WorldWideScience

Sample records for surface wave motion

  1. FREQUENCY LOCK—IN PHENOMENON OF FLAPPING MOTION WITH SURFACE WATER WAVE

    Institute of Scientific and Technical Information of China (English)

    HsuChintsau; KuangJun; SunJianhong

    2002-01-01

    To study the effect of a progressive surface wave on the flapping motion of a vertical turbulent plane jet in shallow water,the laser visualizations and measurements were carried out in a water tank.The images of visualization by laser-induced fluorescence(LIF)technique show that the jet flapping motion occurs in the wave environ-ment.Using the wave height gauge and laser Doppler velocimetry(LDV) ,experimental results show that the jet flapping motions indeed lock-in to the wave oscillations if the wave frequency is close to but lower than the nature frequency of jet flapping motion.The phenomenon does not occur when the wave frequency is above the nature frequency of jet flapping motion.

  2. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  3. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid

    Institute of Scientific and Technical Information of China (English)

    LI Fang; YIN Xie-Yuan; YIN Xie-Zhen

    2008-01-01

    The wave motion on the charged surface of a viscous Newtonian liquid is solved as an initial-value problem. Both the leaky dielectric and perfect dielectric cases are considered. The amplitude of wave is assumed to be small. The electric field induced by surface charge is shown to have a generally destabilizing effect on surface wave. The neutral stability curve is drawn in the (G, N,e) plane (G: the gravitational bond number; Ne: the electrical Bond number). The Ohnesorge number, Taylor-Melcher number and permittivity ratio have little influence on the neutral stability curve. It is testified that the classical normal mode method cannot predict wave behaviour at small times.

  4. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  5. Surface wave site characterization at 27 locations near Boston, Massachusetts, including 2 strong-motion stations

    Science.gov (United States)

    Thompson, Eric M.; Carkin, Bradley A.; Baise, Laurie G.; Kayen, Robert E.

    2014-01-01

    microzonation map based on generalized velocity profiles, where the amplifications were computed using Shake (Schnable and others, 1972), along with an assumed input ground motion. The velocities were constrained by only a few local measurements associated with the Central Artery/Tunnel project. The additional VS measurements presented in this report provide a number of benefits. First, these measurements provide improved spatial coverage. Second, the larger sample size provides better constraints on the mean and variance of the VS distribution for each layer, which may be paired with a three-dimensional (3D) model of the stratigraphy to generate one-dimensional (1D) profiles for use in a standard site-response analysis (for example, Britton, 2003). Third, the velocity profiles may also be used, along with a 3D model of the stratigraphy, as input into a 3D simulation of the ground motion to investigate the effects of basin-generated surface waves and the potential focusing of seismic waves.This report begins with a short review of the geology of the study area and the field methods that we used to estimate the velocity profiles. The raw data, processed data, and the interpreted VS profiles are given in appendix 1. Photographs and descriptions of the sites are provided in appendix 2.

  6. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  7. Dynamics of sessile and pendant drop excited by surface acoustic waves: gravity effects and correlation between oscillatory and translational motions

    CERN Document Server

    Bussonière, Adrien; Brunet, Philippe; Matar, Olivier Bou

    2016-01-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or more generally by an initial or dynamically induced stretching of the drop. In...

  8. Experimental measurement of variations in the optical reflection coefficient of water-magnetic liquid interface in an electric field, wave motion, and surface instability

    Science.gov (United States)

    Chekanov, V. V.; Kandaurova, N. V.; Chekanov, V. S.

    2014-09-01

    A variation in the reflection coefficient of an interface of two liquids (water and magnetic liquid) in the presence of an electric field is experimentally studied. An increase in the reflection coefficient of the interface is demonstrated. A surface instability of the water-magnetic liquid interface, the wave motion at the interface, and wave interference are observed.

  9. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions

    Science.gov (United States)

    Bussonnière, A.; Baudoin, M.; Brunet, P.; Matar, O. Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  10. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  11. Line geometry and electromagnetism II: wave motion

    CERN Document Server

    Delphenich, D H

    2013-01-01

    The fundamental role of line geometry in the study of wave motion is first introduced in the general context by way of the tangent planes to the instantaneous wave surfaces, in which it is first observed that the possible frequency-wave number 1-forms are typically constrained by a dispersion law that is derived from a constitutive law by way of the field equations. After a general review of the basic concepts that relate to quadratic line complexes, these geometric notions are applied to the study of electromagnetic waves, in particular.

  12. Rotational components of earthquake ground motions derived from surface waves%地震面波产生的地震动转动分量研究

    Institute of Scientific and Technical Information of China (English)

    李宏男; 孙立晔

    2001-01-01

    In this paper, the rotational components ot earthquake groundmotions are derived from the surface waves, the Rayleigh and Love waves by using the theory of elastic wave motion. The relevant calculational formula and approach are given. Especially, the dispersion of surface waves is introduced to the rotational components, whihc may be more suitable for engineering practice. Finally, numerical examples of the rotational components from the earthquake records are presented by using the given methods.%本文利用弹性波动理论对地面转动分量,即瑞利(Rayleigh)波和乐夫(Love)波产生的转动分量进行了研究,给出了相应的计算公式和计算方法。特别注意到面波的频散效应对转动分量的影响,并将这一特性引入到转动分量的求取中,使问题的解决更切合于实际。最后选取实际地震记录,利用得到的公式计算出地震面波产生的转动分量。

  13. Chaotic ion motion in magnetosonic plasma waves

    Science.gov (United States)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  14. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  15. Rupture history of the 2016 Mw 7.0 Kumamoto earthquake constrained by the local strong motion, teleseismic body and surface waves

    Science.gov (United States)

    Hao, J.; Ji, C.; Yao, Z.

    2016-12-01

    The 2016 Kumamoto earthquake sequence occurred near the south end of Median Tectonic line (MTL), where the MTL bifurcates into Hinagu Fault (orienting N205oE) and Futagawa Fault (orienting N235oE). According to JMA, this sequence started as Mw 6.2 foreshock on April 14. The Mw 7.0 mainshock occurred a day later. We have selected 14 3-component strong motion observations, accompanying with waveforms of teleseismic broadband body waves and long period surface waves of the 2016 Kumamoto mainshock to constrain its temporal and spatial distribution of slip. Our result reveals that the Komamoto mainshock had a complicated rupture scenario. Our preferred model is composed of Hinagu (dipping 73o northwest) and Futagawa (dipping 60o) fault segments. To test how rupture across fault interaction, we let Futagawa segment overlap with Hinaga segment and initiate nearly simultaneously. However, the inverted model has negligible fault slip on the overlap portion, illustrating the data resolution. Rupture initiated at JMA hypocenter on the Hinagu segment in dominant right-lateral strike-slip motion. The significant rupture on the Futagawa segment occurred 4-5 s later at a depth about 10 km. The rupture on Futagawa fault segment initiates as pure strike-slip motion but normal fault component increases as the rupture propagates close to the Aso Volcano. The total rupture duration is 15 s. The cumulative seismic moment on the Hinagu segment is 1.40×1019 Nm (Mw 6.7) while that of Futagawa segment is 2.94×1019 Nm (Mw 6.9). Their summation in tensor field yields a total seismic moment of 3.9×1019 Nm (Mw 7.0). The best double couple solution of this cumulative moment tensor has strike, dip, rake angles of 224o, 64o and -152o, respectively, agreeing remarkably with the long period best double couple solutions of USGS W-Phase solution (224o, 66o, -152o) and the GCMT project (222o, 77o, -163o). However, the CLVD component of our solution is negligible, consistent with USGS solution. It

  16. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special conditi...

  17. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  18. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  19. Numerical Wave Flume Study on Wave Motion Around Submerged Plates

    Institute of Scientific and Technical Information of China (English)

    齐鹏; 侯一筠

    2003-01-01

    Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.

  20. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  1. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  2. Interrupted orbital motion in density-wave systems

    Science.gov (United States)

    Breitkreiz, Maxim; Brydon, P. M. R.; Timm, Carsten

    2016-11-01

    In conventional metals, electronic transport in a magnetic field is characterized by the motion of electrons along orbits on the Fermi surface, which usually causes an increase in the resistivity through averaging over velocities. Here, we show that large deviations from this behavior can arise in density-wave systems close to their ordering temperature. Specifically, enhanced scattering off collective fluctuations can lead to a change of direction of the orbital motion on reconstructed pockets. In weak magnetic fields, this leads to linear magnetoconductivity, the sign of which depends on the electric-field direction. At a critical magnetic field, the conductivity crosses zero for certain directions, signifying a thermodynamic instability of the density-wave state.

  3. Experimental Study on Silt Incipient Motion Under Wave Action

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.

  4. Transient Marangoni waves due to impulsive motion of a submerged body

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The Oseen problem in a viscous fluid is formulated for studying the transient free-surface and Marangoni waves generated by the impulsive motion of a submerged body beneath a surface with surfactants. Wave asymptotics and wavefronts for large Reynolds numbers are obtained by employing Lighthill's two-stage scheme. The results obtained show explicitly the effects of viscosity and surfactants on Kelvin wakes.

  5. The response of superpressure balloons to gravity wave motions

    Science.gov (United States)

    Vincent, R. A.; Hertzog, A.

    2014-04-01

    Superpressure balloons (SPB), which float on constant density (isopycnic) surfaces, provide a unique way of measuring the properties of atmospheric gravity waves (GW) as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of investigating the SPB response to GW motions. It is shown that the results agree well with more rigorous numerical simulations of balloon motions and provide a better understanding of the response of SPB to GW, especially at high frequencies. The methodology is applied to ascertain the accuracy of GW studies using 12 m diameter SPB deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the situation in earlier campaigns, the vertical displacements of the SPB were measured directly using GPS. It is shown using a large number of Monte Carlo-type simulations with realistic instrumental noise that important wave parameters, such as momentum flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB observations for intrinsic wave periods greater than ca. 10 min. The noise floor for momentum flux is estimated to be ca. 10-4 mPa.

  6. Periodic Motion near the Surface of Asteroids

    CERN Document Server

    Jiang, Yu; Li, Hengnian

    2015-01-01

    We are interested in the periodic motion and bifurcations near the surface of an asteroid. The gravity field of an irregular asteroid and the equation of motion of a particle near the surface of an asteroid are studied. The periodic motions around the major body of triple asteroid 216 Kleopatra and the OSIRIS REx mission target asteroid 101955 Bennu are discussed. We find that motion near the surface of an irregular asteroid is quite different from the motion near the surface of a homoplastically spheroidal celestial body. The periodic motions around the asteroid 101955 Bennu and 216 Kleopatra indicate that the geometrical shapes of the orbits are probably very sophisticated. There exist both stable periodic motions and unstable periodic motions near the surface of the same irregular asteroid. This periodic motion which is unstable can be resonant or non resonant. The period doubling bifurcation and pseudo period doubling bifurcation of periodic orbits coexist in the same gravity field of the primary of the t...

  7. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  8. Tamm-Langmuir surface waves

    Science.gov (United States)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  9. Tamm-Langmuir surface waves

    CERN Document Server

    Golenitskii, K U; Bogdanov, A A

    2016-01-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  10. Droplet Motion on a Shape Gradient Surface.

    Science.gov (United States)

    Zheng, Yanfen; Cheng, Jiang; Zhou, Cailong; Xing, Haiting; Wen, Xiufang; Pi, Pihui; Xu, Shouping

    2017-05-02

    We demonstrate a facile method to induce water droplet motion on an wedge-shaped superhydrophobic copper surface combining with a poly(dimethylsiloxane) (PDMS) oil layer on it. The unbalanced interfacial tension from the shape gradient offers the actuating force. The superhydrophobicity critically eliminates the droplet contact line pinning and the slippery PDMS oil layer lubricates the droplet motion, which makes the droplet move easily. The maximum velocity and furthest position of droplet motion were recorded and found to be influenced by the gradient angle. The mechanism of droplet motion on the shape gradient surface is systematically discussed, and the theoretical model analysis is well matched with the experimental results.

  11. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  12. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  13. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  14. Megaquakes, prograde surface waves and urban evolution

    Science.gov (United States)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  15. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  16. Seagrass blade motion under waves and its impact on wave decay

    Science.gov (United States)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  17. Multichannel analysis of surface waves

    Science.gov (United States)

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  18. Stimulus motion propels traveling waves in binocular rivalry.

    Directory of Open Access Journals (Sweden)

    Tomas Knapen

    Full Text Available State transitions in the nervous system often take shape as traveling waves, whereby one neural state is replaced by another across space in a wave-like manner. In visual perception, transitions between the two mutually exclusive percepts that alternate when the two eyes view conflicting stimuli (binocular rivalry may also take shape as traveling waves. The properties of these waves point to a neural substrate of binocular rivalry alternations that have the hallmark signs of lower cortical areas. In a series of experiments, we show a potent interaction between traveling waves in binocular rivalry and stimulus motion. The course of the traveling wave is biased in the motion direction of the suppressed stimulus that gains dominance by means of the wave-like transition. Thus, stimulus motion may propel the traveling wave across the stimulus to the extent that the stimulus motion dictates the traveling wave's direction completely. Using a computational model, we show that a speed-dependent asymmetry in lateral inhibitory connections between retinotopically organized and motion-sensitive neurons can explain our results. We argue that such a change in suppressive connections may play a vital role in the resolution of dynamic occlusion situations.

  19. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    OpenAIRE

    2016-01-01

    In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO) damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four convert...

  20. Full-wave and half-wave rectification in second-order motion perception

    Science.gov (United States)

    Solomon, J. A.; Sperling, G.

    1994-01-01

    Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the

  1. Exploiting the orbital motion of water particles for energy extraction from waves

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. Rafiuddin; Faizal, Mohammed; Prasad, Krishnil [University of the South Pacific, Suva (Fiji)

    2010-04-15

    In wave motion, the water particles are known to follow orbital paths. This orbital motion was used to drive five-bladed Savonius rotors. Experiments were performed on an array of four rotors placed in a two-dimensional (2-D) wave channel. The flow around the rotors was documented using particle image velocimetry measurements. The submergence of the rotors and the distance between them were varied, and the rotational speeds of the rotors (Nn) were recorded at different wave frequencies. It was found that rotational speeds increased with an increase in the wave frequency, as it amplified the wave height that increased the kinetic energy of the particles in their orbital motion. The rotational speeds decreased when the distance between the rotors increased. High rotational speeds are recorded when the array of the rotors is placed close to the water surface at the smallest centre-to-centre distance between the rotors

  2. Wave Motion of Smoke in Subway Fire Environment

    Institute of Scientific and Technical Information of China (English)

    WU Wenzhong; YOU Shijun

    2009-01-01

    Wave motion in subway or tunnel fire is an intrinsic property of smoke.As the pressure of smoke changes with mass of certain power,a kind of linear wave equation for smoke can be derived from the conservation equations of its mass and momentum,under nearly homogeneous zone assumption.The smoke movement of 4 subway fires was simulated with Airpak.By fitting the pressure-mass functions to the simulated data,wave equations of the smoke were derived,and wave motions of smoke were thus validated.It can be seen that smoke wave is a kind of mass wave,whose velocity is inversely proportional to smoke mass,and wave of a bigger fire propagates slower.

  3. Direct excitation of resonant torsional Alfven waves by footpoint motions

    NARCIS (Netherlands)

    Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.

    1997-01-01

    The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only

  4. Chaotic Motion of Relativistic Electrons Driven by Whistler Waves

    Science.gov (United States)

    Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.

    2007-01-01

    Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.

  5. Capillary-Gravity Waves Generated by a Sudden Object Motion

    CERN Document Server

    Closa, Fabien; Raphael, Elie

    2010-01-01

    We study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity (the final one in the accelerated case, the initial one in the decelerated case) is smaller than the minimum phase velocity $c_{min}=23 \\mathrm{cm s^{-1}}$. These results might be important for a better understanding of the propulsion of water-walking insects where accelerated and decelerated motions frequently occur.

  6. Determining surface wave arrival angle anomalies

    Science.gov (United States)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  7. Animation control of surface motion capture.

    Science.gov (United States)

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  8. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel

    2009-01-01

    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  9. Surface wave chemical detector using optical radiation

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  10. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  11. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  12. Motion of a charge in a superstrong electromagnetic standing wave

    Science.gov (United States)

    Esirkepov, Timur Z.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.

    2015-05-01

    Radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense colliding laser pulses. Depending on the laser intensity and wavelength, the quantum corrections to the electron motion and the radiation reaction force can be independently small or large, thus dividing the parameter space into 4 regions. When radiation reaction dominates, the electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  13. The frustrated Brownian motion of nonlocal solitary waves

    CERN Document Server

    Folli, Viola

    2010-01-01

    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation

  14. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  15. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  16. Thermocapillary motion on lubricant-impregnated surfaces

    Science.gov (United States)

    Bjelobrk, Nada; Girard, Henri-Louis; Bengaluru Subramanyam, Srinivas; Kwon, Hyuk-Min; Quéré, David; Varanasi, Kripa K.

    2016-10-01

    We show that thermocapillary-induced droplet motion is markedly enhanced when using lubricant-impregnated surfaces as compared to solid substrates. These surfaces provide weak pinning, which makes them ideal for droplet transportation and specifically for water transportation. Using a lubricant with viscosity comparable to that of water and temperature gradients as low as 2 K/mm, we observe that drops can propel at 6.5 mm/s, that is, at least 5 times quicker than reported on conventional substrates. Also in contrast with solids, the liquid nature of the different interfaces makes it possible to predict quantitatively the thermocapillary Marangoni force (and velocity) responsible for the propulsion.

  17. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  18. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  19. Innovative technologies to accurately model waves and moored ship motions

    CSIR Research Space (South Africa)

    van der Molen, W

    2010-09-01

    Full Text Available Late in 2009 CSIR Built Environment in Stellenbosch was awarded a contract to carry out extensive physical and numerical modelling to study the wave conditions and associated moored ship motions, for the design of a new iron ore export jetty for BHP...

  20. Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion

    Science.gov (United States)

    Muggleton, J. M.; Rustighi, E.; Gao, Y.

    2016-09-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.

  1. Linear surface capillary-gravity short-crested waves on a current

    Institute of Scientific and Technical Information of China (English)

    HUANG Hu

    2008-01-01

    One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.

  2. Databases of surface wave dispersion

    Directory of Open Access Journals (Sweden)

    L. Boschi

    2005-06-01

    Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.

  3. On utilizing the orbital motion in water waves to drive a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mohammed; Rafiuddin Ahmed, M. [The University of the South Pacific, Laucala Campus, Suva (Fiji); Lee, Young-Ho [Korea Maritime University, 1 Dongsam-dong, Youngdo-Ku, Busan 606-791 (Korea)

    2010-01-15

    In wave motion, the water particles are known to follow orbital paths. This orbital motion was studied and a five bladed Savonius rotor was built to extract energy from the orbiting particles. Experiments were performed on a rotor placed parallel to the incoming waves in a two-dimensional wave channel by varying the frequency of the wave generator, which produced sinusoidal waves. The rotor submergence below the mean level was varied. The flow around the rotor was studied with particle image velocimetry (PIV) measurements. It was found that the rpm of the rotor (N{sub n}) increases with an increase in wave frequency. An increase in wave height also increases the N{sub n} values, as the kinetic energy of the particles' orbital motion increases. The optimum N{sub n} values are obtained when the rotor is placed close to the water surface at the minimum submergence of 1.06d where 'd' is the rotor diameter. (author)

  4. Measurements of boat motion in waves at Durban harbour for qualitative validation of motion model

    CSIR Research Space (South Africa)

    Mosikare, OR

    2010-09-01

    Full Text Available in Waves at Durban Harbour for Qualitative Validation of Motion Model O.R. Mosikare1,2, N.J. Theron1, W. Van der Molen 1 University of Pretoria, South Africa, 0001 2Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, 0001...

  5. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  6. WAVE - A European Research Project on Weigh-in-Motion

    OpenAIRE

    Jacob, Bernard; O'Brien, Eugene J.

    1996-01-01

    WAVE (Weigh-in-motion of Axles and Vehicles for Europe) is a research project, part-funded by the European Commission, with the objective of improving the accuracy and performance of Weigh-in-Motion (WIM) technology. It has a budget of the order of $ 2 million and will run from mid 1996 to mid 1998. It has close links and a substantial overlap of membership with COST323, a pan-European group with representatives from about 20 countries which coordinates nationally funded activi...

