Quantitative photography of intermittency in surface wave turbulence
International Nuclear Information System (INIS)
Wright, W.; Budakian, R.; Putterman, S.J.
1997-01-01
At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state
Wave-Breaking Turbulence in the Ocean Surface Layer
2016-06-01
2004) used direct numerical simulation ( DNS ) to show that a single breaking wave can energize the surface layer for more than 50 wave periods, and...1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSR, 30, 301–305. Kukulka, T., and K. Brunner, 2015: Passive
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence
National Research Council Canada - National Science Library
Jaehne, Bernd
2000-01-01
The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...
Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.
Identification of nonlinear coupling in wave turbulence at the surface of water
Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Aubourg, Quentin; Sommeria, Joël; Mordant, Nicolas
2017-11-01
The Weak Turbulence Theory is a theory, in the limit of vanishing nonlinearity, that derive analytically statistical features of wave turbulence. The stationary spectrum for the surface elevation in the case of gravity waves, is predicted to E(k) k - 5 / 2 . This spectral exponent -5/2 remains elusive in all experiments. in which the measured exponent is systematically lower than the prediction. Furthermore in the experiments the weaker the nonlinearity the further the spectral exponent is from the prediction. In order to investigate the reason for this observation we developed an experiment in the CORIOLIS facility in Grenoble. It is a 13m-diameter circular pool filled with water with a 70 cm depth. We generate wave turbulence by using two wedge wavemakers. Surface elevation measurements are performed by a stereoscopic optical technique and by capacitive probes. The nonlinear coupling at work in this system are analyzed by computing 3- and 4-wave correlations of the Fourier wave amplitudes in frequency. Theory predicts that coupling should occur through 4-wave resonant interaction. In our data, strong 3-wave correlations are observed in addition to the 4-wave correlation. Most our observations are consistent with field observation in the Black Sea (Leckler et al. 2015). This project has received funding from the European Research Council (ERC, Grant Agreement No 647018-WATU).
Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves
Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas
2018-04-01
We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.
On the Effect of Rigid Swept Surface Waves on Turbulent Drag
Denison, M.; Wilkinson, S. P.; Balakumar, P.
2015-01-01
Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.
International Nuclear Information System (INIS)
Ribeiro, T.; Scott, B.
2007-01-01
The field line connection of a tokamak sheared magnetic field has an important impact on turbulence, by ensuring a finite parallel dynamical response for every degree of freedom available in the system. This constitutes the main property which distinguishes closed from open flux surfaces in such a device. In the latter case, the poloidal periodicity of the magnetic field is replaced by a Debye sheath arising where the field lines strike the limiter/divertor plates. This is enough to break the field line connection constraint and allow the existence of convective cell modes, leading to a change in the character of the turbulence from drift wave- (closed flux surfaces) to interchange-type (open flux surfaces), and hence increasing the turbulent transport observed. Here we study the effect of changing the poloidal position of the limiter/divertor plates, using the three-dimensional electromagnetic gyrofluid turbulence code GEM, which has time dependently self consistent field aligned flux tube coordinates. For the closed flux surfaces, the globally consistent periodic boundary conditions are invoked, and for open flux surfaces a standard Debye sheath is used at the striking points. In particular, the use of two limiter positions simultaneously, top and bottom, is in order, such to allow a separation between the inboard and outboard sides of the tokamak. This highlights the differences between those two regions of the tokamak, where the curvature is either favourable (former) or unfavourable (latter), and further makes room for future experimental qualitative comparisons, for instance, on double null configurations of the tokamak ASDEX Upgrade. (author)
Transonic shock wave. Turbulent boundary layer interaction on a curved surface
Nebbeling, C.; Koren, B.
1988-01-01
This paper describes an experimental investigation of a transonic shock wave - turbulent boundary layer interaction in a curved test section, in which the flow has been computed by a 2-D Euler flow method. The test section has been designed such that the flow near the shock wave on the convex curved
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Turbulence beneath finite amplitude water waves
Energy Technology Data Exchange (ETDEWEB)
Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)
2012-05-15
Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)
Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers
2013-08-22
Nether-784 lands Academy of Arts and Sciences.785 35 Wyngaard, J. C., 2004: Toward numerical modeling in the Terra Incognita. J. Atmos. Sci.,786 61...surface roughness, vegetative canopies, wind waves and local orography all influence wind turbine performance to varying degrees. For exam- ple, the...teor crater, Bull. Amer. Meteorol. Soc., 89, 127–150. Wyngaard, J. C., 2004: Toward numerical modeling in the Terra Incognita, J. Atmos. Sci., 61
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Scale separation closure and Alfven wave turbulence
International Nuclear Information System (INIS)
Chen, C.Y.; Mahajan, S.M.
1985-04-01
Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
Interaction of Strong Turbulence With Free Surfaces
Dalrymple, Robert A.
Spray from a nozzle, spilling breakers, and “rooster tails” from speeding boats are all examples of a turbulent flow with a free surface. In many cases like these, the free surface is difficult to discern as the volume of air in the fluid can exceed that of the water.In traditional studies, the free surface is simply defined as a continuous surface separating the fluid from air. The pressure at the surface is assumed to be atmospheric pressure and the fluid comprising the surface moves with the surface. While these conditions are sufficient for non-turbulent flows, such as nonbreaking water waves, and lead to the (albeit non-linear) dynamic and kinematic free surface boundary conditions that serve to provide sufficient conditions to determine the surface, they are not valid descriptions for a bubbly free surface in a highly turbulent regime, such as the roller in front of a spilling breaker or the propeller wash behind a ship.
Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence
National Research Council Canada - National Science Library
Jaehne, Bernd
2000-01-01
.... Since ground truth of the sea surface is still widely missing, a better understanding of the physics of these upper meter processes is of very important for the study of air-sea gas and momentum...
Internal wave turbulence near a Texel beach.
Directory of Open Access Journals (Sweden)
Hans van Haren
Full Text Available A summer bather entering a calm sea from the beach may sense alternating warm and cold water. This can be felt when moving forward into the sea ('vertically homogeneous' and 'horizontally different', but also when standing still between one's feet and body ('vertically different'. On a calm summer-day, an array of high-precision sensors has measured fast temperature-changes up to 1 °C near a Texel-island (NL beach. The measurements show that sensed variations are in fact internal waves, fronts and turbulence, supported in part by vertical stable stratification in density (temperature. Such motions are common in the deep ocean, but generally not in shallow seas where turbulent mixing is expected strong enough to homogenize. The internal beach-waves have amplitudes ten-times larger than those of the small surface wind waves. Quantifying their turbulent mixing gives diffusivity estimates of 10(-4-10(-3 m(2 s(-1, which are larger than found in open-ocean but smaller than wave breaking above deep sloping topography.
Internal wave energy radiated from a turbulent mixed layer
Energy Technology Data Exchange (ETDEWEB)
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Turbulence dissipation under breaking waves and bores in a natural surf zone
Grasso, F.R.; Castelle, B.; Ruessink, B.G.
2012-01-01
Wave breaking is the primary driver of beach erosion, injecting breaking-induced turbulence at the sea surface and diffusing bed boundary layer turbulence at the sea bed. The limited understanding of the vertical turbulence structure under natural breaking waves, and hence sand entrainment, is one
Resistive drift wave turbulence and transport
International Nuclear Information System (INIS)
Wakatani, M.
1986-01-01
Our efforts for studying the properties of resistive drift wave turbulence by using model mode-coupling equations are shown. It may be related to the edge turbulence and the associated anomalous transport in tokamaks or in stellarator/heliotron. (author)
Shock wave interaction with turbulence: Pseudospectral simulations
International Nuclear Information System (INIS)
Buckingham, A.C.
1986-01-01
Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs
Interstellar turbulence and shock waves
International Nuclear Information System (INIS)
Bykov, A.M.
1982-01-01
Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed
Rogue waves, rational solitons and wave turbulence theory
International Nuclear Information System (INIS)
Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio
2011-01-01
Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.
Transition from weak wave turbulence regime to solitonic regime
Hassani, Roumaissa; Mordant, Nicolas
2017-11-01
The Weak Turbulence Theory (WTT) is a statistical theory describing the interaction of a large ensemble of random waves characterized by very different length scales. For both weak non-linearity and weak dispersion a different regime is predicted where solitons propagate while keeping their shape unchanged. The question under investigation here is which regime between weak turbulence or soliton gas does the system choose ? We report an experimental investigation of wave turbulence at the surface of finite depth water in the gravity-capillary range. We tune the wave dispersion and the level of nonlinearity by modifying the depth of water and the forcing respectively. We use space-time resolved profilometry to reconstruct the deformed surface of water. When decreasing the water depth, we observe a drastic transition between weak turbulence at the weakest forcing and a solitonic regime at stronger forcing. We characterize the transition between both states by studying their Fourier Spectra. We also study the efficiency of energy transfer in the weak turbulence regime. We report a loss of efficiency of angular transfer as the dispersion of the wave is reduced until the system bifurcates into the solitonic regime. This project has recieved funding from the European Research Council (ERC, Grant Agreement No. 647018-WATU).
Evolution of wave turbulence under "gusty" forcing.
Annenkov, S Y; Shrira, V I
2011-09-09
We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.
Strange Attractors in Drift Wave Turbulence
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects
Dewan, E. M.
1986-01-01
The problem of how to empirically distinguish between velocity fluctuations due to turbulence and those due to atmospheric waves is addressed. The physical differences between waves and turbulence are reviewed. New theoretical ideas on the subject of bouyancy range turbulence are presented. A unique scale K sub B is given that allows one to differentiate between waves and turbulence for the special case of theta = 0 (i.e., horizontal propagating waves).
Turbulence Scattering of High Harmonic Fast Waves
International Nuclear Information System (INIS)
M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau
2001-01-01
Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
Homogeneous wave turbulence driven by tidal flows
Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.
2017-12-01
When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Measurements of the vertical correlation in turbulence under broken waves
DEFF Research Database (Denmark)
Pedersen, Claus; Deigaard, Rolf; Sutherland, James
1998-01-01
Turbulence measurements have been carried out in the surf zone of a wave flume. The purpose of the measurements is to determine the length scale of the turbulence generated by the wave breaking. The length scale of the turbulence is estimated on basis of the correlation between simultaneous measu...... measurements of the vertical turbulent fluctuations, taken at different levels above the bed, (C) 1998 Elsevier Science B.V. All rights reserved....
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Plane waves and structures in turbulent channel flow
Sirovich, L.; Ball, K. S.; Keefe, L. R.
1990-01-01
A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Wave-current generated turbulence over hemisphere bottom roughness
Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv
2018-03-01
The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.
Interaction of flexible surface hairs with near-wall turbulence.
Brücker, Ch
2011-05-11
The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Parsimonious Surface Wave Interferometry
Li, Jing; Hanafy, Sherif; Schuster, Gerard T.
2017-01-01
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Effect of externally generated turbulence on wave boundary layer
DEFF Research Database (Denmark)
Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
DEFF Research Database (Denmark)
Dühring, Maria Bayard
The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...
Self-sustained collisional drift-wave turbulence in a sheared magnetic field
International Nuclear Information System (INIS)
Scott, B.D.
1990-01-01
Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free-energy source represented by the temperature and density gradients on the turbulent system involving bidirectional spectral energy transfer is responsible for this change of regime. Several important features of tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. As a result, drift-wave turbulence must still be considered as an underlying dynamic of anomalous transport in tokamak edges
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-06
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Turbulent Structure Under Short Fetch Wind Waves
2015-12-01
maximum 200 words ) Momentum transfer from wind forcing into the ocean is complicated by the presence of surface waves. Wind momentum and energy are...1,520 m from the mouth of the river to the deployment site ). Map created in Google Earth, October 12, 2015, http://www.google.com/earth/. 33...Doppler processing electronics for each transducer uses 14 bit analog to digital converter to digitize the 1.2 MHz acoustic frequency from the four
Wave launching as a diagnostic tool to investigate plasma turbulence
International Nuclear Information System (INIS)
Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.
1994-01-01
An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks
Collisions and turbulence in optical rogue wave formation
DEFF Research Database (Denmark)
Genty, G.; de Sterke, C.M.; Bang, Ole
2010-01-01
We discuss optical rogue wave generation in terms of collisions and turbulence processes. Simulations of picosecond pulse propagation in optical fibres show rogue soliton generation from either third-order dispersion or Raman scattering independently. Simulations of rogue soliton emergence...
Experimental signatures of localization in Langmuir wave turbulence
Energy Technology Data Exchange (ETDEWEB)
Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.
1988-01-01
Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence
International Nuclear Information System (INIS)
Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.
2008-01-01
Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments
Surface roughness effects on turbulent Couette flow
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
Estimates of wave decay rates in the presence of turbulent currents
Energy Technology Data Exchange (ETDEWEB)
Thais, L. [Universite des Sciences et Technologies de Lille, URA-CNRS 1441, Villenauve d' Ascq (France). Lab. de Mecanique; Chapalain, G. [Universite des Sciences et Technologies de Lille, URA-CNRS 8577, Villenauve d' Ascq (France). Sedimentologie et Geodynamique; Klopman, G. [Albatros Flow Research, Vollenhove (Netherlands); Simons, R.R. [University College, London (United Kingdom). Civil and Environmental Engineering; Thomas, G.P. [University College, Cork (Ireland). Dept. of Mathematical Physics
2001-06-01
A full-depth numerical model solving the free surface flow induced by linear water waves propagating with collinear vertically sheared turbulent currents is presented. The model is used to estimate the wave amplitude decay rate in combined wave current flows. The decay rates are compared with data collected in wave flumes by Kemp and Simons [J Fluid Mech, 116 (1982) 227; 130 (1983) 73] and Mathisen and Madsen [J Geophys Res, 101 (C7) (1996) 16,533]. We confirm the main experimental finding of Kemp and Simons that waves propagating downstream are less damped, and waves propagating upstream significantly more damped than waves on fluid at rest. A satisfactory quantitative agreement is found for the decay rates of waves propagating upstream, whereas not more than a qualitative agreement has been observed for waves propagating downstream. Finally, some wave decay rates in the presence of favourable and adverse currents are provided in typical field conditions. (Author)
Scalings, spectra, and statistics of strong wave turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1996-01-01
A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. copyright 1996 American Institute of Physics
Interaction of flexible surface hairs with near-wall turbulence
International Nuclear Information System (INIS)
Bruecker, Ch
2011-01-01
The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 x 10 6 . The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L + = 30) which are arranged in a regular grid (60 x 30 hairs with a streamwise spacing Δx + ∼15 and a spanwise spacing Δy + ∼30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).
Turbulent transport in the atmospheric surface layer
International Nuclear Information System (INIS)
Tagesson, Torbern
2012-04-01
In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to ∼3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect of
Turbulent transport in the atmospheric surface layer
Energy Technology Data Exchange (ETDEWEB)
Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)
2012-04-15
In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect
Particle acceleration by Alfven wave turbulence in radio galaxies
International Nuclear Information System (INIS)
Eilek, J.A.
1986-01-01
Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources
THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES
International Nuclear Information System (INIS)
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Surface Waves on Metamaterials Interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....
Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves
International Nuclear Information System (INIS)
Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.
