WorldWideScience

Sample records for surface wave phase

  1. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases

    NARCIS (Netherlands)

    Marquering, H.A.

    1996-01-01

    This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie

  3. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Science.gov (United States)

    Ohara, Yoshikazu; Oshiumi, Taro; Nakajima, Hiromichi; Yamanaka, Kazushi; Wu, Xiaoyang; Uchimoto, Tetsuya; Takagi, Toshiyuki; Tsuji, Toshihiro; Mihara, Tsuyoshi

    2017-06-01

    To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA) combining an ultrasonic phased array (PA) with a surface acoustic wave (SAW). SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs). The fatigue crack was visualized with a high signal-to-noise ratio (SNR) and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs) of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  4. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  5. Numerical simulation of wind wave surface profiles with tuned phase spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    to nonlinear waves with vertical and horizontal asymmetries especially in the case of breaking and shoaling waves. Hence, the inverse method of computing the surface profile from a known autospectrum using transformed (tuned) phase spectrum with coupling...

  6. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    into 2 wave systems with a dominating local sea. For this type of sea states, a directional tuning in the directional phase spectra could be expected. A new spectra width parameter which is equally applicable to spectra of narrow band, wide band...

  7. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite...... difference time domain simulations. In a structure with only one groove, constructive interference of the generated SP waves will enhance transmitted light by a factor of 5.4 compared with that of a single hole. Increasing the groove number to 3 in the design, which supports constructive interference of SP...... waves, will enhance the transmission coefficient to 10.5 times that for the single-hole transmission coefficient....

  8. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  9. Seismic tomography of Yunnan region using short-period surface wave phase velocity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 苏伟; 叶太兰

    2004-01-01

    The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.

  10. Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis

    Science.gov (United States)

    Pillet, R.; Rouland, D.; Roult, G.; Wiens, D. A.

    1999-02-01

    Direct earthquake-to-station Rayleigh and Love wave data observed on high gain broadband records are analyzed in order to improve the lateral resolution of the uppermost mantle in the southwest Pacific region. We used data of nine permanent Geoscope and Iris stations located in the southern hemisphere and nine other stations as part of two temporary networks, the first one installed in New Caledonia and Vanuatu (hereafter named Cavascope network) by ORSTOM and the EOST from Louis Pasteur University in Strasbourg (France) and the second one installed in the Fiji, Tonga and Niue islands (hereafter named Spase network) by Washington University in St. Louis (USA). In order to collect more significant details on the surficial structures, we included the analysis of short period waves down to 8 s. A multiple frequency filtering technique has been used to recover phase velocities of Rayleigh and Love waves for selected earthquakes with magnitude greater than 5.5 and with known centroid moment tensor (CMT). About 1100 well-distributed seismograms have been processed in the period range 8-100 s and corrections for topography and water depth have been applied to the observed phase velocities. The geographical distribution of phase velocity anomalies have then been computed using the tomographic method developed by Montagner [Montagner, J.P., 1986a. Regional three-dimensional structures using long-period surface waves. Ann. Geophys. 4 (B3), 283-294]. Due to a poor knowledge of dense, well-distributed, crustal thickness values and corresponding velocity models, we did not perform or speculate on the construction of an S-wave 3D velocity model; therefore, we limited this study to the interpretation of the phase velocity distribution. The location of phase velocity anomalies are well determined and the deviations are discussed within the framework of the geological context and compared with other tomographic models. At long periods, from 40 s to 100 s, our results agree well

  11. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  12. Single-drop liquid phase microextraction accelerated by surface acoustic wave.

    Science.gov (United States)

    Zhang, Anliang; Zha, Yan

    2013-03-01

    A single-drop liquid phase microextraction method is presented, in which surface acoustic wave (SAW) is used for accelerating extraction speed. A pair of interdigital transducers with 27.5 MHz center frequency is fabricated on a 128° yx-LiNbO3 substrate. A radio frequency signal is applied to one of interdigital transducers to excite SAW. Plastic straw is filled with PDMS, leaving 1 mL for holding sample solution. Plastic straw with sample solution droplet is then dipping into extractant, into which SAW is radiated. Mass transportation from sample solution to extractant drop is accelerated due to acoustic streaming, and extraction time is decreased. An ionic liquid and an acid green-25 solution are used for extraction experiments. Results show that the extraction process is almost finished within 2 min, and extraction speed is increased with radio frequency signal power.

  13. ARTICLES: Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    Science.gov (United States)

    Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.

    1984-04-01

    The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.

  14. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Ekaterina I. Radeva; Esmeryan, Karekin D.; Avramov, Ivan D.

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  15. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics.

    Science.gov (United States)

    Orloff, Nathan D; Dennis, Jaclyn R; Cecchini, Marco; Schonbrun, Ethan; Rocas, Eduard; Wang, Yu; Novotny, David; Simmonds, Raymond W; Moreland, John; Takeuchi, Ichiro; Booth, James C

    2011-12-01

    We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.

  16. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  17. Enhanced Photocatalytic Activity of Bismuth Precursor by Rapid Phase and Surface Transformation Using Structure-Guided Combustion Waves.

    Science.gov (United States)

    Lee, Kang Yeol; Hwang, Hayoung; Kim, Tae Ho; Choi, Wonjoon

    2016-02-10

    The development of an efficient method for manipulating phase and surface transformations would facilitate the improvement of catalytic materials for use in a diverse range of applications. Herein, we present the first instance of a submicrosecond time frame direct phase and surface transformation of Bi(NO3)3 rods to nanoporous β-Bi2O3 rods via structure-guided combustion waves. Hybrid composites of the prepared Bi(NO3)3·H2O rods and organic fuel were fabricated by a facile preparation method. The anisotropic propagation of combustion waves along the interfacial boundaries of Bi(NO3)3·H2O rods induced direct phase transformation to β-Bi2O3 rods in the original structure due to the rapid pyrolysis, while the release of gas molecules enabled the formation of nanoporous structures on the surfaces of rods. The developed β-Bi2O3 rods showed improved photocatalytic activity for the photodegradation of rhodamine B in comparison with Bi(NO3)3·H2O rods and α-Bi2O3 rods due to the more suitable interdistance and the large contact areas of the porous surfaces. This new method of using structure-guided combustion waves for phase and surface transformation may contribute to the development of new catalysts as well as the precise manipulation of diverse micronanostructured materials.

  18. Image enhancement for sub-harmonic phased array by removing surface wave interference with spatial frequency filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Su; Kim, Jun Woo; Cho, Seung Hyun; Seo, Dae Cheol [Center for Safety Measurements, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-06-15

    Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

  19. Efficient wideband guided-wave acoustooptic Bragg diffraction using phased surface acoustic wave array in LiNbO(3) waveguides.

    Science.gov (United States)

    Nguyen, L T; Tsai, C S

    1977-05-01

    Efficient wideband guided-wave acoustooptic Bragg diffraction has been demonstrated using a phased surface acoustic wave array in Y-cut LiNbO(3) waveguides. The results of measurement made on the devices which employ the first-order acoustic beam steering from six-element phased-SAWs of relatively small total acoustic aperture, at the center frequency of 325 MHz, have shown that accurate tracking of the Bragg condition is achievable for a frequency band of more than 250 MHz. In one of the deflectors that employ a larger total acoustic aperture, only 68 mW of electric drive power or 3.5 mW of acoustic power was required to diffract 50% of the light over a bandwidth of 112 MHz. This bandwidth is a nearly sixfold increase over that of the deflector that employs a single SAW of identical aperture. The quality of both deflected and undeflected light beams was very good.

  20. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  1. On-chip phase-shifted Bragg gratings and their application for spatiotemporal transformation of Bloch surface waves

    Science.gov (United States)

    Doskolovich, Leonid L.; Bezus, Evgeni A.; Bykov, Dmitry A.; Golovastikov, Nikita V.

    2017-05-01

    In this work, we study numerically and theoretically phase-shifted Bragg gratings (PSBG) for Bloch surface waves (BSW) propagating along the interfaces between a 1D photonic crystal and a homogeneous medium. The studied on-chip structure consists of a set of dielectric ridges located on the photonic crystal surface constituting two symmetrical onchip Bragg gratings separated by a defect layer. Rigorous simulation results demonstrate that the surface wave diffraction on the proposed on-chip PSBG is close to the diffraction of plane electromagnetic waves on conventional PSBG. For the considered examples, the correlation coefficient between the spectra of conventional PSBG and on-chip PSBG exceeds 0.99 near the resonance corresponding to the excitation of the eigenmodes localized in the defect layer. Conventional PSBG are widely used for spectral filtering as well as for temporal and spatial transformations of optical pulses and beams including differentiation and integration of pulse envelope or beam profile. In the present work, we discuss the capability of on-chip PSBG to implement the operations of temporal and spatial differentiation of BSW pulses and beams. The presented examples demonstrate the possibility of using the proposed structure for high-quality differentiation. The obtained results can be applied for the design of the prospective integrated systems for on-chip alloptical analog computing.

  2. Spatial differentiation of Bloch surface wave beams using an on-chip phase-shifted Bragg grating

    Science.gov (United States)

    Doskolovich, L. L.; Bezus, E. A.; Bykov, D. A.; Soifer, V. A.

    2016-11-01

    Bloch surface waves (BSWs) supported by the interfaces between a photonic crystal and a homogeneous medium are considered as a prospective information carrier in integrated photonic circuits. In the present work, we study the application of on-chip phase-shifted Bragg gratings for spatial differentiation of BSW beams. The presented simulation results demonstrate a high accuracy of the performed differentiation. It is shown that upon differentiation of a Gaussian BSW beam, a two-dimensional analogue of the Hermite-Gaussian mode is generated in reflection. The obtained results may find application in the design of new planar devices for analog optical information processing.

  3. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  4. Surface Acoustic Wave Velocity and Electromechanical Coupling Coefficient of GaN Grown on (0001) Sapphire by Metal-Organic Vapour Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; LI Hong-Lang; YAN Li; CHEN Xiao-Yang; LU Da-Cheng; WANG Xiao-Hui; LIU Xiang-Lin; HAN Pei-De; YUAN Hai-Rong; WANG Du; WANG Zhan-Guo; HE Shi-Tang

    2001-01-01

    High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital trans ducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667m/s and 1.9% by the pulse method.

  5. Multichannel analysis of surface waves

    Science.gov (United States)

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  6. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special conditi...

  7. Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station

    Science.gov (United States)

    Yamanaka, Hiroaki; Kato, Kei; Chimoto, Kosuke; Tsuno, Seiji

    2015-09-01

    A procedure for estimation of Rayleigh wave phase velocities from microtremor observations, using an array with a reference station, is investigated in this study. Simultaneous observation of microtremors at a reference station and at a strong motion observation array in the Kanto Basin, Japan, was carried out. We first calculated cross correlations between records at the reference station and those at stations in the array using a seismic interferometric processing method on a 4300-h data series. After identifying dispersive Rayleigh waves from results of multiple filtering analysis of the cross correlations, semblance analysis of the cross correlations for different segments was carried out to estimate phase velocities for fundamental and higher-mode Rayleigh waves. The phase velocities from the proposed method are more appropriate than those from conventional methods at long periods as they avoid contamination by higher mode Rayleigh waves. The fundamental Rayleigh wave phase velocities were inverted to an S-wave velocity profile for deep sedimentary layers. We also examined the variations in the phase velocity with decreasing data duration. The phase velocities at periods less than 3 s from 6-h records are similar to those from 4300-h records, suggesting that our method is possibly applicable in microtremor exploration.

  8. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO Polymer Coated Rayleigh Surface Acoustic Wave (SAW Resonators for Gas-Phase Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Radeva

    2012-05-01

    Full Text Available Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs of solid hexamethyldisiloxane (HMDSO polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW mode on ST-cut quartz. Using a RF-plasma polymerization process, RSAW sensor resonators optimized for maximum gas sensitivity have been coated with chemosensitive HMDSO films at 4 different thicknesses: 50, 100, 150 and 250 nm. Their TFCs have been measured over a (−100 to +110 °C temperature range and compared to the TFC of an uncoated device. An exponential 2,500 ppm downshift of the resonant frequency and a 40 K downshift of the sensor’s turn-over temperature (TOT are observed when the HMDSO thickness increases from 0 to 250 nm. A partial temperature compensation effect caused by the film is also observed. A third order polynomial fit provides excellent agreement with the experimental TFC curve. The frequency downshift due to mass loading by the film, the TOT and the temperature coefficients are unambiguously related to each other.

  9. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  10. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    Science.gov (United States)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  11. Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    Science.gov (United States)

    Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.

    1984-04-01

    Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.

  12. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  13. Experimental study on the effects of surface gravity waves of different wavelengths on the phase averaged performance characteristics of marine current turbine

    Science.gov (United States)

    Luznik, L.; Lust, E.; Flack, K. A.

    2014-12-01

    There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.

  14. Databases of surface wave dispersion

    Directory of Open Access Journals (Sweden)

    L. Boschi

    2005-06-01

    Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.

  15. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  16. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  17. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  18. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  19. Tamm-Langmuir surface waves

    Science.gov (United States)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  20. Tamm-Langmuir surface waves

    CERN Document Server

    Golenitskii, K U; Bogdanov, A A

    2016-01-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  1. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  2. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  3. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  4. Continuously Phase-Modulated Standing Surface Acoustic Waves for Separation of Particles and Cells in Microfluidic Channels Containing Multiple Pressure Nodes

    CERN Document Server

    Lee, Junseok; Kang, Byungjun; Lee, Hyungsuk

    2016-01-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with the target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of the target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressu...

  5. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    Science.gov (United States)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  6. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    Science.gov (United States)

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  7. Structure of the airflow above surface waves

    Science.gov (United States)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  8. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  9. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    Science.gov (United States)

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities

    Science.gov (United States)

    Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.

    2011-01-01

    The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the

  11. W-waveform Standing Surface Acoustic Waves with Two Equilibrium Positions under Linear Phase Modulation for Patterning Microparticles into Alternate Grid Patterns

    CERN Document Server

    Lee, Junseok

    2016-01-01

    This paper presents W-waveform Standing Surface Acoustic Waves (W-SSAW), and as its application, patterning of two groups of microparticles with different sizes alternately without fixing firstly patterned particles. W-SSAW is constructed by two standing surface acoustic waves of frequencies $f$ and $2f$. Combined with linear phase modulation to translate Gor'kov potential at a constant speed, W-SSAW can selectively trap particles. The trapped particles follow the moving Gor'kov potential maintaining force equilibrium between Stokes' drag and the radiation force by W-SSAW. There exist two asymmetric equilibrium positions every period, and by the asymmetry, each group of particles is trapped at different equilibrium positions to form an alternate pattern. This technique is extended to two-dimensional alternate patterning by maintaining phase difference $90^\\circ$ between X- and Y-directional W-SSAWs. The patterning method utilizing W-SSAW is advantageous over SSAW-based patterning in that it does not require t...

  12. Broadband surface-wave transformation cloak

    Science.gov (United States)

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-01-01

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  13. Phases of holographic d-wave superconductor

    OpenAIRE

    Krikun, A.

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases...

  14. Determining surface wave arrival angle anomalies

    Science.gov (United States)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  15. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  16. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  17. Surface wave chemical detector using optical radiation

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  18. Phases of holographic d-wave superconductor

    CERN Document Server

    Krikun, Alexander

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...

  19. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  20. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  1. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Science.gov (United States)

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  2. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  3. Phase sorting wave-particle correlator

    Science.gov (United States)

    Kletzing, C. A.; LaBelle, J.; Bounds, S. R.; Dolan, J.; Kaeppler, S. R.; Dombrowski, M.

    2017-02-01

    Wave-particle correlations, particularly of Langmuir waves and electrons, have been the subject of significant interest extending back to the 1970s. Often, these correlations have been simply observing modulation of the electrons at the plasma frequency with no phase resolution. The first phase-resolving correlators were developed at UC Berkeley in the late 1980s and reported by Ergun in the early 1990s. A design is presented which further improves on phase resolution in correlations of Langmuir waves and electrons with phase resolution of 22.5°. In this technique, a phase-locked loop (PLL) is used to lock onto the wave and subdivide the phase. Electrons are sorted on-the-fly as they arrive into the phase bins. Discussed are details of accurate timing, testing, and calibration of this system as well as results from rocket flights in which statistically significant phase correlations have been observed.

  4. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  5. THE PHASE-OFFSET OVERLAPPED WAVE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Liang Dequn; Liang Weihua; Sun Changnian

    2003-01-01

    A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word's period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group.This code has very high efficiency and thus the data transmission rate is increased greatly.

  6. Phase modulated solitary waves controlled by bottom boundary condition

    CERN Document Server

    Mukherjee, Abhik

    2014-01-01

    A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.

  7. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  8. Geometric phase and Pancharatnam phase induced by light wave polarization

    CERN Document Server

    Lages, J; Vigoureux, J -M

    2013-01-01

    We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a non zero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and can not be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.

  9. Monte Carlo search techniques applied to the measurement of higher mode phase velocities and anisotropic surface wave tomography. Geologica Ultraiectina (285)

    NARCIS (Netherlands)

    Visser, K.

    2008-01-01

    In this thesis we present all three stages of the inversion approach proposed by Kennett and Yoshizawa (2002). The three stage inversion approach consists of obtaining fundamental and higher mode Love and Rayleigh wave phase velocity measurements through waveform fitting in the first stage, combinin

  10. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  11. Parabolic Wave Equation for Surface Water Waves.

    Science.gov (United States)

    1986-11-01

    extended to wave propagation problems in other fields of physical sciences, such as nonlinear optics ( Svelto , 1974), plasma physics (Karpman, 1975...34 Journal of Fluid Mechanics, Vol. 72, pp. 373-384. Svelto , 0., 1974, Progress in Optics, North-Holland Pub., Chapter 1, pp. 1-51. Tappert, F.D., 1977, "The

  12. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  13. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....