  7. MHD waves generated by high-frequency photospheric vortex motions

    Directory of Open Access Journals (Sweden)

    V. Fedun

    2011-06-01

    Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.

  8. Numerical Simulation of Long-period Surface Wave in Sediments

    Science.gov (United States)

    Li, Yiqiong; Yu, Yanxiang

    2016-04-01

    Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).

  9. Longitudinal wave motion in width-constrained auxetic plates

    Science.gov (United States)

    Lim, Teik-Cheng

    2016-05-01

    This paper investigates the longitudinal wave velocity in auxetic plates in comparison to conventional ones, in which the plate is constrained from motion in the width direction. By taking into account the thickness change of the plate and its corresponding change in density, the developed wave velocity is casted not only as a function of Young’s modulus and density, but also in terms of Poisson’s ratio and longitudinal strain. Results show that density and thickness variations compensate for one another when the Poisson’s ratio is positive, but add up when the Poisson’s ratio is negative. Results also reveal that the classical model of longitudinal wave velocity for the plate is accurate when the Poisson’s ratio is about 1/3; at this Poisson’s ratio the influence from density and thickness variations cancel each other. Comparison between the current corrected model and the density-corrected Rayleigh-Lamb model reveals a number of consistent trends, while the discrepancies are elucidated. If the plate material possesses a negative Poisson’s ratio, the deviation of the actual wave velocity from the classical model becomes significant; auxeticity suppresses and enhances the wave velocity in compressive and tensile impacts, respectively. Hence the use of the corrected model is proposed when predicting longitudinal waves in width-constrained auxetic plates, and auxetic materials can be harnessed for effectively controlling wave velocities in thin-walled structures.

  10. Parabolic Wave Equation for Surface Water Waves.

    Science.gov (United States)

    1986-11-01

    extended to wave propagation problems in other fields of physical sciences, such as nonlinear optics ( Svelto , 1974), plasma physics (Karpman, 1975...34 Journal of Fluid Mechanics, Vol. 72, pp. 373-384. Svelto , 0., 1974, Progress in Optics, North-Holland Pub., Chapter 1, pp. 1-51. Tappert, F.D., 1977, "The

  11. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....

  12. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  13. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  14. Numerical simulation of floating bodies in extreme free surface waves

    Science.gov (United States)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  15. Dyakonov surface waves in lossy metamaterials

    CERN Document Server

    Sorni, A J; Zapata-Rodríguez, C J; Miret, J J

    2015-01-01

    We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.

  16. Chirp dependence of wave packet motion in oxazine 1.

    Science.gov (United States)

    Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus

    2005-11-24

    The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.

  17. A Study of Uranus' Bow Shock Motions Using Langmuir Waves

    Science.gov (United States)

    Xue, S.; Cairns, I. H.; Smith, C. W.; Gurnett, D. A.

    1996-01-01

    During the Voyager 2 flyby of Uranus, strong electron plasma oscillations (Langmuir waves) were detected by the plasma wave instrument in the 1.78-kHz channel on January 23-24, 1986, prior to the inbound bow shock crossing. Langmuir waves are excited by energetic electrons streaming away from the bow shock. The goal of this work is to estimate the location and motion of Uranus' bow shock using Langmuir wave data, together with the spacecraft positions and the measured interplanetary magnetic field. The following three remote sensing analyses were performed: the basic remote sensing method, the lag time method, and the trace-back method. Because the interplanetary magnetic field was highly variable, the first analysis encountered difficulties in obtaining a realistic estimation of Uranus' bow shock motion. In the lag time method developed here, time lags due to the solar wind's finite convection speed are taken into account when calculating the shock's standoff distance. In the new trace-back method, limits on the standoff distance are obtained as a function of time by reconstructing electron paths. Most of the results produced by the latter two analyses are consistent with predictions based on the standard theoretical model and the measured solar wind plasma parameters. Differences between our calculations and the theoretical model are discussed.

  18. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  19. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  20. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  1. Surface Shear, Persistent Wave Groups and Rogue Waves

    CERN Document Server

    Chafin, Clifford

    2014-01-01

    We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.

  2. Improvements on Mean Free Wave Surface Modeling

    Institute of Scientific and Technical Information of China (English)

    董国海; 滕斌; 程亮

    2002-01-01

    Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).

  3. The Mathematical Analysis of Electrical and Optical Wave-Motion

    Science.gov (United States)

    Bateman, H.

    2016-10-01

    1. Fundamental ideas; 2. General survey of the different methods of solving the wave-equation; 3. Polar coordinates; 4. Cylindrical coordinates; 5. The problem of diffraction; 6. Transformations of coordinates appropriate for the treatment of problems connected with a surface of revolution; 7. Homogeneous solutions of the wave-equation; 8. Electromagnetic fields with moving singularities; 9. Miscellaneous theories; List of authors quoted; Index.

  4. A Wave Modulation Model of Ripples over Long Surface Waves

    Institute of Scientific and Technical Information of China (English)

    CONG Peixiu; ZHENG Guizhen

    2011-01-01

    A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.

  5. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  6. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  7. Boussinesq modeling of surface waves due to underwater landslides

    Directory of Open Access Journals (Sweden)

    D. Dutykh

    2013-05-01

    Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

  8. Functionally graded piezoelectric materials for modal transducers for exciting bulk and surface acoustic waves.

    Science.gov (United States)

    Yang, Jiashi; Jin, Zhihe; Li, Jiangyu

    2008-07-01

    We show that functionally graded piezoelectric materials can be used to make modal actuators through theoretical analyses of the excitation of extensional motion in an elastic rod and Rayleigh surface waves over an elastic half-plane. The results suggest alternatives with certain advantages for the excitation of bulk and surface acoustic waves.

  9. Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.

    Science.gov (United States)

    Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong

    2017-04-20

    We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.

  10. Coupled motions of two ships in irregular waves in time domain

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-fang; LI Ji-de; WENG Nian-ming; GUAN Ling-xuan

    2004-01-01

    A three-dimensional time domain approach is used to study the aves. In this approach ,the boundary condition is satisfied on the mean wetted hull surface of the moving bodies and the free surface condition is linearized. The problem is solved by using a transient free-surface Green function source distribution on the submerged hulls. After solving the response amplitude operator ,the method of spectral analysis is employed to clearly express the motion energy spectrum and significant amplitude of two ships. For verifying the code .two same circular cylinders at beam wave are selected to calculate coupled motions by comparison with the results obtained by 3Dfrequcy method which has been proved to be efficient for solving such problems. Two Wigley ships of different sizes with the same forward speed are chosen for numerical calculation of the interaction effect, and some useful suggestions ate obtained for underway replenishment at sea.

  11. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  12. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  13. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  14. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  15. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  16. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  17. Superdirected Beam of the Surface Spin Wave

    CERN Document Server

    Annenkov, Alexander Yu; Lock, Edwin H

    2016-01-01

    Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.

  18. Establishment of Motion Model for Wave Capture Buoy and Research on Hydrodynamic Performance of Floating-Type Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Gao Hongtao

    2015-09-01

    Full Text Available Floating-type wave energy converter has the advantages of high wave energy conversion efficiency, strong shock resistance ability in rough sea and stable output power. So it is regarded as a promising energy utilization facility. The research on hydrodynamic performance of wave capture buoys is the precondition and key to the wave energy device design and optimization. A simplified motion model of the buoys in the waves is established. Based on linear wave theory, the equations of motion of buoys are derived according to Newton’s second law. The factors of wave and buoys structural parameters on wave energy absorption efficiency are discussed in the China’s Bohai Sea with short wave period and small wave height. The results show that the main factor which affects the dynamic responses of wave capture buoys is the proximity of the natural frequency of buoys to the wave period. And the incoming wave power takes a backseat role to it at constant wave height. The buoys structural parameters such as length, radius and immersed depth, influence the wave energy absorption efficiency, which play significant factors in device design. The effectiveness of this model is validated by the sea tests with small-sized wave energy devices. The establishment methods of motion model and analysis results are expected to be helpful for designing and manufacturing of floating-type wave energy converter.

  19. The Whitham Equation as a Model for Surface Water Waves

    CERN Document Server

    Moldabayev, Daulet; Dutykh, Denys

    2014-01-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better tha...

  20. Interaction between motion of free fluid surfaces and ship motions

    Science.gov (United States)

    Lamba, D.; Duse, A.; Varsami, C.; Hanzu-Pazara, R.

    2017-08-01

    This scientific research presents very important aspects of the liquefying process of bulk cargo carried on board merchant ship which may lead to loss of the intact stability of bulk carriers, with serious consequences for the safety of ships and their crew. We are going to present an analytical modelling, modal analysis and finite elements analysis applied in the hydrodynamics of the ship in the water environment, when realising a complex model 3D of the ship’s bulkheads by modelling with finite volumes with the purpose of emphasising these walls’ behaviour when on board the bulk carrier there is a sloshing effect due to free liquid surfaces in the ship’s cargo holds and we also performed a complex study regarding the structural answer of transverse bulkheads of the cargo holds due to the impact of free liquid surfaces.

  1. Boussinesq modeling of surface waves due to underwater landslides

    CERN Document Server

    Dutykh, Denys

    2013-01-01

    Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion which govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced which is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It also found that the fi...

  2. Interfacial waves generated by electrowetting-driven contact line motion

    Science.gov (United States)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  3. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  4. Research on the Wave-Induced Ship Motions in Front of Different Types of Wharf

    Science.gov (United States)

    Li, Yan Bao; Jiang, Xue Lian

    One important function of the port is to protect ship or some other facilities from wave attack so as to stably handle cargoes. In current design codes, there are mainly two expressions of the tranquility standard of harbor basin: one is the acceptable wave height in front of wharf; the other is the tolerable amplitude of ship motion. However, ship motions are affected by some more factors simultaneously, such as wave frequency, wave height, incident wave direction, ship properties and wharf type. This paper presents some computed results of the wave-induced ship motions on the basis of a port case in China. First, the Simple Green Function method is employed to solve and compare the 2-dimension hydrodynamic coefficients in front of open or bulkhead wharf. The results show a great difference between them. Then, this paper computes and discusses the ship motions in front of open wharf at different wave frequencies and incident wave directions.

  5. Ruts and waves in the road surface.

    NARCIS (Netherlands)

    Tromp, J.P.M.

    1989-01-01

    The characteristics of a road and a road surface should not unexpectedly change, if the traffic process is to be kept safe and under control. Knowledge on accidents, in which ruts and waves played a part does not seem to exist. Knowledge on driver behaviour due to the occurrence of waves or ruts is

  6. Engineered metabarrier as shield from seismic surface waves

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  7. Engineered metabarrier as shield from seismic surface waves.

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-20

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  8. Forced wave motion with internal and boundary damping.

    Science.gov (United States)

    Louw, Tobias; Whitney, Scott; Subramanian, Anu; Viljoen, Hendrik

    2012-01-01

    A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.

  9. River dykes investigation using seismic surface waves

    Science.gov (United States)

    Bitri, Adnand; Jousset, Philippe; Samyn, Kévin; Naylor, Adam

    2010-05-01

    Natural underground caves such as karsts are quite common in the region "Centre", France. These subsurface perturbations can be found underneath the protection dykes around "the Loire" River and the damage caused can create routes for floods. Geophysical methods such as Multi-channel Analysis of Surface Waves (MASW) can be used for locating voids or karsts systems, but its efficiency on surface with strong topography such as dykes is not certain. Three dimensional Rayleigh wave modelling was used to understand the role of topography in the propagation of surface waves and with the aim of determining the best way for MASW investigations of surfaces with strong topography such as river dykes. Numerical modelling shows that surface waves propagation is not strongly affected by topography for an array parallel to the dyke. For homogeneous models with topography, a diminution of surface waves amplitude is observed while higher propagation modes are amplified in the dispersion curves in the case of heterogeneous models with topography. For an array perpendicular to the dyke, numerical modeling shows that Rayleigh waves' velocity is lower. MASW investigations can then be applied if lateral variations of the topography are not too strong along the seismic line. Diffraction hyperbolas created by a full of water cavity were identified in numerical modelling with topography. According to these elements, a MASW survey has been performed on the dykes of "the Loire" river close to a collapsed cavity and potential karstic systems were discovered.

  10. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  11. Rheological fluid motion in tube by metachronal wave of cilia

    CERN Document Server

    Maiti, S

    2013-01-01

    The purpose of this paper is a theoretical study of a non-linear problem of rheological fluid transport in an axisymmetric tube by cilium. However, an attempt has been made to explain the role of cilia motion on the transport of fluid through the ductus efferentes of the male reproductive tract. Ostwald-de Waele power law viscous fluid has been considered to represent the rheological fluid to analyze pumping by means of a sequence of beat of cilia from row to row of cilia in a given row of cells and from one row of cells to the next (metachronal wave movement) under conditions for which the corresponding Reynolds number is small enough for inertial effects to be negligible and the wavelength to diameter ratio is large enough for the pressure to be considered uniform over the cross-section. Analyses and computations of the detailed fluid motions reveal that the time-averaged flow rates are directly dependent on epsilon, a non-dimensional measure involving the mean radius R of the tube and the cilia length. Thu...

  12. Generation of unsteady waves by concentrated disturbances in an inviscid fluid with an inertial surface

    Institute of Scientific and Technical Information of China (English)

    D. Q. Lu; S. Q. Dai

    2008-01-01

    The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance-to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the free-surface gravity waves can readily be recovered by the present results as the inertial surface disappears.

  13. Surface waves of Min-proteins

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  14. URANS simulations of ship motion responses in long-crest irregular waves

    Institute of Scientific and Technical Information of China (English)

    沈志荣; 叶海轩; 万德成

    2014-01-01

    In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, conside-rably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spe-ctrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.

  15. Surface-Mount Rotor Motion Sensing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  16. Surface wave dynamics in orbital shaken cylindrical containers

    Science.gov (United States)

    Reclari, M.; Dreyer, M.; Tissot, S.; Obreschkow, D.; Wurm, F. M.; Farhat, M.

    2014-05-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction, or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications.

  17. Surface wave dynamics in orbital shaken cylindrical containers

    CERN Document Server

    Reclari, Martino; Tissot, Stéphanie; Obreschkow, Danail; Wurm, Florian Maria; Farhat, Mohamed

    2014-01-01

    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications. Copyright (2014) American Institute of Physics. This article may be downloaded ...

  18. Optical Measurement System for Motion Characterization of Surface Mount Technology

    Institute of Scientific and Technical Information of China (English)

    LI Song; AN Bing; ZHANG Tong-jun; XIE Yong-jun

    2006-01-01

    Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable,marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision,microscopic interferometry,and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions,surface shapes,out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).

  19. Structure of the airflow above surface waves

    Science.gov (United States)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  20. Bidirectional surface wave splitter at visible frequencies.

    Science.gov (United States)

    Gan, Qiaoqiang; Bartoli, Filbert J

    2010-12-15

    We experimentally demonstrate a metal-film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green-red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.

  1. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  2. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  3. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  4. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  5. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer.

    Science.gov (United States)

    Pengfei Song; Heng Zhao; Urban, Matthew W; Manduca, Armando; Pislaru, Sorin V; Kinnick, Randall R; Pislaru, Cristina; Greenleaf, James F; Shigao Chen

    2013-12-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially

  6. Blackfolds, plane waves and minimal surfaces

    OpenAIRE

    Armas, Jay; Blau, Matthias

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...

  7. Elastic friction drive of surface acoustic wave motor.

    Science.gov (United States)

    Kurosawa, Minoru Kuribayashi; Itoh, Hidenori; Asai, Katsuhiko

    2003-06-01

    Importance of elastic deformation control to obtain large output force with a surface acoustic wave (SAW) motor is discussed in this paper. By adding pre-load to slider, stator and slider surfaces are deformed in a few tens nanometer. Appropriate deformation in normal direction against normal vibration displacement amplitude of SAW existed. By moderate deformation, the output force of the SAW motor was enlarged up to about 10 N and no-load speed was 0.7 m/s. To produce this performance, the transducer weight and slider size were only 4.2 g and 4 x 4 mm(2).By traveling wave propagation, surface particles of the SAW device move in elliptical motion. Due to the amplitude of the elliptical motion is 10 or 20 nm order, the contact condition of the slider is very critical. To control the contact condition, namely, the elastic deformation of the slider and stator surface in nanometer order, a lot of projections were fabricated on the slider surface. The projection diameter was 20 micro m. In static condition, the elastic deformation and stress were evaluated with the FEM analysis. From this calculation and the simulation result, it is consider that the wave crest is distorted, hence the elasticity has influence on the friction drive condition. Elastic deformation of the stator surface beneath the projection from the initial position were evaluated. In 4 x 4 mm(2) square area, the sliders had from 1089 to 23,409 projections. Depression was independent to the contact pressure. However, the output force depended on the depression although the projection density were different. From the view point of the output power of the motor, the proper depression was independent to the projection density. Around 25 nm depression, the output force and output power were maximized. This depression value was almost same as the vibration displacement amplitude of the stator transducer.

  8. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    Science.gov (United States)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  9. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  10. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  11. Low power sessile droplet actuation via modulated surface acoustic waves

    CERN Document Server

    Baudoin, Michael; Matar, Olivier Bou; Herth, Etienne

    2012-01-01

    Low power actuation of sessile droplets is of primary interest for portable or hybrid lab-on-a-chip and harmless manipulation of biofluids. In this paper, we show that the acoustic power required to move or deform droplets via surface acoustic waves can be substantially reduced through the forcing of the drops inertio-capillary modes of vibrations. Indeed, harmonic, superharmonic and subharmonic (parametric) excitation of these modes are observed when the high frequency acoustic signal (19.5 MHz) is modulated around Rayleigh-Lamb inertio-capillary frequencies. This resonant behavior results in larger oscillations and quicker motion of the drops than in the non-modulated case.

  12. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  13. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  14. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  15. Chiral Surface Waves for Enhanced Circular Dichroism

    CERN Document Server

    Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2016-01-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  16. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  17. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  18. Surface acoustic wave propagation in graphene film

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  19. Gas sensing with surface acoustic wave devices

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  20. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  1. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  2. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  3. Vibrating-Rocking Motion of Caisson Breakwater Under Breaking Wave Impact

    Institute of Scientific and Technical Information of China (English)

    王元战; 郑斌

    2001-01-01

    The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding andvibrating-rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an earlypaper. In this paper, a model of vibrating-rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated. In casethe overturning moment exceeds the stability moment ofa caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle. It is shown that the sliding force and overturning moment of break-waters can be reduced effectively due to the rocking motion. It is proposed that some rocking motion should be allowedin breakwater design.

  4. Fully Nonlinear Simulations of Wave Resonance by An Array of Cylinders in Vertical Motions

    Institute of Scientific and Technical Information of China (English)

    HUANG Hao-cai; WANG Chi-zhong; LENG Jian-xing

    2013-01-01

    The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.

  5. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.

    2014-12-28

    © 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.

  6. Wave breaking in the surf zone and deep-water in a non-hydrostatic RANS model. Part 1: Organized wave motions

    Science.gov (United States)

    Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng

    2016-11-01

    We examine wave-breaking predictions ranging from shallow- to deep-water conditions using a non-hydrostatic σ-coordinate RANS model NHWAVE as described in Derakhti et al. (2016a), comparing results both with corresponding experiments and with the results of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al., 2011; Derakhti and Kirby, 2014a,b). Our study includes regular and irregular depth-limited breaking waves on planar and barred beaches as well as steepness-limited unsteady breaking focused wave packets in intermediate and deep water. In Part 1 of this paper, it is shown that the model resolves organized wave motions in terms of free-surface evolution, spectral evolution, organized wave velocity evolution and wave statistics, using a few vertical σ-levels. In addition, the relative contribution of modeled physical dissipation and numerical dissipation to the integral breaking-induced wave energy loss is discussed. In steepness-limited unsteady breaking focused wave packets, the turbulence model has not been triggered, and all the dissipation is imposed indirectly by the numerical scheme. Although the total wave-breaking-induced energy dissipation is underestimated in the unsteady wave packets, the model is capable of predicting the dispersive and nonlinear properties of different wave packet components before and after the break point, as well as the overall wave height decay and the evolution of organized wave velocity field and power spectrum density over the breaking region. In Part 2 (Derakhti et al., 2016b), model reproduction of wave-breaking-induced turbulence and mean circulation is examined in detail. The same equations and numerical methods are used for the various depth regimes, and no ad-hoc treatment, such as imposing hydrostatic conditions, is involved in triggering breaking. Vertical grid resolution in all simulated cases is at least an order of magnitude coarser than that of typical VOF-based simulations.