2001-01-01
In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested
On the origin of turbulence in ionizing waves and in hydrodynamics
International Nuclear Information System (INIS)
Krasa, J.; Rothhardt, L.
1984-01-01
Research of irregular (turbulent) ionizing waves is reviewed. Measuring techniques and analogies to fluid turbulence are accentuated. The irregular (turbulent) ionizing waves are recommended as a one-dimensional substrate for further basic studies on turbulence generation because of good accessability and ease of contactless measurement. (author)
International Nuclear Information System (INIS)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-01-01
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Faraday Wave Turbulence on a Spherical Liquid Shell
Holt, R. Glynn; Trinh, Eugene H.
1996-01-01
Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations
International Nuclear Information System (INIS)
Kammel, Andreas
2012-01-01
The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρ s proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρ s into the high-ρ s zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at
Turbulent transport across invariant canonical flux surfaces
International Nuclear Information System (INIS)
Hollenberg, J.B.; Callen, J.D.
1994-07-01
Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux
Discrete and mesoscopic regimes of finite-size wave turbulence
International Nuclear Information System (INIS)
L'vov, V. S.; Nazarenko, S.
2010-01-01
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence
International Nuclear Information System (INIS)
Smolyakov, A. I.; Diamond, P. H.; Malkov, M.
2000-01-01
Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society
Numerical and theoretical investigations of resistive drift wave turbulence
International Nuclear Information System (INIS)
Sunn Pedersen, T.
1995-07-01
With regard to the development of thermonuclear fusion utilizing a plasma confined in a magnetic field, anomalous transport is a major problem and is considered to be caused by electrostatic drift wave turbulence. A simplified quasi-two-dimensional slab model of resistive drift wave turbulence is investigated numerically and theoretically. The model (Hasegawa and Wakatani), consists of two nonlinear partial differential equations for the density perturbation n and the electrostatic potential perturbation φ. It includes the effect of a background density gradient perpendicular to the magnetic field and a generalized Ohm's law for the electrons in the direction parallel to the magnetic field. It may be used to model the basic features of electrostatic turbulence and the associated transport in an edge plasma. Model equations are derived and some important properties of the system are discussed. It is described how the Fourier spectral method is applied to the Hasegawa-Wakatani equations, how the time integration is developed to ensure accurate and fast simulations in a large parameter regime, and how the accuracy of the code is checked. Numerical diagnostics are developed to verify and extend the results in publications concerning quasi-stationary turbulent states and to give an overview of the properties of the quasi-stationary turbulent state. The use of analysis tools, not previously applied to the Hasegawa-Wakatani system, and the results obtained are described. Fluid particles are tracked to obtain Lagrangian statistics for the turbulence. A new theoretical analysis of relative dispersion leads to a decomposition criterion for the particles. The significance of this is investigated numerically and characteristic time scales for particles are determined for a range of parameter values. It is indicated that the turbulent state can be characterized in the context of nonlinear dynamics and chaos theory as an attractor with a large basin of attraction. The basic
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
International Nuclear Information System (INIS)
Barnes, A.
1983-01-01
The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)
Exact result in strong wave turbulence of thin elastic plates
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.
Homogeneous internal wave turbulence driven by tidal flows
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team
2017-11-01
We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).
On the computation of the turbulent flow near rough surface
Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.
2018-05-01
One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.
Precursor of transition to turbulence: spatiotemporal wave front.
Bhaumik, S; Sengupta, T K
2014-04-01
To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution of governing NSE.
Drift wave instability and turbulence in advanced stellarator configurations
International Nuclear Information System (INIS)
Kendl, A.
2001-08-01
In the following chapter, an overview and references on the physics and geometry of helical advanced stellarators is given. On the basis of this configuration, the influence of magnetic field geometry is then discussed in a basic model of drift-Alfven wave turbulence which contains the necessary physics that applies to the plasma edge. By means of linear models, core physics in the form of ITG and dissipative trapped electron modes is further included in our survey. These models are, of course, by far not comprehensive in order to cover the complex physics of plasma turbulence in three-dimensional fusion devices, where a large range of parameter and mode regimes is present. Optimization criteria for a possible systematic minimization of turbulent transport in Helias configurations therefore still have to be regarded as tentative. The results presented here should, however, encourage for more detailed future computations. (orig.)
Nonlinear radial propagation of drift wave turbulence
International Nuclear Information System (INIS)
Prakash, M.
1985-01-01
We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem
Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere
International Nuclear Information System (INIS)
Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.
1996-01-01
The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments
The role of the generalized Phillips' spectrum in wave turbulence
International Nuclear Information System (INIS)
Newell, A.C.; Zakharov, V.E.
2008-01-01
We suggest the generalized Phillips' spectrum, which we define as that spectrum for which the statistical properties of wave turbulence inherit the symmetries of the original governing equations, is, in many circumstances, the spectrum which obtains in those regions of wavenumber space in which the Kolmogorov-Zakharov (KZ) spectra are no longer valid. This spectrum has many very special properties. We discuss its connection with the singularities which are associated with the whitecap events observed in windblown seas
Turbulent Flow Modification With Thermoacoustic Waves for Separation Control
2017-08-24
respectively. At the outlet, the time-average flow is set to be the target state of the sponge zone. In this section, the effects of momentum thickness...Turbulent Flow Modification With Thermoacoustic Waves For Separation Control The views, opinions and/or findings contained in this report are those...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida State University Sponsored Research Administration 874
Turbulence of Weak Gravitational Waves in the Early Universe.
Galtier, Sébastien; Nazarenko, Sergey V
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
International Nuclear Information System (INIS)
Birkenmeier, Gregor
2012-01-01
For more than 60 years, fusion scientists try to confine a plasma by means of external magnetic fields in order to achieve appropriately high densities and temperatures for the ignition of nuclear fusion. Despite of great progress in the design of confinement concepts, which are considered for the confinement of burning plasmas in the near future, theoretical plasma physics promises further confinement improvements using novel magnetic field geometries. Therefor, the key is the minimization of turbulent transport by choosing appropiate magnetic field geometries, which necessitates a fundamental understanding of the influence of magnetic field geometry on plasma turbulence. There are several theoretical works on turbulent plasma dynamics in three-dimensional geometries, but only a few experimental studies for validation of the theoretical results exist. Hence, the present work aims at providing experimental data for comparison with theory and to gain insights into the interplay between drift-wave turbulence and magnetic field geometry. By means of two multi-probe arrays, local density and potential fluctuations are measured in low-temperature plasmas at 128 positions on a single flux surface of the stellarator TJ-K with high temporal resolution. Using methods of statistical timeseries analysis structure sizes and dynamic properties of the drift-wave turbulence in TJ-K are determined. Thereby, it is shown that the size of turbulent structures perpendicular to the magnetic field is reduced in regions of high absolute local magnetic shear. In addition, a poloidal displacement with respect to the magnetic field lines and a complex propagation pattern of parallelly extended turbulent structures is found. Also, poloidal profiles of turbulent transport are calculated from the probe data. The maximum transport is found to be poloidally localized in a region of negative normal curvature (unfavourable curvature). In addition, the results point to an influence of geodesic
Turbulence and Waves as Sources for the Solar Wind
Cranmer, S. R.
2008-05-01
Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.
Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation
International Nuclear Information System (INIS)
Lee, M.C.; Kuo, S.P.
1990-01-01
Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed
Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.
Tsai, Ya-Yi; I, Lin
2014-07-01
Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.
Capillary waves with surface viscosity
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Statistical theory of resistive drift-wave turbulence and transport
International Nuclear Information System (INIS)
Hu, G.; Krommes, J.A.; Bowman, J.C.
1997-01-01
Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa endash Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. copyright 1997 American Institute of Physics
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Coherent structures and transport in drift wave plasma turbulence
International Nuclear Information System (INIS)
Bang Korsholm, S.
2011-12-01
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Toroidal effects on drift wave turbulence
Energy Technology Data Exchange (ETDEWEB)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-09-23
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.
Toroidal effects on drift wave turbulence
International Nuclear Information System (INIS)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-01-01
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling
Breaking of ocean surface waves
International Nuclear Information System (INIS)
Babanin, A.V.
2009-01-01
Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)
Parametric instability and wave turbulence driven by tidal excitation of internal waves
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael
2018-04-01
We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.
Dynamical scaling law in the development of drift wave turbulence
International Nuclear Information System (INIS)
Watanabe, T.; Fujisaka, H.; Iwayama, T.
1997-01-01
The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region, which is set to be slightly larger than the characteristic wave number λ, evaluating the inverse ion Larmor radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys a dynamic scaling law for k 1/2 ε 5/4 t 7/4 F(k/bar k(t))[bar k(t)∼λ 3/4 ε -1/8 t -3/8 ] with a scaling function F(x), which turns out to be in good agreement with numerical experiments. copyright 1997 The American Physical Society
CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)
2016-12-01
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
Surface phonons and elastic surface waves
Büscher, H.; Klein-Heßling, W.; Ludwig, W.
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.
Surface phonons and elastic surface waves
International Nuclear Information System (INIS)
Buescher, H.; Klein-Hessling, W.; Ludwig, W.
1993-01-01
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Observation of drift wave propagation as a source of tokamak edge turbulence
International Nuclear Information System (INIS)
Wang Guiding; Liu Wandong; Yu Changxuan
1998-01-01
Core and edge turbulences were measured by Langmuir probe arrays in the KT-5C tokamak plasma. The radial wavenumber spectra show a quasimode like structure which results in a net radial outward propagation of the turbulent fluctuations. The measured fluctuation levels and wave action fluxes are in good agreement with model predictions by Mattor et al., suggesting that drift wave propagation could be a source of edge turbulence
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Breaking Waves on the Ocean Surface
Schwendeman, Michael S.
equilibrium range waves and normalizing by the wave directional spread. Meanwhile, correlation of W with turbulent dissipation measurements is significantly worse, which may be due to uncertainty in the measurements or bias related to micro-breaking waves. Finally, phase-resolved, three-dimensional, measurements of the whitecaps were made from a new ship-based stereo video system. Comparison with concurrent buoy measurements indicate that the stereo data accurately reproduces the wave statistics, including the frequency spectra. The whitecaps are characterized by transient and spatially localized regions of extreme surface gradients, rather than large crest-to-trough steepnesses. It was found that whitecaps were around 10 times more likely to have extreme slopes, and 50% of the observed extreme surface slopes were in the vicinity of the breaking waves. The maximum whitecap slopes show good agreement with the Stokes 120 degree limiting crest geometry, and the whitecap crest loses much of its maximum steepness shortly after the onset of breaking. The whitecap phase speeds are consistently less than the linear or weakly nonlinear predicted phase speed, which indicate the effect of narrow-band wave groups, despite the broad-band wave spectra.
The statistical mechanics of vortex-acoustic ion wave turbulence
International Nuclear Information System (INIS)
Giles, M.J.
1980-01-01
The equilibrium statistical mechanics of electrostatic ion wave turbulence is studied within the framework of a continuum ion flow with adiabatic electrons. The wave field consists in general of two components, namely ion-acoustic and ion vortex modes. It is shown that the latter can significantly affect the equilibria on account of their ability both to emit and to scatter ion sound. Exact equilibria for the vortex-acoustic wave field are given in terms of a canonical distribution and the correlation functions are expressed in terms of a generating functional. Detailed calculations are carried out for the case in which the dominant coupling is an indirect interaction of the vortex modes mediated by the sound field. An equation for the spectrum of the vortex modes is obtained for this case, which is shown to possess a simple exact solution. This solution shows that the spectrum of fluctuations changes considerably as the total energy increases. Condensed vortex states could occur in the plasma sheet of the earth's magnetosphere and it is shown that the predicted ratio of the mean ion energy to the mean electron energy is consistent with the trend of observed values. (author)
Energy Technology Data Exchange (ETDEWEB)
Brandt, C; Grulke, O; Klinger, T, E-mail: christian.brandt@lpmi.uhp-nancy.f [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)
2010-05-15
Experiments in a cylindrical magnetized plasma on the control of drift waves by means of two different spatiotemporal open-loop control systems-an electrostatic and an electromagnetic exciter-are reported. The drift wave dynamics is controlled by a mode-selective signal created with azimuthal arrangements of eight electrodes and eight saddle coils, respectively. Nonlinear interaction between the control signals and drift waves is observed, leading to synchronization of coherent drift waves and suppression of broadband drift wave turbulence. The cross-phase between density and potential fluctuations reduces from {approx}{pi}/2 in turbulence to {approx}0 in controlled turbulence. Hence, the cross-field transport is reduced to the level of coherent drift waves. For both control systems the coupling to the drift wave can be ascribed to the drive of parallel currents, on the one hand via direct electric contact and, on the other hand, via electromagnetic induction.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Quasi-wavelet formulations of turbulence and wave scattering
DEFF Research Database (Denmark)
Wilson, D. Keith; Ott, Søren; Goedecke, George H.
2009-01-01
Quasi-wavelets (QWs) are eddy-like entities similar to customary wavelets in the sense that they are based on translations and dilations of a spatially localized parent function. The positions and orientations are, however, normally taken to be random. Random fields such as turbulence may...... types of QWs and couplings, suitable for various applicatons, can be constructed through differentiation of spherically symmetric parent functions. For velocity fluctuations, QWs with toroidal and poloidal circulations can be derived. (2) Self-similar ensembles of QWs with rotation rates scaling...... to Fourier modes, QWs can be naturally arranged in a spatially intermittent manner. Models for both local (intrinsic) and global intermittency are discussed. (5) The spatially localized nature of QWs can be advantageous in wave-scattering calculations and other applications....
Flux surface shaping effects on tokamak edge turbulence and flows
International Nuclear Information System (INIS)
Kendl, A.; Scott, B.D.
2004-01-01
The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)
Flux surface shaping effects on tokamak edge turbulence and flows
Energy Technology Data Exchange (ETDEWEB)
Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)
2004-07-01
The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data
International Nuclear Information System (INIS)
Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.
1980-01-01
The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)
Databases of surface wave dispersion
Directory of Open Access Journals (Sweden)
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Bhaumik, Swagata; Sengupta, Tapan K.
2017-12-01
Here, we present the impulse response of the canonical zero pressure gradient boundary layer from the dynamical system approach. The fundamental physical mechanism of the impulse response is in creation of a spatio-temporal wave-front (STWF) by a localized, time-impulsive wall excitation of the boundary layer. The present research is undertaken to explain the unit process of diverse phenomena in geophysical fluid flows and basic hydrodynamics. Creation of a tsunami has been attributed to localized events in the ocean-bed caused by earthquakes, landslides, or volcanic eruptions, whose manifestation is in the run up to the coast by surface waves of massive amplitude but of very finite fetch. Similarly rogue waves have often been noted; a coherent account of the same is yet to appear, although some explanations have been proposed. Our studies in both two- and three-dimensional frameworks in Sengupta and Bhaumik ["Onset of turbulence from the receptivity stage of fluid flows," Phys. Rev. Lett. 107(15), 154501 (2011)] and Bhaumik and Sengupta ["Precursor of transition to turbulence: Spatiotemporal wave front," Phys. Rev. E 89(4), 043018 (2014)] have shown that the STWF provides the central role for causing transition to turbulence by reproducing carefully conducted transition experiments. Here, we furthermore relax the condition of time behavior and use a Dirac-delta wall excitation for the impulse response. The present approach is not based on any simplification of the governing Navier-Stokes equation (NSE), which is unlike solving a nonlinear shallow water equation and/or nonlinear Schrödinger equation. The full nonlinear Navier-Stokes equation (NSE) is solved here using high accuracy dispersion relation preserving numerical schemes and using appropriate formulation of the NSE which minimizes error. The adopted numerical methods and formulation have been extensively validated with respect to various external and internal 2D and 3D flow problems. We also present
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Almost two-dimensional treatment of drift wave turbulence
International Nuclear Information System (INIS)
Albert, J.M.; Similon, P.L.; Sudan, R.N.