  14. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  15. Megaquakes, prograde surface waves and urban evolution

    Science.gov (United States)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  16. Dyakonov surface waves in lossy metamaterials

    CERN Document Server

    Sorni, A J; Zapata-Rodríguez, C J; Miret, J J

    2015-01-01

    We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.

  17. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    Science.gov (United States)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  18. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  19. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  20. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  1. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  2. Surface Shear, Persistent Wave Groups and Rogue Waves

    CERN Document Server

    Chafin, Clifford

    2014-01-01

    We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.

  3. Improvements on Mean Free Wave Surface Modeling

    Institute of Scientific and Technical Information of China (English)

    董国海; 滕斌; 程亮

    2002-01-01

    Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).

  4. Synthetic phase tuning of guided waves.

    Science.gov (United States)

    Wooh, S C; Shi, Y

    2001-01-01

    A novel method has been developed to generate and manipulate multi-mode guided waves. This technique uses a linear phased array whose elements are activated according to a prescribed time delay profile obtained from the dispersion curves. It is shown that a desired guided wave mode can be tuned by synthetically constructing a virtual wave from individually acquired waveform data. In addition to the development of such a synthetic phase tuning (SPT) technique, a pseudo pulse-echo (PPE) operation scheme is also developed for nondestructive testing. Experimental results are compared with those obtained by more traditional techniques using variable angle wedges and array transducers. It was shown that the new technique is convenient, robust, and flexible in utilizing multi-mode guided waves for nondestructive evaluation (NDE). It is a dynamic method that can produce desired guided wave modes propagating in the desired direction without any mechanical alignment. The advantages and limitations of the technique are addressed.

  5. Resonant surface acoustic wave chemical detector

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  6. Surface consistent finite frequency phase corrections

    Science.gov (United States)

    Kimman, W. P.

    2016-07-01

    Static time-delay corrections are frequency independent and ignore velocity variations away from the assumed vertical ray path through the subsurface. There is therefore a clear potential for improvement if the finite frequency nature of wave propagation can be properly accounted for. Such a method is presented here based on the Born approximation, the assumption of surface consistency and the misfit of instantaneous phase. The concept of instantaneous phase lends itself very well for sweep-like signals, hence these are the focus of this study. Analytical sensitivity kernels are derived that accurately predict frequency-dependent phase shifts due to P-wave anomalies in the near surface. They are quick to compute and robust near the source and receivers. An additional correction is presented that re-introduces the nonlinear relation between model perturbation and phase delay, which becomes relevant for stronger velocity anomalies. The phase shift as function of frequency is a slowly varying signal, its computation therefore does not require fine sampling even for broad-band sweeps. The kernels reveal interesting features of the sensitivity of seismic arrivals to the near surface: small anomalies can have a relative large impact resulting from the medium field term that is dominant near the source and receivers. Furthermore, even simple velocity anomalies can produce a distinct frequency-dependent phase behaviour. Unlike statics, the predicted phase corrections are smooth in space. Verification with spectral element simulations shows an excellent match for the predicted phase shifts over the entire seismic frequency band. Applying the phase shift to the reference sweep corrects for wavelet distortion, making the technique akin to surface consistent deconvolution, even though no division in the spectral domain is involved. As long as multiple scattering is mild, surface consistent finite frequency phase corrections outperform traditional statics for moderately large

  7. Surface wave propagation in a fluid-saturated incompressible porous medium

    Indian Academy of Sciences (India)

    Rajneesh Kumar; B S Hundal

    2007-06-01

    A study of surface wave propagation in a fluid-saturated incompressible porous half-space lying under a uniform layer of liquid is presented. The dispersion relation connecting the phase velocity with wave number is derived. The variation of phase velocity and attenuation coefficients with wave number is presented graphically and discussed. As a particular case, the propagation of Rayleigh type surface waves at the free surface of an incompressible porous half-space is also deduced and discussed.

  8. A Wave Modulation Model of Ripples over Long Surface Waves

    Institute of Scientific and Technical Information of China (English)

    CONG Peixiu; ZHENG Guizhen

    2011-01-01

    A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.

  9. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  10. Surface waves in a vertically excited circular cylindrical container

    Institute of Scientific and Technical Information of China (English)

    Jian Yong-Jun; E Xue-Quan; Zhang Jie; Meng Jun-Min

    2004-01-01

    The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder,is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies,contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition,the comparison of the surface wave modes is made between theoretical calculations and experimental measurements,and the results are reasonable although there are some differences in the forced frequency.

  11. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  12. Surface acoustic wave (SAW) vibration sensors.

    Science.gov (United States)

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  13. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  14. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  15. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  16. Delamination Detection Using Guided Wave Phased Arrays

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  17. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  18. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  19. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  20. Superdirected Beam of the Surface Spin Wave

    CERN Document Server

    Annenkov, Alexander Yu; Lock, Edwin H

    2016-01-01

    Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.

  1. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  2. Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formulation of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply surface-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave-mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The balance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.

  3. Ruts and waves in the road surface.

    NARCIS (Netherlands)

    Tromp, J.P.M.

    1989-01-01

    The characteristics of a road and a road surface should not unexpectedly change, if the traffic process is to be kept safe and under control. Knowledge on accidents, in which ruts and waves played a part does not seem to exist. Knowledge on driver behaviour due to the occurrence of waves or ruts is

  4. Characteristics of phase-averaged equations for modulated wave groups

    NARCIS (Netherlands)

    Klopman, G.; Petit, H.A.H.; Battjes, J.A.

    2000-01-01

    The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993). Th

  5. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  6. The Surface Wave Scattering-Microwave Scanner (SWS-MS)

    Science.gov (United States)

    Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe

    2016-01-01

    The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.

  7. Scattering of wave packets with phases

    Science.gov (United States)

    Karlovets, Dmitry V.

    2017-03-01

    A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  8. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  9. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  10. River dykes investigation using seismic surface waves

    Science.gov (United States)

    Bitri, Adnand; Jousset, Philippe; Samyn, Kévin; Naylor, Adam

    2010-05-01

    Natural underground caves such as karsts are quite common in the region "Centre", France. These subsurface perturbations can be found underneath the protection dykes around "the Loire" River and the damage caused can create routes for floods. Geophysical methods such as Multi-channel Analysis of Surface Waves (MASW) can be used for locating voids or karsts systems, but its efficiency on surface with strong topography such as dykes is not certain. Three dimensional Rayleigh wave modelling was used to understand the role of topography in the propagation of surface waves and with the aim of determining the best way for MASW investigations of surfaces with strong topography such as river dykes. Numerical modelling shows that surface waves propagation is not strongly affected by topography for an array parallel to the dyke. For homogeneous models with topography, a diminution of surface waves amplitude is observed while higher propagation modes are amplified in the dispersion curves in the case of heterogeneous models with topography. For an array perpendicular to the dyke, numerical modeling shows that Rayleigh waves' velocity is lower. MASW investigations can then be applied if lateral variations of the topography are not too strong along the seismic line. Diffraction hyperbolas created by a full of water cavity were identified in numerical modelling with topography. According to these elements, a MASW survey has been performed on the dykes of "the Loire" river close to a collapsed cavity and potential karstic systems were discovered.

  11. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  12. Characters of surface deformation and surface wave in thermal capillary convection

    Institute of Scientific and Technical Information of China (English)

    DUAN; Li; KANG; Qi; HU; Wenrei

    2006-01-01

    In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mm×42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns. The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 μm. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.

  13. Surface waves of Min-proteins

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  14. Scattering of wave packets with phases

    CERN Document Server

    Karlovets, Dmitry

    2016-01-01

    A general problem of $2\\rightarrow N_f$ scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in $(3+1)$ D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet $\\sigma_p/\\langle p\\rangle$ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the...

  15. Investigation of surface magnetostatic wave propagation in ferrite superconductor structure

    CERN Document Server

    Semenov, A A; Melkov, A A; Bobyl', A V; Suris, R A; Gal'perin, Y M; Iokhansen, T K

    2001-01-01

    Electrodynamic model describing dispersion properties of surface magnetostatic wave in ferrite/superconductor structure was suggested. On the basis of the model a new method of ascertaining superhigh frequency surface resistance R sub s of superconducting films in magnetic fields was developed. The calculated values agree with the results obtained by the Tauber method, making up R sub s =0.20-1.96 m Ohm. A regulated incursion of wave phase amounting to about 1.5 pi with the change in penetration depth 2.0-0.8 mu m for YBCO film was attained for YIG/YBCO structures

  16. Linear surface capillary-gravity short-crested waves on a current

    Institute of Scientific and Technical Information of China (English)

    HUANG Hu

    2008-01-01

    One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.

  17. Bidirectional surface wave splitter at visible frequencies.

    Science.gov (United States)

    Gan, Qiaoqiang; Bartoli, Filbert J

    2010-12-15

    We experimentally demonstrate a metal-film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green-red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.

  18. EB Frond wave energy converter - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The EB Frond project is a wave energy programme developed by The Engineering Business (EB) from an original idea at Lancaster University. The EB Frond is a wave generator with a collector vane on top of an arm that pivots near the seabed. Phase 1 of the project demonstrated the technical feasibility of the project and provided proof of concept. Phase 2 involved further assesment of the technical and commercial viability of the concept through the development of mathematical and physical modelling methods. The work involved small-scale (1/25th) testing in wave tanks at Newcastle and Lancaster Universities and the development, verification and validation of a time domain mathematical model. The decision by EB to put on hold its renewable generation programme meant that plans to test at an intermediate scale (1/16th), assess different survival strategies in extreme wave conditions, carry out site characterisation for full-scale systems and to produce a robust economic model were not fulfilled. However, the mathematical and physical modelling work was used to develop an economic model for the Frond system. This produced a predicted unit cost of electricity by a pre-commercial 5 MW demonstration farm of about 17 pence/kWh. The report discusses the small-scale testing, test results, mathematical modelling, analysis and interpretation, survivability, the economic model and the development route to full-scale production.

  19. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  20. Guided wave phased array beamforming and imaging in composite plates.

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  1. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  2. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  3. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  4. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  5. Blackfolds, plane waves and minimal surfaces

    OpenAIRE

    Armas, Jay; Blau, Matthias

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...

  6. Spin density wave order, topological order, and Fermi surface reconstruction

    CERN Document Server

    Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni

    2016-01-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  7. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  8. Surface waves propagation on a turbulent flow forced electromagnetically

    CERN Document Server

    Gutiérrez, Pablo

    2015-01-01

    We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...

  9. Visualization of phase conjugate ultrasound waves passed through inhomogeneous layer.

    Science.gov (United States)

    Yamamoto, K; Pernod, P; Preobrazhensky, V

    2004-04-01

    Compensation of phase distortions of ultrasound beams by means of parametric phase conjugation is visualized. Quasi-plane and focused primary beams were distorted by a polymer aberration layer introduced between the primary wave source and the wave phase conjugator. It is demonstrated acousto-optically that, while the acoustic field is strongly irregular in the area between aberration layer and conjugator, the phase conjugate wave visibly reproduces the primary beams in the area between the layer and the primary wave source. The phenomenon is observed in supercritical mode of parametric amplification when intensity of phase conjugate wave is high enough for manifestations of acoustic nonlinearities in water.

  10. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  11. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  12. Chiral Surface Waves for Enhanced Circular Dichroism

    CERN Document Server

    Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2016-01-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  13. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  14. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  15. Surface acoustic wave propagation in graphene film

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  16. Gas sensing with surface acoustic wave devices

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  17. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  18. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  19. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  20. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  1. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  2. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  3. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  4. Observations of surface waves interacting with ice using stereo imaging

    Science.gov (United States)

    Campbell, Alexander J.; Bechle, Adam J.; Wu, Chin H.

    2014-06-01

    A powerful Automated Trinocular Stereo Imaging System (ATSIS) is used to remotely measure waves interacting with three distinct ice types: brash, frazil, and pancake. ATSIS is improved with a phase-only correlation matching algorithm and parallel computation to provide high spatial and temporal resolution 3-D profiles of the water/ice surface, from which the wavelength, frequency, and energy flux are calculated. Alongshore spatial frequency distributions show that pancake and frazil ices differentially attenuate at a greater rate for higher-frequency waves, causing a decrease in mean frequency. In contrast, wave propagation through brash ice causes a rapid increase in the dominant wave frequency, which may be caused by nonlinear energy transfer to higher frequencies due to collisions between the brash ice particles. Consistent to the results in frequency, the wavelengths in pancake and frazil ices increase but decrease in brash ice. The total wave energy fluxes decrease exponentially in both pancake and frazil ice, whereas the overall energy flux remain constant in the brash ice due to thin layer thickness. The spatial energy flux distributions also reveal that wave reflection occurs at the boundary of each ice layer, with reflection coefficient decaying exponentially away from the ice interface. Reflection is the strongest at the pancake/ice-free and frazil/brash interfaces and the weakest at the brash/ice-free interface. These high resolution observations measured by ATSIS demonstrate the spatially variable nature of waves propagating through ice.

  5. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  6. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  7. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  8. Phased annular array transducers for ultrasonic guided wave applications

    Science.gov (United States)

    Yan, Fei; Borigo, Cody; Liang, Yue; Koduru, Jaya P.; Rose, Joseph L.

    2011-04-01

    Mode and frequency control always plays an important role in ultrasonic guided wave applications. In this paper, theoretical understanding of guided wave excitations of axisymmetric sources on plate structures is established. It is shown that a wave number spectrum can be used to investigate the guided wave excitations of an axisymmetric source. The wave number spectrum is calculated from a Hankel transform of the axial source loading profile. On the basis of the theoretical understanding, phased annular array transducers are developed as a powerful tool for guided wave mode and frequency control. By applying appropriate time delays to phase the multiple elements of an annular array transducer, guided wave mode and frequency tuning can be achieved fully electronically. The phased annular array transducers have been successfully used for various applications. Example applications presented in this paper include phased annular arrays for guided wave beamforming and a novel ultrasonic vibration modal analysis technique for damage detection.

  9. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  10. NUMERICAL STUDY ON EFFECT OF WAVING BED ON THE SURFACE WAVE

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ren; CHENG You-liang; WANG Song-ling

    2006-01-01

    The effect of the waving bed on the surface wave was investigated. The wave equation was reduced from the potential flow theory with the perturbation technique, and then was solved by using the pseudo-spectral method. The waterfall of the surface wave was simulated with the Matlab. It is shown that for the waving bed, an additional harmonic wave appears on the surface together with the solitary wave existing for the non-waving bed, and two kinds of waves do not interfere with each other. With the development of time, the waveform for the waving bed is kept invariable, and just the amplitude is reduced gradually. Wave-breaking phenomenon for the non-waving bed does not appear, so the waving bed seems useful to prevent the breaking of the wave.

  11. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  12. Blackfolds, Plane Waves and Minimal Surfaces

    CERN Document Server

    Armas, Jay

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...

  13. Competition between the s-wave and p-wave superconductivity phases in a holographic model

    CERN Document Server

    Nie, Zhang-Yu; Gao, Xin; Zeng, Hui

    2013-01-01

    We build a holographic superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. In this model, the s-wave and p-wave condensates can be consistently realized. We find that there are totally four phases in this model, namely, the normal phase without any condensate, s-wave phase, p-wave phase and the s+p coexisting phase. By calculating Gibbs free energy, the s+p coexisting phase turns out to be thermodynamically favored once it can appear. The phase diagram with the dimension of the scalar operator and temperature is drawn. The temperature range for the s+p coexisting phase is very narrow, which shows the competition between the s-wave and p-wave orders in the superconductor model.

  14. Compression Waves and Phase Plots: Simulations

    CERN Document Server

    Orlikowski, Daniel

    2011-01-01

    Compression wave analysis started nearly 50 years ago with Fowles.[1] Coperthwaite and Williams [2] gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general.[3] One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.

  15. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    OpenAIRE

    Gagarina, E; Vegt, van der, N.F.A.; Ambati, V.R.; Bokhove, O.

    2013-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is continuous in space and discontinuous in time. The key features of this formulation are: (i) a discrete variational approach that gives rise to conservation of discrete energy and phase space and prese...

  16. Watching surface waves in phononic crystals.

    Science.gov (United States)

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. A phased antenna array for surface plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.; Korterik, J.P.; Segerink, F.B.; Herek, J.L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optic

  18. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  19. Gaseous phase coal surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  20. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  1. Parallel Algorithm in Surface Wave Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.

  2. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  3. Waveform synthesis of surface waves in a laterally heterogeneous earth by the Gaussian beam method

    Science.gov (United States)

    Yomogida, K.; Aki, K.

    1985-01-01

    The present investigation is concerned with an application of the Gaussian beam method to surface waves in the laterally heterogeneous earth. The employed method has been developed for ray tracing and synthesizing seismograms of surface waves in cases involving the laterally heterogeneous earth. The procedure is based on formulations derived by Yomogida (1985). Vertical structure of the wave field is represented by the eigenfunctions of normal mode theory, while lateral variation is expressed by the parabolic equation as in two-dimensional acoustic waves or elastic body waves. It is demonstrated that a large-amplitude change can result from a slight perturbation in the phase velocity model.

  4. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  5. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  6. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  7. A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 李东永

    2002-01-01

    This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.

  8. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  9. Dependence of chaotic diffusion on wave phase spectrum

    Science.gov (United States)

    Huang, Yueheng; Xiang, Nong; Li, Dehui; Chen, Jiale; Fan, Peifeng

    2017-09-01

    The chaotic diffusion in velocity space has been studied by numerically solving the motion equation of charged particles in the wave field with different kinds of wave phase spectra and analytically calculating the correlation functions. It is found that the diffusion in velocity space strongly depends on the wave phase spectrum. For the periodic spectrum with two different phases, the small relative phase makes the diffusion deviate from the quasi-linear one even for an arbitrarily large overlap parameter. The quasi-linear approximation is valid when the overlap parameter is large for the spectrum in which the wave phases of any group of three neighboring waves are different. The quasi-linear threshold can be much larger than the one of the zero phased standard mapping.