  7. Motion of Elastic Microcapsules on Compliant Surfaces with Adhesive Ligands

    Science.gov (United States)

    Maresov, Egor; Kolmakov, German; Balazs, Anna

    2011-03-01

    By integrating mesoscale models for hydrodynamics, micromechanics and adhesion, we examine the fluid driven motion of elastic microcapsules on compliant surfaces. The capsules, modeled as three-dimensional fluid-filled elastic shells, represent polymeric microcapsules or biological cells. Our combined integrated Lattice Boltzmann model/Lattice spring model (LBM/LSM) approach allows for a dynamic interaction between the elastic capsule's wall and surrounding fluid. To capture the interaction between the shell and the surface, we adopt the Bell model, used previously to describe the interaction of biological cell like leukocytes rolling on surfaces under the influence of an imposed shear. The surface of the microcapsule contains receptors with an affinity to adhesive ligands of the substrate. We examine how the parameters of adhesion and rigidity of the capsules and the substrate affect movement of the capsules. The findings provide guidelines for creating smart surfaces that could regulate the microcapsules' motion.

  8. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  9. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  10. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  11. The motion of a charged particle in the field of a frequency-modulated electromagnetic wave and in the constant magnetic field

    Directory of Open Access Journals (Sweden)

    Nikolay S. Akintsov

    2015-12-01

    The formulae for the mean kinetic energy of a relativistic charged particle as a function of initial conditions, electromagnetic wave amplitude, wave intensity and its polarization parameter were obtained. The different cases of initial conditions of a charged particle motion and of a wave polarization were investigated. The obtained results can be put to use when studying the high-temperature plasma formed on the surface of the target and when searching for new modes of laser- plasma interaction.

  12. Motion of a rigid prolate spheroid in a sound wave field.

    Science.gov (United States)

    Zhou, Hongkun; Hong, Lianjin

    2014-08-01

    The motions of a rigid and unconstrained prolate spheroid subjected to plane sound waves are computed using preliminary analytic derivation and numerical approach. The acoustically induced motions are found comprising torsional motion as well as translational motion in the case of acoustic oblique incidence and present great relevance to the sound wavelength, body geometry, and density. The relationship between the motions and acoustic particle velocity is obtained through finite element simulation in terms of sound wavelengths much longer than the overall size of the prolate spheroid. The results are relevant to the design of inertial acoustic particle velocity sensors based on prolate spheroids.

  13. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  14. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    Science.gov (United States)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  15. NUMERICAL STUDY ON EFFECT OF WAVING BED ON THE SURFACE WAVE

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ren; CHENG You-liang; WANG Song-ling

    2006-01-01

    The effect of the waving bed on the surface wave was investigated. The wave equation was reduced from the potential flow theory with the perturbation technique, and then was solved by using the pseudo-spectral method. The waterfall of the surface wave was simulated with the Matlab. It is shown that for the waving bed, an additional harmonic wave appears on the surface together with the solitary wave existing for the non-waving bed, and two kinds of waves do not interfere with each other. With the development of time, the waveform for the waving bed is kept invariable, and just the amplitude is reduced gradually. Wave-breaking phenomenon for the non-waving bed does not appear, so the waving bed seems useful to prevent the breaking of the wave.

  16. Nonlinear random motion analysis of coupled heave-pitch motions of a spar platform considering 1st-order and 2nd-order wave loads

    Science.gov (United States)

    Liu, Shuxiao; Tang, Yougang; Li, Wei

    2016-06-01

    In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.

  17. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  18. Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves

    DEFF Research Database (Denmark)

    Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio

    dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode......-identification known as ‘osculation’ (‘kissing’). In general it is called ‘osculation point’ the point where the energy peak shifts at low frequencies from the fundamental to the first higher mode. This jump occurs, with a continuous smooth transition, around a well-define frequency where the two modes get very close...... the vertical component of ground motion, as the mode osculation is linked to the Rayleigh wave ellipticity polarization, and therefore we conclude that multi-component data, using also horizontal receivers, can help discern the multi-modal nature of surface waves. Finally we introduce a-priori detectors...

  19. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  20. Blackfolds, Plane Waves and Minimal Surfaces

    CERN Document Server

    Armas, Jay

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...

  1. Numerical and Experimental Study on Contact Face and Shock Wave Motion in the Receiving Tube of Gas Wave Refrigerator

    Institute of Scientific and Technical Information of China (English)

    Dapeng HU; Shengtao CHEN; Hu LIU; Zuzhi CHEN; Che ZHU

    2006-01-01

    The contact face and shock wave motion in an open ends receiving tube of gas wave refrigerator are investigated numerically and experimentally.The results show that,velocity of the contact face rises rapidly as gas is injected into the receiving tube,and drops sharply after a steady propagation.However,velocity of the shock wave in the tube is almost linear.With increasing of inlet pressure,velocity of the shock wave and steady velocity of contact face also increase.In addition,time and distance of contact face propagation in the receiving tube become longer.

  2. Watching surface waves in phononic crystals.

    Science.gov (United States)

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  4. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  5. Broadband surface-wave transformation cloak

    Science.gov (United States)

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-01-01

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  6. Parallel Algorithm in Surface Wave Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.

  7. Coupling of flexural and longitudinal wave motion in a periodic structure with asymmetrically arranged transverse beams

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2005-01-01

    In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide with structural side branches attached at regular intervals. The analysis is based on periodic structure theory, and considers wave transmission in a fully tricoupled and semidefinite periodic...

  8. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew

    2017-01-11

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the.

  9. Motion of the surface of the human tympanic membrane measured with stroboscopic holography

    Science.gov (United States)

    Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Harrington, Ellery; Hernandez-Montes, Maria del Socorro; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Sound-induced motion of the surface of the human tympanic membrane (TM) was studied by stroboscopic holographic interferometery, which measures the amplitude and phase of the displacement at each of about 40000 points on the surface of the TM. Measurements were made with tonal stimuli of 0.5, 1, 4 and 8 kHz. The magnitude and phase of the sinusoidal displacement of the TM at each driven frequency were derived from the fundamental Fourier component of the raw displacement data computed from stroboscopic holograms of the TM recorded at eight stimulus phases. The correlation between the Fourier estimates and measured motion data was generally above 0.9 over the entire TM surface. We used three data presentations: (i) Plots of the phasic displacements along a single chord across the surface of the TM, (ii) Phasic surface maps of the displacement of the entire TM surface, and (iii) Plots of the Fourier derived amplitude and phase-angle of the surface displacement along four diameter lines that define and bisect each of the four quadrants of the TM. These displays led to some common conclusions: At 0.5 and 1 kHz, the entire TM moved roughly in-phase with some small phase delay apparent between local areas of maximal displacement in the posterior half of the TM. At 4 and 8 kHz, the motion of the TM became more complicated with multiple local displacement maxima arranged in rings around the manubrium. The displacements at most of these maxima were roughly in-phase, while some moved out-of-phase. Superposed on this in- and out-of-phase behavior were significant cyclic variations in phase with location of less than 0.2 cycles or occasionally rapid half-cycle step-like changes in phase. The high frequency displacement amplitude and phase maps discovered in this study can not be explained by any single wave motion, but are consistent with a combination of low and higher order modal motions plus some small traveling-wave-like components. The observations of the dynamics of TM

  10. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  11. Wave Motion Compensation Scheme and Its Model Tests for the Salvage of An Ancient Sunken Boat

    Institute of Scientific and Technical Information of China (English)

    YE Jia-wei; CHEN Yuan-ming; WANG Dong-jiao; LIU Yue-qin; SONG Xin; HUANG Yuan-tian

    2006-01-01

    The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken boat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the application of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.

  12. Equations of motion for a relativistic wave packet

    Indian Academy of Sciences (India)

    L Kocis

    2012-05-01

    The time derivative of the position of a relativistic wave packet is evaluated. It is found that it is equal to the mean value of the momentum of the wave packet divided by the mass of the particle. The equation derived represents a relativistic version of the second Ehrenfest theorem.

  13. Coherent motions and time scales that control heat and mass transfer at wind-swept water surfaces

    Science.gov (United States)

    Turney, D. E.

    2016-12-01

    Forecast of the heat and chemical budgets of lakes, rivers, and oceans requires improved predictive understanding of air-water interfacial transfer coefficients. Here we present laboratory observations of the coherent motions that occupy the air-water interface at wind speeds (U10) 1.1-8.9 m/s. Spatiotemporal near-surface velocity data and interfacial renewal data are made available by a novel flow tracer method. The relative activity, velocity scales, and time scales of the various coherent interfacial motions are measured, namely for Langmuir circulations, streamwise streaks, nonbreaking wind waves, parasitic capillary waves, nonturbulent breaking wind waves, and turbulence-generating breaking wind waves. Breaking waves exhibit a sudden jump in streamwise interfacial velocity wherein the velocity jumps up to exceed the wave celerity and destroys nearby parasitic capillary waves. Four distinct hydrodynamic regimes are found to exist between U10 = 0 and 8.9 m/s, each with a unique population balance of the various coherent motions. The velocity scales, time scales, and population balance of the different coherent motions are input to a first-principles gas transfer model to explain the waterside transfer coefficient (kw) as well as experimental patterns of temperature and gas concentration. The model mixes concepts from surface renewal and divergence theories and requires surface divergence strength (β), the Lagrangian residence time inside the upwelling zone (tLu), and the total lifetime of new interface before it is downwelled (tLT). The model's output agrees with time-averaged measurements kw, patterns of temperature in infrared photographs, and spatial patterns of gas concentration and kw from direct numerical simulations. Several nondimensional parameters, e.g. βtLu and τstLT where τs is the interfacial shear rate, determine the effectiveness of a particular type of coherent motion for affecting kw.

  14. The motion of charged particles in strong plane waves including radiation reaction

    Science.gov (United States)

    Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.

    The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.

  15. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    , along with a RAR modulation transfer function (MTF) with a larger amplitude. Eventually, an optimization of the RAR MTF is carried out by making use of the co-located database and the dependency of the optimized parameters on the wind velocity is studied. In the last three articles. Lagrangian models for ocean surface waves are investigated, and the main results are the following. In Article III, ocean surface properties such as the slope and the curvature are studied for linear irregular waves, and the difference between the Eulerian and the Lagrangian wave spectra is illustrated. In addition, some features of the second-order Lagrangian solution for irregular long-crested waves are presented. Then, in Article IV, the Lagrangian equations of motion, as given in Lamb (1932), are extended to include the irrotational flow assumption and simplified by eliminating the pressure. The first-order solution for two-dimensional irregular waves given by Pierson (1961) is modified through a change of variables that makes the mass conservation equation be fulfilled exactly, instead of being correct to the first order only. The resulting waves show higher sharp crests than in Pierson's solution, in which some water locally and temporary disappears in the vicinity of the surface. Furthermore, a three-dimensional second-order irrotational solution is derived. Monte Carlo simulations of irregular long-crested waves reveal that the fronts of some waves may steepen, while the fluid located on their back side and near the surface is hurled forward, in a way similar to an early stage breaking wave. Then, it is demonstrated that at the second order, short-crested waves develop curved crests owing to a non-uniform current field. Finally, the ability of the Lagrangian formalism to describe capillary waves is investigated in Article V. Assuming that surface tension is the only restoring force, the profile of the first-order monochromatic solution is the same as for gravity waves, with

  16. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  17. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  18. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  19. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  20. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices.

  1. Dynamic motions of ion acoustic waves in plasmas with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)

    2015-12-15

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)

  2. CAPILLARY EFFECT ON VERTICALLY EXCITED SURFACE WAVE IN CIRCULAR CYLINDRICAL VESSEL

    Institute of Scientific and Technical Information of China (English)

    JIAN Yong-jun; E Xue-quan; ZHANG Jie

    2006-01-01

    In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term,external excitation and the influence of surface tension, was derived from potential flow equation. The results show that, when forced frequency is lower, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result approaches to experimental results much more than that of no surface tension.

  3. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    , along with a RAR modulation transfer function (MTF) with a larger amplitude. Eventually, an optimization of the RAR MTF is carried out by making use of the co-located database and the dependency of the optimized parameters on the wind velocity is studied. In the last three articles. Lagrangian models for ocean surface waves are investigated, and the main results are the following. In Article III, ocean surface properties such as the slope and the curvature are studied for linear irregular waves, and the difference between the Eulerian and the Lagrangian wave spectra is illustrated. In addition, some features of the second-order Lagrangian solution for irregular long-crested waves are presented. Then, in Article IV, the Lagrangian equations of motion, as given in Lamb (1932), are extended to include the irrotational flow assumption and simplified by eliminating the pressure. The first-order solution for two-dimensional irregular waves given by Pierson (1961) is modified through a change of variables that makes the mass conservation equation be fulfilled exactly, instead of being correct to the first order only. The resulting waves show higher sharp crests than in Pierson's solution, in which some water locally and temporary disappears in the vicinity of the surface. Furthermore, a three-dimensional second-order irrotational solution is derived. Monte Carlo simulations of irregular long-crested waves reveal that the fronts of some waves may steepen, while the fluid located on their back side and near the surface is hurled forward, in a way similar to an early stage breaking wave. Then, it is demonstrated that at the second order, short-crested waves develop curved crests owing to a non-uniform current field. Finally, the ability of the Lagrangian formalism to describe capillary waves is investigated in Article V. Assuming that surface tension is the only restoring force, the profile of the first-order monochromatic solution is the same as for gravity waves, with

  4. Surface and downhole shear wave seismic methods for thick soil site investigations

    Science.gov (United States)

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  5. Channeling motion of gold nanospheres on a rippled glassed surface

    Science.gov (United States)

    Gnecco, Enrico; Nita, Pawel; Casado, Santiago; Pimentel, Carlos; Mougin, Karine; Caterina Giordano, Maria; Repetto, Diego; Buatier de Mongeot, Francesco

    2014-12-01

    Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This substrate is characterized by irregular wavy grooves running parallel to a preferential direction. Measurements in ambient conditions show that the motion of the nanoparticles is confined to single grooves (‘channels’), along which the particles move till they are trapped by local bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps and continue their longitudinal motion along a different channel. Moreover, due to the asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which was recently developed for the manipulation of nanospheres on flat surfaces, to the specific geometry of this problem.

  6. Motion-defined surface segregation in human visual cortex.

    Science.gov (United States)

    Vigano, Gabriel J; Maloney, Ryan T; Clifford, Colin W G

    2014-11-01

    Surface segregation provides an efficient way to parse the visual scene for perceptual analysis. Here, we investigated the segregation of a bivectorial motion display into transparent surfaces through a psychophysical task and fMRI. We found that perceptual transparency correlated with neural activity in the early areas of the visual cortex, suggesting these areas may be involved in the segregation of motion-defined surfaces. Two oppositely rotating, uniquely colored random dot kinematograms (RDKs) were presented either sequentially or in a spatially interleaved manner, displayed at varying alternation frequencies. Participants reported the color and rotation direction pairing of the RDKs in the psychophysical task. The spatially interleaved display generated the percept of motion transparency across the range of frequencies tested, yielding ceiling task performance. At high alternation frequencies, performance on the sequential display also approached ceiling, indicative of perceived transparency. However, transparency broke down in lower alternation frequency sequential displays, producing performance close to chance. A corresponding pattern mirroring the psychophysical data was also evident in univariate and multivariate analyses of the fMRI BOLD activity in visual cortical areas V1, V2, V3, V3AB, hV4, and V5/MT+. Using gray RDKs, we found significant presentation by frequency interactions in most areas; differences in BOLD signal between presentation types were significant only at the lower alternation frequency. Multivariate pattern classification was similarly unable to discriminate between presentation types at the higher frequency. This study provides evidence that early visual cortex may code for motion-defined surface segregation, which in turn may enable perceptual transparency.

  7. Improved shear wave motion detection using coded excitation for transient elastography

    Science.gov (United States)

    He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin

    2017-01-01

    Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue. PMID:28295027

  8. Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves

    Science.gov (United States)

    Young, Adam P.; Guza, Robert T.; Dickson, Mark E.; O'Reilly, William C.; Flick, Reinhard E.

    2013-12-01

    We compare ground motions observed within about 100 m of the waterline on eight sites located on shorelines with different morphologies (rock slope, cliff, and sand beaches). At all sites, local ocean waves generated ground motions in the frequency band 0.01-40 Hz. Between about 0.01 and 0.1 Hz, foreshore loading and gravitational attraction from ocean swell and infragravity waves drive coherent, in-phase ground flexing motions mostly oriented cross-shore that decay inland. At higher frequencies between 0.5 and 40 Hz, breaking ocean waves and wave-rock impacts cause ground shaking. Overall, seismic spectral shapes were generally consistent across shoreline sites and usually within a few orders of magnitude despite the diverse range of settings. However, specific site response varied and was influenced by a combination of tide level, incident wave energy, site morphology, ground composition, and signal decay. Flexing and shaking increased with incident wave energy and was often tidally modulated, consistent with a local generation source. Flexing magnitudes were usually larger than shaking, and flexing displacements of several mm were observed during relatively large incident wave conditions (Hs 4-5 m). Comparison with traffic noise and earthquakes illustrate the relative significance of local ocean-generated signals in coastal seismic data. Seismic observations are not a simple proxy for wave-cliff interaction.

  9. Improved shear wave motion detection using coded excitation for transient elastography.

    Science.gov (United States)

    He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin

    2017-03-15

    Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue.

  10. Determination of coupled sway, roll, and yaw motions of a floating body in regular waves

    Directory of Open Access Journals (Sweden)

    S. N. Das

    2004-01-01

    Full Text Available This paper investigates the motion response of a floating body in time domain under the influence of small amplitude regular waves. The governing equations of motion describing the balance of wave-exciting force with the inertial, damping, and restoring forces are transformed into frequency domain by applying Laplace transform technique. Assuming the floating body is initially at rest and the waves act perpendicular to the vessel of lateral symmetry, hydrodynamic coefficients were obtained in terms of integrated sectional added-mass, damping, and restoring coefficients, derived from Frank's close-fit curve. A numerical experiment on a vessel of 19190 ton displaced mass was carried out for three different wave frequencies, namely, 0.56 rad/s, 0.74 rad/s, and 1.24 rad/s. The damping parameters (ςi reveal the system stability criteria, derived from the quartic analysis, corresponding to the undamped frequencies (βi. It is observed that the sway and yaw motions become maximum for frequency 0.56 rad/s, whereas roll motion is maximum for frequency 0.74 rad/s. All three motions show harmonic behavior and attain dynamic equilibrium for time t>100 seconds. The mathematical approach presented here will be useful to determine seaworthiness characteristics of any vessel when wave amplitudes are small and also to validate complex numerical models.

  11. Scattered surface wave energy in the seismic coda

    Science.gov (United States)

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  12. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  13. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  14. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  15. Human motion estimation with multiple frequency modulated continuous wave radars

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2010-01-01

    Human motion estimation is an important issue in automotive, security or home automation applications. Radar systems are well suited for this because they are robust, are independent of day or night conditions and have accurate range and speed domain. The human response in a radar range-speed-time m

  16. Human motion estimation with multiple frequency modulated continuous wave radars

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2010-01-01

    Human motion estimation is an important issue in automotive, security or home automation applications. Radar systems are well suited for this because they are robust, are independent of day or night conditions and have accurate range and speed domain. The human response in a radar range-speed-time

  17. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    P R Sengupta; Sisir Nath

    2001-08-01

    The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the fibre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.

  18. Resonant surface acoustic wave chemical detector

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  19. Wave motions in unbounded poroelastic solids infused with compressible fluids

    CERN Document Server

    Quiligotti, S; dell'Isola, F

    2010-01-01

    Looking at rational solid-fluid mixture theories in the context of their biomechanical perspectives, this work aims at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid. The propagation of steady-state harmonic plane waves in unbounded media is investigated in both cases of unconstrained solid-fluid mixtures and fluid-saturated poroelastic solids. Relevant effects on the resulting characteristic speed of longitudinal and transverse elastic waves, due to the constitutive parameters introduced, are finally highlighted and discussed.