1990-01-01
The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
International Nuclear Information System (INIS)
Ma Jun; Wang Chunni; Li Yanlong; Pu Zhongsheng; Jin Wuyin
2008-01-01
This paper proposes a scheme of parameter perturbation to suppress the stable rotating spiral wave, meandering spiral wave and turbulence in the excitable media, which is described by the modified Fitzhugh–Nagumo (MFHN) model. The controllable parameter in the MFHN model is perturbed with a weak pulse and the pulse period is decided by the rotating period of the spiral wave approximatively. It is confirmed that the spiral wave and spiral turbulence can be suppressed greatly. Drift and instability of spiral wave can be observed in the numerical simulation tests before the whole media become homogeneous finally. (general)
Turbulent lubrication theory considering the surface roughness effects, 2
International Nuclear Information System (INIS)
Hashimoto, Hiromu; Wada, Sanae; Kobayashi, Toshinobu.
1990-01-01
This second paper describes an application of the generalized turbulent lubrication theory considering the surface roughness effects, which is developed in the previous paper, to the finite-width journal bearings. In the numerical analysis, the nonlinear equations for the modified turbulence coefficients are simplified to save a computation time within a satisfactory accuracy under the assumption that the shear flow is superior to the pressure flow in the turbulent lubrication films. The numerical results of pressure distribution, Sommerfeld number, attitude angle, friction coefficient and flow rate for the Reynolds number of Re=2000, 5000 and 10000 are indicated in graphic form for various values of relative roughness, and the effects of surface roughness on these static performance characteristics are discussed. Moreover, the eccentricity ratio and attitude angle of the journal bearings with homogeneous rough surface are obtained experimentally for a wide range of Sommerfeld number, and the experimental results are compared with theoretical results. (author)
Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves
Markfort, Corey; Stegmeir, Matt
2017-11-01
Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.
Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces
Directory of Open Access Journals (Sweden)
Onur YEMENİCİ
2013-04-01
Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights
Effects of traveling waves on flow separation and turbulence
Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team
2017-11-01
Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.
Electron acceleration by wave turbulence in a magnetized plasma
Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.
2018-05-01
Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.
Dyakonov surface waves in lossy metamaterials
Sorní Laserna, Josep; Naserpour, Mahin; Zapata Rodríguez, Carlos Javier; Miret Marí, Juan José
2015-01-01
We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of su...
Interaction of a conical shock wave with a turbulent boundary layer
Teh, S. L.; Gai, S. L.
The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer
Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.
2018-03-01
Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.
Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling
Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.
2012-01-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold
Drift wave turbulence in low-β plasmas
DEFF Research Database (Denmark)
Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans
1983-01-01
Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
measurements for steady streaming induced by a skewed free stream velocity signal is also provided. We then simulate a series of experiments involving oscillatory flow in a convergent-divergent smooth tunnel, and a good match with respect to bed shear stresses and streaming velocities is achieved......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model....... The streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor...
Wave scattering from statistically rough surfaces
Bass, F G; ter Haar, D
2013-01-01
Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a
Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar
Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris
2007-01-01
Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Studies on waves and turbulence in natural plasmas and in laboratory plasmas
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)
Francois, N; Xia, H; Punzmann, H; Shats, M
2013-05-10
We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].
International Nuclear Information System (INIS)
Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.
2010-01-01
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
A time-localized response of wave growth process under turbulent winds
Directory of Open Access Journals (Sweden)
Z. Ge
2007-06-01
Full Text Available Very short time series (with lengths of approximately 40 s or 5~7 wave periods of wind velocity fluctuations and wave elevation were recorded simultaneously and investigated using the wavelet bispectral analysis. Rapid changes in the wave and wind spectra were detected, which were found to be intimately related to significant energy transfers through transient quadratic wind-wave and wave-wave interactions. A possible pattern of energy exchange between the wind and wave fields was further deduced. In particular, the generation and variation of the strong wave-induced perturbation velocity in the wind can be explained by the strengthening and diminishing of the associated quadratic interactions, which cannot be unveiled by linear theories. On small time scales, the wave-wave quadratic interactions were as active and effective in transferring energy as the wind-wave interactions. The results also showed that the wind turbulence was occasionally effective in transferring energy between the wind and the wave fields, so that the background turbulence in the wind cannot be completely neglected. Although these effects are all possibly significant over short times, the time-localized growth of the wave spectrum may not considerably affect the long-term process of wave development.
International Nuclear Information System (INIS)
Baryshev, Yu.V.; Morozov, V.N.
1988-01-01
It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases
International Nuclear Information System (INIS)
Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David
2016-01-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)
On solitary surface waves in cold plasmas
International Nuclear Information System (INIS)
Vladimirov, S.V.; Yu, M.Y.; Stenflo, L.
1993-01-01
A new type of nonlinear electromagnetic solitary surface waves propagating along the boundary of a cold plasma is discussed. These waves are described by a novel nonlinear evolution equation, obtained when the nonlinear surface currents at the boundary are taken into consideration. (Author)
Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer
Melnik, R. E.; Grossman, B.
1974-01-01
The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.
Photonics surface waves on metamaterials interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-01-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks...... to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide...... variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general...
Harmonic surface wave propagation in plasma
International Nuclear Information System (INIS)
Shivarova, A.; Stoychev, T.
1980-01-01
Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.C.; Komoshvili, K.
2002-01-01
Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated
Energy Technology Data Exchange (ETDEWEB)
He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zhang, Lei [Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Salem, Chadi S.; Bale, Stuart D., E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)
2015-11-10
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
International Nuclear Information System (INIS)
Assis, A.S. de; Silva, C.E. da; Dias Tavares, A. Jr.; Leubner, C.; Kuhn, S.
2001-07-01
We have studied the formation of auroral electron fluxes induced by a field aligned dc electric field in the presence of plasma wave turbulence. The effect of the wave spectral shape on the production rate has been considered. This acceleration scheme was modelled by the weak turbulence approach. The electron fluxes for narrow and broad band spectra, in the case of low and high phase velocities, are calculated, and it is found as a general feature, for all modes, that their enhancement is larger the weaker the background electric field, while for its absolute enhancement it is just the opposite. The electron fluxes are enhanced by many orders of magnitude over that without turbulence. It is also shown that the modes enhance the runaway production rate via their Cherenkov dissipation, and that a synergetic effect occurs in the enhancement when more than one mode turbulent is present in the acceleration region. (author)
Validating modeled turbulent heat fluxes across large freshwater surfaces
Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.
2017-12-01
Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence
International Nuclear Information System (INIS)
Uzawa, K.; Li Jiquan; Kishimoto, Y.
2009-01-01
The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.
Isotropic and anisotropic surface wave cloaking techniques
International Nuclear Information System (INIS)
McManus, T M; Spada, L La; Hao, Y
2016-01-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)
Isotropic and anisotropic surface wave cloaking techniques
McManus, T. M.; La Spada, L.; Hao, Y.
2016-04-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
Potential-vorticity inversion and the wave-turbulence jigsaw: some recent clarifications
Directory of Open Access Journals (Sweden)
M. E. McIntyre
2008-06-01
Full Text Available Two key ideas stand out as crucial to understanding atmosphere-ocean dynamics, and the dynamics of other planets including the gas giants. The first key idea is the invertibility principle for potential vorticity (PV. Without it, one can hardly give a coherent account of even so important and elementary a process as Rossby-wave propagation, going beyond the simplest textbook cases. Still less can one fully understand nonlinear processes like the self-sharpening or narrowing of jets – the once-mysterious "negative viscosity" phenomenon. The second key idea, also crucial to understanding jets, might be summarized in the phrase "there is no such thing as turbulence without waves", meaning Rossby waves especially. Without this idea one cannot begin to make sense of, for instance, momentum budgets and eddy momentum transports in complex large-scale flows. Like the invertibility principle the idea has long been recognized, or at least adumbrated. However, it is worth articulating explicitly if only because it can be forgotten when, in the usual way, we speak of "turbulence" and "turbulence theory" as if they were autonomous concepts. In many cases of interest, such as the well-studied terrestrial stratosphere, reality is more accurately described as a highly inhomogeneous "wave-turbulence jigsaw puzzle" in which wavelike and turbulent regions fit together and crucially affect each other's evolution. This modifies, for instance, formulae for the Rhines scale interpreted as indicating the comparable importance of wavelike and turbulent dynamics. Also, weakly inhomogeneous turbulence theory is altogether inapplicable. For instance there is no scale separation. Eddy scales are not much smaller than the sizes of the individual turbulent regions in the jigsaw. Here I review some recent progress in clarifying these ideas and their implications.
Turbulence modeling and surface heat transfer in a stagnation flow region
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes
DEFF Research Database (Denmark)
Fuhrman, David R.; Schløer, Signe; Sterner, Johanna
2013-01-01
A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
Future heat waves and surface ozone
Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica
2018-06-01
A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).
Radio wave dissipation in turbulent auroral plasma during the precipitation of energetic electrons
International Nuclear Information System (INIS)
Mishin, E.V.; Luk'ianova, L.N.; Makarenko, S.F.; Atamaniuk, B.M.
1992-01-01
The results of the theoretical analysis of anomalous (collisionless) radio wave absorption in the turbulent auroral ionosphere during the intrusion of energetic electrons (i.e., in aurorae) are presented. The implications of the plasma turbulent layer (PTL) theory are used. It is shown that the dissipation of radio waves with frequencies much higher than the plasma frequency is caused by the nonlinear (combined) scattering in turbulent plasma of the PTL. In the auroral electrojet layer the principal dissipative process for the radio waves with frequencies close to the plasma frequency is O-Z transformation on the field-aligned, small-scale density fluctuations. The typical dissipation decrements are estimated. 26 refs
International Nuclear Information System (INIS)
Guezel, J.Ch.
2006-01-01
The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)
Surface energy budget and turbulent fluxes at Arctic terrestrial sites
Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina
2017-04-01
Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
International Nuclear Information System (INIS)
Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.
1980-01-01
An attempt is made to analyze two assumptions of the present theory of plasma turbulence, initiated by an electromagnetic wave, as applied to the problem of heating the plasma target. It has been assumed that in the long-scale region (the region of an electromagnetic wave source) and in the inertia range, separating the source region and the short-wave absorption region, there is a permanent pumping. The first assumption consists in simulating a situation in a plasma target when the Langmuir turbulence arises due to an electromagnetic wave incident on the target. The second assumption is valid only at a very high intensity of plasma waves when their energy is significantly less than the thermal energy of plasma W/nsub(c)T 0 is the frequency of an incident electromagnetic wave). At W approximately equal to nsub(c)T the plasma oscillations, arising due to modulation instability from the electromagnetic pumping wave, fall immediately into the absorption region. A phenomenological theory of such a turbulence, called ''superstrong'', is formulated on the assumption that there is a mechanism of ''mixing up'' plasmon phases as a result of their populating the long-wave density fluctuations
Turbulent solutal convection and surface patterning in solid dissolution
International Nuclear Information System (INIS)
Sullivan, T.S.; Liu, Y.; Ecke, R.E.
1996-01-01
We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society
Directory of Open Access Journals (Sweden)
L. Zhang
2015-01-01
Full Text Available In solar wind, dissipation of slow-mode magnetosonic waves may play a significant role in heating the solar wind, and these modes contribute essentially to the solar wind compressible turbulence. Most previous identifications of slow waves utilized the characteristic negative correlation between δ|B| and δρ. However, that criterion does not well identify quasi-parallel slow waves, for which δ|B| is negligible compared to δρ. Here we present a new method of identification, which will be used in 3-D compressible simulation. It is based on two criteria: (1 that VpB0 (phase speed projected along B0 is around ± cs, and that (2 there exists a clear correlation of δv|| and δρ. Our research demonstrates that if vA > cs, slow waves possess correlation between δv|| and δρ, with δρ / δv|| ≈ ± ρ0 / cs. This method helps us to distinguish slow-mode waves from fast and Alfvén waves, both of which do not have this polarity relation. The criteria are insensitive to the propagation angle θk B, defined as the angle between wave vector k and B0; they can be applied with a wide range of β if only vA > cs. In our numerical simulation, we have identified four cases of slow wave trains with this method. The slow wave trains seem to deform, probably caused by interaction with other waves; as a result, fast or Alfvén waves may be produced during the interaction and seem to propagate bidirectionally away. Our identification and analysis of the wave trains provide useful methods for investigations of compressible turbulence in the solar wind or in similar environments, and will thus deepen understandings of slow waves in the turbulence.
Near-Bed Turbulent Kinetic Energy Budget Under a Large-Scale Plunging Breaking Wave Over a Fixed Bar
van der Zanden, Joep; van der A, Dominic A.; Cáceres, Iván.; Hurther, David; McLelland, Stuart J.; Ribberink, Jan S.; O'Donoghue, Tom
2018-02-01
Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured with high spatial and temporal resolution using a two component laser Doppler anemometer. The results show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a factor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately 0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipation are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, followed by seaward advection along the bar's shoreward slope, and an upward outflux above the bar crest. The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhances turbulent production rates near the bed.
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Kim, Chang-Bae; Horton, W.
1990-05-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Changbae Kim; Horton, W.
1991-01-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
Frequency tunable surface magneto elastic waves
Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.
2015-01-01
We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.
Low-dimensional chaotic attractors in drift wave turbulence
International Nuclear Information System (INIS)
Persson, M.; Nordman, H.
1991-01-01
Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)
Resonances and surface waves in bounded plasmas
International Nuclear Information System (INIS)
Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.
1999-01-01
Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device
Reversed phase propagation for hyperbolic surface waves
DEFF Research Database (Denmark)
Repän, Taavi; Novitsky, Andrey; Willatzen, Morten
2018-01-01
Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....
On the maximum of wave surface of sea waves
Energy Technology Data Exchange (ETDEWEB)
Zhang, B
1980-01-01
This article considers wave surface as a normal stationary random process to solve the estimation of the maximum of wave surface in a given time interval by means of the theoretical results of probability theory. The results are represented by formulas (13) to (19) in this article. It was proved in this article that when time interval approaches infinite, the formulas (3), (6) of E )eta max) that were derived from the references (Cartwright, Longuet-Higgins) can also be derived by asymptotic distribution of the maximum of wave surface provided by the article. The advantage of the results obtained from this point of view as compared with the results obtained from the references was discussed.