  10. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices.

  11. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    models of the thermochemical and anisotropic structure of the mantle to 450 km depth. Dispersion data are linked to thermochemical parameters through a thermodynamic formalism for computing mantle mineral phase equilibria and physical properties. The inverse problem is solved using a probabilistic...

  12. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel

    2009-01-01

    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  13. Gravitational waves from cosmological first order phase transitions

    CERN Document Server

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David

    2015-01-01

    First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.

  14. Travelling Wave Solutions to Stretched Beam's Equation: Phase Portraits Survey

    Institute of Scientific and Technical Information of China (English)

    Gambo Betchewe; Kuetche Kamgang Victor; Bouetou Bouetou Thomas; Timoleon Crepin Kofane

    2011-01-01

    In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative-definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivalued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically.

  15. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...

  16. Regional Body-Wave Corrections and Surface-Wave Tomography Models to Improve Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W R; Pasyanos, M E; Rodgers, A J; Meyeda, K M; Sicherman, A

    2003-07-18

    Our identification research for the past several years has focused on the problem of correctly discriminating small-magnitude explosions from a background of earthquakes, mining tremors, and other events. Small magnitudes lead to an emphasis on regional waveforms. The goal is to reduce the variance within the population of each type of event, while increasing the separation between the explosions and the other event types. We address this problem for both broad categories of seismic waves, body waves, and surface waves. First, we map out the effects of propagation and source size in advance so that they can be accounted for and removed from observed events. This can dramatically reduce the population variance. Second, we try to optimize the measurement process to improve the separation between population types. For body waves we focus on the identification power of the short-period regional phases Pn, Pg, Sn and Lg, and coda that can often be detected down to very small magnitudes. It is now well established that particular ratios of these phases, such as 6- to 8-Hz Pn/Lg, can effectively discriminate between closely located explosions and earthquakes. To extend this discrimination power over broad areas, we developed a revised Magnitude and Distance Amplitude Correction (MDAC2) procedure (Walter and Taylor, 2002). This joint source and path model fits the observed spectra and removes magnitude and distance trends from the data. It allows for the possibility of variable apparent stress scaling in earthquakes, an unresolved issue that is the subject of investigation under separate funding. The MDACZ procedure makes use of the extremely stable coda estimates of Mw for source magnitude and can also use independent Q tomography to help reduce trade-offs in fitting spectra. We can then apply the kriging operation to the MDAC2 residuals to provide full 2-D path corrections by phase and frequency band. These corrections allow the exploration of all possible ratios and

  17. Scattered surface wave energy in the seismic coda

    Science.gov (United States)

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  18. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  19. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  20. Generation of unsteady waves by concentrated disturbances in an inviscid fluid with an inertial surface

    Institute of Scientific and Technical Information of China (English)

    D. Q. Lu; S. Q. Dai

    2008-01-01

    The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance-to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the free-surface gravity waves can readily be recovered by the present results as the inertial surface disappears.

  1. Surface Wave Propagation in non--ideal plasmas

    CERN Document Server

    Pandey, B P

    2015-01-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...

  2. Turbulence-particle interactions under surface gravity waves

    Science.gov (United States)

    Paskyabi, Mostafa Bakhoday

    2016-11-01

    The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.

  3. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    P R Sengupta; Sisir Nath

    2001-08-01

    The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the fibre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.

  4. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  5. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  6. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  7. Stern Gerlach spin filter using surface acoustic waves

    Science.gov (United States)

    Santos, Paulo V.; Nitta, Junsaku; Ploog, Klaus H.

    2004-12-01

    We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.

  8. Range of wavelengths possible to estimate phase velocities of surface waves in microtremors; Bido tansaho ni okeru suitei kanona bidochu no hyomenha iso sokudo no hacho han`i

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, K.; Okada, H.; Ling, S. [Hokkaido University, Sapporo (Japan)

    1996-05-01

    To specify the maximum wavelength of the phase velocities that can be estimated by the spatial autocorrelation (SPAC) method or F-K method in microtremor exploration, investigations were conducted using numerical simulation. In view of feasibility, an equilateral triangle array was employed, the maximum radius of the array having 7 observation points being 0.10km. The dispersion curve of the Rayleigh wave basic mode was calculated from an underground structure model. White noise was used as the incident wave, and, in case the waves came in from multiple directions, a different phase spectrum was assigned to each direction. In searching for the maximum wave length of phase velocities that could be estimated, a limit was imposed upon estimation, and it was prescribed that the wavelength be the limit if the difference between the theoretical value and estimated phase velocity was 5% or higher. As the result, it was found that it is possible to estimate the phase velocity when the wavelength is up to approximately 10 times longer than the array maximum radius in the SPAC method, and up to approximately 5 times longer in case of the F-K method. 10 refs., 5 figs., 1 tab.

  9. Ultrasonic guided wave focusing by a generalized phased array

    Science.gov (United States)

    Zhang, Bixing; Xie, Fuli; Dong, Hefeng; Gong, Junjie

    2013-01-01

    Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.

  10. Surface waves on arbitrary vertically-sheared currents

    CERN Document Server

    Smeltzer, Benjamin K

    2016-01-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of arbitrary depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past in 2D, and we herein extend and apply it to 3D problems. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving Fourier transformations in the horizontal plane. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between a concave down profile when compared to a constant shear profile with equal depth-averaged vorticity. New insight is given concerning the nature of extra spurious solution...

  11. Cyclodextrin-based surface acoustic wave chemical microsensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.Q.; Shi, J.X.; Springer, K.; Swanson, B.I.

    1996-07-01

    Cyclodextrin thin films were fabricated using either self-assembled monolayer (SAM) or solgel techniques. The resulting host receptor thin films on the substrates of surface acoustic wave (SAW) resonators were studied as method of tracking organic toxins in vapor phase. The mass loading of surface-attached host monolayers on SAW resonators gave frequency shifts corresponding to typical monolayer surface coverages for SAM methods and ``multilayer`` coverages for sol-gel techniques. Subsequent exposure of the coated SAW resonators to organic vapors at various concentrations, typically 5,000 parts per millions (ppm) down to 100 parts per billions (ppb) by mole, gave responses indicating middle-ppb-sensitivity ({approximately}50 ppb) for those sensor-host-receptors and organic-toxin pairs with optimum mutual matching of polarity, size, and structural properties.

  12. SHAPE RESTORATIONS OF OBJECT SURFACE ON POLARIZATION STRUCTURE OF REFLECTED ELECTROMAGNETIC WAVE FIELD

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available A problem of electromagnetic wave backscattering on a chosen 3D object is solved. A differential equation which is linked change of polarization coefficient of reflected wave with variation of matrix elements of object scattering is ob- tained. Obtained relation enables to develop algorithms of fast numerical solution of inverse problem of scattering on this object that is determination of complex function of object surface scattering and restoration of unknown object shape on phase distribution of reflected wave. The method uses ray representation of scattering fields based on principle Huygens- Fresnel. The algorithm of object shape restoration on phase of reflected wave allows to restore not only smooth surfaces, but also object surfaces with smaller roughness than a wave length.

  13. Engineered metabarrier as shield from seismic surface waves

    OpenAIRE

    2016-01-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by bu...

  14. On elliptic cylindrical Kadomtsev-Petviashvili equation for surface waves

    CERN Document Server

    Khusnutdinova, K R; Matveev, V B; Smirnov, A O

    2012-01-01

    The `elliptic cylindrical Kadomtsev-Petviashvili equation' is derived for surface gravity waves with nearly-elliptic front, generalising the cylindrical KP equation for nearly-concentric waves. We discuss transformations between the derived equation and two existing versions of the KP equation, for nearly-plane and nearly-concentric waves. The transformations are used to construct important classes of exact solutions of the derived equation and corresponding approximate solutions for surface waves.

  15. Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave

    CERN Document Server

    Nishida, Mitsuhiro

    2014-01-01

    We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in our model. Depending on the direct coupling, the model exhibits coexistence of the s-wave and the d-wave, and/or order competition, and has a triple point.

  16. Hall-magnetohydrodynamic surface waves in solar wind flow-structures

    Science.gov (United States)

    Miteva, Rossitsa; Zhelyazkov, Ivan; Erdélyi, Robert

    2004-02-01

    This paper investigates the parallel propagation of agnetohydrodynamic (MHD) surface waves travelling along an ideal steady plasma slab surrounded by a steady plasma environment in the framework of Hall magnetohydrodynamics. The magnitudes of the ambient magnetic field, plasma density and flow velocity inside and outside the slab are different. Two possible directions of the relative flow velocity (in a frame of reference co-moving with the ambient flow) have been studied. In contrast to the conventional MHD surface waves which are usually assumed to be pure surface or pseudo-surface waves, the Hall-MHD approach makes it necessary to treat the normal MHD slab's modes as generalized surface waves. The latter have to be considered as a superposition of two partial waves, one of which is a pure/pseudo-surface-wave whereas the other constitutive wave is a leaky one. From the two kinds of surface-wave modes that can propagate, notably sausage and kink ones, the dispersion behaviour of the kink mode turns out to be more complicated than that of the sausage mode. In general, the flow increases the waves' phase velocities comparing with their magnitudes in a static Hall-MHD plasma slab. The applicability of the results to real solar wind flow-structures is briefly discussed. EHPRG Award Lecture.

  17. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  18. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  19. An Internal Wave as a Frequency Filter for Surface Gravity Waves on Water

    CERN Document Server

    Lossow, K

    2010-01-01

    We consider one-dimensional model of the interaction between surface and the internal gravity water waves. The internal wave is modeled by its basic form: a non-dispersive field with a horizontal current that is uniform over all depth, insignificantly affected by the surface waves, while ignoring surface tension and wind growth/decay effects. The depth is infinite. Approximation for the height of the surface wave on the flow by the "elementary quasi stationary" solutions was found. It was shown that the flow acts as a frequency filter for gravitational waves on water.

  20. Nonlinear dynamics of wind waves: multifractal phase/time effects

    Directory of Open Access Journals (Sweden)

    R. H. Mellen

    1994-01-01

    Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2,  which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.

  1. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  2. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  3. Modeling the propagation of electromagnetic waves over the surface of the human body

    Science.gov (United States)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  4. Surface Waves in Almost Incompressible Elastic Materials

    CERN Document Server

    Virta, Kristoffer

    2013-01-01

    A recent study shows that the classical theory concerning accuracy and points per wavelength is not valid for surface waves in almost incompressible elastic materials. The grid size must instead be proportional to $(\\frac{\\mu}{\\lambda})^{(1/p)}$ to achieve a certain accuracy. Here $p$ is the order of accuracy the scheme and $\\mu$ and $\\lambda$ are the Lame parameters. This accuracy requirement becomes very restrictive close to the incompressible limit where $\\frac{\\mu}{\\lambda} \\ll 1$, especially for low order methods. We present results concerning how to choose the number of grid points for 4th, 6th and 8th order summation-by-parts finite difference schemes. The result is applied to Lambs problem in an almost incompressible material.

  5. The radiation of surface wave energy: Implications for volcanic tremor

    Science.gov (United States)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  6. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  7. Impacts of tropical cyclone inflow angle on ocean surface waves

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; HONG Xin

    2011-01-01

    The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, the effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.

  8. True propagation paths of surface waves from regional and teleseismic earthquakes across AlpArray Austria

    Science.gov (United States)

    Kolínský, Petr; Fuchs, Florian; Gröschl, Gidera; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    We utilize array beamforming techniques to investigate deterministic surface waves from regional and teleseismic earthquakes. Because the signal is well recognized and the fundamental mode for both Love and Rayleigh waves is separated before the beamforming, instead of searching for energy of all possible signals, we identify the frequency dependence of surface wave phase velocity and the true backazimuths of propagation. Using the dense AlpArray seismic broadband network distributed in the greater Alpine region across Europe with interstation distances around 40 km, we consider each station as a centre of an array of neighboring 5 to 6 stations. This allows us to calculate the local phase velocity dispersion curves for individual regions with diameter of approximately 80 - 100 km. By the beamforming, phase velocities are corrected for the true propagation backazimuth, which is slightly frequency dependent for each event. We invert the dispersion curves for S and P wave velocity distribution with depth. Measuring the phase velocity from different events distributed around the world, azimuthal dependence of the phase velocity is estimated and thus anisotropy constrained for particular depths. Beamforming of the signals in the time window sliding along the coda after the fundamental mode allows us to detect deterministic late surface-wave signals coming from certain directions dissimilar from the direct fundamental mode backazimuths for some of the events - these can be considered as surface wave reflections from lateral heterogeneities and vertical boundaries.

  9. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    Science.gov (United States)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  10. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model of a piezoele......In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...

  11. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  12. Standing magnetic wave on Ising ferromagnet: Nonequilibrium phase transition

    Science.gov (United States)

    Halder, Ajay; Acharyya, Muktish

    2016-12-01

    The dynamical response of an Ising ferromagnet to a plane polarised standing magnetic field wave is modelled and studied here by Monte Carlo simulation in two dimensions. The amplitude of standing magnetic wave is modulated along the direction x. We have detected two main dynamical phases namely, pinned and oscillating spin clusters. Depending on the value of field amplitude the system is found to undergo a phase transition from oscillating spin cluster to pinned as the system is cooled down. The time averaged magnetisation over a full cycle of magnetic field oscillations is defined as the dynamic order parameter. The transition is detected by studying the temperature dependences of the variance of the dynamic order parameter, the derivative of the dynamic order parameter and the dynamic specific heat. The dependence of the transition temperature on the magnetic field amplitude and on the wavelength of the magnetic field wave is studied at a single frequency. A comprehensive phase boundary is drawn in the plane described by the temperature and field amplitude for two different wavelengths of the magnetic wave. The variation of instantaneous line magnetisation during a period of magnetic field oscillation for standing wave mode is compared to those for the propagating wave mode. Also the probability that a spin at any site, flips, is calculated. The above mentioned variations and the probability of spin flip clearly distinguish between the dynamical phases formed by propagating magnetic wave and by standing magnetic wave in an Ising ferromagnet.

  13. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    Science.gov (United States)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  14. Wetting and phase separation at surfaces

    Indian Academy of Sciences (India)

    Sanjay Puri; Kurt Binder

    2005-06-01

    We study the problem of surface-directed spinodal decomposition, viz., the dynamical interplay of wetting and phase separation at surfaces. In particular, we focus on the kinetics of wetting-layer growth in a semi-infinite geometry for arbitrary surface potentials and mixture compositions. We also present representative results for phase separation in confined geometries, e.g., cylindrical pores, thin films, etc.

  15. Surface-Wave Tomography of Yucca Flat, Nevada

    Science.gov (United States)

    Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.

    2016-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. P-Wave Holographic Insulator/Superconductor Phase Transition

    CERN Document Server

    Akhavan, Amin

    2010-01-01

    Using a five dimensional AdS soliton in an Einstein-Yang-Mills theory with SU(2) gauge group we study p-wave holographic insulator/superconductor phase transition. To explore the phase structure of the model we consider the system in the probe limit as well as fully back reacted solutions. We will also study zero temperature limit of the p-wave holographic superconductor in four dimensions.

  17. An Efficient Hydrodynamic Model for Surface Waves

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LU Gang

    2009-01-01

    In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.

  18. Statistical model on the surface elevation of waves with breaking

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.

  19. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  20. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  1. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    Science.gov (United States)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  2. Dynamical charge density waves rule the phase diagram of cuprates

    Science.gov (United States)

    Caprara, S.; Di Castro, C.; Seibold, G.; Grilli, M.

    2017-06-01

    In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line TCDW0 of a strongly correlated Fermi liquid to the pseudogap T*(p ) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments.

  3. Wavefront modulation of water surface wave by a metasurface

    Science.gov (United States)

    Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun

    2015-10-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  4. Effects of Steady Flow on Magnetoacoustic-Gravity Surface Waves: I. The Weak Field Case

    Science.gov (United States)

    Erdélyi, R.; Mather, J. F.

    2017-02-01

    Magnetoacoustic gravity (MAG) waves have been studied for some time. In this article, we investigate the effect that a shear flow at a tangential discontinuity embedded in a gravitationally stratified and magnetised plasma has on MAG surface waves. The dispersion relation found is algebraically analogous to the relation of the non-flow cases obtained by Miles and Roberts ( Solar Phys. 141, 205, 1992), except for the introduction of a Doppler-shifted frequency for the eigenvalue. This feature, however, introduces rather interesting physics, including the asymmetric presence of forward- and backward-propagating surface waves. We find that increasing the equilibrium flow speed leads to a shift in the permitted regions of propagation for surface waves. For most wave number combinations this leads to the fast mode being completely removed, as well as more limited phase speed regimes for slow-mode propagation. We also find that upon increasing the flow, the phase speeds of the backward propagating waves are increased. Eventually, at high enough flow speeds, the wave's direction of propagation is reversed and is in the positive direction. However, the phase speed of the forward-propagating wave remains mainly the same. For strong enough flows we find that the Kelvin-Helmholtz instability can also occur when the forward- and backward-propagating modes couple.

  5. The Gouy phase shift in nonlinear interactions of waves

    Science.gov (United States)

    Lastzka, Nico; Schnabel, Roman

    2007-06-01

    We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.

  6. Object wave reconstruction by speckle illumination and phase retrieval

    DEFF Research Database (Denmark)

    Almoro, Percival; Hanson, Steen Grüner

    2009-01-01

    An innovative setup for the speckle-based phase retrieval method is proposed. In the conventional setup, a plane wave illuminates the test object and the transmitted wavefront is incident on a diffuser aperture generating a speckle field. The sampled speckle intensities at axially displaced planes...... are input into a phase retrieval algorithm based on a wave propagation equation. In the new setup, the arrangement of the diffuser and the object is reversed. A plane wave incident on the diffuser generates a speckle field which, in turn, is used to illuminate the object. The transmitted wavefront...