  20. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  1. Comment on "Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma" [Phys. Plasmas 20, 122106 (2013)

    Science.gov (United States)

    Moradi, Afshin

    2016-04-01

    In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.

  2. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    Science.gov (United States)

    2007-09-30

    1) is a natural two-space-dimension extension of the KdV equation . The periodic KP solutions include directional spreading in the wave field: y η...of the nonlinear preprocessor in the new approach for obtaining numerical solutions to nonlinear wave equations . I will now do so, but without many...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  3. 3D Simulations of Magnetohydrodynamic Waves in Lower Solar Atmospheric Flux Tubes Driven by Photospheric Motion

    CERN Document Server

    Mumford, S J; Erdélyi, R

    2013-01-01

    Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...

  4. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  5. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  6. Wave excited motion of a body floating on water confined between two semi-infinite ice sheets

    Science.gov (United States)

    Ren, K.; Wu, G. X.; Thomas, G. A.

    2016-12-01

    The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.

  7. Method and System for Producing Full Motion Media to Display on a Spherical Surface

    Science.gov (United States)

    Starobin, Michael A. (Inventor)

    2015-01-01

    A method and system for producing full motion media for display on a spherical surface is described. The method may include selecting a subject of full motion media for display on a spherical surface. The method may then include capturing the selected subject as full motion media (e.g., full motion video) in a rectilinear domain. The method may then include processing the full motion media in the rectilinear domain for display on a spherical surface, such as by orienting the full motion media, adding rotation to the full motion media, processing edges of the full motion media, and/or distorting the full motion media in the rectilinear domain for instance. After processing the full motion media, the method may additionally include providing the processed full motion media to a spherical projection system, such as a Science on a Sphere system.

  8. EXPERIMENTAL STUDY OF MOTIONS OF TWO FLOATING OFFSHORE STRUCTURES IN WAVES

    Directory of Open Access Journals (Sweden)

    Hassan Abyn

    2016-06-01

    Full Text Available Drilling is carried out in deeper to deeper waters around the globe to meet growing demands for oil and natural gas, and a number of multi body structures are deployed in various oil fields in the world. Investigation of hydrodynamic interaction of offshore structures is therefore worthwhile. Hydrodynamic interaction between floating offshore structures affects motion and relative motion especially during loading and offloading operations. Hydrodynamic interactions may lead to large motions of floating bodies that would cause damage to moorings and offloading systems and may collide with each other. This research work discusses experimental results of hydrodynamic interaction in surge, heave and pitch motion, relative motion and relative distance between a Tension Leg Platform (TLP and semi-submersible (Tender Assisted Drilling in regular waves. The experiment is conducted without tendon because of the depth limitation of the Towing Tank. However, in order to consider the contribution of mooring in linear direction, appropriate stiffness of horizontal springs have been used. The experiment was conducted for a full scale wave height of 3.77 m to 12.49 m for a separation distance of 21.7 m. From the analyses of the experimental and numerical results, it can be concluded that nonlinearity of the wave has an important effect on increasing the motion especially in the natural frequency region. Finally, a number of recommendations have been made for further study.

  9. Prototype of web-based database of surface wave investigation results for site classification

    Science.gov (United States)

    Hayashi, K.; Cakir, R.; Martin, A. J.; Craig, M. S.; Lorenzo, J. M.

    2016-12-01

    As active and passive surface wave methods are getting popular for evaluating site response of earthquake ground motion, demand on the development of database for investigation results is also increasing. Seismic ground motion not only depends on 1D velocity structure but also on 2D and 3D structures so that spatial information of S-wave velocity must be considered in ground motion prediction. The database can support to construct 2D and 3D underground models. Inversion of surface wave processing is essentially non-unique so that other information must be combined into the processing. The database of existed geophysical, geological and geotechnical investigation results can provide indispensable information to improve the accuracy and reliability of investigations. Most investigations, however, are carried out by individual organizations and investigation results are rarely stored in the unified and organized database. To study and discuss appropriate database and digital standard format for the surface wave investigations, we developed a prototype of web-based database to store observed data and processing results of surface wave investigations that we have performed at more than 400 sites in U.S. and Japan. The database was constructed on a web server using MySQL and PHP so that users can access to the database through the internet from anywhere with any device. All data is registered in the database with location and users can search geophysical data through Google Map. The database stores dispersion curves, horizontal to vertical spectral ratio and S-wave velocity profiles at each site that was saved in XML files as digital data so that user can review and reuse them. The database also stores a published 3D deep basin and crustal structure and user can refer it during the processing of surface wave data.

  10. Engineered metabarrier as shield from seismic surface waves

    OpenAIRE

    2016-01-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by bu...

  11. On elliptic cylindrical Kadomtsev-Petviashvili equation for surface waves

    CERN Document Server

    Khusnutdinova, K R; Matveev, V B; Smirnov, A O

    2012-01-01

    The `elliptic cylindrical Kadomtsev-Petviashvili equation' is derived for surface gravity waves with nearly-elliptic front, generalising the cylindrical KP equation for nearly-concentric waves. We discuss transformations between the derived equation and two existing versions of the KP equation, for nearly-plane and nearly-concentric waves. The transformations are used to construct important classes of exact solutions of the derived equation and corresponding approximate solutions for surface waves.

  12. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;

    2010-01-01

    in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...

  13. Influence of Atomic Motion on a Microlaser in an Optical Standing-Wave Cavity

    Institute of Scientific and Technical Information of China (English)

    张敬涛; 冯勋立; 张文琦; 徐至展

    2002-01-01

    We study the microlaser in an optical standing-wave cavity injected with two-level atoms. The results have shown the obvious infIuence of atomic centre-of-mass motion on the microlaser, such as the photon distribution, the linewidth and the frequency shift. It was found that when the momentum of atoms is comparable to that of photons, the influence of atomic motion is dominated and the number of photons in the microlaser can be greatly enhanced, owing to part of the atomic kinetic energy being transferred to the resonator. This work provides a comparison of the related studies on the atomic motion under special assumptions.

  14. The Effect of Steady Fluid Motion on One-Dimensional Wave Propagation (Postprint)

    Science.gov (United States)

    2007-08-01

    wave propagation in ducts where fluid motion was appreciable, Morse and Ingard (1968), Eversman (1970, 1971b), Ingard and Singhai (1973, 1974), Gogate...modified with the continuity equation to give an alternate momentum equation. This methodology was applied by Morse and Ingard (1968) to achieve a second...termed the convective wave equation, Morse and Ingard (1968) and Dowling (2003) 3. SIMPLIFICATION OF PDEs TO ODE’s WITH SECOND ORDER ACCURATE FINITE

  15. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  16. Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases

    NARCIS (Netherlands)

    Marquering, H.A.

    1996-01-01

    This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie

  17. Surface wave modelling and simulation for wave tanks and coastal areas

    OpenAIRE

    Groesen, van, E.; Bunnik, T.; Andonowati

    2011-01-01

    For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required wave maker motion into the downstream waves is very helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and varying bottom. The accurac...

  18. An Internal Wave as a Frequency Filter for Surface Gravity Waves on Water

    CERN Document Server

    Lossow, K

    2010-01-01

    We consider one-dimensional model of the interaction between surface and the internal gravity water waves. The internal wave is modeled by its basic form: a non-dispersive field with a horizontal current that is uniform over all depth, insignificantly affected by the surface waves, while ignoring surface tension and wind growth/decay effects. The depth is infinite. Approximation for the height of the surface wave on the flow by the "elementary quasi stationary" solutions was found. It was shown that the flow acts as a frequency filter for gravitational waves on water.

  19. Effect of thin film on the generation of vorticity by surface waves

    CERN Document Server

    Parfenyev, V M; Lebedev, V V

    2016-01-01

    Recently a theoretical scheme explaining the vorticity generation by surface waves in liquids was developed [S. Filatov et al., Phys. Rev. Lett. 116, 054501 (2016)]. Here we study how a thin (monomolecular) film presented at the surface of liquid affects the generated vorticity. We demonstrate that the vorticity becomes parametrically larger than for the case with a clean surface and now it depends on viscosity of the liquid. We also discuss the motion of particles passively advected by the generated surface flow. The results can be used in different applications: from the analysis of pollutants' diffusion on the ocean surface till the reconstruction of vorticity based on the particle image velocimetry (PIV) measurements.

  20. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  1. Surface Waves in Almost Incompressible Elastic Materials

    CERN Document Server

    Virta, Kristoffer

    2013-01-01

    A recent study shows that the classical theory concerning accuracy and points per wavelength is not valid for surface waves in almost incompressible elastic materials. The grid size must instead be proportional to $(\\frac{\\mu}{\\lambda})^{(1/p)}$ to achieve a certain accuracy. Here $p$ is the order of accuracy the scheme and $\\mu$ and $\\lambda$ are the Lame parameters. This accuracy requirement becomes very restrictive close to the incompressible limit where $\\frac{\\mu}{\\lambda} \\ll 1$, especially for low order methods. We present results concerning how to choose the number of grid points for 4th, 6th and 8th order summation-by-parts finite difference schemes. The result is applied to Lambs problem in an almost incompressible material.

  2. The radiation of surface wave energy: Implications for volcanic tremor

    Science.gov (United States)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  3. Impacts of tropical cyclone inflow angle on ocean surface waves

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; HONG Xin

    2011-01-01

    The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, the effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.

  4. Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling

    CERN Document Server

    Jamin, Timothée; Ruiz-Chavarría, Gerardo; Berhanu, Michael; Falcon, Eric

    2014-01-01

    We report laboratory experiments on surface waves generated in a uniform fluid layer whose bottom undergoes a sudden upward motion. Simultaneous measurements of the free-surface deformation and the fluid velocity field are focused on the role of the bottom kinematics in wave generation. We observe that the fluid layer transfers bottom motion to the free surface as a temporal high-pass filter coupled with a spatial low-pass filter. Both filter effects are usually neglected in tsunami warning systems. Our results display good agreement with a prevailing linear theory without fitting parameter. Based on our experimental data, we provide a new theoretical approach for the rapid kinematics limit that is applicable even for non-flat bottoms: a key step since most approaches assume a uniform depth. This approach can be easily appended to tsunami simulations under arbitrary topography.

  5. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model of a piezoele......In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...

  6. Separating Internal Waves and Vortical Motions: Analysis of LatMix -EM-APEX Float Measurements

    Science.gov (United States)

    2015-09-30

    Washington 98105 Phone: (206) 685-1079 fax: (206) 543-6785 email: lien@apl.washington.edu Thomas B. Sanford Applied Physics Laboratory and School ...project is to separate internal waves and vortical motions. These two processes coexist at small spatial scales (Müller 1984). However, they have distinct

  7. Particle motion of accelerated electrons in standing-wave RF structures

    Science.gov (United States)

    Hammen, A. F. J.; Corstens, J. M.; Botman, J. I. M.; Hagedoorn, H. L.; Theuws, W. H. C.

    1999-05-01

    A Hamiltonian theory has been formulated, which is used to calculate accelerated particle motion in standing-wave RF structures. In particular, these calculations have been applied to the Eindhoven racetrack microtron accelerating cavity. The calculations are in excellent agreement with simulations performed by particle-tracking codes.

  8. Surface Wave Speed of Functionally Graded Magneto-Electro-Elastic Materials with Initial Stresses

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-09-01

    Full Text Available The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.

  9. Motion of Drops on Surfaces with Wettability Gradients

    Science.gov (United States)

    Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying

    2002-01-01

    A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a

  10. Lagrangian Observations of Incipient Motion within the Wave Bottom Boundary Layer with "Electronic Pebbles"

    Science.gov (United States)

    Frank, D. P.; Foster, D. L.; Chou, P.; Kao, Y.

    2012-12-01

    In-situ measurements of incipient motion within the mobile bed layer were conducted with state-of-the-art micro-electronic machines (MEMs). These devices were embedded in coarse-gravel sized Delrin enclosures, which have been scaled with the mobility criteria for small-scale wave flumes. The role of shear stress and pressure gradient on incipient motion of an intermittently mobile sediment bed was investigated under various oscillatory flows. Experiments conducted in a large-scale wave flume demonstrated a rocking motion before the ePebble rolled at incipient motion. The underwater video camera recorded the movement of the balls and the sensors resolved the accelerations at incipient motion. Complementary measurements with acoustic Doppler velocimeters were made to determine the hydrodynamics in the test section. The results suggest evidence of pressure gradient influenced incipient motion; in contrast with the more commonly used threshold for sediment motion based on the bed shear stress. The motion of the ePebbles correspond temporally to peaks in the pressure gradient. Calculated values of the Sleath parameter, used to quantify the effects of the pressure gradients, were comparable with field observations of pressure gradient induced plug flow by Foster et al (2006). The current configuration of the ePebble helps to identify the characteristics of incipient motion and determine orientation. These mobile nodes make a significant step towards resolving the Lagrangian dynamics of individual coarse gravel-sized particles within the mobile bed layer in the nearshore. On a larger scale, they will reduce the effects of beach erosion by improving beach nourishment design.

  11. Reducing Motional Decoherence in Ion Traps with Surface Science Methods

    Science.gov (United States)

    Haeffner, Hartmut

    2014-03-01

    Many trapped ions experiments ask for low motional heating rates while trapping the ions close to trapping electrodes. However, in practice small ion-electrode distances lead to unexpected high heating rates. While the mechanisms for the heating is still unclear, it is now evident that surface contamination of the metallic electrodes is at least partially responsible for the elevated heating rates. I will discuss heating rate measurements in a microfabricated surface trap complemented with basic surface science studies. We monitor the elemental surface composition of the Cu-Al alloy trap with an Auger spectrometer. After bake-out, we find a strong Carbon and Oxygen contamination and heating rates of 200 quanta/s at 1 MHz trap frequency. After removing most of the Carbon and Oxygen with Ar-Ion sputtering, the heating rates drop to 4 quanta/s. Interestingly, we still measure the decreased heating rate even after the surface oxidized from the background gas throughout a 40-day waiting time in UHV.

  12. Surface acoustic wave (SAW) vibration sensors.

    Science.gov (United States)

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  13. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  14. An Efficient Hydrodynamic Model for Surface Waves

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LU Gang

    2009-01-01

    In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.

  15. Statistical model on the surface elevation of waves with breaking

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.

  16. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  17. Feasibility of the surface-wave method for the assessment of physical properties of a dam using numerical analysis

    Science.gov (United States)

    Min, Dong-Joo; Kim, Hyoung-Soo

    2006-07-01

    A three-dimensional finite difference elastic wave model was developed to estimate the feasibility of surface wave applications in geotechnical problems. The wave motions calculated by the developed program in this study compare favorably with well known analytic solutions. The surface wave motions calculated from layered-dam type structures could be interpreted as an infinite layered structure using dispersion curves, but a special source of high energy (frequencies lower than 10 hertz [Hz]) is needed to assess the physical properties at depths on the order of tens of meters. A high-energy source in the low frequency band, however, can result in structural damage to a dam, which would limit field applications of the program. The dispersion curves calculated from the surface wave motion of homogeneous and center-core type dam models would result in fatal errors in the model if the conventional infinite layer structure is used in their interpretation. This is because the surrounding materials and boundaries of a dam create some distortion in the dispersion curve of the surface wave. It is strongly recommended to use a three-dimensional inversion model for correct interpretation and estimation of physical properties of dam materials when using the surface wave application for dam inspection.

  18. Wave motion as inquiry the physics and applications of light and sound

    CERN Document Server

    Espinoza, Fernando

    2017-01-01

    This undergraduate textbook on the physics of wave motion in optics and acoustics avoids presenting the topic abstractly in order to emphasize real-world examples. While providing the needed scientific context, Dr. Espinoza also relies on students' own experience to guide their learning. The book's exercises and labs strongly emphasize this inquiry-based approach. A strength of inquiry-based courses is that the students maintain a higher level of engagement when they are studying a topic that they have an internal motivation to know, rather than solely following the directives of a professor. "Wave Motion" takes those threads of engagement and interest and weaves them into a coherent picture of wave phenomena. It demystifies key components of life around us--in music, in technology, and indeed in everything we perceive--even for those without a strong math background, who might otherwise have trouble approaching the subject matter.

  19. Analysis of wave packet motion in frequency and time domain: oxazine 1.

    Science.gov (United States)

    Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan

    2006-08-17

    Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.

  20. Investigation of Motion of Two Hinged Bodies Moored by Mooring Lines in Waves

    Institute of Scientific and Technical Information of China (English)

    纪亨腾; 范菊; 黄祥鹿

    2002-01-01

    In this paper, the motions are studied of a multi-body which is composed of two plates hinged together and mooredby eight mooring lines in regular waves. The experimental results are compared with computational results. The linear po-tential theory and the perturbation method are combined to study this complicated system. The former is used to calculatethe wave forces acting on the plates and the motion responses of them, while the latter is used to describe the dynamiccharacter of the eight mooring lines coupled with the two hinged plates. Some response results of each plate are presentedand comparisons between calculated results and experimental data are given. All the calculations are confined to regularbeam waves.

  1. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  2. NUMERICAL STUDIES OF 2D FREE SURFACE WAVES WITH FIXED BOTTOM

    Institute of Scientific and Technical Information of China (English)

    Ping-wen Zhang; Xiao-ming Zheng

    2002-01-01

    The motion of surface waves under the effect of bottom is a very interesting and challenging phenomenon in the nature. we use boundary integral method to compute and analyze this problem. In the linear analysis, the linearized equations have bounded error increase under some compatible conditions. This contributes to the cancellation of instable Kelvin-Helmholtz terms. Under the effect of bottom, the existence of equations is hard to determine, but given some limitations it proves true. These limitations are that the swing of interfaces should be small enough, and the distance between surface and bottom should be large enough. In order to maintain the stability of computation, some compatible relationship must be satisfied like that of [5]. In the numerical examples, the simulation of standing waves and breaking waves are calculated. And in the case of shallow bottom, we found that the behavior of waves are rather singular.

  3. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  4. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  5. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  6. Determination of ocean surface wave shape from forward scattered sound.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

  7. Freely decaying weak turbulence for sea surface gravity waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C

    2002-09-30

    We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.

  8. Determination of the in-plane components of motion in a Lamb wave from single-axis laser vibrometry.

    Science.gov (United States)

    Rajic, Nik; Rosalie, Cedric; Norman, Patrick; Davis, Claire

    2014-06-01

    A method is proposed for determining in-plane components of motion in a Lamb wave from laser vibrometer measurements of surface motion out of plane. The approach relies on a frequency domain transformation that assumes knowledge only of the plate thickness and the bulk wave speeds. An outline of the relevant theory is followed by several validation case studies that generally affirm a useful level of accuracy and robust performance across a relatively wide frequency-thickness product range. In a comparison to the two-angle vibrometry approach, the proposed method is shown to be simpler to implement and to yield estimates with a consistently higher signal to noise ratio. The approach is then used to furnish estimates of the in-plane strains in Lamb waves propagating in an aluminum plate at frequencies below the first cut-off. These estimates are compared to strain measurements obtained from an adhesively bonded fiber Bragg grating. The agreement is shown to be excellent overall with an average discrepancy of less than 6%; however, systematic errors of twice that amount were recorded in the low-frequency-thickness product regime. These low-frequency discrepancies are not consistent with known sources of experimental error and cannot be explained by shear-lag theory.

  9. Estimation of seismic wave velocity at seafloor surface and sound source localization based on transmitted wave observation with an ocean bottom seismometer offshore of Kamaishi, Japan

    Science.gov (United States)

    Iwase, Ryoichi

    2016-07-01

    An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.

  10. Simulation of surface acoustic wave motor with spherical slider.

    Science.gov (United States)

    Morita, T; Kurosawa, M K; Higuchi, T

    1999-01-01

    The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work.