Surface Acoustic Waves in ferroelectrics
Czech Academy of Sciences Publication Activity Database
Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander
2004-01-01
Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
International Nuclear Information System (INIS)
Biglari, H.; Ono, M.
1992-01-01
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the pondermotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width
Dynamics of zonal flows and self-regulating drift-wave turbulence
International Nuclear Information System (INIS)
Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.
1999-01-01
We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)
Dynamics of zonal flows and self-regulating drift-wave turbulence
International Nuclear Information System (INIS)
Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.
2001-01-01
We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)
Sand Transport under Highly Turbulent Airflow on a Beach Surface
Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.
2012-04-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
Surface acoustic wave dust deposition monitor
Fasching, G.E.; Smith, N.S. Jr.
1988-02-12
A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.
Propagation of an ionizing surface electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Boev, A.G.; Prokopov, A.V.
1976-11-01
The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.
Wave optics simulation of statistically rough surface scatter
Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.
2017-09-01
The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.
Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction
Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.
2016-01-01
Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.
HEATING AND ACCELERATION OF THE FAST SOLAR WIND BY ALFVÉN WAVE TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Van Ballegooijen, A. A.; Asgari-Targhi, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2016-04-20
We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R {sub ⊙} and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.
Plasma turbulence driven by transversely large-scale standing shear Alfvén waves
International Nuclear Information System (INIS)
Singh, Nagendra; Rao, Sathyanarayan
2012-01-01
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Array processing for seismic surface waves
Energy Technology Data Exchange (ETDEWEB)
Marano, S.
2013-07-01
This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries.
Array processing for seismic surface waves
International Nuclear Information System (INIS)
Marano, S.
2013-01-01
This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries
International Nuclear Information System (INIS)
Ferreira, J.L.
1991-01-01
Quiescent plasmas generated by thermionic discharges and surface confined by multipole magnetic fields have been used in basic plasma research since 1973. The first machine was developed at UCLA (USA) to produce an uniform plasma for beam and waves studies in large cross section plasmas. A double quiescent plasma machine was constructed at the plasma laboratory of INPE in 1981, it began its operation producing linear ion-acoustic waves in an Argon plasma. Later on non linear ion acoustic waves and solitons were studied in plasma containing several species of negative and positive ions. The anomalous particle transport across multipole magnetic fields were also investigated. An anomalous resistivity associated with an ion acoustic turbulence is responsible for the formation of a small amplitude double-layer. The existence of a bootstrap mechanism is shown experimentally. Today, the main interest is toward the generation of Langmuir waves in non uniform plasmas. An experimental study on Langmuir wave generation using a grid system is been carried on. A magnetized quiescent plasma device for studies of whistle wave generation is been constructed. This machine will make possible future studies on several wave modes of magnetized plasmas. (author). 31 refs, 16 figs
Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat
MacVean, Lissa J.; Lacy, Jessica R.
2014-01-01
Measurements were collected on a shallow estuarine mudflat in northern San Francisco Bay to examine the physical processes controlling waves, turbulence, sediment resuspension, and their interactions. Tides alone forced weak to moderate currents of 10–30 cm s-1 in depths of 0–3 m, and maintained a background suspension of 30–50 mg L21 of fine sediment. In the presence of wind waves, bottom orbital velocities spanned 20–30 cm s-1, suspended-sediment concentrations (SSC) at 15 and 30 cm above the bed (cmab) increased by 1–2 orders of magnitude, and vertical gradients in SSC were strong enough to produce turbulence-limiting stratification, with gradient Richardson numbers exceeding 0.25. Simultaneously, turbulent
Turbulent spectra from three drift-wave interactions
International Nuclear Information System (INIS)
Terry, P.W.; Horton, W.
1982-02-01
Hydrodynamic equations for the drift-wave instability containing the rvec E x rvec B convective nonlinearity are used to show that the three wave interactions lead to temporal chaos with broad-band frequency spectra in the saturated state. 7 refs., 2 figs
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw
Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W
2016-03-04
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
Surface renewal analysis for estimating turbulent surface fluxes
International Nuclear Information System (INIS)
Castellvi, F.
2009-01-01
A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)
Demultiplexing Surface Waves With Silicon Nanoantennas
DEFF Research Database (Denmark)
Sinev, I.; Bogdanov, A.; Komissarenko, F.
2017-01-01
We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...... by the mutual interference of magnetic and electric dipole moments supported by the dielectric nanoantenna....
Surface wave velocity tracking by bisection method
International Nuclear Information System (INIS)
Maeda, T.
2005-01-01
Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)
Theory of modulational interaction of trapped ion convective cells and drift wave turbulence
International Nuclear Information System (INIS)
Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.
1993-01-01
Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed
Spectral contents of electron waves under strong Langmuir turbulence
Energy Technology Data Exchange (ETDEWEB)
Alves, Maria Virginia; Dallaqua, Renato Sergio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Prado, Fabio do [Centro Universitario UNIFEI, Itajuba, MG (Brazil); Karfidov, Dmitry Mikhailovich [General Physics Inst., Moscow (Russian Federation)
2003-07-01
Experimental results of electron plasma waves excited in a beam plasma system are presented. Based on our experimental results we determine the transition from the quasi-linear to non-linear regime. We present the space evolution of the electron beam distribution function for both regimes. The spectrum of the electron plasma wave in the non-linear regime shows a component with frequency larger than the plasma frequency besides the plasma frequency itself. We show that the higher frequency component is strongly affected by Landau damping, indicating a dissipation region. The measured experimental power spectrum of this wave shows a dependence on wave number k given by W{sub k} {proportional_to} k{sup -7/2} as theoretically predicted. (author)
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
Automated detection and association of surface waves
Directory of Open Access Journals (Sweden)
C. R. D. Woodgold
1994-06-01
Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.
Quasi-static electric fields, turbulence and VLF waves in the ionosphere and magnetosphere
International Nuclear Information System (INIS)
Temerin, M.A.
1978-01-01
Two rocket payloads launched from Greenland in December 1974 and January 1975 into the dayside auroral oval measured large scale electric fields. Sunward convection in regions of polar cusp type particle precipitation argues for the existence of a turbulent entry region at the magnetopause. Smaller scale changes in the electric field and energetic electron precipitation require field-aligned currents predominately at the boundaries of auroral arcs. Measurements of electric fields parallel to the magnetic field place upper limits to the parallel electric field. An analysis of the effect of zero-frequency electric field turbulence on the output of an electric field double probe detector is applied to data from two satellites, OVI-17 and S3-3. It is found that the electric field of high latitude low frequency turbulence is polarized perpendicular to the magnetic field and that the frequency is measured by the satellites is due to the Doppler shift of near zero frequency turbulence both in the ionosphere and magnetosphere. In addition, rocket measurements of low frequency turbulence in the dayside auroral oval reveal characteristics similar to those of the large electric field regions recently seen on S3-3 indicating that the turbulence from those regions extends into the ionosphere. VLF waves were also observed during the two rocket flights into the dayside auroral oval. The correlation of the VLF hiss intensity with the fluxes of precipitating electrons above 500 eV on a short spatial and time scale is often poor, even when a positive slope exists in the electron phase space density. The frequency of the lower hybrid waves were used to measure the ratio of NO + and O 2 + to O + . Electrostatic waves were observed during a barium release
Project of experimental study on plasma waves and plasma turbulence
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)
Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices
International Nuclear Information System (INIS)
Resendes, D.
1995-01-01
An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)
2014-06-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
International Nuclear Information System (INIS)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.
2014-01-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
International Nuclear Information System (INIS)
Yi Sumin; Ryu, C.-M.; Yoon, Peter H.
2003-01-01
The nonlinear frequency shift of a low-frequency, coherent dust-acoustic wave in the presence of higher frequency dust-acoustic turbulence is investigated in the framework of weak turbulence theory. It is found that the frequency shift of the dust-acoustic wave in an unmagnetized dusty plasma is always positive irrespective of the propagation direction of the coherent wave. It is also found that turbulent waves propagating in the same direction as the coherent wave are shown to give rise to a much higher frequency shift than the opposite case. Finally, it is shown that the nonlinear frequency shift of a dust-acoustic wave is more pronounced than in the case of the customary ion-acoustic waves in fully ionized plasmas
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......-localized-modes can be detected by the relatively simple diagnostic system....
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Energy Technology Data Exchange (ETDEWEB)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-03-25
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.
Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C
2017-02-01
Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Effects of rational surface density on resistive g turbulence
International Nuclear Information System (INIS)
Beklemishev, A.D.; Sugama, H.; Horton, W.
1993-01-01
The Beklemishev-Horton theory states that the anomalous transport coefficient is proportional to the density of rational surfaces provided that the interaction between the modes localized around different rational surfaces is weak compared with modes of the same helicity. The authors examine the effects of the density of states ρ using resistive g turbulence in 2D (single-helicity) and 3D (multi-helicity) simulations. They find that the modes with different helicities do not equipartition the available energy, but rather the coalescence or inverse cascade effect is strong so that a few low order mode rational surfaces receive most of the energy. The quasilinear flattening at the surfaces is a strong effect and they use bifurcation theory to derive that the effective diffusivity increases as χ eff = χ 0 ρ/(1 - Cρ) where C is a constant determined by interaction integrals. For a sufficiently high density of states Cρ ≤ 1, the higher order nonlinear interaction must be taken into account
Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves
International Nuclear Information System (INIS)
Craddock, G.G.; Diamond, P.H.
1991-01-01
Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs
International Nuclear Information System (INIS)
Vladimirov, S.V.; Nambu, Mitsuhiro
1995-01-01
From investigations of resonant interactions of particles and waves in turbulent plasmas it is well known that not only resonant particles contribute to expressions for the wave energy and momentum providing conservation of these quantities for closed systems. In particular, it was demonstrated that contribution of the nonresonant particles is very important for the energy conservation in the quasilinear theory: although the nonresonant terms do not appear in the diffusion equation, they contribute to the wave energy (and, in general, wave momentum) ensuring the conservation of total energy (and momentum) in the system. We note that the real part of the dielectric permittivity ε ωk as well as the wave frequency ω k of the resonant waves do not depend on time in the quasilinear approximation since only nonresonant particles (which distribution is constant) contribute to them. The resonant wave amplitude, however, is the function on time, and changing of the wave energy is completely balanced by the corresponding change of the resonant particle energy. If in the system there are only nonresonant waves, and it is closed (i.e., there is no energy exchange with some external sources or sinks), the system is stationary and the nonresonant wave as well as particle energy are not changing
Chiral surface waves for enhanced circular dichroism
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2017-06-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
Surface acoustic wave propagation in graphene film
International Nuclear Information System (INIS)
Roshchupkin, Dmitry; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula
2015-01-01
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Active micromixer using surface acoustic wave streaming
Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY
2011-05-17
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
Interactions of disparate scales in drift-wave turbulence
International Nuclear Information System (INIS)
Krommes, John A.; Kim, Chang-Bae
2000-01-01
Renormalized statistical theory is used to calculate the interactions between short scales (wave vector k) and long scales (wave vector q parallel =0 fluctuations). The calculations include the zonal-flow growth rate as a special case, but also describe long-wavelength fluctuations with q oriented at an arbitrary angle to the background gradient. The results are fully renormalized. They are subtly different from those of previous authors, in both mathematical form and physical interpretation. A term arising in previous treatments that is related to the propagation of short-scale wave packets is shown to be a higher-order effect that must consistently be neglected to lowest order in a systematic expansion in q/k. Rigorous functional methods are used to show that the long-wavelength growth rate γ q is related to second-order functional variations of the short-wavelength energy and to derive a heuristic algorithm. The principal results are recovered from simple estimates involving the first-order wave-number distension rate tilde γ k (1) dot eqdot kdeltilde Omega k /k 2 , where tilde Ω k is a nonlinear random advection frequency. Fokker-Planck analysis involving tilde γ k (1) is used to heuristically recover the evolution equation for the small scales, and a random-walk flux argument that relates tilde γ k (1) to an effective autocorrelation time is used to give an independent calculation of γ q . Both the rigorous and heuristic derivations demonstrate that the results do not depend on, and cannot be derived from, properties of linear normal modes; they are intrinsically nonlinear. The importance of random-Galilean-invariant renormalization is stressed
International Nuclear Information System (INIS)
De Marchis, M.; Napoli, E.
2012-01-01
Highlights: ► 3D irregular rough surfaces produce higher effects than those observed over 2D. ► Effective slope is a geometrical parameter representative of the roughness effects. ► 3D rough surfaces enhance the turbulence isotropization. ► 2D and 3D irregular roughness partially support the wall similarity. ► Irregular rough surfaces shear some features with regular rough walls. - Abstract: Wall-resolved Large Eddy Simulation of fully developed turbulent channel flows over two different rough surfaces is performed to investigate on the effects of irregular 2D and 3D roughness on the turbulence. The two geometries are obtained through the superimposition of sinusoidal functions having random amplitudes and different wave lengths. In the 2D configuration the irregular shape in the longitudinal direction is replicated in the transverse one, while in the 3D case the sinusoidal functions are generated both in streamwise and spanwise directions. Both channel walls are roughened in such a way as to obtain surfaces with statistically equivalent roughness height, but different shapes. In order to compare the turbulence properties over the two rough walls and to analyse the differences with a smooth wall, the simulations are performed at the same Reynolds number Re τ = 395. The same mean roughness height h = 0.05δ (δ the half channel height) is used for the rough walls. The roughness function obtained with the 3D roughness is larger than in the 2D case, although the two walls share the same mean height. Thus, the considered irregular 3D roughness is more effective in reducing the flow velocity with respect to the 2D roughness, coherently with the literature results that identified a clear dependence of the roughness function on the effective slope (see ), higher in the generated 3D rough wall. The analysis of higher-order statistics shows that the effects of the roughness, independently on its two- or three-dimensional shape, are mainly confined in the inner
Surface waves on metal-dielectric metamaterials
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...
Non-perturbational surface-wave inversion: A Dix-type relation for surface waves
Haney, Matt; Tsai, Victor C.
2015-01-01
We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.
Energetic particle parallel diffusion in a cascading wave turbulence in the foreshock region
Directory of Open Access Journals (Sweden)
F. Otsuka
2007-09-01
Full Text Available We study parallel (field-aligned diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path λ_{||} calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of λ_{||} at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004, but the spatial dependence of λ_{||} is inconsistent with it.
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review
Sharman, Robert D.; Trier, S. B.
2018-03-01
Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.
Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.
1990-01-01
In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.
A computational study on oblique shock wave-turbulent boundary layer interaction
Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.
2016-07-01
A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.
Flow and Turbulence at Rubble-Mound Breakwater Armor Layers under Solitary Wave
DEFF Research Database (Denmark)
Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu
2015-01-01
This paper presents the results of an experimental investigation of the flow and turbulence at the armor layer of rubble-mound breakwaters during wave action. The study focused on the details of the flow and turbulence in the armor layer and on the effect of the porous core on flow and stability....... To isolate the processes involved with the flow in the porous core, experiments were conducted with increasing complexity. Specifically, three parallel experiments were performed including (1) an impermeable smooth breakwater slope, (2) an impermeable breakwater slope with large roughness elements added...... to the breakwater, and (3) a porous breakwater where the porous core was added below the breakwater front. One breakwater slope of 1:1.5 was applied. In this paper the focus is on the details of a single sequence of wave approach, run-up, and rundown. To isolate this sequence the experiments were performed applying...