  7. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  8. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  9. Sensitivity of surface acoustic wave devices

    Science.gov (United States)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  10. Determination of ocean surface wave shape from forward scattered sound.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

  11. Freely decaying weak turbulence for sea surface gravity waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C

    2002-09-30

    We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.

  12. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Kousaka, Hiroyuki; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2003-05-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy.

  13. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    Science.gov (United States)

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  14. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...... in detail the cases Ag/Cu(100), Pt/Cu(111), Ag/Pt(111), Co/Cu(111), Fe/Cu(111), and Pd/Cu(110) in connection with available experimental results....

  15. A proper methodology aimed at surface wave tomography

    Directory of Open Access Journals (Sweden)

    J. Badal

    1997-06-01

    Full Text Available When applying a methodology for obtaining the 3D shear-wave velocity structure of a medium from surface wave dispersion data, the problem must be considered with caution since one inverts path-averaged velocities and the use of any inversion method entails some drawbacks such as lack of uniqueness, unwarranted stability and constraints affecting the data. In order to avoid the application of consecutive inversions and to overcome these drawbacks, we propose alternative mapping methods, for example spatial prediction methods, or else the use of an algorithm that, from a mathematical viewpoint, can be understood through the application of the orthogonal projection theorem onto convex sets (POCS. Among the first ones, we try inverse weighted distance interpolation. The POCS algorithm we have used discretises a second order differential equation for the velocity field with boundary conditions. All these imaging techniques aimed at volumetric modelling and the visualisation of data are discussed, and finally we show some results based on ray path velocities obtained previously by inversion of phase and group velocities of Rayleigh waves propagating across the Iberian peninsula.

  16. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    Science.gov (United States)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  17. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  18. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  19. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  20. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    CERN Document Server

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  1. How linear surface waves are affected by a current with constant vorticity

    CERN Document Server

    Ellingsen, Simen Å

    2013-01-01

    The interaction of surface waves with Couette-type current with uniform vorticity is a well suited problem for students approaching the theory of surface waves. The problem, although mathematically simple, contains rich physics, and is moreover important in several situations from oceanography and marine technology to microfluidics. We here lay out a simple two-dimensional theory of waves propagating upon a basic flow of uniform vorticity of constant depth. The dispersion relation is found, showing how the shearing current introduces different phase velocities for upstream and downstream propagating waves. The role of surface tension is discussed and applied to the case of a wave pattern created by a moving source, stationary as seen by the source. We conclude by discussing how the average potential and kinetic energies are no longer equal in the presence of shear.

  2. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  3. Surface Acoustic Waves to Drive Plant Transpiration

    Science.gov (United States)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  4. Sine-wave three phase resonance inverter for operation of ...

    African Journals Online (AJOL)

    naeema

    Sine-wave three phase resonance inverter for operation of renewable energy systemsR .... performance in this application [8]. Also it was ... A circuit implementation of the three phase boost dc–ac converter with two switches, two diodes, two.

  5. Gouy phase for full-aperture spherical and cylindrical waves.

    Science.gov (United States)

    Tyc, Tomáš

    2012-03-01

    We investigate the Gouy phase shift for full-aperture waves converging to a focal point from all directions in two and three dimensions. We find a simple interpretation for the Gouy phase in this situation and show that it has a dramatic effect on reshaping sharply localized pulses.

  6. Gouy phase for full-aperture spherical and cylindrical waves

    CERN Document Server

    Tyc, Tomas

    2012-01-01

    We investigate the Gouy phase shift for full-aperture waves converging to a focal point from all directions in two and three dimensions. We find a simple interpretation for the Gouy phase in this situation and show that it has a dramatic effect on reshaping sharply localized pulses.

  7. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  8. Wave mechanics in quantum phase space: hydrogen atom

    Institute of Scientific and Technical Information of China (English)

    LU Jun

    2007-01-01

    The rigorous sohutions of the stationary Schr(o)dinger equation for hydrogen atom are solved with the wave-mechanics method within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. The "Fourier-like"projection transformations of wave function from the phase space to position and momentum spaces are extended to three-dimensional systems. The eigenfunctions in general position and momentum spaces could be obtained through the transformations from eigenfunction in the phase space.

  9. Anomalous wave as a result of the collision of two wave groups on sea surface

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of the sea surface has shown that the collision of two groups of relatively low waves with close but noncollinear wave vectors (two or three waves in each group with a steepness of about 0.2) can result in the appearance of an individual anomalous wave whose height is noticeably larger than that in the linear theory. Since such collisions quite often occur on the ocean surface, this scenario of the formation of rogue waves is apparently most typical under natural conditions.

  10. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO 3

    Science.gov (United States)

    Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y.

    2017-01-01

    We investigated surface acoustic wave propagation in a Ni/LiNbO3 hybrid device. We found that the absorption and phase velocity are dependent on the sign of the wave vector, which indicates that the surface acoustic wave propagation has nonreciprocal characteristics induced by simultaneous breaking of time-reversal and spatial inversion symmetries. The nonreciprocity was reversed by 180∘ rotation of the magnetic field. The origin of the nonreciprocity is ascribed to interference of shear-type and longitudinal-type magnetoelastic couplings.

  11. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  12. Ocean wave nonlinearity and phase couplings

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Bispectrum of a swell dominated sea state is computed using Fourier coefficients from an original record and from simulated Fourier coefficients using pseudorandom (uniform) phase spectrum. The differences in the bispectra clearly bring out...

  13. What are the frequencies of standing magnetopause surface waves?

    CERN Document Server

    Archer, Martin

    2014-01-01

    We estimate, for the first time, the distribution of standing magnetopause surface wave (also called Kruskal-Schwartzschild mode) frequencies using realistic models of the magnetosphere and magnetosheath utilising an entire solar cycle's worth of solar wind data. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be 0.64$\\pm$0.06 mHz, consistent with that previously inferred from observed oscillation periods of the boundary. However, the distributions exhibit significant spread (of order $\\pm$0.3 mHz), much larger than suggested by proponents of discrete, stable "magic" frequencies of magnetospheric oscillation. The frequency is found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the occurrence of Kruskal-Schwartzschild ...

  14. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  15. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  16. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  17. A study of body-to-surface wave conversion associated with deep earthquakes

    Science.gov (United States)

    Shen, Z.; Ni, S.

    2015-12-01

    Understanding converted surface waves is helpful because they could improve the accuracy of earthquake location if the exacted scattered point is known as well as serve to image shallow structures with dispersion features. Previous studies have reported a few observations of body-to-surface-wave conversion associated with deep earthquakes. For example, Wagner and Langston used coda intensity analysis and f-k analysis to confirm a P-to-Rg wave and performed forward modeling with T-matrix method demonstrating that a 1km relief was responsible for the observed body-to-surface wave scattering. Moreover, Furumura et al. observed unusual Rayleigh waves converted from S wave observed at Australia with deep earthquakes occurred along Kermadec-Tonga trench and a 2D Pseudospetral method is adopted to illustrate that the Rayleigh waves could be explained by ridge structures. Both T-matrix and pseudospetral algorithms are based on numerical methods. However, we lack a theory to study the mechanism of those surface waves quantitatively. For instance, the relationship between the topography with the dominate frequency of converted surface waves could be resolved thoroughly with a theoretical approach. From this perspective, we carried out a theoretical method to calculate the converted Rayleigh wave with surface topography. During the calculation, a homogeneous half space medium is assumed and the path of the converted phase is divided into two segments. Firstly, we will introduce our theoretical method in detail and a comparison of our results and SEM results will be presented to verify our methods. Secondly, the topography effect and the transfer efficiency of P and S wave will be examined quantitatively with different source mechanisms. Then, we will report an observation of unusual large amplitude surface waves transferred from body waves at local stations. Our preliminary result shows that those anomalous waves are identified as Rayleigh wave and are probably generated by

  18. Development of Surface Acoustic Wave Electronic Nose

    Directory of Open Access Journals (Sweden)

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  19. Phased array tuning for optimal ultrasonic guided wave mode selection

    Science.gov (United States)

    Bostron, J. H.; Rose, J. L.; Moose, C. A.

    2014-02-01

    Ultrasonic guided waves have become widely used in a variety of nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection. An "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. In this work, we consider the use of guided interface waves for bond evaluation. A phased comb array transducer is used to sweep in the phase velocity - frequency space in an effort to determine optimal modes.

  20. Three phase full wave dc motor decoder

    Science.gov (United States)

    Studer, P. A. (Inventor)

    1977-01-01

    A three phase decoder for dc motors is disclosed which employs an extremely simple six transistor circuit to derive six properly phased output signals for fullwave operation of dc motors. Six decoding transistors are coupled at their base-emitter junctions across a resistor network arranged in a delta configuration. Each point of the delta configuration is coupled to one of three position sensors which sense the rotational position of the motor. A second embodiment of the invention is disclosed in which photo-optical isolators are used in place of the decoding transistors.

  1. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  2. Note on wavefront dislocation in surface water waves

    NARCIS (Netherlands)

    Karjanto, Natanael; Groesen, van E.

    2007-01-01

    At singular points of a wave field, where the amplitude vanishes, the phase may become singular and wavefront dislocation may occur. In this Letter we investigate for wave fields in one spatial dimension the appearance of these essentially linear phenomena. We introduce the Chu–Mei quotient as it is

  3. Aharonov-Bohm phase for an electromagnetic wave background

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Max [California State University Fresno, Department of Physics, Fresno, CA (United States); Singleton, Douglas [California State University Fresno, Department of Physics, Fresno, CA (United States); UNESP-Univ. Estadual Paulista, ICTP South American Institute for Fundamental Research, Sao Paulo, SP (Brazil); Yoshida, Atsushi [University of Virginia, Department of Physics, Charlottesville, VA (United States); Hue University College of Education, Hue (Viet Nam)

    2015-09-15

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral A{sub μ} dx{sup μ}) and the field (i.e. (1)/(2) ∫ F{sub μν}dσ{sup μν}) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)

  4. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  5. An experimental study of wave coupling in gravity surface wave turbulence

    Science.gov (United States)

    Aubourg, Quentin; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2016-11-01

    Weak turbulence is a theoretical framework aimed at describing wave turbulence (in the weakly nonlinear limit) i.e. a statistical state involving a large number of nonlinearly coupled waves. For gravity waves at the surface of water, it provides a phenomenology that may describe the formation of the spectrum of the ocean surface. Analytical predictions of the spectra are made based on the fact that energy transfer occurs through 4-wave coupling. By using an advanced stereoscopic imaging technique, we measure in time the deformation of the water surface. We obtain a state of wave turbulence by using two small wedge wavemakers in a 13-m diameter wavetank. We then use high order correlator (bi- and tri-coherence) in order to get evidence of the active wave coupling present in our system as used successfully for gravity-capillary wave turbulence. At odds with the weak turbulence theory we observe 3-wave interaction involving 2 quasi linear wave and a bound wave whose frequency lies on the first harmonics of the linear dispersion relation. We do not observe 4-wave coupling within the accuracy of our measurement. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 647018-WATU).

  6. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    Science.gov (United States)

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-07-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

  7. Spatial characteristics of ocean surface waves

    Science.gov (United States)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  8. Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie

    2007-01-01

    Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.

  9. A Model for the Propagation of Nonlinear Surface Waves over Viscous Muds

    Science.gov (United States)

    2007-07-05

    grained, cohesive sedimentary 1993; Foda et al., 1993). With the exception of fluidization environments is well known. Extreme dissipation rates have...processes ( Foda et al., 1993; DeWit, 1995), these models focus on a single, well-defined mud phase. Although the models Corresponding author. Tel.: +1...However, surface-interface wave interactions ( Foda , 1989; Hill and Foda , our focus at the present is on a wave model which can be 1998; Jamali et al

  10. Surface Waves in the paritally ionized solar plasma slab

    CERN Document Server

    Pandey, B P

    2013-01-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.

  11. Gravitational waves from first-order cosmological phase transitions

    Science.gov (United States)

    Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard

    1992-01-01

    A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.

  12. Experimental study of three-wave interactions among capillary-gravity surface waves

    CERN Document Server

    Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-01-01

    In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...

  13. Reflection of and SV waves at the free surface of a monoclinic elastic half-space

    Indian Academy of Sciences (India)

    Sarva Jit Singh; Sandhya Khurana

    2002-12-01

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, qP waves are not longitudinal and qSV waves are not transverse. Pure longitudinal and pure transverse waves can propagate only in certain specific directions. Closed-form expressions for the reflection coefficients of qP and qSV waves incident at the free surface of a homogeneous monoclinic elastic half-space are obtained. These expressions are used for studying numerically the variation of the reflection coefficients with the angle of incidence. The present analysis corrects some fundamental errors appearing in recent papers on the subject.

  14. Phase matched backward-wave second harmonic generation in a hyperbolic carbon nanoforest

    CERN Document Server

    Popov, A K; Myslivets, S A

    2016-01-01

    We show that deliberately engineered spatially dispersive metamaterial slab can enable co-existence and phase matching of contra-propagating ordinary fundamental and backward second harmonic electromagnetic modes. Energy flux and phase velocity are contra-directed in backward waves which determines extraordinary nonlinear-optical propagation processes. Frequencies, phase and group velocities, as well as nanowavequide losses inherent to the electromagnetic modes supported by the metamaterial can be tailored to optimize nonlinear-optical conversion of frequencies and propagation directions of the coupled waves. Such a possibility, which is of paramount importance for nonlinear photonics, is proved with numerical model of the hyperbolic metamaterial made of carbon nanotubes standing on metal surface. Extraordinary properties of backward-wave second harmonic in the THz and IR propagating in the reflection direction are investigated with focus on pulsed regime.

  15. Hanstholm phase 2B. Offshore wave energy test 1994 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The wave power converter consists of a float 2.5 meter in diameter, connected by a rope to a seabed-mounted piston pump, installed on 25 meter deep water 2,5 km offshore Hanstholm, Denmark. The converter is designed to absorb an average maximum power of 1 kW. Measured data in real sea conditions are compared to results based on computer simulations and previous tank testing. Losses caused by rope elasticity and hysteresis, friction in the pump and back flow through the valves are assessed. The economic perspectives of a large wave power plant are presented, based on a revised prototype incorporating the results and experience gained during the test period. The wave energy conversion test `Hanstholm phase 2B` has showed, that it it technically possible to exploit the offshore wave energy resource. This source of energy could become attractive for commercial enterprise. The wave power converter demonstrated a reliable performance over a period of nine months. It produced energy under all wave conditions and survived storm waves of 9,6 m. A 300 MW wave power plant in the Danish part of the North sea is estimated to produce electricity at a cost between 2,1 - 2,4 DKK/kWh. The electrical transmission to shore contribute to approximately 20% of the cost. New data predict a potential of 23 kW per meter wave front. The energy plan Energy 21 proposed by the Danish Department of Energy, includes a scenario incorporating wave energy in the energy system year 2030. A strategy for the development of wave energy, has been proposed as part of the project OWEC-1 supported by the European Joule R and D programme. A proposal for future Danish initiatives to develop second generation point absorber systems is outlined. (ARW) 29 refs.

  16. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  17. Identification and mitigation of T-S waves using localized dynamic surface modification

    Science.gov (United States)

    Amitay, Michael; Tuna, Burak A.; Dell'Orso, Haley

    2016-06-01

    The control of transition from a laminar to a turbulent flow over a flat plate using localized dynamic surface modifications was explored experimentally in Rensselaer Polytechnic Institute's subsonic wind tunnel. Dynamic surface modification, via a pair of Piezoelectrically Driven Oscillating Surface (PDOS) actuators, was used to excite and control the T-S wave over a flat plate. Creating an upstream, localized small disturbance at the most amplified frequency of fact = 250 Hz led to phase-locking the T-S wave. This enabled observation of the excited T-S wave using phase-locked stereoscopic particle image velocimetry. The growth of the T-S wave as it moved downstream was also measured using this technique (25% growth over four wavelengths of the excited wave). Activation of a downstream PDOS actuator (in addition to the upstream PDOS) at the appropriate amplitude and phase shift resulted in attenuation of the peak amplitude of the coherent velocity fluctuations (by up to 68%) and a substantial reduction of the degree of coherence of the T-S wave. Since the PDOS actuators used in this work were localized, the effect of the control strategy was confined to the region directly downstream of the PDOS actuator.

  18. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Mihaela Puiu; Ana-Maria Gurban; Lucian Rotariu; Simona Brajnicov; Cristian Viespe; Camelia Bala

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  19. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  20. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  1. Numerical simulation of floating bodies in extreme free surface waves

    Science.gov (United States)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  2. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  3. Palladium nanoparticle-based surface acoustic wave hydrogen sensor.

    Science.gov (United States)

    Sil, Devika; Hines, Jacqueline; Udeoyo, Uduak; Borguet, Eric

    2015-03-18

    Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room temperature.

  4. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  5. Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.

    1985-09-01

    The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.

  6. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  7. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  8. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  9. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  10. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  11. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    Science.gov (United States)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  12. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  13. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  14. Wave Generated by the NACA4412 Hydrofoil near Free Surface

    Directory of Open Access Journals (Sweden)

    Hassan Ghassemi

    2013-01-01

    Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.

  15. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  16. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  17. Visualization of Surface Acoustic Waves in Thin Liquid Films

    OpenAIRE

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, Jonathan M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with anWe demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfl...

  18. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves

    CERN Document Server

    Issenmann, Bruno; Falcon, Eric

    2016-01-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain most of these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths.s.

  19. Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)

    2014-10-15

    Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.