  11. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  12. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  13. VIBRATING-UPLIFT ROCKING MOTION OF CAISSON BREAKWATERS UNDER VARIOUS BREAKING WAVE IMPACT FORCES

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-zhan; ZHOU Zhi-rong; YANG Hai-dong

    2005-01-01

    Overturning is one of principal failure types of caisson breakwaters and is an essential content of stability examination in caisson breakwater design. The mass-springdashpot model of caisson-foundation system is used to simulate the vibrating-uplift rocking motion of caisson under various types of breaking wave impact forces, i.e., single peak impact force, double peak impact force, and shock-damping oscillation impact force. The effects of various breaking wave types and the uplift rocking motion on dynamic response behaviors of caisson breakwaters are investigated. It is shown that the dynamic responses of a caisson are significantly different under different types of breaking wave impact forces even when the amplitudes of impact forces are equal. Though the rotation of a caisson is larger due to the uplift rocking motion, the displacement, the sliding force and the overturning moment of the caisson are significantly reduced. It provides the theoretical base for the design idea that the uplift rocking motion of caisson is allowed in design.

  14. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  15. Surface Acoustic Waves to Drive Plant Transpiration

    Science.gov (United States)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  16. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  17. Anomalous wave as a result of the collision of two wave groups on sea surface

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of the sea surface has shown that the collision of two groups of relatively low waves with close but noncollinear wave vectors (two or three waves in each group with a steepness of about 0.2) can result in the appearance of an individual anomalous wave whose height is noticeably larger than that in the linear theory. Since such collisions quite often occur on the ocean surface, this scenario of the formation of rogue waves is apparently most typical under natural conditions.

  18. The influence of crustal scattering on translational and rotational motions in regional and teleseismic coda waves

    Science.gov (United States)

    Gaebler, Peter J.; Sens-Schönfelder, Christoph; Korn, Michael

    2015-04-01

    Monte Carlo solutions to the radiative transfer equations are used to model translational and rotational motion seismogram envelopes in random elastic media with deterministic background structure assuming multiple anisotropic scattering. Observation and modelling of the three additional components of rotational motions can provide independent information about wave propagation in the Earth's structure. Rotational motions around the vertical axis observed in the P-wave coda are of particular interest as they can only be excited by horizontally polarized shear waves and therefore indicate the conversion from P to SH energy by multiple scattering at 3-D heterogeneities. To investigate crustal scattering and attenuation parameters in south-east Germany beneath the Gräfenberg array multicomponent seismogram envelopes of rotational and translational motions are synthesized and compared to seismic data from regional swarm-earthquakes and of deep teleseismic events. In the regional case a nonlinear genetic inversion is used to estimate scattering and attenuation parameters at high frequencies (4-8 Hz). Our preferred model of crustal heterogeneity consists of a medium with random velocity and density fluctuations described by an exponential autocorrelation function with a correlation length of a few hundred metres and fluctuations in the range of 3 per cent. The quality factor for elastic S-waves attenuation Q_i^S is around 700. In a second, step simulations of teleseismic P-wave arrivals using this estimated set of scattering and attenuation parameters are compared to observed seismogram envelopes from deep events. Simulations of teleseismic events with the parameters found from the regional inversion show good agreement with the measured seismogram envelopes. This includes ringlaser observations of vertical rotations in the teleseismic P-wave coda that naturally result from the proposed model of wave scattering. The model also predicts, that the elastic energy recorded

  19. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  20. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  1. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  2. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    Science.gov (United States)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  3. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  4. Surge motion of an ice floe in waves: comparison of theoretical and experimental models

    CERN Document Server

    Meylan, Michael; Bennetts, Luke; French, Benjamin; Thomas, Giles

    2014-01-01

    A theoretical model and an experimental model of surge motions of an ice floe due to regular waves are presented. The theoretical model is a modified version of Morrison's equation, valid for small floating bodies. The experimental model is implemented in a wave basin at scale 1:100, using a thin plastic disk to model the floe. The processed experimental data displays a regime change in surge amplitude when the incident wavelength is approximately twice the floe diameter. It is shown that the theoretical model is accurate in the large wavelength regime, but highly inaccurate for the small wavelength regime.

  5. Development of Surface Acoustic Wave Electronic Nose

    Directory of Open Access Journals (Sweden)

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  6. S-wave reflection and surface wave surveys in liquefaction affected areas: a case study of the Hinode area, Itako, Ibaraki, Japan

    Science.gov (United States)

    Yokota, Toshiyuki; Jinguuji, Motoharu; Yamanaka, Yoshiaki; Murata, Kazunori

    2017-10-01

    Property damage results from liquefaction that occurs easily in soft sandy layers. Moreover, liquefaction damage tends to be more serious at locations where earthquake ground motions are locally amplified. It is commonly understood that ground stiffness is correlated with S-wave velocity (Vs); in addition, the structure of the local subsurface is important for predicting local earthquake ground motion. Surface wave and S-wave reflection surveys are efficient, non-destructive techniques used to obtain two-dimensional S-wave velocity distributions and to map subsurface structures. In this study, we performed surface wave and S-wave reflection surveys to investigate the Hinode area of Itako, Ibaraki, Japan. This area suffered serious liquefaction damage during the Great Eastern Japan Earthquake of 2011. Using subsurface boundaries imaged by the reflection surveys and the Vs structures obtained by surface wave analyses, it is possible to extrapolate geological and hydraulic information obtained by boring and cone penetration tests (CPTs). The combined information was used to delineate the layer in which liquefaction occurred, identified as an artificial layer of sandy dredged material, formed after 1970. The results of this study confirmed the effectiveness and applicability of geophysical surveys to the evaluation of the liquefaction potential. These methods enable us to predict the spatial distribution of liquefiable soils for future large earthquakes.

  7. Stability of submerged rock berms exposed to motion of liquefied soil in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Dixen, Figen Hatipoglu; Fredsøe, Jørgen

    2011-01-01

    The paper describes the results of an experimental study on the behaviour of a submerged rock berm in liquefied backfill soil. The soil is liquefied by waves, and the rock berm is subject to the orbital motion of the liquefied soil. The soil used in the experiments was silt with d50=0.075mm....... Various berm materials were used, stones of size 0.74–2.5cm, plastic balls of size 3.6cm, brass of size 2.5cm and steel of size 1.0cm. The experiments show that rock berms that are stable under very large waves can be unstable when they are exposed to the motion of liquefied soil. The limited data...

  8. Integrating optical finger motion tracking with surface touch events.

    Science.gov (United States)

    MacRitchie, Jennifer; McPherson, Andrew P

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  9. Integrating optical finger motion tracking with surface touch events

    Directory of Open Access Journals (Sweden)

    Jennifer eMacRitchie

    2015-06-01

    Full Text Available This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterisation of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  10. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  11. Motion of Bishop Frenet Offsets of Ruled Surfaces in E3

    Directory of Open Access Journals (Sweden)

    H. N. Abd-Ellah

    2015-01-01

    Full Text Available The main goal of this paper is to study the motion of two associated ruled surfaces in Euclidean 3-space E3. In particular, the motion of Bishop Frenet offsets of ruled surfaces is investigated. Additionally, the characteristic properties for such ruled surfaces are given. Finally, an application is presented and plotted using computer aided geometric design.

  12. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  13. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model......Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... calibration, carried out in plane wave couplers, is the most extended. Here plane wave propagation is assumed. While this assumption is valid at low and mid frequencies, it fails at higher frequencies because the membrane of the microphones is not moving uniformly, and there are viscous losses. An existing...

  14. An experimental study of wave coupling in gravity surface wave turbulence

    Science.gov (United States)

    Aubourg, Quentin; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2016-11-01

    Weak turbulence is a theoretical framework aimed at describing wave turbulence (in the weakly nonlinear limit) i.e. a statistical state involving a large number of nonlinearly coupled waves. For gravity waves at the surface of water, it provides a phenomenology that may describe the formation of the spectrum of the ocean surface. Analytical predictions of the spectra are made based on the fact that energy transfer occurs through 4-wave coupling. By using an advanced stereoscopic imaging technique, we measure in time the deformation of the water surface. We obtain a state of wave turbulence by using two small wedge wavemakers in a 13-m diameter wavetank. We then use high order correlator (bi- and tri-coherence) in order to get evidence of the active wave coupling present in our system as used successfully for gravity-capillary wave turbulence. At odds with the weak turbulence theory we observe 3-wave interaction involving 2 quasi linear wave and a bound wave whose frequency lies on the first harmonics of the linear dispersion relation. We do not observe 4-wave coupling within the accuracy of our measurement. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 647018-WATU).

  15. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    Science.gov (United States)

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-07-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

  16. Surface waves in a vertically excited circular cylindrical container

    Institute of Scientific and Technical Information of China (English)

    Jian Yong-Jun; E Xue-Quan; Zhang Jie; Meng Jun-Min

    2004-01-01

    The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder,is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies,contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition,the comparison of the surface wave modes is made between theoretical calculations and experimental measurements,and the results are reasonable although there are some differences in the forced frequency.

  17. Spatial characteristics of ocean surface waves

    Science.gov (United States)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  18. Mass Transport in a Thin Layer of Bi-Viscous Mud Under Surface Waves

    Institute of Scientific and Technical Information of China (English)

    NG Chiu-on; FU Sau-chung; BAI Yu-chuan(白玉川)

    2002-01-01

    The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluidStokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-appliedstresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers areapplied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of theflow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e., oppo-site to wave propagation) for a certain range of yield stress.

  19. Surface Waves in the paritally ionized solar plasma slab

    CERN Document Server

    Pandey, B P

    2013-01-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.

  20. Experimental study of three-wave interactions among capillary-gravity surface waves

    CERN Document Server

    Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-01-01

    In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...

  1. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  2. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...

  3. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  4. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Mihaela Puiu; Ana-Maria Gurban; Lucian Rotariu; Simona Brajnicov; Cristian Viespe; Camelia Bala

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  5. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  6. Assessing the effect of shipboard motion and sleep surface on sleep effectiveness

    OpenAIRE

    Sullivan, Matthew C.

    2009-01-01

    Approved for public release, distribution unlimited Human Systems Integration Report Sleep in today's Navy is in short supply. When it is possible for Sailors and officers to sleep, that sleep should be as efficient as possible. This study sought to determine if motion affects sleep efficiency, and if sleeping surface could be used to mitigate the disturbed sleeping patterns caused by motion. To accomplish this goal, the researchers employed a motion machine driven with motion profi...

  7. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  8. Palladium nanoparticle-based surface acoustic wave hydrogen sensor.

    Science.gov (United States)

    Sil, Devika; Hines, Jacqueline; Udeoyo, Uduak; Borguet, Eric

    2015-03-18

    Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room temperature.

  9. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  10. Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.

    1985-09-01

    The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.

  11. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  12. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  13. Numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel

    Science.gov (United States)

    Rahman, S.; Kataoka, M.; Barnes, C. H. W.; Langtangen, H. P.

    2006-07-01

    We investigate the propagation of a piezoelectric surface acoustic wave (SAW) across a GaAs/AlxGa1-xAs heterostructure surface, on which there is a fixed metallic split gate. Our method is based on a finite element formulation of the underlying equations of motion, and is performed in three dimensions fully incorporating the geometry and material composition of the substrate and gates. We demonstrate attenuation of the SAW amplitude as a result of the presence of both mechanical and electrical gates on the surface. We show that the incorporation of a simple model for the screening by the two-dimensional electron gas (2DEG), results in a total electric potential modulation that suggests a mechanism for the capture and release of electrons by the SAW. Our simulations suggest the absence of any significant turbulence in the SAW motion which could hamper the operation of SAW based quantum devices of a more complex geometry.

  14. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  15. Step density waves on growing vicinal crystal surfaces - Theory and experiment

    Science.gov (United States)

    Ranguelov, Bogdan; Müller, Pierre; Metois, Jean-Jacques; Stoyanov, Stoyan

    2017-01-01

    The Burton, Cabrera and Frank (BCF) theory plays a key conceptual role in understanding and modeling the crystal growth of vicinal surfaces. In BCF theory the adatom concentration on a vicinal surface obeys to a diffusion equation, generally solved within quasi-static approximation where the adatom concentration at a given distance x from a step has a steady state value n (x) . Recently, we show that going beyond this approximation (Ranguelov and Stoyanov, 2007) [6], for fast surface diffusion and slow attachment/detachment kinetics of adatoms at the steps, a train of fast-moving steps is unstable against the formation of steps density waves. More precisely, the step density waves are generated if the step velocity exceeds a critical value related to the strength of the step-step repulsion. This theoretical treatment corresponds to the case when the time to reach a steady state concentration of adatoms on a given terrace is comparable to the time for a non-negligible change of the step configuration leading to a terrace adatom concentration n (x , t) that depends not only on the terrace width, but also on its "past width". This formation of step density waves originates from the high velocity of step motion and has nothing to do with usual kinetic instabilities of step bunching induced by Ehrlich-Schwoebel effect, surface electromigration and/or the impact of impurities on the step rate. The so-predicted formation of step density waves is illustrated by numerical integration of the equations for step motion. In order to complete our previous theoretical treatment of the non-stationary BCF problem, we perform an in-situ reflection electron microscopy experiment at specific temperature interval and direction of the heating current, in which, for the first time, the step density waves instability is evidenced on Si(111) surface during highest possible Si adatoms deposition rates.

  16. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  17. Wave Generated by the NACA4412 Hydrofoil near Free Surface

    Directory of Open Access Journals (Sweden)

    Hassan Ghassemi

    2013-01-01

    Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.

  18. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  20. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  1. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  2. Visualization of Surface Acoustic Waves in Thin Liquid Films

    OpenAIRE

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, Jonathan M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with anWe demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfl...

  3. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  4. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves

    CERN Document Server

    Issenmann, Bruno; Falcon, Eric

    2016-01-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain most of these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths.s.

  5. Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)

    2014-10-15

    Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.

  6. Energy budget of surface waves in the global ocean

    Institute of Scientific and Technical Information of China (English)

    TENG Yong; YANG Yongzeng; QIAO Fangli; LU Jing; YIN Xunqiang

    2009-01-01

    Mechanical energy input from atmosphere and losses from wave-breaking dissipation of sea surface waves are estimated by a direct scheme. This scheme is based on the integration in the wavenumber space of the wind input and breaking dissipation source functions of the MASNUM wave model.The global amount of wind energy input, averaged in 2005, is about 57 TW, and the wave-breaking dissipation summed in deep-water is about 33 TW, over a half of the wind energy input. The residual may be dissipated by beach processes. Global distributions of the energy input and breaking dissipation concentrate in the westerlies of the Southern Hemisphere.

  7. The Surface Wave Scattering-Microwave Scanner (SWS-MS)

    Science.gov (United States)

    Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe

    2016-01-01

    The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.

  8. Polarization controlled directional propagation of Bloch surface wave.

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry

    2017-03-06

    Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

  9. Surface-plasmon-polariton waves guided by the uniformly moving planar interface of a metal film and dielectric slab

    CERN Document Server

    Mackay, Tom G

    2010-01-01

    We explored the effects of relative motion on the excitation of surface-plasmon-polariton (SPP) waves guided by the planar interface of a metal film and a dielectric slab, both materials being isotropic and homogeneous. Electromagnetic phasors in moving and non-moving reference frames were related directly using the corresponding Lorentz transformations. Our numerical studies revealed that, in the case of a uniformly moving dielectric slab, the angle of incidence for SPP-wave excitation is highly sensitive to (i) the ratio $\\beta$ of the speed of motion to speed of light in free space and (ii) the direction of motion. When the direction of motion is parallel to the plane of incidence, the SPP wave is excited by $p$-polarized (but not $s$-polarized) incident plane waves for low and moderate values of $\\beta$, while at higher values of $\\beta$ the total reflection regime breaks down. When the direction of motion is perpendicular to the plane of incidence, the SPP wave is excited by $p$-polarized incident plane ...

  10. Acoustomicrofluidic application of quasi-shear surface waves.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2017-02-20

    The paper analyzes the possibility of using predominantly boundary polarized surface acoustic waves for actuating fluidic effects in microchannels fabricated inside containers made of PDMS. The aim is to remove a shortcoming peculiar to conventionally utilized predominantly vertically polarized waves. Such waves strongly attenuate while they propagate under container side walls because of the leakage into them. Due to a specific feature of PDMS - extremely small shear elastic modulus - losses of boundary polarized modes should be far smaller. The amplitude of vertical mechanical displacements can be increased right inside the channel owing to the scattering of acoustic fields. As an example, the predominantly vertically polarized surface wave on 128YX LiNbO3 is compared with the quasi-shear leaky wave on 64YX LiNbO3. Our computations predict that, given the electric power supplied to the launching transducer, the quasi-shear wave will drive the fluid more efficiently than the surface wave on 128YX LiNbO3 when the container wall thickness is larger than 25-30 wavelengths, if there are no additional scatterers inside the channel. In the presence of a scatterer, such as a thin gold strip, the quasi-shear wave can be more efficient when the wall thickness exceeds 10-15 wavelengths.

  11. Steep waves in free-surface flow past narrow topography

    Science.gov (United States)

    Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.

    2017-06-01

    In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.

  12. Characterisation of metachronal waves on the surface of the spherical colonial alga Volvox carteri

    Science.gov (United States)

    Brumley, Douglas; Polin, Marco; Morez, Constant; Goldstein, Raymond; Pedley, Timothy

    2012-02-01

    Volvox carteri is a spherical colonial alga, consisting of thousands of biflagellate cells. The somatic cells embedded on the surface of the colony beat their flagella in a coordinated fashion, producing a net fluid motion. Using high-speed imaging and particle image velocimetry (PIV) we have been able to accurately analyse the time-dependent flow fields around such colonies. The somatic cells on the colony surface may beat their flagella in a perfectly synchronised fashion, or may exhibit metachronal waves travelling on the surface. We analyse the dependence of this synchronisation on fundamental parameters in the system such as colony radius, characterise the speed and wavelength of the observed metachronal waves, and investigate possible models to account for the exhibited behaviour.

  13. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    Ashim P Jain; J Parashar

    2003-09-01

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.

  14. Some aspects of dispersive horizons: lessons from surface waves

    CERN Document Server

    Chaline, J; Maïssa, P; Rousseaux, G

    2012-01-01

    Hydrodynamic surface waves propagating on a moving background flow experience an effective curved space-time. We discuss experiments with gravity waves and capillary-gravity waves in which we study hydrodynamic black/white-hole horizons and the possibility of penetrating across them. Such possibility of penetration is due to the interaction with an additional "blue" horizon, which results from the inclusion of surface tension in the low-frequency gravity-wave theory. This interaction leads to a dispersive cusp beyond which both horizons completely disappear. We speculate the appearance of high-frequency "superluminal" corrections to be a universal characteristic of analogue gravity systems, and discuss their relevance for the trans-Planckian problem. We also discuss the role of Airy interference in hybridising the incoming waves with the flowing background (the effective spacetime) and blurring the position of the black/white-hole horizon.

  15. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  16. Dynamic modeling of wave driven unmanned surface vehicle in longitudinal profile based on D-H approach

    Institute of Scientific and Technical Information of China (English)

    田宝强; 俞建成; 张艾群

    2015-01-01

    Wave driven unmanned surface vehicle (WUSV) is a new concept ocean robot drived by wave energy and solar energy, and it is very suitable for the vast ocean observations with incomparable endurance. Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis. In this work, the multibody system of WUSV was described based on D-H approach. Then, the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics. Finally, the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state. Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process, and the results are consistent with the wave theory.

  17. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  18. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Dianyuan Fan

    2011-01-01

    We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.