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
Secondary instability in drift wave turbulence as a mechanism for avalanche and zonal flow formation
International Nuclear Information System (INIS)
Diamond, P.H.; Champeaux, S.; Malkov, M.
2001-01-01
We report on recent developments in the theory of secondary instability in drift-ITG turbulence. Specifically, we explore secondary instability as a mechanism for avalanche formation. A theory of radially extended streamer cell formation and self-regulation is presented. Aspects of streamer structure and dynamics are used to estimate the variance of the drift-wave induced flux. The relation between streamer cell structures and the avalanche concept is discussed, as are the implications of our results for transport modeling. (author)
Two-Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence
Che, H.
2014-01-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum tra...
Theory of ion Bernstein wave induced shear suppression of turbulence
Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.
1994-06-01
The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.
Surface and body waves from surface and underground explosions
International Nuclear Information System (INIS)
Kusubov, A.S.
1976-06-01
The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions
Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence
Energy Technology Data Exchange (ETDEWEB)
Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)
2011-07-01
Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments
The response of a turbulent boundary layer to a small-amplitude traveling wave
International Nuclear Information System (INIS)
Howes, F.A.
1986-01-01
We study the response of a turbulent boundary layer to an outer-flow disturbance in the form of a small-amplitude wave travelling along the bottom of a smooth channel. In a previous paper we proposed a model for the viscous attenuation of a wave propagating along the interface between two superposed fluids inside a laminar boundary layer attached to the bottom wall. We obtained precise estimates on the amount of attenuation suffered by the oscillatory component of the motion as a result of viscous dissipation. This was accomplished by means of a representation of the solution as the asymptotic sum of a Blasius boundary layer profile and a modified Stokes layer profile. The present paper contains a similar asymptotic decomposition of the solution of the appropriate turbulent Prandtl equations when the outer flow is a small-amplitude travelling wave, and so it may be considered an extension of our previous work to the more realistic case of turbulent flow. 4 refs
Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence
Che, Haihong
2013-10-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.
Writing magnetic patterns with surface acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)
2014-05-07
A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega model for turbulence closure, is used to systematically compare the relative strength of bed shear stress quantities and boundary layer streaming under wave motions from four...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...
Effect of Resonant Magnetic Perturbations on secondary structures in Drift-Wave turbulence
Leconte, Michael
2011-10-01
In this work, we study the effects of RMPs on turbulence, flows and confinement, in the framework of two paradigmatic models, resistive ballooning and resistive drift waves. For resistive ballooning turbulence, we use 3D global numerical simulations, including RMP fields and (externally-imposed) sheared rotation profile. Without RMPs, relaxation oscillations of the pressure profile occur. With RMPs, results show that long-lived convection cells are generated by the combined effects of pressure modulation and toroidal curvature coupling. These modify the global structure of the turbulence and eliminate relaxation oscillations. This effect is due mainly to a modification of the pressure profile linked to the presence of residual magnetic island chains. Hence convection-cell generation increases for increasing δBr/B0. For RMP effect on zonal flows in drift wave turbulence, we extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large δBr/B0. Both the vorticity flux (Reynolds stress), and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters, and predicts a novel type of transport bifurcation in the presence of RMPs. We find a novel set of system states that are similar to the Hmode-like state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude and low collisionality, both the ambient turbulence and zonal flow energy increase with δBr/B0. For larger RMP strength, the turbulence energy increases, but the energy of zonal flows decreases with δBr/B0, corresponding to a damping of zonal flows. At high
Blackfolds, plane waves and minimal surfaces
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)
2015-07-29
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Mathematical aspects of surface water waves
International Nuclear Information System (INIS)
Craig, Walter; Wayne, Clarence E
2007-01-01
The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.
Weak turbulence theory of Langmuir waves: A reconsideration of validity of quasilinear theory
International Nuclear Information System (INIS)
Liang, Y.M.; Diamond, P.H.
1991-01-01
The weak turbulence theory of Langmuir waves in a one-dimensional, one-species plasma is discussed. Analytical calculations using the theory of two-point correlation functions show that in the weak turbulence regime τ ac much-lt min[τ tr , γ k -1 ], the nonlinear enhancement of the mode growth rate relative to the linear Landau mode growth rate γ k L is rather weak, and quasilinear theory is reproduced at the lowest order. Hence this work also proves the validity of the quasilinear theory. Here τ ac ∼ (kΔv ph ) -1 is the phase-mixing time or the auto-correlation time, and τ tr ∼ (k 2 D ql ) -1/3 is the particle decorrelation time or the turbulence trapping time. In particular, the lowest order nonlinear correction to γ k L in the regime τ ac much-lt τ tr much-lt γ k -1 is proportional to (1/ω k τ tr )γ k L . Both corrections are additive, not multiplicative, and are of higher order in the weak turbulence expansion. The smallness of the corrections is due to the fact that the only mechanism for the relaxation of the plasma distribution function in a one-dimensional, one-species plasma is momentum exchange between waves and particles, which is exactly the interaction considered in the quasilinear theory. No like-like particle momentum exchange is allowed due to momentum conservation constraints. Similar calculations are also done for the traveling wave tube, which can be used to test this theory experimentally, especially for the case of bump-on-tail instability. A comparison of theoretical predictions with experimental results is presented. 3 refs
The effects of sea surface temperature gradients on surface turbulent fluxes
Steffen, John
A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF
Wireless Multiplexed Surface Acoustic Wave Sensors Project
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
International Nuclear Information System (INIS)
Chandran, Benjamin D. G.; Hollweg, Joseph V.
2009-01-01
We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.
Circuit quantum acoustodynamics with surface acoustic waves.
Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J
2017-10-17
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.
Turbulent flow over an interactive alternating land-water surface
Van Heerwaarden, C.; Mellado, J. P.
2014-12-01
The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.
Direct detection of near-surface faults by migration of back-scattered surface waves
Yu, Han; Guo, Bowen; Hanafy, Sherif; Lin, Fan-Chi; Schuster, Gerard T.
2014-01-01
We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps
DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes
Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.
2000-01-01
The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence
DNS of turbulent flow and heat transfer in a channel with surface mounted cubes
Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.
2000-01-01
The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence
Surface-enhanced chiroptical spectroscopy with superchiral surface waves.
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2018-07-01
We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.
PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions
Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.
2017-11-01
Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.
Superresolution Near-field Imaging with Surface Waves
Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.
2017-01-01
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve
Illusions and Cloaks for Surface Waves
McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.
2014-08-01
Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.
Megaquakes, prograde surface waves and urban evolution
Lomnitz, C.; Castaños, H.
2013-05-01
Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
Energy Technology Data Exchange (ETDEWEB)
Tenerani, Anna; Velli, Marco [EPSS, UCLA, Los Angeles, CA (United States)
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
Helicity and potential vorticity in the surface boundary layer turbulence
Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor
2016-04-01
An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
International Nuclear Information System (INIS)
Mazzucato, E.
2002-01-01
Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed
Blast wave interaction with a rigid surface
International Nuclear Information System (INIS)
Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.
2004-01-01
A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)
Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?
Directory of Open Access Journals (Sweden)
Mark E. Grismer
2016-05-01
Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand
Directory of Open Access Journals (Sweden)
A. D. Pataraya
1997-01-01
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with
Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-01-01
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349
Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-12-02
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.
Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...
Surface Turbulent Fluxes, 1x1 deg Daily Grid, Set1 V2c
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF2c) Dataset recently produced through a MEaSUREs funded project led by Dr....
Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...
Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c
National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...
Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...
Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Energy Technology Data Exchange (ETDEWEB)
Che, H. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2014-06-15
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Che, H.
2014-06-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
International Nuclear Information System (INIS)
Che, H.
2014-01-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability
Properties of surface waves in granular media under gravity
International Nuclear Information System (INIS)
Zheng He-Peng
2014-01-01
Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR
DEFF Research Database (Denmark)
Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael
averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Turbulent mixing and wave radiation in non-Boussinesq internal bores
DEFF Research Database (Denmark)
Borden, Zac; Koblitz, Tilman; Meiburg, Eckart
2012-01-01
Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...
Surface acoustic wave oxygen pressure sensor
Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)
1994-01-01
A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.
Distributed feedback guided surface acoustic wave microresonator
Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.
1989-08-01
Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.
Allen, Rachel M.; Simeonov, Julian A.; Calantoni, Joseph; Stacey, Mark T.; Variano, Evan A.
2018-05-01
Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production ( P), turbulent dissipation rate ( ɛ), and vertical diffusive transport ( T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance ( P ≈ ɛ) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.
Inlet effects on roll-wave development in shallow turbulent open-channel flows
Directory of Open Access Journals (Sweden)
Campomaggiore Francesca
2016-03-01
Full Text Available The present work investigates the effect of the flow profile induced by an inlet condition on the roll-wave evolution in turbulent clear-water flows. The study employs theoretical and numerical analyses. Firstly, the influence of the inlet condition on the spatial evolution of a single perturbation in a hypercritical flow is examined through the expansion near a wavefront analysis. The results show that an accelerated unperturbed profile reduces the disturbance spatial growth. A decelerated profile causes an increase. The effect of the flow profile on the spatial evolution of roll-wave trains is then numerically investigated solving the Saint Venant equations with a second-order Runge-Kutta Total Variation Diminishing (TVD Finite Volume scheme. The numerical simulations comply with the analytical results for the initial and transition phases of the roll-wave development. The unperturbed profile influences even the roll-waves statistical characteristics in the final stage, with a more evident effect in case of accelerated profiles. The influence of the flow profile should be therefore accounted for in the formulation of predictive criteria for roll-waves appearance based on the estimation of the disturbance spatial growth rate.
International Nuclear Information System (INIS)
Garrison, David; Ramirez, Christopher
2017-01-01
This work is a follow-up to the paper, ‘Numerical relativity as a tool for studying the early Universe’. In this article, we determine if cosmological gravitational waves can be accurately extracted from a dynamical spacetime using an averaging process as opposed to conventional methods of gravitational wave extraction using a complex Weyl scalar. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed shortly after the electroweak scale. This calculation is completed using two numerical codes, one which utilizes full general relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of general relativity. Our results show that the spectrum of gravitational waves calculated from the nonlinear code using an averaging process is nearly indistinguishable from those calculated from the linear code. This result validates the use of the averaging process for gravitational wave extraction of cosmological systems. (paper)
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing; Schuster, Gerard T.
2016-01-01
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel
Resonant surface acoustic wave chemical detector
Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.
2017-08-08
Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.
Seasonal changing sand waves and the effect of surface waves
Sterlini, Fenneke; van Dijk, Thaiënne A.G.P.; IJzer, Steven; Hulscher, Suzanne; Schüttrumpf, Holger; Tomasicchio, Guiseppe Roberto
2012-01-01
Sand waves are wavelike subaqueous sediment structures that exist in large areas in shelf seas. Due to their characteristics sand waves can severely affect human offshore activities, such as navigation. This makes it important to understand the physical processes that shape and change sand waves. In
Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa
Bagdanavicius, Audrius
2015-11-01
Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those of other workers. Some generality is revealed, enabling the wave length associated with the spatial change in mean
Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa
Bagdanavicius, Audrius; Bowen, Phil J.; Bradley, Derek; Lawes, Malcolm; Mansour, Morkous S.
2015-01-01
Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those of other workers. Some generality is revealed, enabling the wave length associated with the spatial change in mean
Surface acoustic wave actuated cell sorting (SAWACS).
Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A
2010-03-21
We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.
Small surface wave discharge at atmospheric pressure
Energy Technology Data Exchange (ETDEWEB)
Kiss' ovski, Zh; Kolev, M; Ivanov, A; Lishev, St; Koleva, I, E-mail: kissov@phys.uni-sofia.b [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)
2009-09-21
A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of T{sub e} {approx} 1.9 eV and a density of n{sub e} {approx} 3.9 x 10{sup 14} cm{sup -3} are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed. (fast track communication)
International Nuclear Information System (INIS)
Kim, Eun-jin; Diamond, P.H.; Malkov, M.
2003-01-01
Two examples of non-perturbative models of intermittency in drift-wave (DW) turbulence are presented. The first is a calculation of the probability distribution function (PDF) of ion heat flux due to structures in ion temperature gradient turbulence. The instanton calculus predicts the PDF to be a stretched exponential. The second is a derivation of a bi-variate Burgers equation for the evolution of the DW population density in the presence of radially extended streamer flows. The PDF of fluctuation intensity avalanches is determined. The relation of this to turbulence spreading, observed in simulations, is discussed. (author)
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans
2017-01-01
Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...
Mongiovì, Maria Stella; Jou, David; Sciacca, Michele
2018-01-01
This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to
Grain size measurements by ultrasonic Rayleigh surface waves
International Nuclear Information System (INIS)
Palanichamy, P.; Jayakumar, T.
1996-01-01
The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)
TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES
International Nuclear Information System (INIS)
Verdini, A.; Velli, M.; Buchlin, E.
2009-01-01
We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.
Assessing ground compaction via time lapse surface wave analysis
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.
2016-01-01
Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the ... (1924) and Jeffreys (1959), regarding surface waves in classical elasticity. Sengupta and his research collaborators have also studied surface waves (Acharya & Sengupta 1978;.
Waves and Turbulence in the Solar Corona: A Surplus of Sources and Sinks
Cranmer, Steven R.
2018-06-01
The Sun's corona is a hot, dynamic, and highly stochastic plasma environment, and we still do not yet understand how it is heated. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be filled with waves and turbulent eddies. Models that invoke the dissipation of these magnetohydrodynamic (MHD) fluctuations have had some success in explaining the heating. In this presentation I will review some new insights about the different ways these waves are thought to be created and destroyed. For example: (1) Intergranular bright points in the photosphere are believed to extend upwards as coronal flux tubes, and their transverse oscillations are driven by the underlying convection. New high-resolution MHD simulations predict the kinetic energy spectra of the resulting coronal waves and serve as predictions for upcoming DKIST observations. (2) Magnetic reconnection in the supergranular network of the low corona can also generate MHD waves, and new Monte Carlo models of the resulting power spectra will be presented. The total integrated power in these waves is typically small in comparison to that of photosphere-driven waves, but they dominate the total spectrum at periods longer than about 30 minutes. (3) Because each magnetic field line in the corona is tied to at least one specific chromospheric footpoint (each with its own base pressure), the corona also plays host to field-aligned "density striations." These fluctuations vary with the supergranular network on timescales of roughly a day, but they also act as a spatially varying background through which the higher-frequency waves propagate. These multiple sources of space/time variability must be taken into account to properly understand off-limb measurements from CoMP and EIS/Hinode, as well as in-situ measurements from Parker Solar Probe.
Surface Plasmon Wave Adapter Designed with Transformation Optics
DEFF Research Database (Denmark)
Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn
2011-01-01
On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....
Mass transfer from smooth alabaster surfaces in turbulent flows
Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.
1987-11-01
The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.
The Heating of Solar Coronal Loops by Alfvén Wave Turbulence
Energy Technology Data Exchange (ETDEWEB)
Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2017-11-01
In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.