  20. Energy budget of surface waves in the global ocean

    Institute of Scientific and Technical Information of China (English)

    TENG Yong; YANG Yongzeng; QIAO Fangli; LU Jing; YIN Xunqiang

    2009-01-01

    Mechanical energy input from atmosphere and losses from wave-breaking dissipation of sea surface waves are estimated by a direct scheme. This scheme is based on the integration in the wavenumber space of the wind input and breaking dissipation source functions of the MASNUM wave model.The global amount of wind energy input, averaged in 2005, is about 57 TW, and the wave-breaking dissipation summed in deep-water is about 33 TW, over a half of the wind energy input. The residual may be dissipated by beach processes. Global distributions of the energy input and breaking dissipation concentrate in the westerlies of the Southern Hemisphere.

  1. Common-optical axis Fourier transform profilometry for water surface waves

    Science.gov (United States)

    Ghadiri, Mahdi; Krechetnikov, Rouslan

    2016-11-01

    The Fourier transform profilometry - a single-shot optical profilometric measurement of surface deformation - has been widely used to visualize and measure water surface waves. This well-known method is based on an optical system composed of a video projector displaying a fringe pattern on the surface and a camera recording this pattern as the reference image. The deformed fringe pattern following deformation of the surface later is then recorded and compared to the reference image in order to produce a phase map, from which the height of the deformed surface is reconstructed through a phase-to-height relation. The biggest challenge encountered while applying this method for water surface is the light reflection which previously has been partially treated by enhancing the water light diffusivity with the addition of Titanium dioxide. As part of the effort to improve the accuracy and practical applicability of the method, in this talk we will present a new implementation of a common-optical axis geometry along with an appropriate phase-height relation. Furthermore, in the case of water surface waves, we introduce a proper light filtration, which removes all the reflections remaining after addition of Titanium dioxide. The proposed technique provides an order of magnitude improvement in the accuracy of detecting and reconstructing the surface deformation, which is crucial for studying small amplitude waves and bifurcation phenomena.

  2. Wave Dragon. Test to evaluate hydraulic response. Report phase A

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.C.; Friis-Madsen, E.

    1999-02-01

    Danish Maritime Institute has in the spring 1998 built a model in scale 1:50 of the wave energy converter Wave Dragon. The scale model is based on calculations performed by the inventor Erik Friis-Madsen from the consultant Loewenmark F.R.I. The scale model is tested in the wave tank at Aalborg University, the Hydraulic and Coastal Engineering Laboratory. This report deals with the results from this test (phase A of the test program). The objective of the test series was to get a judgement of the viability of Wave Dragon in extreme sea conditions in the Danish part of the North Sea at a water depth of 30 meters. The test series had to document: The viability of the Wave Dragon in extreme sea conditions up to 100-year waves; the hydraulic response in 7 different sea conditions where forces and movements have been registered. The main findings are: Wave Dragon has the expected behavior, i.e. the converter is able to survive a 100-year storm; An adjustment of the pitch of the converter could improve the energy efficiency; The forces in the mooring system and the junction between wave reflectors and the platform are acceptable. The forces and the movements are registered at 7 different sea conditions. Video recording has been taken during the test. Five of the sea conditions correspond to 'normal' waves in which power will be produced. Two sea conditions correspond to extreme wave situations. The duration of the registration in each sea conditions was approximately 1/2 an hour, i.e. 3.5 hours in scale 1:1. The conclusion is: The planned test series to evaluate the energy performance can start up (phase B of the test program); The energy efficiency is expected to be improved by a slight modification in the geometry of the Wave Dragon. The modifications can include the geometry of the front and the stabilising wing at the rear end of the platform. Further on changes are possible in the stiffness of the junction between the wave reflectors and the platform and

  3. Feasibility of Using Dynamically Oscillating Surfaces to Control Tollmien-Schlichting Waves

    Science.gov (United States)

    Dell'Orso, Haley

    This work characterizes and controls Tollmien-Schlichting (T-S) waves by means of Piezoelectrically-Driven Oscillating Surface (PDOS) actuators, using Particle Image Velocimetry (PIV). A parametric study of PDOS actuator design parameters was conducted and a 0.79 mm thick rubber surface with a 12.7 mm diameter circular dimple, a cavity height of 2 mm, and a neck height of 2 mm was selected for implementation in T-S wave control over a flat plate. Two circular PDOS actuators were used to excite and control the most amplified frequency of the T-S wave on a flat plate. The actuators were placed at the mid-span of a flat plate at two streamwise locations of x/L = 0.18 and x/L = 0.28 downstream from the leading edge, where the free-stream velocity was U = 16 m/s. The upstream actuator was used to excite and phase-lock the T-S waves at an excitation frequency of ƒact = 250 Hz (corresponding to the most amplified frequency of the T-S wave, based on linear stability analysis), and the downstream PDOS was used to mitigate the T-S wave by driving it at an anti-phase with the appropriate amplitude. Time- and phase-averaged flow fields were acquired at two downstream interrogation domains. The first window of data, taken in between the two PDOS actuators, explored the effect of the excitation amplitude on the magnitude of the excited T-S waves. At the second window, located downstream of both PDOS actuators, the simultaneous activation of both actuators at an appropriate phase shift and amplitudes resulted in a significant reduction or augmentation of the T-S waves, depending on the phase shift between the two actuators.

  4. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    Science.gov (United States)

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-09-20

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  5. Polarization controlled directional propagation of Bloch surface wave.

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry

    2017-03-06

    Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

  6. Acoustomicrofluidic application of quasi-shear surface waves.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2017-02-20

    The paper analyzes the possibility of using predominantly boundary polarized surface acoustic waves for actuating fluidic effects in microchannels fabricated inside containers made of PDMS. The aim is to remove a shortcoming peculiar to conventionally utilized predominantly vertically polarized waves. Such waves strongly attenuate while they propagate under container side walls because of the leakage into them. Due to a specific feature of PDMS - extremely small shear elastic modulus - losses of boundary polarized modes should be far smaller. The amplitude of vertical mechanical displacements can be increased right inside the channel owing to the scattering of acoustic fields. As an example, the predominantly vertically polarized surface wave on 128YX LiNbO3 is compared with the quasi-shear leaky wave on 64YX LiNbO3. Our computations predict that, given the electric power supplied to the launching transducer, the quasi-shear wave will drive the fluid more efficiently than the surface wave on 128YX LiNbO3 when the container wall thickness is larger than 25-30 wavelengths, if there are no additional scatterers inside the channel. In the presence of a scatterer, such as a thin gold strip, the quasi-shear wave can be more efficient when the wall thickness exceeds 10-15 wavelengths.

  7. Steep waves in free-surface flow past narrow topography

    Science.gov (United States)

    Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.

    2017-06-01

    In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.

  8. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    Ashim P Jain; J Parashar

    2003-09-01

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.

  9. Some aspects of dispersive horizons: lessons from surface waves

    CERN Document Server

    Chaline, J; Maïssa, P; Rousseaux, G

    2012-01-01

    Hydrodynamic surface waves propagating on a moving background flow experience an effective curved space-time. We discuss experiments with gravity waves and capillary-gravity waves in which we study hydrodynamic black/white-hole horizons and the possibility of penetrating across them. Such possibility of penetration is due to the interaction with an additional "blue" horizon, which results from the inclusion of surface tension in the low-frequency gravity-wave theory. This interaction leads to a dispersive cusp beyond which both horizons completely disappear. We speculate the appearance of high-frequency "superluminal" corrections to be a universal characteristic of analogue gravity systems, and discuss their relevance for the trans-Planckian problem. We also discuss the role of Airy interference in hybridising the incoming waves with the flowing background (the effective spacetime) and blurring the position of the black/white-hole horizon.

  10. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Dianyuan Fan

    2011-01-01

    We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.

  11. Probing liquid surface waves, liquid properties and liquid films with light diffraction

    CERN Document Server

    Barik, T K; Kar, S; Roy, A; Barik, Tarun Kr.; Chaudhuri, Partha Roy; Kar, Sayan; Roy, Anushree

    2005-01-01

    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--c...

  12. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    Science.gov (United States)

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-08-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation.

  13. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  14. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  15. Experimental study of breaking and energy dissipation in surface waves

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  16. Research into surface wave phenomena in sedimentary basins

    Science.gov (United States)

    Wojcik, G. L.; Isenberg, J.; Ma, F.; Richardson, E.

    1981-12-01

    This study is a continuation of an engineering seismology research effort prompted by the sensitivity of guidance sets in Minuteman Wing V to distant earthquakes. An earlier report considers the probable cause of anomalous patterns of seismic alarms triggered by two North American earthquakes. This report extends the previous study by examining the propagation of surface waves from the 1975 Pocatello Valley, Idaho earthquake sequence across Wyoming to Wing V. In addition, the more general question of surface wave phenomena in sedimentary basins is addressed, particularly the effect of laterally inhomogeneous (dipping) basin-bedrock interfaces. Findings indicate that fundamental and first overtone surface waves are significantly modified by the travel path. In contrast, higher modes are relatively unchanged by the travel path, and affect Wing V in much the same way as body waves considered in the previous study.

  17. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. Surface wave characteristics in a micropolar transversely isotropic halfspace underlying an inviscid liquid layer

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2014-02-01

    Full Text Available The present investigation deals with the propagation of waves in a micropolar transversely isotropic half space with an overlying inviscid fluid layer. Effects of fluid loading and anisotropy on the phase velocity, attenuation coefficient, specific loss and relative frequency shift. Finally, a numerical solution was carried out for aluminium epoxy material and the computer simulated results for the phase velocity, attenuation coefficient, specific loss and relative frequency shift are presented graphically. A particular case for the propagation of Rayleigh waves in a micropolar transversely isotropic half-space is deduced and dispersion curves are plotted for the same as functions of the wave number. An amplitude of displacements and microrotation together with the path of surface particles are also calculated for the propagation of Rayleigh waves in the latter case

  19. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  20. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  1. Travel Times of Later Phases for Transmitting Waves through a Fracturing Westerly Granite Sample under a Triaxial Compressive Condition

    Science.gov (United States)

    Imahori, A.; Kawakata, H.; Hirano, S.; Yoshimitsu, N.; Takahashi, N.

    2015-12-01

    In laboratory, it is well-known that the elastic wave speed varies prior to compression fracture of the rock (e.g., Lockner et al., 1977, JGR). Using an enough number of travel times of elastic wave paths in a sample, we can estimate internal structure of the sample. However, the number of the elastic wave transducers is limited, and only the travel times of the first arrival are available in most experiments. Employing broadband transducers (Yoshimitsu et al., 2014, GRL), later phases become available to be analyzed. In the present study, we conduct a triaxial compressive test at room temperature under a dry condition and a confining pressure of 50 MPa, using a cylindrical Westerly granite sample of 100 mm long by 50 mm in diameter. Eight transducers are attached on the sample surface. One of the transducers is used as a wave source and voltage steps are repeatedly applied to it. The elastic waves passing through the sample are sensed by the other broadband transducers, and recorded at a sampling rate of 20 Msps. P-wave speed is estimated from the travel time of the direct P, and Vp/Vs value is assumed to be the √3 to give S-wave speed. We assume that all wave paths never bend except at the top and bottom surface of the sample. We calculate the travel times of later phases reflected at the top and/or bottom surfaces within 3 times. We collate the calculated travel times with observed waveforms. We can identify the travel time of two phases: single reflection from both top and bottom of the sample. On the other hand, some other observed and calculated phase arrivals do not match with each other. Then, we try to identify some remarkable phases using the calculated travel times of PS and SP converted waves and interfacial waves, taking into consideration of wave speed anisotropy.

  2. Broad-band Rayleigh wave phase velocity maps (10-150 s) across the United States from ambient noise data

    Science.gov (United States)

    Zhao, Kaifeng; Luo, Yinhe; Xie, Jun

    2017-02-01

    In this study, we demonstrate the feasibility of imaging broad-band (10-150 s) Rayleigh wave phase velocity maps on a continental scale using ambient noise tomography (ANT). We obtain broad-band Rayleigh waves from cross-correlations of ambient noise data between all station pairs of USArray and measure the dispersion curves from these cross-correlations at a period band of 10-150 s. The large-scale dense USArray enables us to obtain over 500 000 surface wave paths which cover the contiguous United States densely. Using these paths, we generate Rayleigh wave phase velocity maps at 10-150 s periods. Our phase velocity maps are similar to other reported phase velocity maps based on ambient noise data at short periods (phase velocity maps from ANT can be used to construct 3-D lithospheric and asthenospheric velocity structures.

  3. Horizon effects for surface waves in wave channels and circular jumps

    CERN Document Server

    Jannes, Gil; Chaline, Jennifer; Maïssa, Philippe; Mathis, Christian; Rousseaux, Germain

    2011-01-01

    Surface waves in classical fluids experience a rich array of black/white hole horizon effects. The dispersion relation depends on the characteristics of the fluid (in our case, water and silicon oil) as well as on the fluid depth and the wavelength regime. In some cases, it can be tuned to obtain a relativistic regime plus high-frequency dispersive effects. We discuss two types of ongoing analogue white-hole experiments: deep water waves propagating against a counter-current in a wave channel and shallow waves on a circular hydraulic jump.

  4. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    OpenAIRE

    N. Ramakrishnan; Parthiban, R.; Sawal Hamid Md Ali; Md. Shabiul Islam; Ajay Achath Mohanan

    2013-01-01

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film...

  5. Surface Waves Properties in Cosserat Continuum: Construction of Solution and Analysis Using Wavelet Transform

    Science.gov (United States)

    Kulesh, M.; Holschneider, M.; Shardakov, I.

    2005-12-01

    The problem of the surface elastic wave propagation in the half-space within the framework of the Cosserat continuum has been considered. Medium deformation in this model is described not only by the displacement vector, but also by kinematically independent rotation vector. This model can be used for the description of the media with microstructure, for example concrete, sand, sandy-gravel mixture etc. At the same time the applications of these models almost do not exist in praxis, since there are no reliable data about the material properties in nonsymmetrical elasticity theory and in fact there are no experiments which can demonstrate the effects of couple-stress behavior in solid under deformation. The main result of presented work consist in fact, that within the framework of the Cosserat continuum in half-space besides elliptical Rayleigh wave can be in existence the surface shear wave with only transversal component. Geometrically such wave is equal to Love wave, but in classical elasticity theory existence of the Love wave as surface elastic wave is defined by presence of a layer on a half-space, and while a layer thickness vanishing the Love wave proceeds to a plane wave. Thus, in Cosserat medium the new wave mode is found out, and there is no analogue of it in classical elasticity theory. As a second result of presented work the method of the displacement seismogram inversion has been proposed. This method is based on continues wavelet transform and allows to restore the wave number, phase and group velocities. These results can be effectively used in possible experiments which are aimed at the detection of couple-stress effects in medium and further at the identification of material constants of nonsymmetrical elasticity theory. This work was supported by Russian Foundation of Fundamental Research under project 03-01-00561 and by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the priority program SPP 1114, Mathematical methods for time

  6. Dynamics of a "Two-Phase" Bubble in Compression Waves

    Science.gov (United States)

    Khabeev, N. S.

    2016-07-01

    The behavior of a vapor envelope around a heated solid particle in a variable pressure field has been studied. Problems of this kind arise in propagation of shock waves in three-phase systems ″liquid-hot solid particles surrounded by vapor envelopes.″ The behavior of the system in the vicinity of the forward shock wave front on a linear rise in pressure in the system has been studied analytically. A simple formula describing the change in the radius of the vapor layer in time has been obtained.

  7. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  8. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  9. Magnetoacoustic surface gravity waves at a spherical interface

    Science.gov (United States)

    Ballai, I.; Forgács-Dajka, E.; Douglas, M.

    2011-03-01

    Aims: The plasma structured by magnetic fields in the solar atmosphere is a perfect medium for the propagation of guided magnetic and magnetoacoustic waves. Geometrical restriction of wave propagation is known to confer a dispersive character for waves. In addition, waves propagating along discontinuities in the medium are known to remain localized. As an extension to theories of guided waves in magnetic slabs and cylinders under solar and stellar conditions, we aim to study the propagation of magnetoacoustic-gravity waves at a spherical interface in the low solar corona (considered here as a density discontinuity), modelling global waves recently observed in the corona in EUV wavelengths. Methods: Using conservation laws at the interface we derive the dispersion relation in spherical geometry with a radially expanding magnetic field in the presence of gravitational stratification. The obtained dispersion relation describing fast magnetoacoustic-gravity surface waves is derived using an approximative method taking into account that propagation takes place near the solar surface. Results: Theoretical results obtained in the present study are applied to investigate the propagation of EIT waves in the low corona. The frequency of waves is shown to increase with decreasing density contrast at the interface. We also show that, for a given azimuthal wavenumber, the magnetic field has a very small effect on the value of the frequency of waves. When plotted against the location of the interface (in the radial direction) the frequency varies inversely proportional to the distance, while for a fixed density ratio and location of the interface the frequency is obtained to be defined in a very narrow region.

  10. Lithospheric structure of the Sea of Japan from surface wave tomography

    Science.gov (United States)

    Fry, B.; Sato, H.; Takeda, T.; Chen, Q. F.; Okaya, D. A.; Wang, K.

    2015-12-01

    We investigate the surface wave and shear wave velocity structure of the Sea of Japan based on group and phase velocity measurements made on broad-band, cross-correlated ambient noise. Continuous data from terrestrial broadband stations surrounding the sea are filtered, cross correlated on a day-by-day basis, and then stacked. The correlation functions are processed with multiple filters and group velocities are manually selected from 7s to 50s. Subsequent to multiple filtering, we apply phase-matched filtering and unwrap the phase of the resulting signal. This phase is then used to determine phase velocities by selecting an appropriate number of wave-cycles appropriate for the average velocity structure. The interstation dispersion curves are then inverted for 2D isotropic and anisotropic surface wave maps at discrete periods. In a second stage of inversion, the 2D isotropic inversion results are combined at each spatial node to create a "1D" dispersion curve. We use a linearized, iterative process to model the 1D dispersion at each node for depth-dependent shear-wave velocities. The 1D models are then combined to form at 3D model of shear wave velocity. We image slow shear-wave anomalies under the central basin and relatively fast velocities under the Yamamoto and Japan Basins and offshore of the western Japan shelf. Current estimates of azimuthal anistoropy from our inversions are poorly constrained due to sparse data distribution. Ongoing efforts are aimed at refining anisotropy estimates by increasing data density from noise correlations by increasing the spatial coverage of our database. Our isotropic and anisotropic models will be presented, as will a first attempt at defining lithospheric thickness based on radial anisotropy determined from our inversions.

