic flow of uniform vorticity of constant depth. The dispersion relation is found, showing how the shearing current introduces different phase velocities for upstream and downstream propagating waves. The role of surface tension is discussed and applied to the case of a wave pattern created by a moving source, stationary as seen by the source. We conclude by discussing how the average potential and kinetic energies are no longer equal in the presence of shear.

  7. Equivalent pore radius and velocity of elastic waves in shale. Skjold Flank-1 Well, Danish North Sea

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Oji, Collins O.

    2013-01-01

    Equivalent pore radius links permeability and porosity of a porous medium. This property can be calculated from specific surface and porosity data measured in the laboratory. We can obtain porosity information from logging data but specific surface information can only be obtained from laboratory...... experiments on cuttings or core samples. In this study we demonstrate that elastic moduli as calculated from bulk density and velocity of elastic waves relate to equivalent pore radius of the studied shale intervals. This relationship establishes the possibility of calculating equivalent pore radius from...... and BET specific surface were obtained from these samples using kaolinite and smectite as reference. The cuttings samples were also characterized with respect to mineralogical composition, content of organic carbon and cation exchange capacity.Equivalent pore radius was calculated from porosity and BET...

  8. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2008-07-01

    Full Text Available Abstract Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV. The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for

  9. Deriving glacier surface velocities from repeat optical images

    OpenAIRE

    Heid, Torborg

    2011-01-01

    The velocity of glaciers is important for many aspects in glaciology. Mass accumulated in the accumulation area is transported down to the ablation area by deformation and sliding due to the gravitational force, and hence gla­cier velocity is connected to the mass balance of glaciers. It also contributes directly to the mass balance of calving glaciers because it is an important control of the ice discharge rate for such glaciers. Changing glacier velocities is an indicator of instable glacie...

  10. Three-Dimensional P-Wave Velocity Structure of the Crust of North China

    Institute of Scientific and Technical Information of China (English)

    Wei Wenbo; Ye Gaofeng; Li Yanjun; Jin Sheng; Deng Ming; Jing Jian'en

    2007-01-01

    Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe eastern and western parts differ in structural trend of stratum above the crystalline basement. The Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern

  11. Scattered surface wave energy in the seismic coda

    Science.gov (United States)

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  12. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  13. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  14. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  15. Research on relationships between Lamb wave velocity and static stress in metal plate

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Yinguan

    2006-01-01

    On the fact that an isotropic metal solid produces anisotropic property in the state of static stress, based on the theory of the nonlinear acoustoelasticity, the equivalent secondorder elastic constants are calculated for metal plate with static stress. For the case of thin metal plate with stress, the two kinds of dispersion equation for Lamb waves propagating parallel and vertical to the direction of static stress are derived. Using the equations, the relationships between Lamb wave velocity and static stress in a metal plate are discussed.

  16. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  17. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  18. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    Science.gov (United States)

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p testing.

  19. Angular dependence of the ultrasonic SH wave velocity in rolled metal sheets

    Science.gov (United States)

    Sayers, C. M.; Proudfoot, G. G.

    THE ULTRASONIC SH wave technique is a promising method for separating out the effects of texture and stress on the ultrasonic velocity, and allows the texture and stress to be determined separately. ALEN and LANGMAN (1985) have reported measurements of the angular dependence of the SH wave velocity in several unstressed rolled metal sheets of aluminium, stainless steel, copper and brass. In this paper neutron diffraction measurements of the texture of several of these sheets are presented, and parameters entering into an expansion of the crystallite orientation distribution function are determined. These are in good agreement with the values obtained by fitting the ultrasonic results to theory. The validity of the first order expression for the effect of texture is assessed, and the contribution due to beam skewing is calculated.

  20. An improved method of evaluating liquefaction potential with the velocity of shear-waves

    Institute of Scientific and Technical Information of China (English)

    KE Han; CHEN Yun-min

    2000-01-01

    According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (s d/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (emin). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests,.

  1. Towards a new tool to develop a 3-D shear-wave velocity model from converted waves

    Science.gov (United States)

    Colavitti, Leonardo; Hetényi, György

    2017-04-01

    The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter

  2. Source depopulation potential and surface-wave tomography using a crosscorrelation method in a scattering medium

    NARCIS (Netherlands)

    Gouedard, P.; Roux, P.; Campillo, M.; Verdel, A.R.; Yao, H.; Van der Hilst, R.D.

    2011-01-01

    We use seismic prospecting data on a 40 × 40 regular grid of sources and receivers deployed on a 1 km × 1 km area to assess the feasibility and advantages of velocity analysis of the shallow subsurface by means of surface-wave tomography with Green's functions estimated from crosscorrelation. In a f

  3. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    Science.gov (United States)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke

    2017-04-01

    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii

  4. Relationship between vascular endothelial function and pulse wave velocity in prehypertension

    Institute of Scientific and Technical Information of China (English)

    杨娉婷

    2014-01-01

    Objective To investigate the association between vascular endothelial function and arteriosclerosis in prehypertensive,hypertensive and healthy subjects.Methods 810 consecutive subjects were divided into three groups:hypertension group,prehypertension group and control group.Brachial-ankle pulse wave velocity(ba PWV)and flow-mediated brachial artery dilation(FMD)were used to evaluate the artery vascular stiffness and endothelial function respectively.Results Prehypertension