An Eulerian two-phase flow model for sediment transport under realistic surface waves
Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.
2017-12-01
Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.
International Nuclear Information System (INIS)
Fiorina, D.
1998-01-01
Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of
Surface-acoustic-wave (SAW) flow sensor
Joshi, Shrinivas G.
1991-03-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Fairhall, Chris; Garcia-Mayoral, Ricardo
2017-11-01
We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.
Surface acoustic waves voltage controlled directional coupler
Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.
1988-10-01
An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.
THz detectors using surface Josephson plasma waves in layered superconductors
International Nuclear Information System (INIS)
Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco
2006-01-01
We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves
Kamada, Ray; Decaria, Alex Joseph
1992-01-01
We present DA, a self-affine, multi-fractal which may become the first routine wave/turbulence discriminant for time series data. Using nocturnal atmospheric data, we show the advantages of D A over self-similar fractals and standard turbulence measures such as FFTs, Richardson number, Brunt-Vaisala frequency, buoyancy length scale, variances, turbulent kinetic energy, and phase averaging. DA also shows promise in resolving "wave-break" events. Since it uses local basis functions, DA may be...
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Surface-Wave Pulse Routing around Sharp Right Angles
Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.
2018-04-01
Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.
Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa
2017-01-01
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method
Energy Technology Data Exchange (ETDEWEB)
Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)
2006-10-15
In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)
Dynamical structure of the turbulent boundary layer on rough surface
Czech Academy of Sciences Publication Activity Database
Uruba, Václav; Jonáš, Pavel; Hladík, Ondřej
2011-01-01
Roč. 11, č. 1 (2011), s. 603-604 ISSN 1617-7061 R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent boundary layer * rough wall * hairpin vortex Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110291/abstract
Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.
2013-01-01
A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.
Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.
2016-02-01
The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.
International Nuclear Information System (INIS)
Dulk, G.A.; Goldman, M.V.; Toomre, J.
1985-01-01
Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation
International Nuclear Information System (INIS)
Benisahnoune, Omar
1996-01-01
A numerical procedure of a turbulent boundary layer with free surface in melted zone of metals is developed to describe interaction between Marangoni convection and turbulence. This study takes into account the phenomena below: Near the surface, vertical motions are damped while stream wise and span wise motions are promoted. Considering a plane surface, the validity of this turbulent model is verified in comparison with experimental results and laminar models. (author) [fr
The parallel dynamics of drift wave turbulence in the WEGA stellarator
Energy Technology Data Exchange (ETDEWEB)
Marsen, S; Endler, M; Otte, M; Wagner, F, E-mail: stefan.marsen@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Wendelsteinstrasse 1, 17491 Greifswald (Germany)
2009-08-15
The three-dimensional structure of turbulence in the edge (inside the last closed flux surface) of the WEGA stellarator is studied focusing on the parallel dynamics. WEGA as a small stellarator with moderate plasma parameters offers the opportunity to study turbulence with Langmuir probes providing high spatial and temporal resolution. Multiple probes with radial, poloidal and toroidal resolution are used to measure density fluctuations. Correlation analysis is used to reconstruct a 3D picture of turbulent structures. We find that these structures originate predominantly on the low field side and have a three-dimensional character with a finite averaged parallel wavenumber. The ratio between the parallel and perpendicular wavenumber component is in the order of 10{sup -2}. The parallel dynamics are compared at magnetic inductions of 57 and 500 mT. At 500 mT, the parallel wavelength is in the order of the field line connection length 2{pi}R{iota}-bar. A frequency resolved measure of k{sub ||}/k{sub {theta}} shows a constant ratio in this case. At 57 mT the observed k{sub ||} is much smaller than at 500 mT. However, the observed small average value is due to an averaging over positive and negative components pointing parallel and antiparallel to the magnetic field vector.
Directory of Open Access Journals (Sweden)
Dong Myung Seol
2013-09-01
Full Text Available In the present study, a towed underwater particle image velocimetry (PIV system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.
Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe
2017-12-01
Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
Nonlinear interaction of the surface waves at a plasma boundary
International Nuclear Information System (INIS)
Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1976-01-01
Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)
Transformation of second sound into surface waves in superfluid helium
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.
1995-01-01
The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs
Phase spectral composition of wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...
Adrian, Mark L.; Wendel, D. E.
2012-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.
International Nuclear Information System (INIS)
Aistov, A.V.; Gavrilenko, V.G.
1996-01-01
The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption
Magnethohydrodynamic surface and body waves in rectangular and cylindrical geometries
International Nuclear Information System (INIS)
Donnelly, I.J.
1982-03-01
Low frequency magnetohydrodynamic (MHD) waves are studied in both rectangular slab and cylindrical geometry cavities containing low β plasmas. The plasma density distribution is modelled by an inner region of constant density surrounded by an outer region of lower density and a conducting boundary. The wave frequencies and fields are obtained as functions of the density distribution and the wavenumber components k(parall) and k(perp). The lowest frequency wave mode is a surface wave in which the wave fields decrease in magnitude with distance from the interface between the two plasma densities. It has the properties of a shear wave when k(perp)/k(parall) is either small or large but is compressive when k(perp) is approximately equal to k(parall). The surface wave does not exist when k(perp) = 0. Higher frequency modes have the properties of fast magnetosonic waves, at least in the inner density region
Optical bulk and surface waves with negative refraction
International Nuclear Information System (INIS)
Agranovich, V.M.; Shen, Y.R.; Baughman, R.H.; Zakhidov, A.A.
2004-01-01
In materials with negative refraction, the direction of wave propagation is opposite to the direction of the wave vector. Using an approach that characterizes the optical response of a medium totally by a generalized dielectric permittivity, ε-bar (ω,k-bar), we discuss the possibility of seeing negative refraction for optical waves in a number of nonmagnetic media. These include bulk waves in organic materials and in gyrotropic materials where additional exciton-polariton waves can have a negative group velocity. It is known that dispersion of surface waves can be engineered by tailoring a surface transition layer. We show how this effect can be used to obtain surface waves with negative refraction
Opportunities and pitfalls in surface-wave interpretation
Schuster, Gerard T.; Li, Jing; Lu, Kai; Metwally, Ahmed Mohsen Hassan; AlTheyab, Abdullah; Hanafy, Sherif
2017-01-01
Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.
Opportunities and pitfalls in surface-wave interpretation
Schuster, Gerard T.
2017-01-21
Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.
HF Surface Wave Radar Operation in Adverse Conditions
National Research Council Canada - National Science Library
Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard
2005-01-01
...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...
Kassem, Hachem; Thompson, Charlotte E. L.; Amos, Carl L.; Townend, Ian H.
2015-10-01
The suspension of sediments by oscillatory flows is a complex case of fluid-particle interaction. The aim of this study is to provide insight into the spatial (time) and scale (frequency) relationships between wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses reveal the anisotropic and intermittent nature of Reynolds' stresses (momentum exchange) in the wave boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent turbulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume, contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and maintenance of sediment in suspension through a cluster of bursting sequence is associated with the passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The extent to which these spatially varied perturbation clusters persist is associated with suspension events in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an observed hysteresis effect.
Pulsed discharges produced by high-power surface waves
Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.
1996-02-01
The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.
Midinfrared Surface Waves on a High Aspect Ratio Nanotrench Platform
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Bodganov, Andrey
2017-01-01
ameliorate surface wave propagation and even generate new types of waves. Here, we demonstrate that high aspect ratio (1:20) grating structures with plasmonic lamellas in deep nanoscale trenches, whose pitch is 1/10 – 1/35 of a wavelength, function as a versatile platform supporting both surface and guided...... bulk infrared waves. The surface waves exhibit a unique combination of properties: directionality, broadband existence (from 4 µm to at least 14 μm and beyond) and high localization, making them an attractive tool for effective control of light in an extended range of infrared frequencies....
Recent Successes of Wave/Turbulence Driven Models of Solar Wind Acceleration
Cranmer, S. R.; Hollweg, J. V.; Chandran, B. D.; van Ballegooijen, A. A.
2010-12-01
A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a first-principles understanding of coronal heating. Also, it is still unknown whether the solar wind is "fed" through flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy are input intermittently from closed loops into the open-field regions. In this presentation, we discuss self-consistent models that assume the energy comes from solar Alfven waves that are partially reflected, and then dissipated, by magnetohydrodynamic turbulence. These models have been found to reproduce many of the observed features of the fast and slow solar wind without the need for artificial "coronal heating functions" used by earlier models. For example, the models predict a variation with wind speed in commonly measured ratios of charge states and elemental abundances that agrees with observed trends. This contradicts a commonly held assertion that these ratios can only be produced by the injection of plasma from closed-field regions on the Sun. This presentation also reviews two recent comparisons between the models and empirical measurements: (1) The models successfully predict the amplitude and radial dependence of Faraday rotation fluctuations (FRFs) measured by the Helios probes for heliocentric distances between 2 and 15 solar radii. The FRFs are a particularly sensitive test of turbulence models because they depend not only on the plasma density and Alfven wave amplitude in the corona, but also on the turbulent correlation length. (2) The models predict the correct sense and magnitude of changes seen in the polar high-speed solar wind by Ulysses from the previous solar minimum (1996-1997) to the more recent peculiar minimum (2008-2009). By changing only the magnetic field along the polar magnetic flux tube, consistent with solar and heliospheric observations at the two epochs, the model correctly predicts that the
Surface Acoustic Waves to Drive Plant Transpiration.
Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T
2017-03-31
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.
Haghighi, Erfan; Or, Dani
2015-11-01
Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.
Multi-component joint analysis of surface waves
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.
2015-01-01
Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015
International Nuclear Information System (INIS)
Ma Jun; Jia Ya; Yi Ming; Tang Jun; Xia Yafeng
2009-01-01
In this paper, a new scheme is proposed to eliminate the useless spiral wave and turbulence in the excitable media. The activator amplitudes of few sites in the media are sampled and restricted within the appropriate thresholds. At first, the local control is imposed on the center of the media, and then the local control is introduced into the left border in the media. The numerical simulation results confirm that the whole media can reach homogeneous within few time units even if the spatiotemporal noise is imposed on the whole media. To check the model independence of this scheme, the scheme is used to remove the spiral wave in the Fitzhugh-Nagumo model firstly. In our numerical simulation, the whole system is discretized into 400 x 400 sites. Then the scheme is used to eliminate the stable rotating spiral wave, meandering spiral and spiral turbulence in the modified Fitzhugh-Nagumo model, respectively. Finally, this scheme is used to remove the stable rotating spiral wave in the Belousov-Zhabotinsky (BZ) reaction. All the results just confirm its effectiveness to eliminate the spiral wave and turbulence. The criterion for thresholds selection is also discussed in the end of this paper.
International Nuclear Information System (INIS)
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-01-01
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
International Nuclear Information System (INIS)
Gao, Zhen; Gao, Fei; Zhang, Baile
2016-01-01
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk
Energy Technology Data Exchange (ETDEWEB)
Ridolfini, V Pericoli [ENEA-CR Frascati, Via Enrico Fermi 45-00044 Frascati, Roma (Italy)
2011-11-15
All the main features of the scrape-off layer turbulence, magnitude, frequency spectrum and perpendicular wave vector, {xi}{sub t}, are strongly affected by the injection of lower hybrid (LH) power into the FTU tokamak. The governing parameters are the local last closed magnetic surface values of density, n{sub e,LCMS}, and temperature, T{sub e,LCMS}. n{sub e,LCMS} determines the perpendicular wave vector of the LH waves, which is a key parameter for the multiple scattering processes, and together with T{sub e,LCMS} the collisionality that exerts a stabilizing effect on the fluctuations. This effect, still to be examined in the light of theoretical models, leads to an asymptotic value for the fluctuation relative amplitude in the ohmic phase close to 25%, and {approx}10% in the LH phase, or even less, since the saturation level is not yet attained. The LH waves also can strongly raise {xi}{sub t}, about 3 times, and double the root mean square frequency. The transfer of momentum and energy in the mutual scattering of LH and turbulence 'waves' drives these changes. An increase also of the cross-correlation between temperature and electric potential fluctuations should occur in order to explain the magnitude of the fluctuation amplitude drop and the large increment of the temperature e-folding decay, by more than a factor of 2.5. Particle transport, however, does not appear to be affected to a large extent-the density e-folding decay length is almost unchanged but the power flow typical length rises by about a factor of 1.5, which is a relevant figure in view of the problem of mitigating the power loads on divertor targets in future reactors. These changes are confined mainly within the flux tube connected with the LH waves launching antenna, but start to spread significantly out of it at high plasma densities.
International Nuclear Information System (INIS)
Ridolfini, V Pericoli
2011-01-01
All the main features of the scrape-off layer turbulence, magnitude, frequency spectrum and perpendicular wave vector, ξ t , are strongly affected by the injection of lower hybrid (LH) power into the FTU tokamak. The governing parameters are the local last closed magnetic surface values of density, n e,LCMS , and temperature, T e,LCMS . n e,LCMS determines the perpendicular wave vector of the LH waves, which is a key parameter for the multiple scattering processes, and together with T e,LCMS the collisionality that exerts a stabilizing effect on the fluctuations. This effect, still to be examined in the light of theoretical models, leads to an asymptotic value for the fluctuation relative amplitude in the ohmic phase close to 25%, and ∼10% in the LH phase, or even less, since the saturation level is not yet attained. The LH waves also can strongly raise ξ t , about 3 times, and double the root mean square frequency. The transfer of momentum and energy in the mutual scattering of LH and turbulence 'waves' drives these changes. An increase also of the cross-correlation between temperature and electric potential fluctuations should occur in order to explain the magnitude of the fluctuation amplitude drop and the large increment of the temperature e-folding decay, by more than a factor of 2.5. Particle transport, however, does not appear to be affected to a large extent-the density e-folding decay length is almost unchanged but the power flow typical length rises by about a factor of 1.5, which is a relevant figure in view of the problem of mitigating the power loads on divertor targets in future reactors. These changes are confined mainly within the flux tube connected with the LH waves launching antenna, but start to spread significantly out of it at high plasma densities.
Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers
2015-10-01
hydrostatic equation: dP dz = −ρa g −→ ∫ ZI 0 ρa dz = − 1 g ∫ dP = + 1 g [P (0)− P (ZI)]. (6.14) The pressure at the surface is... surface pressure is estimated, we can compute a vertical pressure profile using the hydrostatic equation and a selected temperature profile based on dP... surface -layer atmosphere. By surface layer what is intended is a layer of foliage plus the surface itself. That is, a flat ground surface that
Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface
Palasantzas, George
1994-01-01
The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree
Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali
2012-11-01
Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.
Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay
Xie, X. H.; Cuypers, Y.; Bouruet-Aubertot, P.; Ferron, B.; Pichon, A.; LourençO, A.; Cortes, N.