  11. Generation of 1D interference patterns of Bloch surface waves

    Science.gov (United States)

    Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.

    2016-09-01

    Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.

  12. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  13. A phase-plane analysis of localized frictional waves

    Science.gov (United States)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  14. Guided wave propagation along the surface of a one-dimensional solid-fluid phononic crystal

    Science.gov (United States)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2013-09-01

    We consider an arbitrary periodic corrugated surface of a semi-infinite elastic solid that is immersed in a fluid, forming a one-dimensional phononic crystal. We study the existence and the polarization of guided waves that propagate along the interface. A coupled elastic-acoustic variational model is devised to obtain the dispersion of guided waves, which is implemented with a finite element method. It is found that the deeply corrugated interface supports a family of interface waves whose phase velocity decreases as the corrugation depth increases. Among these interface waves, some display an evanescent decay in the fluid that is reminiscent of the Scholte-Stoneley wave, while others propagate in the solid without causing significant pressure variation in the fluid, or cause localized pressure variations only inside the corrugation openings. The obtained results open the way for the study of conversions between bulk and surface waves in solid-fluid phononic crystals, and their use for wave confinement at the surface.

  15. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  16. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser

    CERN Document Server

    Agour, Mostafa; Falldorf, Claas

    2012-01-01

    A phase retrieval technique using a spatial light modulator (SLM) and a phase diffuser for a fast reconstruction of smooth wave fronts is demonstrated experimentally. Diffuse illumination of a smooth test object with the aid of a phase diffuser (maximum phase shift, Df = 0.85p) results in a significant diversity in the intensity measurements which, in turn, is beneficial for a non-stagnating iterative phase reconstruction. The use of the SLM enables accurate and fast speckle intensity recording and active correction of misalignments in the setup. The effectiveness of the technique is demonstrated in the optical testing of lenses.

  17. Guided wave phased array sensor tuning for improved defect detection and characterization

    Science.gov (United States)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  18. Linear ray and wave optics in phase space bridging ray and wave optics via the Wigner phase-space picture

    CERN Document Server

    Torre, Amalia

    2005-01-01

    Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f

  19. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    Science.gov (United States)

    Compelli, Alan; Ivanov, Rossen I.

    2016-08-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  20. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan

    2016-01-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  1. Propagation of elastic waves in a plate with rough surfaces

    Institute of Scientific and Technical Information of China (English)

    DAI Shuwu; ZHANG Hailan

    2003-01-01

    The characteristics of Lamb wave propagating in a solid plate with rough surfacesare studied on the basis of small perturbation approximation. The Rayleigh-Lamb frequencyequation expressed with SA matrix is presented. The Rayleigh-Lamb frequency equation fora rough surface plate is different from that for a smooth surface plate, resulting in a smallperturbation Ak on Lamb wave vector k. The imaginary part of Ak gives the attenuationcaused by wave scattering. An experiment is designed to test our theoretical predications.By using wedge-shape pipes, different Lamb wave modes are excited. The signals at differentpositions are received and analyzed to get the dispersion curves and attenuations of differentmodes. The experimental results are compared with the theoretical predications.

  2. On the cascade mechanism of short surface wave modulation

    Directory of Open Access Journals (Sweden)

    M. Charnotskii

    2002-01-01

    Full Text Available Modulation of short surface ripples by long surface or internal waves by a cascade mechanism is considered. At the first stage, the orbital velocity of the long wave (LW adiabatically modulates an intermediate length nonlinear gravity wave (GW, which generates a bound (parasitic capillary wave (CW near its crest in a wide spatial frequency band. Due to strong dependence of the CW amplitude on that of the GW, the resulting ripple modulation by LW can be strong. Adiabatic modulation at the first stage is calculated for an arbitrarily strong LW current. The CWs are calculated based on the Lonquet-Higgins theory, in the framework of a steady periodic solution, which proves to be sufficient for the cases considered. Theoretical results are compared with data from laboratory experiments. A discussion of related sea clutter data is given in the conclusion.

  3. The Whitham Equation as a Model for Surface Water Waves

    CERN Document Server

    Moldabayev, Daulet; Dutykh, Denys

    2014-01-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better tha...

  4. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  5. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  6. Evaluation of polarized terahertz waves generated by Cherenkov phase matching.

    Science.gov (United States)

    Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-10

    We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

  7. Gravitational waves from surface inhomogeneities of neutron stars

    Science.gov (United States)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  8. A coupled phase-field and volume-of-fluid method for accurate representation of limiting water wave deformation

    Science.gov (United States)

    Liu, Yu; Yu, Xiping

    2016-09-01

    A coupled phase-field and volume-of-fluid method is developed to study the sensitive behavior of water waves during breaking. The THINC model is employed to solve the volume-of-fluid function over the entire domain covered by a relatively coarse grid while the phase-field model based on Allen-Cahn equation is applied over the fine grid. A special algorithm that takes into account the sharpness of the diffuse-interface is introduced to correlate the order parameter obtained on the fine grid and the volume-of-fluid function obtained on the coarse grid. The coupled model is then applied to the study of water waves generated by moving pressures on the free surface. The deformation process of the wave crest during the initial stage of breaking is discussed in details. It is shown that there is a significant variation of the free nappe developed at the front side of the wave crest as the wave steepness differs. It is of a plunging type at large wave steepness while of a spilling type at small wave steepness. The numerical results also indicate that breaking occurs later and the duration of breaking is shorter for waves of smaller steepness and vice versa. Neglecting the capillary effect leads to wave breaking with a sharper nappe and a more dynamic plunging process. The surface tension also has an effect to prevent the formation of a free nappe at the front side of the wave crest in some cases.

  9. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  10. Lateral Flooding Associated to Wave Flood Generation on River Surface

    Science.gov (United States)

    Ramírez-Núñez, C.; Parrot, J.-F.

    2016-06-01

    This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.

  11. Phase matching in frequency mixing with internally generated waves

    Science.gov (United States)

    Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.

    1983-11-01

    The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.

  12. Phase conjugation by four-wave mixing in inhomogeneous plasmas

    Science.gov (United States)

    Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.

    1989-01-01

    The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.

  13. OPERA Collaboration have observed phase speed of neutrino wave function

    CERN Document Server

    Li, Shi-Yuan

    2011-01-01

    First we call the attention that velocity defined by ratio between some intervals of space and time respectively is sometimes ambiguous, in the framework of quantum theory. Velocity in general is not possible to be well defined as some generator of certain space-time symmetry operation. Then by analyzing the OPERA experiment we show that the OPERA Collaboration may have measured the phase speed of the neutrino wave function. Employing a very (maybe too) simple model which is just a reproduction from Brillouin's classical book, we demonstrate the phase velocity and group velocity. These are just a qualitative illustration rather than aiming to quantitively explain the OPERA data.

  14. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  15. Phase correlator reduces mm-wave radar cost

    Science.gov (United States)

    Weiss, R., Sr.; Hobbs, P.; Locatelli, J.

    1986-03-01

    A technique involving the IC storage of magnetron phase for reference has been developed to make possible the use of the low-cost efficient magnetron in obtaining phase coherent signals for pulse Doppler radar. In the new external coherence method, the recorded random midpulse-region phase is compared with the frequency of the echo allowing Doppler information, free of phase noise, to be extracted. The gated magnetron was tested at Ka-band in a 35-GHz radar, and good agreement with the CP-4 5.5 GHz radar was shown. With good accuracy down to 10 cm/s, the present system, especially in the mm-wave region, has important applications to meteorological and military radar.

  16. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-Feng; LIU Hai-Feng; ZHANG Guang-Cai; ZHAO Yan-Song

    2009-01-01

    We undertake a numerical simulation of shock experiments on tin reported in the literature,by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β,γ and liquid phases.In the MSG model,the Bauschinger effect is considered to better describe the unloading behavior.The phase diagram and Hugoniot of tin are calculated by MEOS,and they agree well with the experimental data.Combined with the MEOS and MSG models,hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment.Moreover,by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin,we further discuss the complex behavior of tin under shock-wave loading.

  17. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  18. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  19. The phase response and state space of slow wave contractions in the small intestine.

    Science.gov (United States)

    Parsons, Sean P; Huizinga, Jan D

    2017-09-01

    What is the central question of this study? What are the dynamical rules governing interstitial cell of Cajal (ICC)-generated slow wave contractions in the small intestine, as reflected in their phase response curve and state space? What is the main finding and its importance? The phase response curve has a region of phase advance surrounding a phase delay peak. This pattern is important in generating a stable synchrony within the ICC network and is related to the state space of the ICC; in particular, the phase delay peak corresponds to the unstable equilibrium point that threads the ICC's limit cycle. Interstitial cells of Cajal (ICCs) generate electrical oscillations in the gut. Synchronization of the ICC population is required for generation of coherent electrical waves ('slow waves') that cause muscular contraction and thereby move gut content. The phase response curve (PRC) is an experimental measure of the dynamical rules governing a population of oscillators that determine their synchrony and gives an experimental window onto the state space of the oscillator, its dynamical landscape. We measured the PRC of slow wave contractions in the mouse small intestine by the novel combination of diameter mapping and single pulse electrical field stimulation. Phase change (τ) was measured as a function of old phase (ϕ) and distance from the stimulation electrode (d). Plots of τ(ϕ, d) showed an arrowhead-shaped region of phase advance enclosing at its base a phase delay peak. The phase change mirrored the perturbed pattern of contraction waves in response to a pulse. The (ϕ, d) plane is the surface of a displacement tube extending from the limit cycle through state space. To visualize the state space vector field on this tube, latent phase (ϕlat ) was calculated from τ. At the transition from advance to delay, isochrons made boomerang turns before tightening and winding around the phase delay peak corresponding to the unstable equilibrium point that threads the

  20. Experimental and theoretical investigations on shock wave induced phase transitions

    Science.gov (United States)

    Gupta, Satish C.; Sikka, S. K.

    2001-06-01

    Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.

  1. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  2. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  3. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  4. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  5. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  6. Multichannel analysis of surface wave method with the autojuggie

    Science.gov (United States)

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  7. Engineered metabarrier as shield from seismic surface waves

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  8. Engineered metabarrier as shield from seismic surface waves.

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-20

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  9. Millimeter-wave phase resonances in compound reflection gratings with subwavelength grooves.

    Science.gov (United States)

    Beruete, Miguel; Navarro-Cía, Miguel; Skigin, Diana C; Sorolla, Mario

    2010-11-08

    Experimental evidence of phase resonances in a dual-period reflection structure comprising three subwavelength grooves in each period is provided in the millimeter-wave regime. We have analyzed and measured the response of these structures and show that phase resonances are characterized by a minimum in the reflected response, as predicted by numerical calculations. It is also shown that under oblique incidence these structures exhibit additional phase resonances not present for normal illumination because of the potentially permitted odd field distribution. A satisfactory agreement between the experimental and numerical reflectance curves is obtained. These results confirm the recent theoretical predictions of phase resonances in reflection gratings in the millimeter-wave regime, and encourage research in this subject due to the multiple potential applications, such as frequency selective surfaces, backscattering reduction and complex-surface-wave-based sensing. In addition, it is underlined here that the response becomes much more complex than the mere infinite analysis when one considers finite periodic structures as in the real experiment.

  10. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  11. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  12. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  13. Photonic crystal biosensor based on optical surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  14. Density wave like transport anomalies in surface doped Na2IrO3

    Directory of Open Access Journals (Sweden)

    Kavita Mehlawat

    2017-05-01

    Full Text Available We report that the surface conductivity of Na2IrO3 crystal is extremely tunable by high energy Ar plasma etching and can be tuned from insulating to metallic with increasing etching time. Temperature dependent electrical transport for the metallic samples show signatures of first order phase transitions which are consistent with charge or spin density wave like phase transitions predicted recently. Additionally, grazing-incidence small-angle x-ray scattering (GISAXS reveal that the room temperature surface structure of Na2IrO3 does not change after plasma etching.

  15. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    Science.gov (United States)

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  16. INTERNAL RESONANT INTERACTIONS OF THREE FREE SURFACE-WAVES IN A CIRCULAR CYLINDRICAL BASIN

    Institute of Scientific and Technical Information of China (English)

    马晨明

    2003-01-01

    The basic equations of free capillary-gravity surface-waves in a circular cylindrical basin were derived from Luke' s principle. Taking Galerkin ' s expansion of the velocity potential and the free surface elevation, the second-order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface-waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non-resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second-order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.

  17. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  18. Monitoring polymer properties using shear horizontal surface acoustic waves.

    Science.gov (United States)

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  19. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  20. Experimental evidence of wave chaos from a double slit experiment with water surface waves.

    Science.gov (United States)

    Tang, Yunfei; Shen, Yifeng; Yang, Jiong; Liu, Xiaohan; Zi, Jian; Li, Baowen

    2008-10-01

    In this paper, we report experimental evidence of wave chaos using the double slit water surface wave experiment. We demonstrate that classical dynamics of a domain manifests itself in the interference patterns after the diffraction behind the double slit. For a domain whose classical dynamics is integrable clear interference fringes can be observed behind the double slits; for a domain whose classical dynamics is chaotic, however, interference fringes can totally disappear. Our experimental results clearly demonstrate that the centuries-old double slit experiment can render an excellent tool to observe the manifestations of wave chaos.

  1. Attenuation of Rayleigh Surface Waves in a Porous Material

    Institute of Scientific and Technical Information of China (English)

    DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek

    2012-01-01

    Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.

  2. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    Science.gov (United States)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  3. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  4. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    Science.gov (United States)

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  5. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  6. Neural network surface acoustic wave RF signal processor for digital modulation recognition.

    Science.gov (United States)

    Kavalov, Dimitar; Kalinin, Victor

    2002-09-01

    An architecture of a surface acoustic wave (SAW) processor based on an artificial neural network is proposed for an automatic recognition of different types of digital passband modulation. Three feed-forward networks are trained to recognize filtered and unfiltered binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals, as well as unfiltered BPSK, QPSK, and 16 quadrature amplitude (16QAM) signals. Performance of the processor in the presence of additive white Gaussian noise (AWGN) is simulated. The influence of second-order effects in SAW devices, phase, and amplitude errors on the performance of the processor also is studied.

  7. Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry

    2016-09-01

    Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.

  8. A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the......The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase......-modulation of the present invention is performed by generating an amplitude modulation in the wave front, Fourier or Fresnel transforming the amplitude modulated wave front, filtering Fourier or Fresnel components of the Fourier or Fresnel distribution with a spatial filter such as a phase contrast filter, and regenerating...... the wave front whereby the initial amplitude modulation has transformed into a phase-modulation....

  9. Boussinesq modeling of surface waves due to underwater landslides

    Directory of Open Access Journals (Sweden)

    D. Dutykh

    2013-05-01

    Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

  10. Electromagnetic waves in a magnetized plasma near the critical surface

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2004-06-30

    Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)

  11. Hydrodynamic Synchronization and Metachronal Waves on the Surface of the Colonial Alga Volvox carteri

    Science.gov (United States)

    Brumley, Douglas R.; Polin, Marco; Pedley, Timothy J.; Goldstein, Raymond E.

    2012-12-01

    From unicellular ciliates to the respiratory epithelium, carpets of cilia display metachronal waves, long-wavelength phase modulations of the beating cycles, which theory suggests may arise from hydrodynamic coupling. Experiments have been limited by a lack of organisms suitable for systematic study of flagella and the flows they create. Using time-resolved particle image velocimetry, we report the discovery of metachronal waves on the surface of the colonial alga Volvox carteri, whose large size and ease of visualization make it an ideal model organism for these studies. An elastohydrodynamic model of weakly coupled compliant oscillators, recast as interacting phase oscillators, reveals that orbit compliance can produce fast, robust synchronization in a manner essentially independent of boundary conditions, and offers an intuitive understanding of a possible mechanism leading to the emergence of metachronal waves.

  12. High-power terahertz radiation from surface-emitted THz-wave parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Li Zhong-Yang; Yao Jian-Quan; Xu De-Gang; Zhong Kai; Wang Jing-Li; Bing Pi-Bin

    2011-01-01

    We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbC>3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THz wave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 nJ/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42 ×10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm2 to 148 MW/cm2 and 164 MW/cm2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.

  13. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  14. Surface waves on a quantum plasma half-space

    CERN Document Server

    Lázár, M; Smolyakov, A

    2007-01-01

    Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.

  15. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis

    Science.gov (United States)

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.

    2016-08-01

    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  16. On-surface radiation condition for multiple scattering of waves

    CERN Document Server

    Acosta, Sebastian

    2013-01-01

    The formulation of the on-surface radiation condition (OSRC) is extended to handle wave scattering problems in the presence of multiple obstacles. The new multiple-OSRC simultaneously accounts for the outgoing behavior of the wave fields, as well as, the multiple wave reflections between the obstacles. Like boundary integral equations (BIE), this method leads to a reduction in dimensionality (from volume to surface) of the discretization region. However, as opposed to BIE, the proposed technique leads to boundary integrals with smooth kernels. In addition, under appropriate conditions, this approach leads to approximate explicit (up to numerical integration) formulas for the solution, avoiding the need to invert any operator or matrix. As a result, the computational effort is significantly reduced. This approach may serve as a fast method to explore parameter-spaces or as an inexpensive pre-conditioner for Krylov iterative solutions of BIE.