  5. Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure

    Institute of Scientific and Technical Information of China (English)

    XIE; Hongsen(谢鸿森); ZHOU; Wenge; 周文戈); LIU; Yonggang; (刘永刚); GUO; Jie; (郭捷); HOU; Wei; (侯渭); ZHAO; Zhidan(赵志丹)

    2002-01-01

    To measure elastic wave velocities in rocks at high temperature and high pressure is an important way to acquire the mechanics and thermodynamics data of rocks in the earth's interior and also a substantial approach to studying the structure and composition of materials there. In recent years, a rapid progress has been made in methodology pertaining to the measurements of elastic wave velocities in rocks at high temperature and high pressure with solids as the pressure-transfer media. However, no strict comparisons have been made of the elastic wave velocity data of rocks measured at high temperature and high pressure by various laboratories. In order to compare the experimental results from various laboratories, we have conducted a comparative experimental study on three measuring methods and made a strict comparison with the results obtained by using the transmission method with fluid as the pressure-transfer medium. Our experimental results have shown that the measurements obtained by the three methods are comparable in the pressure ranges of their application. The cubic sample pulse transmission method used by Kern is applicable to measuring elastic wave velocities in crustal rocks at lower temperature and lower pressure. The prism sample pulse reflection-transmission method has some advantages in pressure range, heating temperature and measuring precision. Although the measurements obtained under relatively low pressure conditions by the prism sample pulse transmission method are relatively low in precision, the samples are large in length and their assemblage is simple. So this method is suitable to the experiments that require large quantities of samples and higher pressures. Therefore, in practical application the latter two methods are usually recommended because their measurements can be mutually corrected and supplemented.

  6. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    OpenAIRE

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-01-01

    International audience; Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a superson...

  7. Velocity variations and uncertainty from transdimensional P-wave tomography of North America

    Science.gov (United States)

    Burdick, Scott; Lekić, Vedran

    2017-05-01

    High-resolution models of seismic velocity variations constructed using body-wave tomography inform the study of the origin, fate and thermochemical state of mantle domains. In order to reliably relate these variations to material properties including temperature, composition and volatile content, we must accurately retrieve both the patterns and amplitudes of variations and quantify the uncertainty associated with the estimates of each. For these reasons, we image the mantle beneath North America with P-wave traveltimes from USArray using a novel method for 3-D probabilistic body-wave tomography. The method uses a Transdimensional Hierarchical Bayesian framework with a reversible-jump Markov Chain Monte Carlo algorithm in order to generate an ensemble of possible velocity models. We analyse this ensemble solution to obtain the posterior probability distribution of velocities, thereby yielding error bars and enabling rigorous hypothesis testing. Overall, we determine that the average uncertainty (1σ) of compressional wave velocity estimates beneath North America is ˜0.25 per cent dVP/VP, increasing with proximity to complex structure and decreasing with depth. The addition of USArray data reduces the uncertainty beneath the Eastern US by over 50 per cent in the upper mantle and 25-40 per cent below the transition zone and ˜30 per cent throughout the mantle beneath the Western US. In the absence of damping and smoothing, we recover amplitudes of variations 10-80 per cent higher than a standard inversion approach. Accounting for differences in data coverage, we infer that the length scale of heterogeneity is ˜50 per cent longer at shallow depths beneath the continental platform than beneath tectonically active regions. We illustrate the model trade-off analysis for the Cascadia slab and the New Madrid Seismic Zone, where we find that smearing due to the limitations of the illumination is relatively minor.

  8. Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements

    Science.gov (United States)

    Müller-Huber, Edith; Schön, Jürgen; Börner, Frank

    2016-04-01

    Pore space features influence petrophysical parameters such as porosity, permeability, elastic wave velocity or nuclear magnetic resonance (NMR). Therefore they are essential to describe the spatial distribution of petrophysical parameters in the subsurface, which is crucial for efficient reservoir characterization especially in carbonate rocks. While elastic wave velocity measurements respond to the properties of the solid rock matrix including pores or fractures, NMR measurements are sensitive to the distribution of pore-filling fluids controlled by rock properties such as the pore-surface-to-pore-volume ratio. Therefore a combination of both measurement principles helps to investigate carbonate pore space using complementary information. In this study, a workflow is presented that delivers a representative average semi-axis length of ellipsoidal pores in carbonate rocks based on the pore aspect ratio received from velocity interpretation and the pore-surface-to-pore-volume ratio Spor as input parameters combined with theoretical calculations for ellipsoidal inclusions. A novel method to calculate Spor from NMR data based on the ratio of capillary-bound to movable fluids and the thickness of the capillary-bound water film is used. To test the workflow, a comprehensive petrophysical database was compiled using micritic and oomoldic Lower Muschelkalk carbonates from Germany. The experimental data indicate that both mud-dominated and grain-dominated carbonates possess distinct ranges of petrophysical parameters. The agreement between the predicted and measured surface-to-volume ratio is satisfying for oomoldic and most micritic samples, while pyrite or significant sample heterogeneity may lead to deviations. Selected photo-micrographs and scanning electron microscope images support the validity of the estimated representative pore dimensions.

  9. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of