  19. Empirical evidence of Rayleigh waves in Norcia (central Italy) and their quantitative contribution to ground motion

    Science.gov (United States)

    Caffagni, Enrico; Cattaneo, Marco; Bordoni, Paola

    2016-04-01

    Spectral ratio techniques, such as the Horizontal-to-Vertical (HV) and Standard (SSR) may exhibit different trends in specific frequency bands when conducted in alluvial basins. A possible explanation of this discrepancy can be provided by the presence of Rayleigh oscillations, that are considered responsible of an amplification of the vertical component with respect to the horizontal. We propose a new methodology for the identification of Rayleigh waves arrivals, to test on small-size basins. With this procedure, candidate Rayleigh waves are localized in time-frequency domain on an instantaneous polarization plane which is constructed by defining the instantaneous maximum vertical and horizontal spectral amplitudes. Validation of the candidate Rayleigh arrivals is performed by evaluating the instantaneous ellipticity. This step yields to a quantitative measure of the polarization, providing an indicator of the Rayleigh contribution to ground motion. We tested this methodology in the Norcia basin (central Italy) using a 18 selected earthquakes (2.0 L'Aquila sequence (2009). We demonstrate the robustness of our methodology by localizing evidences of Rayleigh wave arrivals immediately from (1 s) up to 30 s after the first S-wave group, even for low-magnitude events (Ml < 3.0). The generation of the detected Rayleigh waves analyzed in time-frequency range, appears to be magnitude-dependent and in function of the location in the basin. Our quantitative estimate of the Rayleigh polarization resulted to be comparable to the HV response value in specific frequency bands, for example in deamplification, demonstrating a plausible connection with Rayleigh oscillations. The authors encourage the usage or implementation of similar procedures conducted in basin studies, in order to determine quantitatively the Rayleigh contribution to ground motion, for a better characterization of the local seismic response.

  20. Vibrating-Sliding Motion of Caisson Breakwaters Under Various Breaking Wave Impact Forces

    Institute of Scientific and Technical Information of China (English)

    王元战; 于红霞

    2003-01-01

    Sliding is one of the principal failure types of caisson breakwaters and is an essential content of stability examination in caisson breakwater design. Herein, the mass-spring-dashpot model of caisson-base system is used to simulate the vibrating-sliding motion of the caisson under various types of breaking wave impact forces, i.e., single peak impact force, double peak impact force, and shock-damping oscillation impact force. The effects of various breaking wave impacts and the sliding motion on the dynamic response behaviors of caisson breakwaters are investigated and the calculation of relevant system parameters is discussed. It is shown that the dynamic responses of the caisson are significantly different under different types of breaking wave impact forces even when the amplitudes of impact forces are equal. The amplitude of dynamic response of the caisson is lower under single peak impact excitation than that under double peak impact or shock-damping oscillation impact excitation. Though the displacement of the caisson is large due to sliding, the rotation, the sliding force and the overturning moment of the caisson are significantly reduced.

  1. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    Science.gov (United States)

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-08-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation.

  2. Influence of Motion Errors of Feed Drive Systems on Machined Surface

    Science.gov (United States)

    Nishio, Kentaro; Sato, Ryuta; Shirase, Keiichi

    The purpose of this study is to clarify the relationship between the dynamic motion errors of feed drive systems and the machined surfaces. To achieve this purpose, a simulation method for a machined surface by peripheral milling is proposed. In the proposed method, the motion errors of a feed drive system and the machined surface are simulated based on tool diameter, number of flutes, spindle speed, and feed speed. In addition, to clarify the correctness of the proposed method, actual cutting tests are carried out. In the cutting tests, the control parameters of the machine tool are intentionally changed to obtain the motion errors. As the results of the cutting tests, it is confirmed that the influence of the motion errors of feed drive systems on machined surface can be predicted by the proposed simulation method. The relationship between the motion errors and machined surfaces is also examined based on the simulations.

  3. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  4. Experimental study of breaking and energy dissipation in surface waves

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  5. Research into surface wave phenomena in sedimentary basins

    Science.gov (United States)

    Wojcik, G. L.; Isenberg, J.; Ma, F.; Richardson, E.

    1981-12-01

    This study is a continuation of an engineering seismology research effort prompted by the sensitivity of guidance sets in Minuteman Wing V to distant earthquakes. An earlier report considers the probable cause of anomalous patterns of seismic alarms triggered by two North American earthquakes. This report extends the previous study by examining the propagation of surface waves from the 1975 Pocatello Valley, Idaho earthquake sequence across Wyoming to Wing V. In addition, the more general question of surface wave phenomena in sedimentary basins is addressed, particularly the effect of laterally inhomogeneous (dipping) basin-bedrock interfaces. Findings indicate that fundamental and first overtone surface waves are significantly modified by the travel path. In contrast, higher modes are relatively unchanged by the travel path, and affect Wing V in much the same way as body waves considered in the previous study.

  6. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  8. Horizon effects for surface waves in wave channels and circular jumps

    CERN Document Server

    Jannes, Gil; Chaline, Jennifer; Maïssa, Philippe; Mathis, Christian; Rousseaux, Germain

    2011-01-01

    Surface waves in classical fluids experience a rich array of black/white hole horizon effects. The dispersion relation depends on the characteristics of the fluid (in our case, water and silicon oil) as well as on the fluid depth and the wavelength regime. In some cases, it can be tuned to obtain a relativistic regime plus high-frequency dispersive effects. We discuss two types of ongoing analogue white-hole experiments: deep water waves propagating against a counter-current in a wave channel and shallow waves on a circular hydraulic jump.

  9. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    OpenAIRE

    N. Ramakrishnan; Parthiban, R.; Sawal Hamid Md Ali; Md. Shabiul Islam; Ajay Achath Mohanan

    2013-01-01

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film...

  10. Directional site resonances and the influence of near-surface geology on ground motion

    Science.gov (United States)

    Bonamassa, Ornella; Vidale, John E.; Houston, Heidi; Schwartz, Susan Y.

    1991-05-01

    We examine the horizontal motions at close stations from earthquakes in the Loma Prieta and Whittier Narrows sequences to study the shear wave polarizations. We use a dense, six station array recording 10 aftershocks for the former, and use two events and 11 stations across the Los Angeles area for the latter.We compute the average azimuth of strongest shaking in the shear wave as a function of frequency from 1 to 18 Hz for each record of each earthquake. The direction of shaking at a given frequency often correlates much better with an empirical site resonance direction than with the direction of shaking expected from the focal mechanism of the earthquake. The effect tends to be greatest at the frequencies that are the most amplified. This phenomenon can complicate determination of the earthquake source at frequencies higher than 1 Hz.Further, since sites only 25 meters apart show different preferred directions, very near-surface geology is probably responsible. Estimation of directional site resonances may prove useful for seismic design.

  11. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  12. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  13. Magnetoacoustic surface gravity waves at a spherical interface

    Science.gov (United States)

    Ballai, I.; Forgács-Dajka, E.; Douglas, M.

    2011-03-01

    Aims: The plasma structured by magnetic fields in the solar atmosphere is a perfect medium for the propagation of guided magnetic and magnetoacoustic waves. Geometrical restriction of wave propagation is known to confer a dispersive character for waves. In addition, waves propagating along discontinuities in the medium are known to remain localized. As an extension to theories of guided waves in magnetic slabs and cylinders under solar and stellar conditions, we aim to study the propagation of magnetoacoustic-gravity waves at a spherical interface in the low solar corona (considered here as a density discontinuity), modelling global waves recently observed in the corona in EUV wavelengths. Methods: Using conservation laws at the interface we derive the dispersion relation in spherical geometry with a radially expanding magnetic field in the presence of gravitational stratification. The obtained dispersion relation describing fast magnetoacoustic-gravity surface waves is derived using an approximative method taking into account that propagation takes place near the solar surface. Results: Theoretical results obtained in the present study are applied to investigate the propagation of EIT waves in the low corona. The frequency of waves is shown to increase with decreasing density contrast at the interface. We also show that, for a given azimuthal wavenumber, the magnetic field has a very small effect on the value of the frequency of waves. When plotted against the location of the interface (in the radial direction) the frequency varies inversely proportional to the distance, while for a fixed density ratio and location of the interface the frequency is obtained to be defined in a very narrow region.

  14. Characters of surface deformation and surface wave in thermal capillary convection

    Institute of Scientific and Technical Information of China (English)

    DUAN; Li; KANG; Qi; HU; Wenrei

    2006-01-01

    In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mm×42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns. The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 μm. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.

  15. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    CERN Document Server

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...

  16. Generation of 1D interference patterns of Bloch surface waves

    Science.gov (United States)

    Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.

    2016-09-01

    Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.

  17. Mass transport in a thin layer of power-law mud under surface waves

    Science.gov (United States)

    Liu, Jie; Bai, Yuchuan; Xu, Dong

    2017-02-01

    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  18. Non-linear water waves generated by impulsive motion of submerged obstacle

    Directory of Open Access Journals (Sweden)

    N. I. Makarenko

    2013-12-01

    Full Text Available Fully nonlinear problem on unsteady water waves generated by impulsively moving obstacle is studied analytically. Our method involves the reduction of Euler equations to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Exact model equations are derived in explicit form in the case when the isolated obstacle is presented by totally submerged elliptic cylinder. Small-time asymptotic solution is constructed for the cylinder which starts with constant acceleration from rest. It is demonstrated that the leading-order solution terms describe several wave regimes such as the formation of non-stationary splash jets by vertical rising or vertical submersion of the obstacle, as well as the generation of diverging waves is observed.

  19. Inbound waves in the solar corona: a direct indicator of Alfv\\'en Surface location

    CERN Document Server

    DeForest, C E; McComas, D J

    2014-01-01

    The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary -- the Alfv\\'en surface -- that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\\'en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\\'en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona, and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time, and used it to determine that the Alfv\\'en surface is at least 12.5 solar radii from the Sun over the polar coronal holes and 17 solar radii in the streamer belt, well beyond ...

  20. Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation

    Directory of Open Access Journals (Sweden)

    F. Mirzade

    2013-01-01

    Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.

  1. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  2. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations

    Science.gov (United States)

    Poggi, Valerio; Fäh, Donat

    2010-01-01

    Several methods have been proposed in the past years to extract the Rayleigh wave ellipticity from horizontal-to-vertical spectral ratios of single station ambient noise recordings. The disadvantage of this set of techniques is the difficulty in clearly identifying and separating the contribution of higher modes. In most cases, only the fundamental mode of ellipticity can be identified. Moreover, it is generally difficult to correct for the energy of SH and Love waves present in the horizontal components of the ambient vibration wavefield. We introduce a new methodology to retrieve Rayleigh wave ellipticity using high-resolution frequency-wavenumber array analysis. The technique is applied to the three components of motion and is based on the assumption that an amplitude maximum in the f-k cross-spectrum must represent the true power amplitude of the corresponding signal. In the case of Rayleigh waves, therefore, the ratio between maxima obtained from the horizontal (radial-polarized) and vertical components of motion will also represent the frequency-dependent ellipticity function. Consequently, if we can identify the Rayleigh dispersion curves of several modes on the f-k plane, then the corresponding modal ellipticity patterns can also be separated and extracted. To test the approach, synthetic and real data sets were processed. In all tested cases, a reliable estimation of segments of the fundamental mode ellipticity was obtained. The identification of higher modes is possible in most cases. The quality of results depends on the selected array geometry and the signal-to-noise ratio, with a major improvement achieved by increasing the number of receivers employed during the survey. An experiment conducted in the town of Visp (Switzerland) allowed the retrieval of portions of ellipticity curves up to the second Rayleigh higher mode, using two concentric circular array configurations of 14 and 11 receivers each.

  3. The effect of nonuniform motion on the Doppler spectrum of scattered continuous-wave waveforms

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2003-04-01

    The Doppler effect is a widely treated phenomena in both radar and sonar for objects undergoing uniform motion. There are many different models (Censor has written a history of the subject) one can use to derive the Doppler effect. The treatment of non-uniform motion is not widely discussed in the literature of radar and sonar. Some authors argue it is negligible, while others refer to work dating back to Kelly in the early sixties. The treatment by Kelly, based on waveform analysis in acoustics, is difficult to justify in electromagnetism. Using the language of waveform analysis it is difficult to determine when approximations are justified by the physics of the waveform interaction and when they aren't. By returning to electromagnetic considerations in the derivation and subsequent analysis, issues associated with the correct physics and proper approximations become transparent. We present a straight forward analysis of the non-uniform Doppler effect based on the relativistic mirror (moving boundary) that is undergoing arbitrary motion. The resultant structure of the scattered waveform provides a simple representation of the effect of non-uniform motion on the scattered waveform that can be more easily analyzed. This work is a continuation of earlier work done by Censor, De Smedt, and Cooper. This analysis is independent of narrow-band assumptions so it is completely general. Non-uniform motion can produce two types of effects associated with the Doppler spectrum, a baseband line that isn't straight and micro-Doppler off of the baseband that produces complicated sideband behavior. Complicated baseband and micro-Doppler are illustrated by using the example of a particular waveform, the continuous wave (CW) which is analyzed for a number of examples of interest to the radar community. Application of this information is then discussed.

  4. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    Science.gov (United States)

    Compelli, Alan; Ivanov, Rossen I.

    2016-08-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  5. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan

    2016-01-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  6. Propagation of elastic waves in a plate with rough surfaces

    Institute of Scientific and Technical Information of China (English)

    DAI Shuwu; ZHANG Hailan

    2003-01-01

    The characteristics of Lamb wave propagating in a solid plate with rough surfacesare studied on the basis of small perturbation approximation. The Rayleigh-Lamb frequencyequation expressed with SA matrix is presented. The Rayleigh-Lamb frequency equation fora rough surface plate is different from that for a smooth surface plate, resulting in a smallperturbation Ak on Lamb wave vector k. The imaginary part of Ak gives the attenuationcaused by wave scattering. An experiment is designed to test our theoretical predications.By using wedge-shape pipes, different Lamb wave modes are excited. The signals at differentpositions are received and analyzed to get the dispersion curves and attenuations of differentmodes. The experimental results are compared with the theoretical predications.

  7. On the cascade mechanism of short surface wave modulation

    Directory of Open Access Journals (Sweden)

    M. Charnotskii

    2002-01-01

    Full Text Available Modulation of short surface ripples by long surface or internal waves by a cascade mechanism is considered. At the first stage, the orbital velocity of the long wave (LW adiabatically modulates an intermediate length nonlinear gravity wave (GW, which generates a bound (parasitic capillary wave (CW near its crest in a wide spatial frequency band. Due to strong dependence of the CW amplitude on that of the GW, the resulting ripple modulation by LW can be strong. Adiabatic modulation at the first stage is calculated for an arbitrarily strong LW current. The CWs are calculated based on the Lonquet-Higgins theory, in the framework of a steady periodic solution, which proves to be sufficient for the cases considered. Theoretical results are compared with data from laboratory experiments. A discussion of related sea clutter data is given in the conclusion.

  8. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  9. Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formulation of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply surface-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave-mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The balance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.

  10. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  11. Gravitational waves from surface inhomogeneities of neutron stars

    Science.gov (United States)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  12. Site effects in Mexico City: Constraints from surface wave inversion of shallow refraction data

    Science.gov (United States)

    Ramos-Martínez, J.; Chávez-García, F. J.; Romero-Jiménez, E.; Rodríguez-Zúñiga, J. L.; Gómez-González, J. M.

    1997-03-01

    In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.

  13. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  14. Lateral Flooding Associated to Wave Flood Generation on River Surface

    Science.gov (United States)

    Ramírez-Núñez, C.; Parrot, J.-F.

    2016-06-01

    This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.

  15. Surface waves propagation on a turbulent flow forced electromagnetically

    CERN Document Server

    Gutiérrez, Pablo

    2015-01-01

    We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...

  16. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  17. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  18. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  19. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  20. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  1. Magnetostrictive elastic wave-type linear motion with Terfenol-D

    Science.gov (United States)

    Kottamasu, Vishnu

    1997-05-01

    Magnetostriction means change of shape of material in the presence of a magnetic field, with the degree of this change proportional to the strength of the magnetic field. The magnetostrictive TERFENOL-D expands in length and contracts diametrically, thereby conserving the volume of an essentially incompressible material. The magnetostrictive effect generates the elastic forces in accordance with a generalized Hooke's law. The principle of magnetostriction of TERFENOL-D can be used in the development of linear motion devices. In an elastic wave type linear motion, the `smart material' TERFENOL-D is enclosed with an interference fit in a stator tube which is enclosed in a series of coils that generate the magnetic field when power is applied. The pattern of activation of these fields is controlled by a digital controller which will enable the TERFENOL-D `smart material' to move inside the stator tube like a worm. During this motion, the TERFENOL-D rod can push and pull loads. When power is turned off this device will lock itself in the stator tube without any slippage. Some of the important applications are nano positioning, aircraft wing warping, airplane/helicopter flap/tab positioning and control, automobile brakes, controlled delivery of fluids, and space applications.

  2. Multichannel analysis of surface wave method with the autojuggie

    Science.gov (United States)

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  3. Longitudinal leaky surface acoustic wave on Y-rotated cut quartz substrates

    Institute of Scientific and Technical Information of China (English)

    ZHOURan; TONGXiaojun; QIUGang; ZHANGDe

    2003-01-01

    The properties of Quasi-longitudinal leaky surface acoustic wave(QLLSAW) on Yrotated cut quartz substrates were presented. The phase velocity of QLLSAW on the quartz substrate along some orientations can be up from 6200m/s to 7100m/s, circa 100% above that of regular SAW. Both theoretical and experimental results show that QLLSAW propagating along some promising orientations for SAW devices are of small power flow angle and low temperature coefficient, for example, along the Euler angle (0°, 155.25°, 42°), the measurements of phase velocity and temperature coefficient of delay of QLLSAW are 6201m/s and 12.9ppm/℃.The experimental results show that QLLSAW had little absorption by liquid loading on the substrate surface, which proved that the direction of particle motion is the same as wave vector and parallel to the surface of the substrates, i.e., the wave is of the properties of longitudinal wave.

  4. Sensitivity of surface acoustic wave devices

    Science.gov (United States)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  5. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  6. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  7. Motion of Liquid Droplets on a Superhydrophobic Oleophobic Surface (Postprint)

    Science.gov (United States)

    2010-08-01

    Contact angle measurements The contact angles of water and dodecane on the prepared surfaces were measured from sessile drops using a lab- designed...low surface energy and properly designed surface morphology. The relationships among surface tensions, contact angles , contact angle hystereses, roll...oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect

  8. Investigation of surface magnetostatic wave propagation in ferrite superconductor structure

    CERN Document Server

    Semenov, A A; Melkov, A A; Bobyl', A V; Suris, R A; Gal'perin, Y M; Iokhansen, T K

    2001-01-01

    Electrodynamic model describing dispersion properties of surface magnetostatic wave in ferrite/superconductor structure was suggested. On the basis of the model a new method of ascertaining superhigh frequency surface resistance R sub s of superconducting films in magnetic fields was developed. The calculated values agree with the results obtained by the Tauber method, making up R sub s =0.20-1.96 m Ohm. A regulated incursion of wave phase amounting to about 1.5 pi with the change in penetration depth 2.0-0.8 mu m for YBCO film was attained for YIG/YBCO structures

  9. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  10. Photonic crystal biosensor based on optical surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  11. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  12. The wave motion over a submerged Jarlan-type perforated breakwater

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XIE Luqiong; ZHANG Zhehan

    2014-01-01

    The wave motion over a submerged Jarlan-type breakwater consisting of a perforated front wall and a sol-id rear wall was investigated analytically and experimentally. An analytical solution was developed using matched eigenfunction expansions. The analytical solution was confirmed by previously known solutions for single and double submerged solid vertical plates, a multidomain boundary element method solution, and experimental data. The calculated results by the analytical solution showed that compared with double submerged vertical plates, the submerged Jarlan-type perforated breakwater had better wave-absorbing performance and lower wave forces. For engineering designs, the optimum values of the front wall porosity, relative submerged depth of the breakwater, and relative chamber width between front and rear walls were 0.1-0.2, 0.1-0.2, and 0.3-0.4, respectively. Interchanging the perforated front wall and solid rear wall may have no effect on the transmission coefficient. However, the present breakwater with a seaside perforated wall had a lower reflection coefficient.

  13. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  14. Experimental evidence of wave chaos from a double slit experiment with water surface waves.

    Science.gov (United States)

    Tang, Yunfei; Shen, Yifeng; Yang, Jiong; Liu, Xiaohan; Zi, Jian; Li, Baowen

    2008-10-01

    In this paper, we report experimental evidence of wave chaos using the double slit water surface wave experiment. We demonstrate that classical dynamics of a domain manifests itself in the interference patterns after the diffraction behind the double slit. For a domain whose classical dynamics is integrable clear interference fringes can be observed behind the double slits; for a domain whose classical dynamics is chaotic, however, interference fringes can totally disappear. Our experimental results clearly demonstrate that the centuries-old double slit experiment can render an excellent tool to observe the manifestations of wave chaos.