  17. Langasite surface acoustic wave gas sensors: modeling and verification

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  18. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  19. SAW devices based on novel surface wave excitations

    Science.gov (United States)

    Therrien, Joel; Dai, Lian

    2015-03-01

    Surface Acoustic Wave (SAW) devices have applications in radio frequency and microwave filtering as well as highly sensitive sensors. Current SAW design employs the use of an array of electrode pairs, referred to as Inter-Digitated Transducers (IDTs) for creating and receiving surface waves on piezoelectric substrates. The pitch of the electrode pairs along with the properties of the substrate determine the operating frequency. The number of electrode pairs determine the bandwidth of the emitted waves. We will present a novel configuration that eliminates the need for the IDTs and replaces with with a single circular electrode located inside a larger ground ring. This configuration induces drumhead modes. We will show that the resonant frequencies follow the zeros of Bessel functions of the first kind. Applications in RF filtering and mass sensing will be presented.

  20. Multiple-frequency surface acoustic wave devices as sensors

    Science.gov (United States)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  1. Drops subjected to surface acoustic waves: flow dynamics

    Science.gov (United States)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team

    2012-11-01

    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  2. Surface waves in the magnetized, collisional dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)

    2013-10-15

    The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.

  3. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  4. Random phase wave: a soluble non-Markovian system

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.

    1977-12-01

    The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.

  5. Hydraulic model tests on modified Wave Dragon. Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Hald, T.; Lynggaard, J.

    2002-11-01

    The purpose of this report is to describe the model tests conducted with a new designed 2. generation WD model as well as obtained model test results. Tests are conducted as sequential reconstruction followed by physical model tests. All details concerning the reconstruction are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: 'Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequential tests of changes to the model geometry and mass distribution parameters' sponsored by the Danish Energy Agency (DEA) wave energy programme. The tests will establish a well documented basis for the development of a 1:4.5 scale prototype planned for testing Nissum Bredning, a sea inlet on the Danish West Coast. (au)

  6. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  7. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    Science.gov (United States)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  8. Dispersive surface waves along partially saturated porous media

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100 Hz–1 MHz). A modified Biot theory of poromechanics is implemented which takes into account the interact

  9. Quantitative photography of intermittency in surface wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W.; Budakian, R.; Putterman, S.J. [Univ. of California, Los Angeles, CA (United States)

    1997-12-31

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state.

  10. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  11. Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.

  12. Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range

    Science.gov (United States)

    Lewen, F.; Gendriesch, R.; Pak, I.; Paveliev, D. G.; Hepp, M.; Schieder, R.; Winnewisser, G.

    1998-01-01

    We have developed a new submillimeter wave pulsed molecular beam spectrometer with phase stabilized backward wave oscillators (BWOs). In the frequency ranges of 260-380 and 440-630 GHz, the BWOs output power varies between 3 and 60 mW. Part of the radiation was coupled to a novel designed harmonic mixer for submillimeter wavelength operation, which consists of an advanced whiskerless Schottky diode driven by a harmonic of the reference synthesizer and the BWO radiation. The resulting intermediate frequency of 350 MHz passed a low noise high electron mobility transistor amplifier, feeding the phase lock loop (PLL) circuit. The loop parameters of the PLL have been carefully adjusted for low phase noise. The half power bandwidth of the BWO radiation at 330 GHz was determined to be as small as 80 MHz, impressively demonstrating the low phase noise operation of a phase locked BWO. A double modulation technique was employed by combining an 80 Hz pulsed jet modulation and a 10-20 kHz source modulation of the BWO and reaching a minimum detectable fractional absorption of 2×10-7. For the first time, a number of pure rotational (Ka=3←2, Ka=4←3) and rovibrational transitions in the van der Waals bending and stretching bands of the Ar-CO complex were recorded.

  13. Fast calculate the parameters of surface acoustic wave coupling-of-modes model

    Institute of Scientific and Technical Information of China (English)

    LIU Jiansheng; HE Shitang

    2007-01-01

    Accurate solutions of acoustic waves in piezoelectric substrate and metal film as layered structure were obtained. Phase velocity, electromechanical coupling coefficient and static capacitance were calculated based upon the solutions. Chen and Haus' theory was used to analyze surface acoustic waves in shorten gratings with single finger every period and a reflection coefficient expression of one strip was presented. Parameters of aluminum on X112°Y LiTaO3 and gold on ST-quartz were calculated. The results agreed well with those from Ken-ya Hashimoto's theory. The reflection coefficient of gold on ST-quartz was measured to verify the theoretical result.

  14. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    Science.gov (United States)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  15. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the

  16. Decay of viscous surface waves without surface tension

    CERN Document Server

    Guo, Yan

    2010-01-01

    Consider a viscous fluid of finite depth below the air. In the absence of the surface tension effect at the air-fluid interface, the long time behavior of a free surface with small amplitude has been an intriguing question since the work of Beale \\cite{beale_1}. In this monograph, we develop a new mathematical framework to resolve this question. If the free interface is horizontally infinite, we establish that it decays to a flat surface at an algebraic rate. On the other hand, if the free interface is periodic, we establish that it decays at an almost exponential rate, i.e. at an arbitrarily fast algebraic rate determined by the smallness of the data. Our framework contains several novel techniques, which include: (1) a local well-posed theory of the Navier-Stokes equations in the presence of a moving boundary; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives o...

  17. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  18. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    Science.gov (United States)

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  19. Unseeded Large Scale PIV measurements accounting for capillary-gravity waves phase speed

    CERN Document Server

    Benetazzo,; Gamba,; M.,; Barbariol,; F,

    2016-01-01

    Large Scale Particle Image Velocimetry (LSPIV) is widely recognized as a reliable method to measure water surface velocity field in open channels and rivers. LSPIV technique is based on a camera view that frames the water surface in a sequence, and image-processing methods to compute water surface displacements between consecutive frames. Using LSPIV, high flow velocities, as for example flood conditions, were accurately measured, whereas determinations of low flow velocities is more challenging, especially in absence of floating seeding transported by the flow velocity. In fact, in unseeded conditions, typical surface features dynamics must be taken into account: besides surface structures convected by the current, capillary-gravity waves travel in all directions, with their own dynamics. Discrimination between all these phenomena is here discussed, providing a new method to distinguish and to correct unseeded LSPIV measurements associated with wavy structures, accounting for their phase speed magnitude and ...

  20. Laboratory Scale Seismic Surface Wave Testing for the Determination of Soil Elastic Profiles

    Directory of Open Access Journals (Sweden)

    Aziman Madun

    2012-10-01

    Full Text Available Seismic surface wave testing is well-adapted to the study of elastic parameters and, hence, the elastic profile of soils in the field.  Knowledge of a ground’s stiffness profile enables the prediction of ground movement and, thus, the quality of the foundation.  The stiffness parameter obtained in this research corresponds to the measurement of the seismic surface wave phase velocity of materials, which relates to the very small strain shear modulus.  This paper describes a methodology for performing surface wave testing in the laboratory.  In comparison with field tests, a laboratory-scale experiment offers the advantage of allowing the process of data collection to be calibrated, and analytical studies can be carried out as the properties of the material under test are controllable and known a priori.  In addition, a laboratory scale experiment offers insight into the interaction between the seismic surface wave, the soil, the boundary and, hence, the constraints associated with the seismic surface wave technique.  Two simplified models of different sizes were developed using homogeneous remoulded Oxford Clay (from Midlands region of the UK.  The laboratory experimental methodology demonstrated that the seismic surface wave equipment used in the laboratory was directly influenced by the clay properties as well as the size of the test model.  The methodology also showed that the arrangement of the seismic source and the receivers had an impact on the range of reliable frequencies and wavelengths obtained.

  1. Sensitivity Distribution Properties of a Phase-Shifted Fiber Bragg Grating Sensor to Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Qi Wu

    2014-01-01

    Full Text Available In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the material’s geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring.

  2. Sensitivity distribution properties of a phase-shifted fiber bragg grating sensor to ultrasonic waves.

    Science.gov (United States)

    Wu, Qi; Okabe, Yoji; Saito, Kazuya; Yu, Fengming

    2014-01-09

    In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG) to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the material's geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring.

  3. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  4. Longitudinal leaky surface acoustic wave on Y-rotated cut quartz substrates

    Institute of Scientific and Technical Information of China (English)

    ZHOURan; TONGXiaojun; QIUGang; ZHANGDe

    2003-01-01

    The properties of Quasi-longitudinal leaky surface acoustic wave(QLLSAW) on Yrotated cut quartz substrates were presented. The phase velocity of QLLSAW on the quartz substrate along some orientations can be up from 6200m/s to 7100m/s, circa 100% above that of regular SAW. Both theoretical and experimental results show that QLLSAW propagating along some promising orientations for SAW devices are of small power flow angle and low temperature coefficient, for example, along the Euler angle (0°, 155.25°, 42°), the measurements of phase velocity and temperature coefficient of delay of QLLSAW are 6201m/s and 12.9ppm/℃.The experimental results show that QLLSAW had little absorption by liquid loading on the substrate surface, which proved that the direction of particle motion is the same as wave vector and parallel to the surface of the substrates, i.e., the wave is of the properties of longitudinal wave.

  5. Freak wave: prediction and its generation from phase coherence

    NARCIS (Netherlands)

    Latifah, Arnida Laitalul

    2016-01-01

    The processes that lead to the appearance of an extreme wave are not unique: one extreme wave may occur due to different mechanisms than another extreme wave. This gives challenges in the study of extreme waves, which are also called ’freak’ waves, or ’rogue’ waves when they satisfy certain conditio

  6. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  7. Boussinesq modeling of surface waves due to underwater landslides

    CERN Document Server

    Dutykh, Denys

    2013-01-01

    Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion which govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced which is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It also found that the fi...

  8. Simple equations guide high-frequency surface-wave investigation techniques

    Science.gov (United States)

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Precessional magnetization switching by a surface acoustic wave

    Science.gov (United States)

    Thevenard, L.; Camara, I. S.; Majrab, S.; Bernard, M.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.

    2016-04-01

    Precessional switching allows subnanosecond and deterministic reversal of magnetic data bits. It relies on triggering a large-angle, highly nonlinear precession of magnetic moments around a bias field. Here we demonstrate that a surface acoustic wave (SAW) propagating on a magnetostrictive semiconducting material produces an efficient torque that induces precessional switching. This is evidenced by Kerr microscopy and acoustic behavior analysis in a (Ga,Mn)(As,P) thin film. Using SAWs should therefore allow remote and wave control of individual magnetic bits at potentially GHz frequencies.

  10. New thermodynamics for evaluating the surface-phase enrichment in the lower surface tension component.

    Science.gov (United States)

    Santos, M Soledade C S; Reis, João Carlos R

    2014-09-15

    Regarding the surface phase of liquid mixtures as a thermodynamic phase, ideal surface phases are designed so that at fixed bulk-phase composition, real and ideal surface phases have the same chemical composition and identical limiting slopes for the dependence of surface tension on mole fraction. Standard chemical potentials are introduced for surface phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures. Guidelines for choosing molecular models to estimate the molar surface area of pure constituents are given. Ideal and excess surface tensions are calculated by using literature data for aqueous ethanol solutions at 298 K. These results show treatment based on Butler's equations grossly overestimate predicted surface tensions, thus leading to lower ethanol content in the surface phase. These inaccuracies are ascribed to the use of molar surface areas in model equations that are too small.

  11. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    Science.gov (United States)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  12. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  13. Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    OpenAIRE

    Christiansen, Michael B.; Glendenning, Norman K.; Schaffner-Bielich, Jurgen

    2000-01-01

    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in ...

  14. Observations and Modelling of Winds and Waves During the Surface Wave Dynamics Experiment

    Science.gov (United States)

    1994-03-01

    l’Environnement Terrestre et Planitalre (CRPE), France; Dr. Will M. Drennan, National Water Research Institute, CCIW; Dr. Lynn "Nick" K. Shay, RSMAS; Dr...250 m), and the orbital velocities of the low-frequency surface wave components. A summary of the results from SWADE are described in Shay (1993). 18

  15. Downstream migrating antidunes or in-phase waves?

    Science.gov (United States)

    Núñez González, Francisco

    2014-05-01

    Late back in the beginning of the 20th century, Gilbert observed bedforms that migrated in opposite direction to flow. Since this feature was remarkable and inverse to the behavior of dunes (most often observed in rivers and flumes), he called the new species antidunes. Subsequent researchers identified other characteristic attributes of the new species, and it was later commonly accepted that a defining characteristic of antidunes was that undulations of bed and water profiles were roughly in-phase. Due to its generality, such definition has given place to some ambiguities, particularly when dealing with bedforms close to the critical-supercritical transition, as occurs with bedforms with bed and water profiles roughly in-phase but migrating downstream. Such bedforms are described by different researchers, but they are not always classified as antidunes. Some sedimentologists argue that given the depositional pattern of such streamwise migrating forms is different to that of upstream-migrating antidunes, the more generic term "in-phase waves" should be applied to consider them as a different class. The lack of a stability field for 2D downstream-migrating antidunes in the classical theoretical study of Kennedy in the early sixties, has also contributed to some confusion. According to such theoretical diagram, downstream-migrating antidunes could only exist being 3D, but empirical evidences -even from Kennedy- contradict this outcome. In this work, such results and other morphodynamic features of downstream-migrating antidunes will be discussed, in light of experimental data and a simple hydraulic analysis of the direction of movement of antidunes. An open question will be left to debate about the appropriateness of classifying downstream-migrating in-phase waves as antidunes, and it will be emphasized that finding consensus between different disciplines involved with the study of bedforms will be advantageous.

  16. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  17. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  18. PZT Network and Phased Array Lamb Wave Based SHM Systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C [Academia da Forca Aerea, Granja do Marques, 2715-021 Pero Pinheiro (Portugal); Rocha, B; Suleman, A, E-mail: cbsilva@emfa.pt [University of Victoria, Department of Mechanical Engineering, PO Box 3055, Stn.CSC, Victoria, BC, V8W 3P6 (Canada)

    2011-07-19

    With the application of newer materials, such as composite materials, and growing complexity and capacity of current aircraft structures, reliably and completely assess the condition of the total structures in real time is then of growing and utmost importance. PZT Network and Phased Array, Lamb wave based Structural Health Monitoring (SHM) systems were developed to be applied to thin panels. The selection of transducers, their size and selected locations for their installation are described. The development and selection of the signal generation and data acquisition systems is also presented in detail. The requirements conducing to the development and selection of these systems are laid and particularly the selection of the actuation signal applied is justified. The development of a damage detection algorithm based in the comparison of the current structural state to a reference state is described, to detect damage reflected Lamb waves. Such method was implemented in software and integrated in the SHM system developed. Subsequently the detection algorithm, based in discrete signals correlation, was further improved by incorporating statistical methods. For phased arrays, a novel damage location algorithm is presented based on the individual sensors response. A visualization method based concurrently in the statistical methods developed and superposition of the different results obtained from a test set was implemented. These tests conducted to the successful and repeatable detection of 1mm damages in a multiple damaged plate with great confidence. Finally, a brief comparison and a hybrid system implementation is presented.

  19. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  20. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  1. Biological decontamination of surfaces using guided ionization waves

    Science.gov (United States)

    Jarrige, Julien; Zaepffel, Clement

    2016-09-01

    Atmospheric pressure plasma jets have received an increasing attention these last ten years in various domains, including biomedical applications and decontamination. Among these technologies, guided ionization waves (also called ``plasma bullets'') are very promising because of their ability to produce a highly non-equilibrium plasma. Reactive species can be generated in the open air over a long distance during the propagation of the wave (typically: several cm), while the background gas remains at ambient temperature. A non-thermal plasma system has been developed and tested for the biological decontamination of surfaces. It consists of a dielectric barrier discharge in a helium flow driven by high voltage pulses. The propagation of the ionization wave and the spatial distribution of the species have been characterized by high speed imaging and optical emission spectroscopy. The influence of the discharge parameters on the plasma properties is investigated. Results of decontamination on several bacteria are shown, and the decontamination efficiency is compared with the plasma properties.

  2. Surface wave dynamics in orbital shaken cylindrical containers

    Science.gov (United States)

    Reclari, M.; Dreyer, M.; Tissot, S.; Obreschkow, D.; Wurm, F. M.; Farhat, M.

    2014-05-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction, or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications.

  3. Surface wave dynamics in orbital shaken cylindrical containers

    CERN Document Server

    Reclari, Martino; Tissot, Stéphanie; Obreschkow, Danail; Wurm, Florian Maria; Farhat, Mohamed

    2014-01-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications. Copyright (2014) American Institute of Physics. This article may be downloaded ...

  4. Identification of Swell in Nearshore Surface Wave Energy Spectra

    Directory of Open Access Journals (Sweden)

    Paul A. Work

    2010-06-01

    Full Text Available An approach for routine identification of swell and sea in nominally fully developed, omnidirectional, surface water wave energy spectra measured in arbitrary water depth is developed, applied, and discussed. The methodology is an extension of earlier work with deepwater spectra and involves identifying the frequency at which wave steepness is maximized and relating this to the swell separation frequency. The TMA parameterized spectrum is employed to establish a relationship between the two frequencies so that the methodology can be used when wind data are unavailable. The methodology is developed for finite water depth and tested using a dataset that includes both acoustic Doppler current profiler and wave buoy data, recorded simultaneously at the same location. For cases where the sea and swell are clearly, visually distinguishable in the omnidirectional spectra, the new method accurately distinguishes between the two, but it can also be used to identify sea and swell in unimodal spectra.