2013-06-01
and fine-scale measurements collected in the central Bay of Biscay during the MOUTON experiment are analyzed to investigate the dynamics of internal waves and associated mixing. Large-amplitude internal tides (ITs) that excite internal solitary waves (ISWs) in the thermocline are observed. ITs are dominated by modes 3 and 4, while ISWs projected on mode 1 that is trapped in the thermocline. Therein, ITs generate a persistent narrow shear band, which is strongly correlated with the enhanced dissipation rate in the thermocline. This strong dissipation rate is further reinforced in the presence of ISWs. Dissipation rates during the period without ISWs largely agree with the MacKinnon-Gregg scaling proposed for internal wavefields dominated by a low-frequency mode, while they show poor agreement with the Gregg-Henyey parameterization valid for internal wavefields close to the Garrett-Munk model. The agreement with the MacKinnon-Gregg scaling is consistent with the fact that turbulent mixing here is driven by the low-frequency internal tidal shear.
The Turbulent-Laminar Transition on the Rocket Surface During the Injection
Directory of Open Access Journals (Sweden)
I. I. Yurchenko
2014-01-01
Full Text Available The variety of turbulent-laminar transition criteria in such environments as the launch vehicle injection points to the essential influence of spherical nose roughness, which is included in one form or another in the critical Reynolds numbers for a lot of explorers of blunt bodies. Some of researchers of the reentry bodies have founded the correlation functions between the momentum thickness Reynolds number and Max number as the transition criteria.In this article we have considered results of flight tests carried out using launch vehicles to define boundary layer regime on the payload fairing surface. The measurements were carried out using specially designed complex of gages consisted of calorimeters, surface temperature gages, and pressure gages. The turbulent-laminar transition was defined in accordance with the sharp change of calorimeter readings and flow separation pressure gages indication.The universal criterion of turbulent-laminar transition has been identified for blunted payload fairings i.e. Reynolds number Reek based on the boundary layer edge parameters in the sonic point of the payload fairing spherical nose and surface roughness height k, which gives the best correlation of all data of flight experiment conducted to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when boundary layer regime is turbulent at Reek=20±14 existing on space head surfaces and at Reek=6±5 the boundary layer regime is totally laminar.It was defined that under conditions when there are jointly high background disturbances of free stream flux at operation of main launch vehicle engines and influence of the surface roughness the critical value of Reynolds number is an order-diminished value as compared to the values obtained in wind tunnels and in free flight.It was found that with decreasing of roughness influence in growing boundary layer the flow disturbances evolution wide apart the payload fairing
Surface flute waves in plasmas theory and applications
Girka, Volodymyr; Thumm, Manfred
2014-01-01
The book presents results of a comprehensive study of various features of eigen electromagnetic waves propagating across the axis of plasma filled metal waveguides with cylindrical geometry. The authors collected in one book material on various features of surface flute waves, i. e. impact of waveguide design on wave dispersion, wave damping influenced by various reasons, impact of plasma density and external magnetic field inhomogeneity on the wave, and impact of waveguide corrugation and electric current on the wave. A variety of present surface waves applications and possible future applications is also included. Using the method of successive approximations it is shown how one can solve problems, which concern real experimental devices, starting from simple models. The book applies to both professionals dealing with problems of confined plasmas and to graduate and post-graduate students specializing in the field of plasma physics and related applications.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
International Nuclear Information System (INIS)
El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1992-09-01
Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Direct detection of near-surface faults by migration of back-scattered surface waves
Yu, Han
2014-08-05
We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.
International Nuclear Information System (INIS)
Boiko, A.V.; Westin, K.J.A.; Klingmann, B.G.B.; Kozlov, V.V.; Alfredsson, P.H.
1993-12-01
The natural occurrence of Tollmien-Schlichting (TS) waves has so far only been observed in boundary layers subjected to moderate levels of free stream turbulence (Tu <1%), due to the difficulty in detecting small-amplitude waves in highly perturbed boundary layers. By introducing controlled oscillations with a vibrating ribbon, it is possible to study small amplitude waves using phase-selective filtering techniques. In the present work, the effect of TS-waves on the transition is studied at Tu = 1.5%. It is demonstrated that TS-waves can exist and develop in a similar way as in an undisturbed boundary layer. It is also found that TS-waves with quite small amplitudes are involved in nonlinear interactions which lead to a regeneration of TS-waves in the whole unstable frequency band. This results in a significant increase in the number of turbulent spots, which promote the onset of turbulence. 28 refs
Davis, Kristen Alexis
2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that
Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface
Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John
2016-11-01
Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.
Simulation and Optimization of Surface Acoustic Wave Devises
DEFF Research Database (Denmark)
Dühring, Maria Bayard
2007-01-01
In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...... in effective refractive index introduced in the Mach-Zehnder interferometer arms by the stresses from the surface acoustic wave is calculated. It is shown that the effective refractive index of the fundamental optical mode increases at a surface acoustic wave crest and decreases at a trough. The height...... of a piezoelectric, inhomogeneous material and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by the time-harmonic wave equation for the magnetic field. The two models are coupled using the stress-optical relation and the change...
Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling
Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.
2012-12-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data
Validation study of a drift-wave turbulence model for CSDX linear plasma device
Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.
2017-09-01
A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.
Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.
Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.
2014-12-01
Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.
Study of Magnetohydrodynamic Surface Waves on Liquid Gallium
Energy Technology Data Exchange (ETDEWEB)
Hantao Ji; William Fox; David Pace; H.L. Rappaport
2004-05-13
Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.
Study of Magnetohydrodynamic Surface Waves on Liquid Gallium
International Nuclear Information System (INIS)
Hantao Ji; William Fox; David Pace; Rappaport, H.L.
2004-01-01
Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed
Effect of surface conditions on blast wave propagation
International Nuclear Information System (INIS)
Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il
2016-01-01
We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface
Imaging near-surface heterogeneities by natural migration of surface waves
Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.
2016-01-01
We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green
Statistical Equilibria of Turbulence on Surfaces of Different Symmetry
Qi, Wanming; Marston, Brad
2012-02-01
We test the validity of statistical descriptions of freely decaying 2D turbulence by performing direct numerical simulations (DNS) of the Euler equation with hyperviscosity on a square torus and on a sphere. DNS shows, at long times, a dipolar coherent structure in the vorticity field on the torus but a quadrapole on the sphereootnotetextJ. Y-K. Cho and L. Polvani, Phys. Fluids 8, 1531 (1996).. A truncated Miller-Robert-Sommeria theoryootnotetextA. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, 2006). can explain the difference. The theory conserves up to the second-order Casimir, while also respecting conservation laws that reflect the symmetry of the domain. We further show that it is equivalent to the phenomenological minimum-enstrophy principle by generalizing the work by Naso et al.ootnotetextA. Naso, P. H. Chavanis, and B. Dubrulle, Eur. Phys. J. B 77, 284 (2010). to the sphere. To explain finer structures of the coherent states seen in DNS, especially the phenomenon of confinement, we investigate the perturbative inclusion of the higher Casimir constraints.
DEFF Research Database (Denmark)
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...
Prasad, K. B. R. R. Hari; Srinivas, C. V.; Singh, A. Bagavth; Naidu, C. V.; Baskaran, R.; Venkatraman, B.
2018-05-01
In this study turbulent fluxes and their intensity features are studied in different seasons at the tropical Indian coastal station, Kalpakkam. Measurements from Ultrasonic anemometer at 10 m agl over 30-day period of four seasons (winter 1-30 January; summer/spring 1-30 April; SW monsoon 1-30 July; NE monsoon 1-30 October) in 2013 and 2014 are used for this work. Various surface layer parameters viz, friction velocity (u *), Obukhov length (L), momentum flux (M), turbulent heat flux (H), turbulence kinetic energy (TKE) are computed using eddy correlation method. Results indicate that the study region is highly turbulent in summer followed by NE monsoon, winter and SW monsoon seasons. Derived parameters indicate that shear is the main contributing mechanism for TKE generation during SW monsoon and both shear and buoyancy contributed for the generation of TKE in other seasons. Site specific turbulent intensity relationships were developed by analyzing second order moments of 3D wind components as a function of stability parameter (z/L). The turbulent components of wind followed 1/3 power law in the unstable regime and - 1 power law in the stable regime. Comparisons with previous studies indicate that the turbulent intensity for horizontal winds at the coastal station is relatively less especially in the unstable conditions. The derived relationships are found to be unique and vary seasonally and suggest their application for improved modeling of atmospheric dispersion in the study domain. Rate of dissipation of TKE (ϕ ɛ) for stable and unstable conditions at the observation site is different from the earlier proposed relationships in the literature. Thus, a new relationship is proposed for the better fit of the data at this site.
Nonlinear frequency shift of finite-amplitude electrostatic surface waves
International Nuclear Information System (INIS)
Stenflo, L.
1989-01-01
The problem concerning the appropriate form for the nonlinear frequency shift arising from slow density modulations of electrostatic surface waves in a semi-infinite unmagnetized plasma is reconsidered. The spatial dependence of the wave amplitude normal to the surface is kept general in order to allow for possible nonlinear attenuation behaviour of the surface waves. It is found that if the frequency shift is expressed as a function of the density and its gradient then the result is identical with that of Zhelyazkov, I. Proceedings International Conference on Plasma Physics, Kiev, 1987, Vol. 2, p. 694, who assumed a linear exponential attenuation behaviour. (author)
Directory of Open Access Journals (Sweden)
M. R. Rastan
2018-03-01
Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.
Delay of turbulent by surface heating in water
International Nuclear Information System (INIS)
Arakeri, V.H.
1980-01-01
Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.
2017-12-01
Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1
Ray-map migration of transmitted surface waves
Li, Jing
2016-08-25
Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.
2016-12-22
Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant additional...energy flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the
Horizon effects with surface waves on moving water
Energy Technology Data Exchange (ETDEWEB)
Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)
2010-09-15
Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Solitary ionizing surface waves on low-temperature plasmas
International Nuclear Information System (INIS)
Vladimirov, S.V.; Yu, M.Y.
1993-01-01
It is demonstrated that at the boundary of semi-infinite low-temperature plasma new types of localized ionizing surface wave structures can propagate. The solitary waves are described by an evolution equation similar to the KdV equation, but the solutions differ considerably from that of the latter
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron
International Nuclear Information System (INIS)
Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.
2014-01-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.
CAMEX-3 JPL SURFACE ACOUSTIC WAVE (SAW) HYGROMETER V1
National Aeronautics and Space Administration — This CAMEX-3 Jet Propulsion Laboratory (JPL) Surface Acoustic Wave (SAW) Hygrometer dataset consists of dewpoint timeline measurements acquired during each DC-8...
Surface Wave Focusing and Acoustic Communications in the Surf Zone
National Research Council Canada - National Science Library
Preisig, James
2004-01-01
The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals...
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Department of Mathematics, Maharshi Dayanand University, Rohtak 124001,. India e-mail: s−j−singh@yahoo.com. MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- ... On close exam-.
Response of surface buoy moorings in steady and wave flows
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; SanilKumar, V.
A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...
Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence
Passot, T.; Sulem, P. L.; Tassi, E.
2018-04-01
A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.
Extended Huygens-Fresnel principle and optical waves propagation in turbulence: discussion.
Charnotskii, Mikhail
2015-07-01
Extended Huygens-Fresnel principle (EHF) currently is the most common technique used in theoretical studies of the optical propagation in turbulence. A recent review paper [J. Opt. Soc. Am. A31, 2038 (2014)JOAOD60740-323210.1364/JOSAA.31.002038] cites several dozens of papers that are exclusively based on the EHF principle. We revisit the foundations of the EHF, and show that it is burdened by very restrictive assumptions that make it valid only under weak scintillation conditions. We compare the EHF to the less-restrictive Markov approximation and show that both theories deliver identical results for the second moment of the field, rendering the EHF essentially worthless. For the fourth moment of the field, the EHF principle is accurate under weak scintillation conditions, but is known to provide erroneous results for strong scintillation conditions. In addition, since the EHF does not obey the energy conservation principle, its results cannot be accurate for scintillations of partially coherent beam waves.
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Scaling observations of surface waves in the Beaufort Sea
Directory of Open Access Journals (Sweden)
Madison Smith
2016-04-01
Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Lage-area planar RF plasma productions by surface waves
International Nuclear Information System (INIS)
Nonaka, S.
1994-01-01
Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs
Anomalous Surface Wave Launching by Handedness Phase Control
Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2015-01-01
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous Surface Wave Launching by Handedness Phase Control
Zhang, Xueqian
2015-10-09
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modulation of cavity-polaritons by surface acoustic waves
DEFF Research Database (Denmark)
de Lima, M. M.; Poel, Mike van der; Hey, R.
2006-01-01
We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....
Flow profiling of a surface acoustic wave nanopump
Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.
2004-01-01
The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...
Oscillon dynamics and rogue wave generation in Faraday surface ripples.
Xia, H; Maimbourg, T; Punzmann, H; Shats, M
2012-09-14
We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.
Seo, Jongmin; Mani, Ali
2018-04-01
Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag
Electric field vector measurements in a surface ionization wave discharge
International Nuclear Information System (INIS)
Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe
2015-01-01
This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen
Surface electrostatic waves in bounded high temperature superconductors
International Nuclear Information System (INIS)
Averkov, Yu.O.; Yakovenko, V.M.
2008-01-01
The dispersion relations of surface electrostatic waves propagating along the surface of semi bounded layered superconductor and in the slab of layered superconductor are theoretically investigated. An arbitrary inclination of superconductor layers to the interface of a vacuum - crystal and an arbitrary direction of propagation of surface waves in the plane of the interface are taking into account. The possibility of initiation of an absolute instability during the propagation of a non-relativistic plasma stream above the surface of the layered superconductor is shown
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Turbulent flux and the diffusion of passive tracers in electrostatic turbulence
DEFF Research Database (Denmark)
Basu, R.; Jessen, T.; Naulin, V.
2003-01-01
The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...
Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow
2015-09-02
SECURITY CLASSIFICATION OF: The study of wall turbulence dates back more than a century. Recently, however, a number of studies suggest that the flow...in the inner region (i.e., the viscous sublayer and buffer layer) is not “universal”—and actually depends upon the specific type of wall turbulence ...Many of these new insights on wall turbulence are recent because we have only recently developed the experimental techniques, such as volumetric
Improved ion acceleration via laser surface plasma waves excitation
Energy Technology Data Exchange (ETDEWEB)
Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2013-05-15
The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.
Platis, Andreas; Martinez, Daniel; Bange, Jens
2014-05-01
Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Thickness Measurement of Surface Attachment on Plate with Lamb Wave
Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu
2017-12-01
Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.
Nonlinear surface waves at ferrite-metamaterial waveguide structure
Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques
2016-09-01
A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.
Sediment transport under breaking waves
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan
2000-01-01
The sediment transport in the surf zone is modelled by combining a Navier-Stokes solver, a free surface model, a turbulence model, and a sediment transport model. The flow solver is based on the finite volume technique for non-orthogonal grids. The model is capable of simulating the turbulence...... generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...
Imaging near-surface heterogeneities by natural migration of backscattered surface waves
AlTheyab, Abdullah; Lin, Fan-Chi; Schuster, Gerard T.
2016-01-01
We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green's functions along
Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves
Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.
2017-09-01
We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.
Investigation of turbulent wedges generated by different single surface roughness elements
Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd
2013-11-01
It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.