  15. Attenuation of Rayleigh Surface Waves in a Porous Material

    Institute of Scientific and Technical Information of China (English)

    DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek

    2012-01-01

    Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.

  16. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    Science.gov (United States)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  17. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  18. Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry

    2016-09-01

    Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.

  19. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  20. Observations of surface waves interacting with ice using stereo imaging

    Science.gov (United States)

    Campbell, Alexander J.; Bechle, Adam J.; Wu, Chin H.

    2014-06-01

    A powerful Automated Trinocular Stereo Imaging System (ATSIS) is used to remotely measure waves interacting with three distinct ice types: brash, frazil, and pancake. ATSIS is improved with a phase-only correlation matching algorithm and parallel computation to provide high spatial and temporal resolution 3-D profiles of the water/ice surface, from which the wavelength, frequency, and energy flux are calculated. Alongshore spatial frequency distributions show that pancake and frazil ices differentially attenuate at a greater rate for higher-frequency waves, causing a decrease in mean frequency. In contrast, wave propagation through brash ice causes a rapid increase in the dominant wave frequency, which may be caused by nonlinear energy transfer to higher frequencies due to collisions between the brash ice particles. Consistent to the results in frequency, the wavelengths in pancake and frazil ices increase but decrease in brash ice. The total wave energy fluxes decrease exponentially in both pancake and frazil ice, whereas the overall energy flux remain constant in the brash ice due to thin layer thickness. The spatial energy flux distributions also reveal that wave reflection occurs at the boundary of each ice layer, with reflection coefficient decaying exponentially away from the ice interface. Reflection is the strongest at the pancake/ice-free and frazil/brash interfaces and the weakest at the brash/ice-free interface. These high resolution observations measured by ATSIS demonstrate the spatially variable nature of waves propagating through ice.

  1. Electromagnetic waves in a magnetized plasma near the critical surface

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2004-06-30

    Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)

  2. Bifurcation and Resonance of a Mathematical Model for Non-Linear Motion of a Flooded Ship in Waves

    Science.gov (United States)

    Murashige, S.; Aihara, K.; Komuro, M.

    1999-02-01

    A flooded ship can exhibit undesirable non-linear roll motion even in waves of moderate amplitude. In order to understand the mechanism of this non-linear phenomenon, the non-linearly coupled dynamics of a ship and flood water are considered using a mathematical model for the simplified motion of a flooded ship in regular beam waves. This paper describes bifurcation and resonance of this coupled system. A bifurcation diagram shows that large-amplitude subharmonic motion exists in a wide range of parameters, and that the Hopf bifurcation is observed due to the dynamic effects of flood water. Resonance frequencies can be determined by linearization of this model. Comparison between the resonant points and the bifurcation curves suggests that non-linear resonance of this model can bring about large-amplitude subharmonic motion, even if it is in the non-resonate state of the linearized system.

  3. Effects of surface drag on low-level frontogenesis within baroclinic waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; TAN ZheMin

    2007-01-01

    Using a three-dimensional nonhydrostatic mesoscale numerical model (MM5), the evolution and structures of baroclinic waves with and without surface drag in case of dry and moist atmosphere are simulated, with special emphases on the effects of surface drag on the low-level frontal structure and frontogenesis. There are two different effects of surface drag on the low-level frontogenesis in the dry case. On one hand, the surface drag weakens the low-level frontogenesis and less inclined to develop the baroclinic wave due to the dissipation. But on the other hand, the surface drag induces a strong ageostrophic flow, which prolongs the low-level frontogenesis and finally leads to the enhancement of cold front. Compared with the no surface drag case, the surface drag increases the frontal slope especially in the boundary layer, where the front is almost vertical to the surface, and then enhances the prefrontal vertical motion. All these conclusions expanded the analytical theory of Tan and Wu (1990). In the moist atmosphere, the influence of surface drag on frontal rainbands is also obvious. The surface drag weakens the convection, and reduces the energy dissipation near the surface when the initial relative humidity is relatively weak. At this time, the confluence induced post-frontal updrafts moves across the cold front and reinforces the prefrontal convection, which is beneficial to the maintenance of the rainband in cold sector. Given the enhancement of relative humidity, the moist convection dominates the low-level frontogenesis while the retardation of surface drag on energy dissipation is not obvious, therefore the effects of surface drag on the low-level frontogenesis and precipitation are reduced.

  4. Effects of surface drag on low-level frontogenesis within baroclinic waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using a three-dimensional nonhydrostatic mesoscale numerical model (MM5), the evolution and structures of baroclinic waves with and without surface drag in case of dry and moist atmosphere are simulated, with special emphases on the effects of surface drag on the low-level frontal structure and frontogenesis. There are two different effects of surface drag on the low-level frontogenesis in the dry case. On one hand, the surface drag weakens the low-level frontogenesis and less inclined to develop the baroclinic wave due to the dissipation. But on the other hand, the surface drag induces a strong ageostrophic flow, which prolongs the low-level frontogenesis and finally leads to the enhancement of cold front. Compared with the no surface drag case, the surface drag increases the frontal slope espe- cially in the boundary layer, where the front is almost vertical to the surface, and then enhances the prefrontal vertical motion. All these conclusions expanded the analytical theory of Tan and Wu (1990). In the moist atmosphere, the influence of surface drag on frontal rainbands is also obvious. The surface drag weakens the convection, and reduces the energy dissipation near the surface when the initial relative humidity is relatively weak. At this time, the confluence induced post-frontal updrafts moves across the cold front and reinforces the prefrontal convection, which is beneficial to the maintenance of the rainband in cold sector. Given the enhancement of relative humidity, the moist convection domi- nates the low-level frontogenesis while the retardation of surface drag on energy dissipation is not obvious, therefore the effects of surface drag on the low-level frontogenesis and precipitation are re- duced.

  5. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  6. Surface waves on a quantum plasma half-space

    CERN Document Server

    Lázár, M; Smolyakov, A

    2007-01-01

    Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.

  7. Influence of standing surface waves on thermocapillary convection stability and crystal growth in weightlessness

    Science.gov (United States)

    Feonychev, A. I.

    Numerical investigation of thermocapillary flows and crystal growth by the floating zone method had been carried out in the case what free fluid surface oscillates in the form of standing wave by vibration. Two sorts of standing waves were considered. First, it is inertia-capillary standing waves due to vibration motion of fluid column as unit. These waves had been discovered under numerical investigation of problem /1/. Analytical model and the characteristic properties of these waves are described in /2/. Secondly, usual capillary waves generated by vibration of growing crystal were also considered. The effects of these surface waves on fluid flow and heat and mass transfer in process of crystal growth had been investigated over the wide ranges of dimensionless parameters for the Prandtl number is less than 1. The Marangoni number was varied from 140 to 2500, the range of cyclic frequency was between 200 and 76000. Transition from laminar thermocapillary convection to regime of flow with high oscillations (turbulent convection) happens very sharply when dimensionless amplitude (scale for linear dimensions is radius of fluid column) of standing wave reached 0.01112/n, where n is number of standing wave periods are along the length of fluid zone. If configuration of standing wave correlates with thermocapillary flow pattern two specific regimes of flow had been discovered. Flow with small oscillations is located in the range of standing wave amplitude between 0.0028 and 0.00418. In this area, radial macrosegregation of dopant is lowered by the factor of 3-6 depending on the Marangoni number. Next is an area with practically stable flow, in particular is identical to laminar flow without vibration. This area ends very sharply in the boundary of turbulent flow. All the mentioned boundaries are independent of the Marangoni number and frequency of oscillation of standing wave. For oscillatory thermocapillary convection (the Marangoni number is more than 2000

  8. Gradient induced liquid motion on laser structured black Si surfaces

    Science.gov (United States)

    Paradisanos, I.; Fotakis, C.; Anastasiadis, S. H.; Stratakis, E.

    2015-09-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano-patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/s, which is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells, and drug delivery is envisaged.

  9. Gradient induced liquid motion on laser structured black Si surfaces

    CERN Document Server

    Paradisanos, I; Anastasiadis, S H; Stratakis, E

    2015-01-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano- patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/sec, that is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells and drug delivery is envisaged.

  10. Numerical evaluation of longitudinal motions of Wigley hulls advancing in waves by using Bessho form translating-pulsating source Green'S function

    Science.gov (United States)

    Xiao, Wenbin; Dong, Wencai

    2016-06-01

    In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green's function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green's function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.

  11. On-surface radiation condition for multiple scattering of waves

    CERN Document Server

    Acosta, Sebastian

    2013-01-01

    The formulation of the on-surface radiation condition (OSRC) is extended to handle wave scattering problems in the presence of multiple obstacles. The new multiple-OSRC simultaneously accounts for the outgoing behavior of the wave fields, as well as, the multiple wave reflections between the obstacles. Like boundary integral equations (BIE), this method leads to a reduction in dimensionality (from volume to surface) of the discretization region. However, as opposed to BIE, the proposed technique leads to boundary integrals with smooth kernels. In addition, under appropriate conditions, this approach leads to approximate explicit (up to numerical integration) formulas for the solution, avoiding the need to invert any operator or matrix. As a result, the computational effort is significantly reduced. This approach may serve as a fast method to explore parameter-spaces or as an inexpensive pre-conditioner for Krylov iterative solutions of BIE.

  12. Langasite surface acoustic wave gas sensors: modeling and verification

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  13. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  14. SAW devices based on novel surface wave excitations

    Science.gov (United States)

    Therrien, Joel; Dai, Lian

    2015-03-01

    Surface Acoustic Wave (SAW) devices have applications in radio frequency and microwave filtering as well as highly sensitive sensors. Current SAW design employs the use of an array of electrode pairs, referred to as Inter-Digitated Transducers (IDTs) for creating and receiving surface waves on piezoelectric substrates. The pitch of the electrode pairs along with the properties of the substrate determine the operating frequency. The number of electrode pairs determine the bandwidth of the emitted waves. We will present a novel configuration that eliminates the need for the IDTs and replaces with with a single circular electrode located inside a larger ground ring. This configuration induces drumhead modes. We will show that the resonant frequencies follow the zeros of Bessel functions of the first kind. Applications in RF filtering and mass sensing will be presented.

  15. Multiple-frequency surface acoustic wave devices as sensors

    Science.gov (United States)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  16. Drops subjected to surface acoustic waves: flow dynamics

    Science.gov (United States)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team

    2012-11-01

    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  17. Surface waves in the magnetized, collisional dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)

    2013-10-15

    The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.

  18. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  19. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  20. Comments on “Surface waves in fibre-reinforced anisotropic elastic media” by Sengupta and Nath[Sādhanā 26:363–370 (2001)

    Indian Academy of Sciences (India)

    Sarva Jit Singh

    2002-06-01

    In the paper under discussion, the problem of surface waves in fibrereinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into and SV waves. In the present note, we show that, for wave propagation in fibre-reinforced anisotropic media, this decoupling cannot be achieved by the introduction of the displacement potentials. In fact, the expressions for the displacement potentials used by the authors do not satisfy one of the equations of motion. Consequently, most of the equations and results of the subject paper are either irrelevant or incorrect.

  1. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  2. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    Science.gov (United States)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  3. Dispersive surface waves along partially saturated porous media

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100 Hz–1 MHz). A modified Biot theory of poromechanics is implemented which takes into account the interact

  4. Quantitative photography of intermittency in surface wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W.; Budakian, R.; Putterman, S.J. [Univ. of California, Los Angeles, CA (United States)

    1997-12-31

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state.

  5. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  6. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  7. Accumulation of Microswimmers near a Surface Mediated by Collision and Rotational Brownian Motion

    Science.gov (United States)

    Li, Guanglai; Tang, Jay X.

    2009-08-01

    In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.

  8. Kinetic treatment of nonlinear magnetized plasma motions - General geometry and parallel waves

    Science.gov (United States)

    Khabibrakhmanov, I. KH.; Galinskii, V. L.; Verheest, F.

    1992-01-01

    The expansion of kinetic equations in the limit of a strong magnetic field is presented. This gives a natural description of the motions of magnetized plasmas, which are slow compared to the particle gyroperiods and gyroradii. Although the approach is 3D, this very general result is used only to focus on the parallel propagation of nonlinear Alfven waves. The derivative nonlinear Schroedinger-like equation is obtained. Two new terms occur compared to earlier treatments, a nonlinear term proportional to the heat flux along the magnetic field line and a higher-order dispersive term. It is shown that kinetic description avoids the singularities occurring in magnetohydrodynamic or multifluid approaches, which correspond to the degenerate case of sound speeds equal to the Alfven speed, and that parallel heat fluxes cannot be neglected, not even in the case of low parallel plasma beta. A truly stationary soliton solution is derived.

  9. Decay of viscous surface waves without surface tension

    CERN Document Server

    Guo, Yan

    2010-01-01

    Consider a viscous fluid of finite depth below the air. In the absence of the surface tension effect at the air-fluid interface, the long time behavior of a free surface with small amplitude has been an intriguing question since the work of Beale \\cite{beale_1}. In this monograph, we develop a new mathematical framework to resolve this question. If the free interface is horizontally infinite, we establish that it decays to a flat surface at an algebraic rate. On the other hand, if the free interface is periodic, we establish that it decays at an almost exponential rate, i.e. at an arbitrarily fast algebraic rate determined by the smallness of the data. Our framework contains several novel techniques, which include: (1) a local well-posed theory of the Navier-Stokes equations in the presence of a moving boundary; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives o...

  10. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  11. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    Science.gov (United States)

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  12. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  13. Comment on `evidence of the dominance of higher-mode surface waves in the lake-bed zone of the valley of Mexico by Shapiro et al. (2001)'

    Science.gov (United States)

    Montalvo-Arrieta, J. C.; Reinoso, E.; Aguirre, J.; Sánchez-Sesma, F. J.

    2004-02-01

    The purpose of this note is to contribute to the understanding of seismic ground motion in Mexico City. To this end, we (1) compute theoretical transfer functions for various models for the deep structure and the shallow clay layers, (2) study the seismic responses of various sites within the city using spectral ratios (of horizontal motion relative to the motion of nearby rock sites and relative to the vertical motion at the same site) and (3) discuss some characteristics of surface waves for models of the deep structure and the shallow clay layers in the Valley of Mexico.

  14. Wave glider observations of surface winds and currents in the core of Typhoon Danas

    Science.gov (United States)

    Mitarai, S.; McWilliams, J. C.

    2016-11-01

    Simultaneous monitoring of surface winds and currents is essential to understand oceanic responses to tropical cyclones. We used a new platform, a Wave Glider (Liquid Robotics) to observe air-sea processes during a typhoon, equivalent to a category 4-hurricane, at peak strength, near Okinawa, Japan. Surface winds showed strong asymmetry in both speed and direction, faster fore than aft. Rotations of surface winds and currents were not coupled; currents rotated clockwise in the wake of the typhoon eye after passage of rapid wind rotations. Wind work was mostly done ahead of the eye, amplifying prior inertial motions with a phase shift. Wind-induced energy was nearly balanced with an increase in estimated kinetic energy of the upper ocean current, relative to prior inertial oscillations. This study provides a newer, more complete view of actual atmosphere-ocean interactions in a typhoon.

  15. Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability.

    Science.gov (United States)

    Bayly, Philip V; Wilson, Kate S

    2014-10-07

    The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models.

  16. Does motion affect liver stiffness estimates in shear wave elastography? Phantom and clinical study.

    Science.gov (United States)

    Pellot-Barakat, Claire; Chami, Linda; Correas, Jean Michel; Lefort, Muriel; Lucidarme, Olivier

    2016-09-01

    This study was undertaken to evaluate the impact of free-breathing (FB) vs. Apnea on Shear-wave elastography (SWE) measurements. Quantitative liver-stiffness measurements were obtained during FB and Apnea for 97 patients with various body-morphologies and liver textures. Quality indexes of FB and Apnea elasticity maps (percentage of non-filling (PNF), temporal (TV) and spatial (SV) variabilities) were computed. SWE measurements were also obtained from an homogeneous phantom at rest and during a mechanically-induced motion. Liver-stiffness values estimated from FB and Apnea acquisitions were correlated, particularly for homogeneous livers (r=0.76, PFB values were consistently 20-25% lower than Apnea ones (PFB also systematically resulted in degradation of TV (PFB measurements are highly correlated, although FB data quality is degraded compared to Apnea and estimated stiffness in FB is systematically lower than in Apnea. These discrepancies between rest and motion states were observed for patients but not for phantom data, suggesting that patient breath-holding impacts liver stiffness.

  17. Supercritical super-Brownian motion with a general branching mechanism and travelling waves

    CERN Document Server

    Kyprianou, A E; Murillo-Salas, A; Ren, Y -X

    2010-01-01

    We consider the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the probabilistic reasoning of Kyprianou (2004) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta-Heyde norming which, in the current setting, draws on classical work of Grey (1974). We give a pathwise explanation of Evans' immortal particle picture (the spine decomposition) which uses the Dynkin-Kuznetsov N-measure as a key ingredient. Moreover, in the spirit of Neveu's stopping lines we make repeated use of Dynkin's exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact X(log X)^2 moment dichotomy for the almost sure convergence of the so-called derivative martingale...

  18. Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling

    Science.gov (United States)

    Alvarez, Leonardo; García, Julio; Vaccari, Franco; Panza, Giuliano F.; González, Bertha; Reyes, Carmen; Fernández, Bárbara; Pico, Ramón; Zapata, José A.; Arango, Enrique

    The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).

  19. A 1D time-domain method for in-plane wave motions in a layered half-space

    Institute of Scientific and Technical Information of China (English)

    Jingbo Liu; Yan Wang

    2007-01-01

    A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation cha-racteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the cen-tral difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equa-tions by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical ana-lysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.

  20. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  1. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  2. Spin density wave order, topological order, and Fermi surface reconstruction

    CERN Document Server

    Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni

    2016-01-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  3. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  4. Precessional magnetization switching by a surface acoustic wave

    Science.gov (United States)

    Thevenard, L.; Camara, I. S.; Majrab, S.; Bernard, M.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.

    2016-04-01

    Precessional switching allows subnanosecond and deterministic reversal of magnetic data bits. It relies on triggering a large-angle, highly nonlinear precession of magnetic moments around a bias field. Here we demonstrate that a surface acoustic wave (SAW) propagating on a magnetostrictive semiconducting material produces an efficient torque that induces precessional switching. This is evidenced by Kerr microscopy and acoustic behavior analysis in a (Ga,Mn)(As,P) thin film. Using SAWs should therefore allow remote and wave control of individual magnetic bits at potentially GHz frequencies.

  5. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  6. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  7. Observations and Modelling of Winds and Waves During the Surface Wave Dynamics Experiment

    Science.gov (United States)

    1994-03-01

    l’Environnement Terrestre et Planitalre (CRPE), France; Dr. Will M. Drennan, National Water Research Institute, CCIW; Dr. Lynn "Nick" K. Shay, RSMAS; Dr...250 m), and the orbital velocities of the low-frequency surface wave components. A summary of the results from SWADE are described in Shay (1993). 18

  8. Stability and motion of liquid bridges between non-parallel surfaces

    Science.gov (United States)

    Ataei, Mohammadmehdi; Chen, Huanchen; Tang, Tian; Amirfazli, Alidad

    2015-11-01

    Squeezing and stretching liquid bridges formed by approaching upper surface to a sessile drop deposited on a lower surface, is frequently observed in nature and industry, e.g. printing. However, most literature focuses on liquid bridges between two parallel surfaces. In practice, bridges can also be formed between surfaces with an angle αbetween them. Here, the effect of α on the stability and motion of the bridge was studied experimentally. Different pairs of surfaces from hydrophilic to hydrophobic, along with different contact angle hysteresis (CAH) values, were used to study the effect of surface contact angle (SCA) and CAH on the bridge stability and motion. Unlike bridges between parallel surfaces, a stable bridge may not be formed when α is larger than a threshold value αc. Instead, when bridge forms, it can undergo unstable movement towards the ends of surfaces. Shown in this study, αc is governed by both SCA and CAH (typically missed in literature). Also, during the squeezing and stretching cycles, because of α , bulk motion of the liquid bridge along the surfaces can be observed. The direction and magnitude of the bulk motion is found to be related to SCA, CAH and α. NSERC, XEROX Inc.