  5. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  6. Transport of particles by surface waves: a modification of the classical bouncer model

    Energy Technology Data Exchange (ETDEWEB)

    Ragulskis, M [Department of Mathematical Research in Systems, Kaunas University of Technology, Studentu 50-222, 51638 Kaunas (Lithuania); Sanjuan, M A F [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)], E-mail: minvydas.ragulskis@ktu.lt, E-mail: miguel.sanjuan@urjc.es

    2008-08-15

    We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications.

  7. Surface acoustic waves enhance neutrophil killing of bacteria.

    Science.gov (United States)

    Loike, John D; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2), significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  8. Surface acoustic waves enhance neutrophil killing of bacteria.

    Directory of Open Access Journals (Sweden)

    John D Loike

    Full Text Available Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  9. Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation

    Directory of Open Access Journals (Sweden)

    F. Mirzade

    2013-01-01

    Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.

  10. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.

    Science.gov (United States)

    Taylor, Lucas; Talghader, Joseph

    2015-10-20

    Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7  m2/s.

  11. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  12. Optical biosensors based on photonic crystal surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2009-01-01

    Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques--including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

  13. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-09-01

    Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  14. Nonlinear mixing of laser generated narrowband Rayleigh surface waves

    Science.gov (United States)

    Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.

  15. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  16. Surface wave and linear operating mode of a plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  17. Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves

    Science.gov (United States)

    Tremblay, Simon-Pierre; Karray, Mourad; Chekired, Mohamed; Bessette, Carole; Jinga, Livius

    2017-01-01

    The inspection of underground concrete utility structures can be a challenging task due to their inaccessibility. This article presents a nondestructive inspection technique for the lids of such structures based on the propagation of elastic waves where the variation in soil vertical acceleration following an impact is recorded along a given line at the surface of the soil. The structures investigated are made of reinforced concrete and are located below a shallow homogeneous soil layer which is covered by a pavement. It is shown through finite difference numerical modeling that elastic waves are affected by the state of degradation of the underground concrete structure. It is also shown that the difference in dynamic properties between the soil and the concrete structure causes the latter to act as a waveguide that affects the variation of the vertical acceleration measured at the surface of the model. The propagation of elastic waves within different underground profiles is studied in terms of the variation of their energy and of their group and phase velocity. Theoretical models, computed using the propagator matrix technique, are presented in the appendix to demonstrate the importance of the waveguide effects, caused by the presence of the concrete structure, on the group and phase velocity dispersion curves of Rayleigh waves. Finally, some of the results obtained from the inspection of two different real underground structures are also presented. These results show that the proposed inspection technique, developed based on 1D and 2D numerical testing, is also effective for real structures.

  18. Surface Catalytic Mechanism in Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin

    2001-01-01

    A pseudo-first-order catalytic mechanism in which both reactant and product of the redox reaction are strongly immobilized on the electrode surface is theoretically analyzed under conditions of square-wave voltammetry (SWV). A mathematical procedure is developed for diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitement signal are studied. The phenomenon...

  19. Laser ablation method for production of surface acoustic wave sensors

    Science.gov (United States)

    Lukyanov, Dmitry; Shevchenko, Sergey; Kukaev, Alexander; Safronov, Daniil

    2016-10-01

    Nowadays surface acoustic wave (SAW) sensors are produced using a photolithography method. In case of inertial sensors it suffers several disadvantages, such as difficulty in matching topologies produced on opposite sides of the wafer, expensive in small series production, not allowing further topology correction. In this case a laser ablation method seems promising. Details of a proposed technique are described in the paper along with results of its experimental test and discussion.

  20. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  1. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    Science.gov (United States)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  2. EMAT phased array: A feasibility study of surface crack detection.

    Science.gov (United States)

    Isla, J; Cegla, F

    2017-02-14

    Electromagnetic-acoustic transducers (EMATs) consist of a magnet and a coil. They are advantageous in some non-destructive evaluation (NDE) applications because no direct contact with the specimen is needed to send and receive ultrasonic waves. However, EMATs commonly require excitation peak powers greater than 1kW and therefore the driving electronics and the EMAT coils have to be bulky. This has hindered the development of EMAT phased arrays with characteristics similar to those of conventional piezoelectric phased arrays. Phased arrays are widely used in NDE because they offer superior defect characterization in comparison to single-element transducers. In this paper, we report a series of novel techniques and design elements that make it possible to construct an EMAT phased array that performs similarly to conventional piezoelectric arrays used in NDE. One of the key enabling features is the use of coded excitation to reduce the excitation peak power to less than 4.8W (24 Vpp and 200mA) so that racetrack coils with dimensions 3.2×18mm(2) can be employed. Moreover, these racetrack coils are laid out along their shortest dimension so that 1/3 of their area is overlapped. This helps to reduce the crosstalk between the coils, i.e., the array elements, to less than -15dB. We show that an 8-element EMAT phased array operating at a central frequency of 1MHz can be used to detect defects which have a width and a depth of 0.2 and 0.8mm respectively and are located on the surface opposite to the array.

  3. Elastic friction drive of surface acoustic wave motor.

    Science.gov (United States)

    Kurosawa, Minoru Kuribayashi; Itoh, Hidenori; Asai, Katsuhiko

    2003-06-01

    Importance of elastic deformation control to obtain large output force with a surface acoustic wave (SAW) motor is discussed in this paper. By adding pre-load to slider, stator and slider surfaces are deformed in a few tens nanometer. Appropriate deformation in normal direction against normal vibration displacement amplitude of SAW existed. By moderate deformation, the output force of the SAW motor was enlarged up to about 10 N and no-load speed was 0.7 m/s. To produce this performance, the transducer weight and slider size were only 4.2 g and 4 x 4 mm(2).By traveling wave propagation, surface particles of the SAW device move in elliptical motion. Due to the amplitude of the elliptical motion is 10 or 20 nm order, the contact condition of the slider is very critical. To control the contact condition, namely, the elastic deformation of the slider and stator surface in nanometer order, a lot of projections were fabricated on the slider surface. The projection diameter was 20 micro m. In static condition, the elastic deformation and stress were evaluated with the FEM analysis. From this calculation and the simulation result, it is consider that the wave crest is distorted, hence the elasticity has influence on the friction drive condition. Elastic deformation of the stator surface beneath the projection from the initial position were evaluated. In 4 x 4 mm(2) square area, the sliders had from 1089 to 23,409 projections. Depression was independent to the contact pressure. However, the output force depended on the depression although the projection density were different. From the view point of the output power of the motor, the proper depression was independent to the projection density. Around 25 nm depression, the output force and output power were maximized. This depression value was almost same as the vibration displacement amplitude of the stator transducer.

  4. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  5. Simulation of mm-wave signal generation using phase modulation in ROF system

    Institute of Scientific and Technical Information of China (English)

    ZHANG da-peng; YU Chong-xiu; XIN Xiang-jun; MA Jian-xin; ZHANG Jin-long

    2009-01-01

    The generation of optical millimeter waves via the improved phase modulator in a RoF system and the transmission char-acter of the signal are thenretically investigated. A new phase modulating scheme is proposed, in which the sidebands are separated by wave length demultiplexer and one of them doesn't feed digital signals, thereby the phase wake-off is restrained.

  6. Optical Generation of mm-Wave Signal Through Optoelectronic Phase-Locked Loop

    Institute of Scientific and Technical Information of China (English)

    Madhumita; Bhattacharya; Anuj; Kumar; Saw; Taraprasad; Chattopadhyay

    2003-01-01

    In this paper, we propose a scheme for the generation of low phase noise tunable mm-wave signal by bearing two lightwaves in a photodiode. These two lightwaves are made phase coherent by an optoelectronic phase locked loop. Calculated mm-wave power at a frequency of 60 GHz is found to be -4 dBm.

  7. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  8. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura

    2016-02-10

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T

  9. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    Science.gov (United States)

    Parisi, Laura; Ferreira, Ana M. G.

    2016-04-01

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ˜ 45-150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ˜ 45-150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ˜ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ˜20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ˜ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT's phase errors are smaller, notably for the shortest wave periods considered (T ˜ 45 s and

  10. On topological phases in disordered p-wave superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Maria-Theresa

    2015-07-10

    Topological phases of matter have been the subject of intense experimental and theoretical research during the last years. Prominent examples are the Quantum Hall Effect, Topological Insulators or Topological Superconductors. The latter host special excitations, the Majorana states, at their boundaries, which can be thought of as the halves of an electron that can exist separately in this special case. These Majorana states have attracted great interest as they exhibit so-called non-Abelian braiding statistics, which could make them useful tools in the search for fault-tolerant quantum computation. In this context topologically superconducting wires are particularly useful as the Majorana states are located unambiguously at the wire's end, where they form localized end states. Topologically superconducting wires are not known to exist in nature but they can be engineered from commonly available ingredients: semiconductor or ferromagnet nano- wires and conventional superconductors. The nano-wires can inherit superconductivity by the proximity effect and can then exhibit a topologically nontrivial phase. By now, several experiments have been performed on such hybrid structures, reporting measurements that are consistent with the existence of a topologically superconducting phase in the nanowire. Most theoretical investigations on these systems, so far, have been restricted to a one-dimensional effective model: The one-dimensional p-wave superconductor, which is the prototype of a topologically superconducting wire. A nanowire, however, is in general in a quasi-one dimensional regime, with a continuous longitudinal but a quantized transverse degree of freedom. In this Thesis we study the multichannel generalization of a topologically superconducting wire by means of a two-dimensional p + ip-superconductor that is restricted to a narrow-strip geometry. Such systems can be in a topological phase, characterized by the existence of a zero-energy excitation at the

  11. A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves

    Science.gov (United States)

    Jamali, M.; Lawrence, G. A.; Seymour, B. R.

    2002-12-01

    Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.

  12. A note on the resonant interaction between a surface wave and two interfacial waves

    Science.gov (United States)

    Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian

    2003-09-01

    Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.

  13. Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model

    Science.gov (United States)

    2016-04-19

    solutions and a VOF model for a 2D floating box and with laboratory measurements of wave generation by a ver- tically oscillating sphere. A steep...breaking waves or sud - en surface impacts. These simplifications also considerably reduce he computational requirements of the model. The Pressure...recently, erakhti et al. (2015) carried out extensive model validations of HWAVE against laboratory data. The focus of their study was to xamine the

  14. Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Walter, W R; Lay, T; Wu, R

    2003-11-04

    A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), and the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.

  15. Angular momentum transport by internal gravity waves. IV - Wave generation by surface convection zone, from the pre-main sequence to the early-AGB in intermediate mass stars

    CERN Document Server

    Talon, Suzanne

    2008-01-01

    This is the fourth in a series of papers that deal with angular momentum transport by internal gravity waves in stellar interiors. Here, we want to examine the potential role of waves in other evolutionary phases than the main sequence. We study the evolution of a 3Msun Population I model from the pre-main sequence to the early-AGB phase and examine whether waves can lead to angular momentum redistribution and/or element diffusion at the external convection zone boundary. We find that, although waves produced by the surface convection zone can be ignored safely for such a star during the main sequence, it is not the case for later evolutionary stages. In particular, angular momentum transport by internal waves could be quite important at the end of the sub-giant branch and during the early-AGB phase. Wave-induced mixing of chemicals is expected during the early-AGB phase.

  16. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  17. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfven waves

    CERN Document Server

    Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru

    2006-01-01

    Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.

  18. Identification of surface wave higher modes using a methodology based on seismic noise and coda waves

    Science.gov (United States)

    Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna

    2015-11-01

    Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.

  19. Anisotropic tomography of the European lithospheric structure from surface wave studies

    Science.gov (United States)

    Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul

    2016-06-01

    We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.

  20. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  1. Wave transfer matrix for a spiral phase plate.

    Science.gov (United States)

    Rumala, Yisa S

    2015-05-10

    The wave transfer matrix (WTM) is applied to calculating various characteristics of a spiral phase plate (SPP) for the first time to our knowledge. This approach provides a more convenient and systematic approach to calculating properties of a multilayered SPP device. In particular, it predicts the optical wave characteristics on the input and output plane of the device when the SPP is fabricated on a substrate of the same refractive index as the SPP as well as on a substrate of a different refractive index compared to the SPP. The dependence of the parameters on the input laser frequency is studied in detail for a low finesse SPP etalon device for both cases. The equations derived from the WTM are used to show that a variation in input laser frequency causes the optical intensity pattern on the output plane to rotate, while preserving the topology of the optical vortex, i.e., the variation in laser frequency has a minimal effect on the parameters describing the azimuthal intensity modulation and orbital angular momentum content of the beam. In addition, the equations predict the presence of longitudinal modes in the SPP device.

  2. Accurate source location from P waves scattered by surface topography

    Science.gov (United States)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  3. Computer simulation study of surface wave dynamics at the crystal--melt interface

    CERN Document Server

    Benet, Jorge; Sanz, Eduardo

    2014-01-01

    We study, by means of computer simulations, the crystal-melt interface of three different systems: hard-spheres, Lennard Jones and the TIP4P/2005 water model. In particular, we focus on the dynamics of surface waves. We observe that the processes involved in the relaxation of surface waves are characterized by distinct time scales: a slow one related to the continuous recrystallization and melting, that is governed by capillary forces; and a fast one which we suggest to be due to a combination of processes that quickly cause small perturbations to the shape of the interface (like e. g. Rayleigh waves, subdiffusion, or attachment/detachment of particles to/from the crystal). The relaxation of surface waves becomes dominated by the slow process as the wavelength increases. Moreover, we see that the slow relaxation is not influenced by the details of the microscopic dynamics. In a time scale characteristic for the diffusion of the liquid phase, the relaxation dynamics of the crystal-melt interface of water is ar...

  4. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves

    Science.gov (United States)

    Shi; Yifei; Ni; Chenyin; Shen; Zhonghua; Ni; Xiaowu; Lu; Jian

    2008-05-01

    High frequency surface acoustic waves (SAWs) are excited by a pulsed laser and detected by a specially designed poly(vinylidene fluoride) (PVDF) transducer to investigate surface stress distribution. Two kinds of stressed surfaces are examined experimentally. One is a steel plate elastically deformed under simple bending forces, where the surface stress varies slowly. The other is a welded steel plate for which the surface stress varies very rapidly within a small area near the welding seam. Applying a new signal processing method developed from correlation technique, the velocity distribution of the SAWs, which reflects the stress distribution, is obtained in these two samples with high resolution.

  5. Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei

    2008-01-01

    @@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.

  6. Surface water waves interaction in a circular vessel with oscillating walls.

    Science.gov (United States)

    Denissenko, Petr; Hsieh, Din-Yu

    1998-11-01

    Surface water waves appeared in a circular elastic vessel (modelled after the Chinese antique "Dragon Wash") are studied experimentally. Interaction of different wave modes are investigated. For small amplitude of wall oscillations, only the axisymmetric capillary wave mode, which is hardly visible to naked eyes, exists. When the amplitude is increased, half-frequency circumferential wave appears. Further increase of amplitude leads to chaotic behavior of surface waves. For large amplitudes, water drops jumping from edge regions are observed. Then, excitation of different modes of low frequency axisymmetric gravity waves may be obtained. Conditions for appearance of these gravity waves are investigated. Optical methods were applied for water surface diagnostics.

  7. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  8. Reliable Damping of Free Surface Waves in Numerical Simulations

    CERN Document Server

    Peric, Robinson

    2015-01-01

    This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...

  9. Near-field observation of spatial phase shifts associated with Goos-Hänschen and Surface Plasmon Resonance effects.

    Science.gov (United States)

    Jose, J; Segerink, F B; Korterik, J P; Offerhaus, H L

    2008-02-04

    We report the near-field observation of the phase shifts associated with total internal reflection on a glass-air interface and surface plasmon resonance on a glass-gold-air system. The phase of the evanescent waves on glass and gold surfaces, as a function of incident angle, is measured using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM) and shows a good agreement with theory.

  10. Lithium niobate guided-wave beam former for steering phased-array antennas.

    Science.gov (United States)

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  11. Comparison characteristics of surface acoustic waves propagating on LGT and quartz substrates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guowei; SHI Wenkang; JI Xiaojun; HAN Tao

    2004-01-01

    For comprehending the propagation characteristics of surface acoustic waves (SAW) on novel piezoelectric crystal Langatate (LGT), the numerical analysis of the most important propagation characteristics of surface acoustic waves (SAW) on LGT are presented and compared with that of quartz. The results are that the phase velocity on LGT is generally about 1000 m/s slower than that on quartz; there are zero temperature cuts and pure mode directions on LGT; the electromechanical coupling coefficient (K2) of LGT is larger than that of quartz. The results show that LGT has lower propagation velocity, higher electromechanical coupling coefficient, good temperature stability and other good characteristic. The results also show that there are somewhat deviations with different material constants, especially, the temperature coefficient of frequency.

  12. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  13. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  14. Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity

    Science.gov (United States)

    Hirsch, A. C.; Dalton, C. A.

    2014-12-01

    In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and

  15. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  16. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  17. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  18. Beta Distribution of Surface Elevation of Random Waves

    Institute of Scientific and Technical Information of China (English)

    张军; 徐德伦

    2001-01-01

    A probability density function (PDF) is derived of beta distribution with both λ3 (skewness) and λ4 (kurtosis) as parameters for weakly nonlinear wave surface elevation by use of a method recently proposed by Srokosz. This PDF not only has a simpler form than the well-known Gram-Charlier Series PDF derived by Longuet-Higgins, but also overcomes an obvious shortcoming of the latter that when the series is unsuitably truncated, the resulting PDF is locally negative. To test the derived beta PDF, laboratorial experiments of wind waves are conducted. The experimental data indicate that the theoretical requirements of the parameters in the beta PDF are fulfilled. The experimental results show that the present PDF is in better agreement with the measured data than the beta PDF only including parameter λ3, and also than the Gram-Charlier Series PDF truncated up to the term of H6.

  19. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  20. A microwave emissivity model of sea surface under wave breaking

    Institute of Scientific and Technical Information of China (English)

    Wei En-Bo; Ge Yong

    2005-01-01

    With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.