Dispersion surfaces and ion wave instabilities in space plasmas
International Nuclear Information System (INIS)
Andre, M
1985-08-01
In this thesis, the dispersion relation of linear waves in a non-relativistic, collisionless and homogeneous plasma in a uniform magnetic field, is solved numerically. Both electrostatic and elecromagnetic waves with frequencies from below the ion gyrofrequency to above the electron gyrofrequency are studied for all angles of propagation. Modes occurring in a cold plasma as well as waves dependent on thermal effects are included. Dispersion surfaces, that is plots of frequency versus wavevector components, are presented for some models of space plasmas. Waves with frequencies of the order of the ion gyrofrequency (ion waves), are well known to exist in space plasmas. In this thesis, the generation of ion waves by ion distributions with loss-cones or temperature anisotropies, or by beams of charged particles, is investigated by numerical methods. Effects of heavy ions are considered. Dispersion surfaces and analytical arguments are used to clarify the results. It is shown that particle beams and ion loss-cone distributions can generate electrostatic ion waves, even when a significant amount of the electrons are cool. These calculations are in agreement with simultaneous observatons of waves and particles obtained by a satellite on auroral field lines. (author)
On the interaction of Rayleigh surface waves with structures
International Nuclear Information System (INIS)
Simpson, I.C.
1976-12-01
A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)
Experimental Investigations on Microshock Waves and Contact Surfaces
Kai, Yun; Garen, Walter; Teubner, Ulrich
2018-02-01
The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.
Frost, W.; Harper, W. L.
1975-01-01
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.
Solar energy converter using surface plasma waves
Anderson, L. M. (Inventor)
1984-01-01
Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.
Scattering of a TEM wave from a time varying surface
Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.
1990-03-01
A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.
Ray-map migration of transmitted surface waves
Li, Jing; Schuster, Gerard T.
2016-01-01
Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common
Modulation of photonic structures by surface acoustic waves
International Nuclear Information System (INIS)
Mauricio M de Lima Jr; Santos, Paulo V
2005-01-01
This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors
Experiments on seismic metamaterials: molding surface waves.
Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S
2014-04-04
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.
Experimental study of turbulent-jet wave packets and their acoustic efficiency
Breakey, David E. S.; Jordan, Peter; Cavalieri, André V. G.; Nogueira, Petrônio A.; Léon, Olivier; Colonius, Tim; Rodríguez, Daniel
2017-12-01
This paper details the statistical and time-resolved analysis of the relationship between the near-field pressure fluctuations of unforced, subsonic free jets (0.4 ≤M ≤0.6 ) and their far-field sound emissions. Near-field and far-field microphone measurements were taken on a conical array close to the jets and an azimuthal ring at 20∘ to the jet axis, respectively. Recent velocity and pressure measurements indicate the presence of linear wave packets in the near field by closely matching predictions from the linear homogenous parabolized stability equations, but the agreement breaks down both beyond the end of the potential core and when considering higher order statistical moments, such as the two-point coherence. Proper orthogonal decomposition (POD), interpreted in terms of inhomogeneous linear models using the resolvent framework allows us to understand these discrepancies. A new technique is developed for projecting time-domain pressure measurements onto a statistically obtained POD basis, yielding the time-resolved activity of each POD mode and its correlation with the far field. A single POD mode, interpreted as an optimal high-gain structure that arises due to turbulent forcing, captures the salient near-field-far-field correlation signature; further, the signatures of the next two modes, understood as suboptimally forced structures, suggest that these POD modes represent higher order, acoustically important near-field behavior. An existing Green's-function-based technique is used to make far-field predictions, and results are interpreted in terms of POD/resolvent modes, indicating the acoustic importance of this higher order behavior. The technique is extended to provide time-domain far-field predictions.
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
Energy Technology Data Exchange (ETDEWEB)
Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)
2017-08-20
We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.
Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c (GSSTFYC) at GES DISC
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...
Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c (GSSTFMC) at GES DISC
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...
Surface Turbulent Fluxes, 1x1 deg Daily Grid, Set1 V2c (GSSTF) at GES DISC
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF2c) Dataset recently produced through a MEaSUREs funded project led by Dr....
Surface Turbulent Fluxes, 1x1 deg Monthly Grid, Set1 and Interpolated Data V2c
National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...
Transient space-time surface waves characterization using Gabor analysis
Energy Technology Data Exchange (ETDEWEB)
Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2009-11-01
Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.
Olsen, W. A.; Boldman, D.
1978-01-01
Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.
Discrete microfluidics based on aluminum nitride surface acoustic wave devices
Zhou, J.; Pang, H.F.; Garcia-Gancedo, L.; Iborra, E.; Clement, M.; De Miguel-Ramos, M.; Jin, H.; Luo, J.K.; Smith, S.; Dong, S.R.; Wang, D.M.; Fu, Y.Q.
2015-01-01
To date, most surface acoustic wave (SAW) devices have been made from bulk piezoelectric materials, such as quartz, lithium niobate or lithium tantalite. These bulk materials are brittle, less easily integrated with electronics for control and signal processing, and difficult to realize multiple wave modes or apply complex electrode designs. Using thin film SAWs makes it convenient to integrate microelectronics and multiple sensing or microfluidics techniques into a lab-on-a-chip with low cos...
Surface wave photonic device based on porous silicon multilayers
International Nuclear Information System (INIS)
Guillermain, E.; Lysenko, V.; Benyattou, T.
2006-01-01
Porous silicon is widely studied in the field of photonics due to its interesting optical properties. In this work, we present theoretical and first experimental studies of a new kind of porous silicon photonic device based on optical surface wave. A theoretical analysis of the device is presented using plane-wave approximation. The porous silicon multilayered structures are realized using electrochemical etching of p + -type silicon. Morphological and optical characterizations of the realized structures are reported
High-Temperature Surface-Acoustic-Wave Transducer
Zhao, Xiaoliang; Tittmann, Bernhard R.
2010-01-01
Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Energy Technology Data Exchange (ETDEWEB)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Understanding thermal circulations and near-surface turbulence processes in a small mountain valley
Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.
2017-12-01
The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.
Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)
DEFF Research Database (Denmark)
Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh
2017-01-01
out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...
Control of extreme events in the bubbling onset of wave turbulence.
Galuzio, P P; Viana, R L; Lopes, S R
2014-04-01
We show the existence of an intermittent transition from temporal chaos to turbulence in a spatially extended dynamical system, namely, the forced and damped one-dimensional nonlinear Schrödinger equation. For some values of the forcing parameter, the system dynamics intermittently switches between ordered states and turbulent states, which may be seen as extreme events in some contexts. In a Fourier phase space, the intermittency takes place due to the loss of transversal stability of unstable periodic orbits embedded in a low-dimensional subspace. We mapped these transversely unstable regions and perturbed the system in order to significantly reduce the occurrence of extreme events of turbulence.
Energy Technology Data Exchange (ETDEWEB)
Colas, L
1996-09-23
Internal small-scale magnetic turbulence is a serious candidate to explain the anomalous heat transport in tokamaks. This turbulence is badly known in the gradient region of large machines. In this work internal magnetic fluctuations are measured on Tore Supra with an original diagnostic : Cross Polarization Scattering (CPS). This experimental tool relies on the Eigenmode change of a probing polarised microwave beam scattered by magnetic fluctuations, close to a cut-off layer for the incident wave. In this work, the diagnostic is first qualified to assess its sensitivity to magnetic fluctuations, and the spatial localisation for its measurements. The magnetic fluctuation behaviour is then analysed over a wide range of plasma current, density and additional power, and interpreted with a simple 1-D scattering model. A scan of the plasma density or magnetic field is used to move the CPS measurement location from r/a = 0.3 to r/a = 0.75. A fluctuation radial profile is obtained by two means. In L-mode discharges, the relation between magnetic fluctuations, temperature profiles and local heat diffusivities is investigated. With all measurements, it is also possible to look for a local parameter correlated to the turbulence in a large domain of plasma conditions. The fluctuation-induced local heat diffusivity expected from the measured fluctuations is estimated using the non-collisional quasi-linear formula: X{sup mag}{sub e} = {pi}qRV{sub te}({delta}B / B){sup 2}. Both the absolute values and the parametric dependence of calculated X{sup mag}{sub e} are close to the electron thermal diffusivities Xe determined by transport analysis. In particular, a threshold is evidenced in the dependence of fluctuation-induced heat fluxes on local {nabla}T{sub e}, which is analogous to the critical gradient for measured heat fluxes. The experimental setup is also sensitive to the Thomson scattering of the probing wave by density fluctuations. Its measurements are analysed as the
Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete
DEFF Research Database (Denmark)
Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert
2012-01-01
The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...... loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface...
Relationship between ultrasonic Rayleigh waves and surface residual stress
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.
1977-01-01
Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments
Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing
Directory of Open Access Journals (Sweden)
David W. Greve
2013-05-01
Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.
An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence
Mish, Patrick F.; Devenport, William J.
2003-01-01
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative
Turbulent mixed convection from a large, high temperature, vertical flat surface
International Nuclear Information System (INIS)
Evans, G.; Greif, R.; Siebers, D.; Tieszen, S.
2005-01-01
Turbulent mixed convection heat transfer at high temperatures and large length scales is an important and seldom studied phenomenon that can represent a significant part of the overall heat transfer in applications ranging from solar central receivers to objects in fires. This work is part of a study to validate turbulence models for predicting heat transfer to or from surfaces at large temperature differences and large length scales. Here, turbulent, three-dimensional, mixed convection heat transfer in air from a large (3m square) vertical flat surface at high temperatures is studied using two RANS turbulence models: a standard k-ε model and the v2-bar -f model. Predictions for three cases spanning the range of the experiment (Siebers, D.L., Schwind, R.G., Moffat, R.F., 1982. Experimental mixed convection from a large, vertical plate in a horizontal flow. Paper MC13, vol. 3, Proc. 7th Int. Heat Transfer Conf., Munich; Siebers, D.L., 1983. Experimental mixed convection heat transfer from a large, vertical surface in a horizontal flow. PhD thesis, Stanford University) from forced (GrH/ReL2=0.18) to mixed (GrH/ReL2=3.06) to natural (GrH/ReL2=∼) convection are compared with data. The results show a decrease in the heat transfer coefficient as GrH/ReL2 is increased from 0.18 to 3.06, for a free-stream velocity of 4.4m/s. In the natural convection case, the experimental heat transfer coefficient is approximately constant in the fully turbulent region, whereas the calculated heat transfer coefficients show a slight increase with height. For the three cases studied, the calculated and experimental heat transfer coefficients agree to within 5-35% over most of the surface with the v2-bar -f model results showing better agreement with the data. Calculated temperature and velocity profiles show good agreement with the data
Measuring sea surface height with a GNSS-Wave Glider
Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.
2017-04-01
A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information
Energy Technology Data Exchange (ETDEWEB)
Fiorina, D
1998-01-29
Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of
Photonic Crystal Biosensor Based on Optical Surface Waves
Directory of Open Access Journals (Sweden)
Giovanni Dietler
2013-02-01
Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.
Flow profiling of a surface-acoustic-wave nanopump
Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.
2004-11-01
The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.
Evaluation of ground stiffness parameters using continuous surface wave geophysics
DEFF Research Database (Denmark)
Gordon, Anne; Foged, Niels
2000-01-01
Present day knowledge of the magnitude of the strain levels in the ground associated with geotechnical structures, together with an increasing number of projects requiring the best estimates of ground movements around excavations, has led to, inter alia, increased interest in measuring the very......-small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves
Guo, Bowen
2015-08-19
Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.
Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF
International Nuclear Information System (INIS)
Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo
2011-01-01
The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Messiter, A. F.
1980-01-01
Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.
Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Douglas, Jamie; Kim, Eun-jin; Thyagaraja, A.
2008-01-01
The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D T is shown to be significantly quenched, with a scaling D T ∝B -2 Ω 0 -5/4 , which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Ω 0 are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, ν T >0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed
Ernst, D. R.; Rhodes, T. L.; Kubota, S.; Crocker, N.
2017-10-01
Plasma full-wave simulations of the DIII-D DBS system including its lenses and mirrors are developed using the GPU-based FDTD2D code, verified against the GENRAY ray-tracing code and TORBEAM paraxial beam code. Our semi-analytic description of the effective spot size for a synthetic diagnostic reveals new focusing and defocusing effects arising from the combined effects of the curvature of the reflecting surface and that of the Gaussian beam wavefront. We compute the DBS transfer function from full-wave simulations to verify these effects. Using the synthetic diagnostic, nonlinear GYRO simulations closely match DBS fluctuation spectra with and without strong electron heating, without adjustment or change in normalization, while both GYRO and GENE also match fluxes in all transport channels. Density gradient driven TEMs that are observed by the DBS diagnostic on DIII-D are reproduced by simulations as a band of discrete toroidal mode numbers which intensify during strong electron heating. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-08ER54984.
Imaging near-surface heterogeneities by natural migration of backscattered surface waves
AlTheyab, Abdullah
2016-02-01
We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.
Turbulent flows over superhydrophobic surfaces with shear-dependent slip length
Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre
2015-11-01
Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).
Swimming droplets driven by a surface wave
Ebata, Hiroyuki; Sano, Masaki
2015-02-01
Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects.
Surface waves on currents with arbitrary vertical shear
Smeltzer, Benjamin K.; Ellingsen, Simen Å.
2017-04-01
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.
Optimized nonlinear inversion of surface-wave dispersion data
International Nuclear Information System (INIS)
Raykova, Reneta B.
2014-01-01
A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software
The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number
Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio
2017-11-01
A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.
Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows
Kim, Hyunseok; Park, Hyungmin
2017-11-01
In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.
Directory of Open Access Journals (Sweden)
S. Yahaya
2003-10-01
Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques
Directory of Open Access Journals (Sweden)
S. Yahaya
Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.
Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques
Holograms for power-efficient excitation of optical surface waves
Ignatov, Anton I.; Merzlikin, Alexander M.
2018-02-01
A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.
Dispersion of acoustic surface waves by velocity gradients
Kwon, S. D.; Kim, H. C.
1987-10-01
The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.
Surface Plasmon Waves on Thin Metal Films.
Craig, Alan Ellsworth
Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.
Optimizing surface acoustic wave sensors for trace chemical detection
Energy Technology Data Exchange (ETDEWEB)
Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others
1997-06-01
This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Universal Quantum Transducers Based on Surface Acoustic Waves
Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.
2015-01-01
We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,
Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...
Field verification of ADCP surface gravity wave elevation spectra
Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.
2007-01-01
Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of
Kinetic theory of surface waves in plasma jets
International Nuclear Information System (INIS)
Shokri, B.
2002-01-01
The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied
Electron acceleration by surface plasma waves in double metal surface structure
Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.
2007-12-01
Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.
Full-waveform inversion of surface waves in exploration geophysics
Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.
2017-12-01
Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
Theerthan, S. Ananda; Arakeri, Jaywant H.
2000-04-01
This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.
International Nuclear Information System (INIS)
Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V
2014-01-01
Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge
Source effects on surface waves from Nevada Test Site explosions
International Nuclear Information System (INIS)
Patton, H.J.; Vergino, E.S.
1981-11-01
Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
On the interaction between ocean surface waves and seamounts
Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús
2017-12-01
Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.
The Measurement and Interpretation of Surface Wave Group Arrival Times
Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.
2005-12-01
We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.