  9. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    Science.gov (United States)

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  10. Reducing roll motion by passive free surface tanks

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Nielsen, Christian S.

    2014-01-01

    Roll stabilisation of motorised vessels plays an important part in reducing passenger discomfort and increasing safety and cargo capacity. Passive free surface tanks are considered a low-cost stabilising method, which is efficient at all speeds without increasing hull resistance. In this study......, a mathematical model for evaluating the performance of a passive free surface tank is established. This is done by coupling a roll model to a fluid flow model. As a numerical example, the seakeeping abilities of a container vessel are evaluated. The necessary methods for performing the simulation are presented...... and the design of a free surface tank is explained. The effects of the passive free surface tank are evaluated and a significant damping effect is observed, particularly in cases with resonant roll....

  11. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  12. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    CERN Document Server

    Gillet, N; Finlay, C C

    2016-01-01

    We report a calculation of time-dependent quasi-geostrophic core flows for 1940-2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely the model errors arising from interactions between unresolved core surface motions and magnetic fields. Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies at mid-latitudes and vigorous azimuthal jets in the equatorial belt. The stationary part of the flow predominates on all the spatial scales that we can resolve. We retrieve torsional waves that explain the length-of-day changes at 4 to 9.5 years periods. These waves may be triggered by the nonlinear interaction between the magnetic field and sub-decadal non-zonal motions within the fluid outer core. Both the zonal and the more en...

  13. Collapse ratios of buildings due to the 1995 Kobe earthquake and interference between S-wave and the second surface wave at basin edge

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota; Wakizawa Yasuhiko; Kajikawa Syozo

    2004-01-01

    The distribution characteristics of collapse ratios of buildings in Kobe city due to the 1995 M7.2 Hyogo-ken Nanbu, Japan (Kobe) earthquake and the interferences due to SH or P-SV and the second surface waves propagating in heterogeneous medium are discussed in this paper by using numerical simulation technique of wave equation. The staggered grid real value fast Fourier transform differentiation (SGRFFTD) is used in the pseudospectral method of ground motion simulations because of its speed, high stability and accuracy. The results show that the maximum amplitude of simulated acceleration waveforms on the ground coincides well with the complicated distributions of collapse ratios of buildings. The peak collapse ratio of buildings away from the earthquake fault also coincides well with the peak ground acceleration. The spatial interference process is analyzed by using the snap shots of seismic wave propagation. The peak ground acceleration is probably caused by the interferences due to the second surface wave transmitting from the bedrock to sedimentary basin and the upward body wave. Analyses of the interference process show that seismic velocity structure and geologic structure strongly influence the distribution of the maximum amplitude of acceleration waveforms. Interferences occurring near the basin boundary are probably the cause of the peak collapse ratio of buildings away from the fault. Therefore it is necessary to analyze wave propagations and interference process using numerical simulation strategy for studies on the seismic disasters.

  14. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 +/- 400 (+/- 20 km/s in a measured direction RA=5.5 +/- 2 hrs, Dec=70 +/- 10 Deg S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last +/- variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and againdetected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry - this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists - that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. Modern vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect and the

  15. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    Science.gov (United States)

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.

  16. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    Science.gov (United States)

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  17. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  18. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Science.gov (United States)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  19. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    Science.gov (United States)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  20. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    Science.gov (United States)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  1. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  2. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  3. Biological decontamination of surfaces using guided ionization waves

    Science.gov (United States)

    Jarrige, Julien; Zaepffel, Clement

    2016-09-01

    Atmospheric pressure plasma jets have received an increasing attention these last ten years in various domains, including biomedical applications and decontamination. Among these technologies, guided ionization waves (also called ``plasma bullets'') are very promising because of their ability to produce a highly non-equilibrium plasma. Reactive species can be generated in the open air over a long distance during the propagation of the wave (typically: several cm), while the background gas remains at ambient temperature. A non-thermal plasma system has been developed and tested for the biological decontamination of surfaces. It consists of a dielectric barrier discharge in a helium flow driven by high voltage pulses. The propagation of the ionization wave and the spatial distribution of the species have been characterized by high speed imaging and optical emission spectroscopy. The influence of the discharge parameters on the plasma properties is investigated. Results of decontamination on several bacteria are shown, and the decontamination efficiency is compared with the plasma properties.

  4. Identification of Swell in Nearshore Surface Wave Energy Spectra

    Directory of Open Access Journals (Sweden)

    Paul A. Work

    2010-06-01

    Full Text Available An approach for routine identification of swell and sea in nominally fully developed, omnidirectional, surface water wave energy spectra measured in arbitrary water depth is developed, applied, and discussed. The methodology is an extension of earlier work with deepwater spectra and involves identifying the frequency at which wave steepness is maximized and relating this to the swell separation frequency. The TMA parameterized spectrum is employed to establish a relationship between the two frequencies so that the methodology can be used when wind data are unavailable. The methodology is developed for finite water depth and tested using a dataset that includes both acoustic Doppler current profiler and wave buoy data, recorded simultaneously at the same location. For cases where the sea and swell are clearly, visually distinguishable in the omnidirectional spectra, the new method accurately distinguishes between the two, but it can also be used to identify sea and swell in unimodal spectra.

  5. Exploring surface waves vortex interaction in deep water: a classical analog of the Quantum Mechanics Aharonov-Bohm effect

    CERN Document Server

    Vivanco, F

    2002-01-01

    We present a simple experiment to study the interaction of surface waves with a vertical vortex in the deep water regime. Similarly to what occurs in the Quantum Mechanics Aharonov-Bohm problem for electron interacting with a magnetic potential, the effect of the vortex circulation is to introduce dislocations in the wavefront. These defects are explained taken into account the effects of advection on the propagating wavefront, due to the fluid motion. (Author)

  6. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  7. Surface acoustic waves enhance neutrophil killing of bacteria.

    Science.gov (United States)

    Loike, John D; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2), significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  8. Surface acoustic waves enhance neutrophil killing of bacteria.

    Directory of Open Access Journals (Sweden)

    John D Loike

    Full Text Available Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  9. Nonlinear propagation of Alfven waves driven by observed photospheric motions: Application to the coronal heating and spicule formation

    CERN Document Server

    Matsumoto, Takuma

    2010-01-01

    We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy flux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explai...

  10. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  11. Surface Wave Propagation in non--ideal plasmas

    CERN Document Server

    Pandey, B P

    2015-01-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...

  12. Turbulence-particle interactions under surface gravity waves

    Science.gov (United States)

    Paskyabi, Mostafa Bakhoday

    2016-11-01

    The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.

  13. Optical biosensors based on photonic crystal surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2009-01-01

    Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques--including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

  14. Surface Conductive Graphene-Wrapped Micromotors Exhibiting Enhanced Motion.

    Science.gov (United States)

    Ma, Xing; Katuri, Jaideep; Zeng, Yongfei; Zhao, Yanli; Sanchez, Samuel

    2015-10-01

    Surface-conductive Janus spherical motors are fabricated by wrapping silica particles with reduced graphene oxide capped with a thin Pt layer. These motors exhibit a 100% enhanced velocity as compared to standard SiO2 -Pt motors. Furthermore, the versatility of graphene may open up possibilities for a diverse range of applications from active drug delivery systems to water remediation.

  15. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  16. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-09-01

    Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  17. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  18. Nonlinear mixing of laser generated narrowband Rayleigh surface waves

    Science.gov (United States)

    Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.

  19. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  20. Surface wave and linear operating mode of a plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  1. Traveling wave effect on the seismic response of a steel arch bridge subjected to near fault ground motions

    Institute of Scientific and Technical Information of China (English)

    Xu Yan; George C Lee

    2007-01-01

    In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.

  2. Surface Catalytic Mechanism in Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin

    2001-01-01

    A pseudo-first-order catalytic mechanism in which both reactant and product of the redox reaction are strongly immobilized on the electrode surface is theoretically analyzed under conditions of square-wave voltammetry (SWV). A mathematical procedure is developed for diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitement signal are studied. The phenomenon...

  3. Laser ablation method for production of surface acoustic wave sensors

    Science.gov (United States)

    Lukyanov, Dmitry; Shevchenko, Sergey; Kukaev, Alexander; Safronov, Daniil

    2016-10-01

    Nowadays surface acoustic wave (SAW) sensors are produced using a photolithography method. In case of inertial sensors it suffers several disadvantages, such as difficulty in matching topologies produced on opposite sides of the wafer, expensive in small series production, not allowing further topology correction. In this case a laser ablation method seems promising. Details of a proposed technique are described in the paper along with results of its experimental test and discussion.

  4. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  5. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    Science.gov (United States)

    Rai, A. K.

    2017-03-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  6. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    Science.gov (United States)

    Rai, A. K.

    2016-12-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  7. Directional motion of evaporating droplets on gradient surfaces

    Science.gov (United States)

    Yao, Shuhuai; Xu, Li; Li, Zhigang

    2012-11-01

    Droplet evaporation on surfaces has various applications in drying problems such as ink-jet printing, pesticide spraying, chemical or biological detection, and DNA microarray spotting technology. Controlling evaporating droplets via substrate morphology and/or wetting properties allows for efficient deposition of sample molecules in these applications. In this work, evaporation of sessile water droplets on surfaces with wettability gradients was studied. The wettability gradient was generated by fabricating non-uniformly distributed cylindrical micropillars on silicon surfaces. During the evaporation, it was found, along the wettability gradient, that the contact line on one side was strongly pinned, while the contact line on the other side depinned and gradually receded, making the center of mass of the droplet move either in or against the direction the wettability gradient, depending on the configuration of the micropillars. The theoretical criterion predicting the moving direction was derived based on the excess free energy and the energy barrier during the evaporation. The theoretical predications agreed well with the experimental observations. The results provide a parametric design basis to control the contact line dynamics and directional transport of evaporating droplets. This work was supported by the Research Grants Council of Hong Kong under General Research Fund (Grant No. 621110).

  8. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Science.gov (United States)

    Ohara, Yoshikazu; Oshiumi, Taro; Nakajima, Hiromichi; Yamanaka, Kazushi; Wu, Xiaoyang; Uchimoto, Tetsuya; Takagi, Toshiyuki; Tsuji, Toshihiro; Mihara, Tsuyoshi

    2017-06-01

    To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA) combining an ultrasonic phased array (PA) with a surface acoustic wave (SAW). SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs). The fatigue crack was visualized with a high signal-to-noise ratio (SNR) and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs) of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  9. Fast accurate computation of the fully nonlinear solitary surface gravity waves

    CERN Document Server

    Clamond, Didier

    2013-01-01

    In this short note, we present an easy to implement and fast algorithm for the computation of the steady solitary gravity wave solution of the free surface Euler equations in irrotational motion. First, the problem is reformulated in a fixed domain using the conformal mapping technique. Second, the problem is reduced to a single equation for the free surface. Third, this equation is solved using Petviashvili's iterations together with pseudo-spectral discretisation. This method has a super-linear complexity, since the most demanding operations can be performed using a FFT algorithm. Moreover, when this algorithm is combined with the multi-precision arithmetics, the results can be obtained to any arbitrary accuracy.

  10. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    Directory of Open Access Journals (Sweden)

    Ketata H.

    2012-06-01

    Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  11. A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves

    Science.gov (United States)

    Jamali, M.; Lawrence, G. A.; Seymour, B. R.

    2002-12-01

    Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.

  12. A note on the resonant interaction between a surface wave and two interfacial waves

    Science.gov (United States)

    Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian

    2003-09-01

    Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.

  13. Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model

    Science.gov (United States)

    2016-04-19

    solutions and a VOF model for a 2D floating box and with laboratory measurements of wave generation by a ver- tically oscillating sphere. A steep...breaking waves or sud - en surface impacts. These simplifications also considerably reduce he computational requirements of the model. The Pressure...recently, erakhti et al. (2015) carried out extensive model validations of HWAVE against laboratory data. The focus of their study was to xamine the

  14. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-02-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  15. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    Science.gov (United States)

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

  16. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  17. Identification of surface wave higher modes using a methodology based on seismic noise and coda waves

    Science.gov (United States)

    Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna

    2015-11-01

    Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.

  18. Criterion for sliding / rolling characterization during droplet motion over superhydrophobic surfaces

    CERN Document Server

    Wadgaonkar, Indrajit P; Das, Sarit K

    2015-01-01

    Super hydrophobic surfaces have been the focus of research in the recent years.One of the reasons for this is the self cleaning property of these surfaces which emerges from the ability of the droplets to roll freely over them.However majority of the studies available in literature are on the static wetting behavior of liquid droplets on such surfaces and the physics of the motion of droplets has not been studied exhaustively either theoretically or experimentally.In the present study droplet motion on super hydrophobic surfaces has been modeled to analyze the sliding/ rolling characteristics of the droplet motion.A non-dimensional number is proposed to indicate whether a given droplet would tend to roll or slide more on a given super hydrophobic surface.We refer to this number as 'Slip Reynolds' number. Simulations of droplet motion were carried out with different surface and droplet characteristics leading to a unique value of this number corresponding to sliding/rolling behavior.The applicability of this n...

  19. Accurate source location from P waves scattered by surface topography

    Science.gov (United States)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  20. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves

    Science.gov (United States)

    Shi; Yifei; Ni; Chenyin; Shen; Zhonghua; Ni; Xiaowu; Lu; Jian

    2008-05-01

    High frequency surface acoustic waves (SAWs) are excited by a pulsed laser and detected by a specially designed poly(vinylidene fluoride) (PVDF) transducer to investigate surface stress distribution. Two kinds of stressed surfaces are examined experimentally. One is a steel plate elastically deformed under simple bending forces, where the surface stress varies slowly. The other is a welded steel plate for which the surface stress varies very rapidly within a small area near the welding seam. Applying a new signal processing method developed from correlation technique, the velocity distribution of the SAWs, which reflects the stress distribution, is obtained in these two samples with high resolution.

  1. Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei

    2008-01-01

    @@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.

  2. Surface water waves interaction in a circular vessel with oscillating walls.

    Science.gov (United States)

    Denissenko, Petr; Hsieh, Din-Yu

    1998-11-01

    Surface water waves appeared in a circular elastic vessel (modelled after the Chinese antique "Dragon Wash") are studied experimentally. Interaction of different wave modes are investigated. For small amplitude of wall oscillations, only the axisymmetric capillary wave mode, which is hardly visible to naked eyes, exists. When the amplitude is increased, half-frequency circumferential wave appears. Further increase of amplitude leads to chaotic behavior of surface waves. For large amplitudes, water drops jumping from edge regions are observed. Then, excitation of different modes of low frequency axisymmetric gravity waves may be obtained. Conditions for appearance of these gravity waves are investigated. Optical methods were applied for water surface diagnostics.

  3. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  4. Reliable Damping of Free Surface Waves in Numerical Simulations

    CERN Document Server

    Peric, Robinson

    2015-01-01

    This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...

  5. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  6. PREDICTIONS OF WAVE INDUCED SHIP MOTIONS AND LOADS BY LARGE-SCALE MODEL MEASUREMENT AT SEA AND NUMERICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Jialong Jiao

    2016-06-01

    Full Text Available In order to accurately predict wave induced motion and load responses of ships, a new experimental methodology is proposed. The new method includes conducting tests with large-scale models under natural environment conditions. The testing technique for large-scale model measurement proposed is quite applicable and general to a wide range of standard hydrodynamics experiments in naval architecture. In this study, a large-scale segmented self-propelling model allowed for investigating seakeeping performance and wave load behaviour as well as the testing systems were designed and experiments performed. A 2-hour voyage trial of the large-scale model aimed to perform a series of simulation exercises was carried out at Huludao harbour in October 2014. During the voyage, onboard systems, operated by crew, were used to measure and record the sea waves and the model responses. The post-voyage analysis of the measurements, both of the sea waves and the model’s responses, were made to predict the ship’s motion and load responses of short-term under the corresponding sea state. Furthermore, numerical analysis of short-term prediction was made by an in-house code and the result was compared with the experiment data. The long-term extreme prediction of motions and loads was also carried out based on the numerical results of short-term prediction.

  7. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 ± 400 ± 20km/s in a measured direction RA = 5.5 ± 2 hrs, Dec = 70 ± 10 ◦ S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last ± variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and again detected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry — this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists — that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. “Modern” vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect

  8. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor

    CERN Document Server

    Chen, Yi-Hsin; Löw, Robert; Pfau, Tilman

    2015-01-01

    We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns time scales. Combined with a third cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report [1] using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity...

  9. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor.

    Science.gov (United States)

    Chen, Yi-Hsin; Ripka, Fabian; Löw, Robert; Pfau, Tilman

    We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns timescales. Combined with a cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report (Huber et al. in Phys Rev A 90: 053806, 2014) using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity of Doppler classes. Our numerical simulations based on a four-level model including a whole Doppler ensemble can qualitatively describe the data.

  10. Ultrafast intramolecular relaxation and wave-packet motion in a ruthenium-based supramolecular photocatalyst.

    Science.gov (United States)

    Wächtler, Maria; Guthmuller, Julien; Kupfer, Stephan; Maiuri, Margherita; Brida, Daniele; Popp, Jürgen; Rau, Sven; Cerullo, Giulio; Dietzek, Benjamin

    2015-05-18

    The hydrogen-evolving photocatalyst [(tbbpy)2 Ru(tpphz)Pd(Cl)2 ](2+) (tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2 Ru(tpphz)](2+) highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a (1) MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  12. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  13. Interaction of electromagnetic and plasma waves in warm motional plasma: Density and thermal effects

    Science.gov (United States)

    Rashed-Mohassel, P.; Hasanbeigi, A.; Hajisharifi, K.

    2017-08-01

    In this paper, the electromagnetic-electrostatic coupling instability excited in the two-dimensional planar-layered plasma medium with median temperature (warm motional plasma beam) is investigated by applying the initial fluctuation propagating along the planar surfaces. The dielectric tensor, obtained by the Maxwell-fluid model, is used to find the dispersion relation (DR) and different excited modes in the system. Interacting modes are investigated, in detail, by focusing on the effect of temperature on the plasma beam instability aroused by coupling the thermal excited modes (thermal-extraordinary and electron plasma modes) in the systems with various amounts of beam density. The numerical analysis of the obtained DR shows that even though the temperature effect of the plasma beam has an important role on the suppression of streaming instabilities, it does not have a considerable effect on the behavior of the coupling instability in the fluid limitation.

  14. Atomic clocks as a tool to monitor vertical surface motion

    CERN Document Server

    Bondarescu, Ruxandra; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-01-01

    Atomic clock technology is advancing rapidly, now reaching stabilities of $\\Delta f/f \\sim 10^{-18}$, which corresponds to resolving $1$ cm in equivalent geoid height over an integration timescale of about 7 hours. At this level of performance, ground-based atomic clock networks emerge as a tool for monitoring a variety of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, volcanic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. As an example, we discuss the geopotential change arising due to an inflating point source (Mogi model), and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to b...

  15. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  16. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  17. Surface waves on arbitrary vertically-sheared currents

    CERN Document Server

    Smeltzer, Benjamin K

    2016-01-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of arbitrary depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past in 2D, and we herein extend and apply it to 3D problems. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving Fourier transformations in the horizontal plane. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between a concave down profile when compared to a constant shear profile with equal depth-averaged vorticity. New insight is given concerning the nature of extra spurious solution...

  18. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  19. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  20. Beta Distribution of Surface Elevation of Random Waves

    Institute of Scientific and Technical Information of China (English)

    张军; 徐德伦

    2001-01-01

    A probability density function (PDF) is derived of beta distribution with both λ3 (skewness) and λ4 (kurtosis) as parameters for weakly nonlinear wave surface elevation by use of a method recently proposed by Srokosz. This PDF not only has a simpler form than the well-known Gram-Charlier Series PDF derived by Longuet-Higgins, but also overcomes an obvious shortcoming of the latter that when the series is unsuitably truncated, the resulting PDF is locally negative. To test the derived beta PDF, laboratorial experiments of wind waves are conducted. The experimental data indicate that the theoretical requirements of the parameters in the beta PDF are fulfilled. The experimental results show that the present PDF is in better agreement with the measured data than the beta PDF only including parameter λ3, and also than the Gram-Charlier Series PDF truncated up to the term of H6.