WorldWideScience

Sample records for surface wave array

  1. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Science.gov (United States)

    Ohara, Yoshikazu; Oshiumi, Taro; Nakajima, Hiromichi; Yamanaka, Kazushi; Wu, Xiaoyang; Uchimoto, Tetsuya; Takagi, Toshiyuki; Tsuji, Toshihiro; Mihara, Tsuyoshi

    2017-06-01

    To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA) combining an ultrasonic phased array (PA) with a surface acoustic wave (SAW). SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs). The fatigue crack was visualized with a high signal-to-noise ratio (SNR) and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs) of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  2. Backward Surface Wave Propagation and Radiation along a One-Dimensional Folded Cylindrical Helix Array

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2015-01-01

    Full Text Available Wave propagation along a closely spaced folded cylindrical helix (FCH array is investigated for the purpose of designing compact array for energy transport and antenna radiation. It is found that the height of this surface wave guiding structure can be decreased from 0.24λ0 to 0.06λ0 by replacing the monopole element with the FCH. Both the propagation constant and the mode distribution of the dominant wave mechanism are extracted by ESPRIT algorithm, which indicates that a backward propagating surface wave is supported by the array structure. A compact backfire FCH antenna array is designed and measured based on the identified dominant wave mechanism.

  3. Propagation of liquid surface waves over finite graphene structured arrays of cylinders

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.

  4. True propagation paths of surface waves from regional and teleseismic earthquakes across AlpArray Austria

    Science.gov (United States)

    Kolínský, Petr; Fuchs, Florian; Gröschl, Gidera; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    We utilize array beamforming techniques to investigate deterministic surface waves from regional and teleseismic earthquakes. Because the signal is well recognized and the fundamental mode for both Love and Rayleigh waves is separated before the beamforming, instead of searching for energy of all possible signals, we identify the frequency dependence of surface wave phase velocity and the true backazimuths of propagation. Using the dense AlpArray seismic broadband network distributed in the greater Alpine region across Europe with interstation distances around 40 km, we consider each station as a centre of an array of neighboring 5 to 6 stations. This allows us to calculate the local phase velocity dispersion curves for individual regions with diameter of approximately 80 - 100 km. By the beamforming, phase velocities are corrected for the true propagation backazimuth, which is slightly frequency dependent for each event. We invert the dispersion curves for S and P wave velocity distribution with depth. Measuring the phase velocity from different events distributed around the world, azimuthal dependence of the phase velocity is estimated and thus anisotropy constrained for particular depths. Beamforming of the signals in the time window sliding along the coda after the fundamental mode allows us to detect deterministic late surface-wave signals coming from certain directions dissimilar from the direct fundamental mode backazimuths for some of the events - these can be considered as surface wave reflections from lateral heterogeneities and vertical boundaries.

  5. Experimental demonstration of hyperbolic wave vector surfaces in silver nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Joerg [ZIK, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Kanungo, Jyotirmayee [Queen' s University Belfast, Belfast (United Kingdom)

    2010-07-01

    Arrays of metal nanowires represent uniaxial metamaterials, whose principal effective permittivities perpendicular and parallel to the wire axis have opposite sign in the infrared and visible spectral range. This property leads to a hyperbolic equi-frequency surface for the extraordinary rays in wave vector space allowing the propagation of waves with unusually large wave vectors. Here we present an experimental mapping of the hyperbolic equi-frequency surfaces of TM (p-)polarised light propagating within a silver nanowire array. To this purpose we performed angular resolved transmission measurements on a 1.7 micron high alumina film containing the silver nanowire array. From the order of the observed Fabry-Perot resonances the wave vector component k{sub z} is determined, while the lateral wave vector component k{sub x}, is obtained from the angle of incidence. The resulting markings in k{sub x}-k{sub z} wave vector diagram then result in a hyperbolic equi-frequency surface for the TM polarisation. Fitting the relationship between spectral position of the Fabry-Perot peaks and angle of incidence by a simple linear equation, we furthermore determined the values of the principal permittivities for TE and TM polarisation in a wide spectral range. All experimental results agree well with simulations based on the Maxwell-Garnett effective medium theory.

  6. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  7. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  8. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  9. Surface wave propagation in central Asia: Observations of scattering and multipathing with the Kyrgyzstan broadband array

    Science.gov (United States)

    Pavlis, Gary L.; Mahdi, Hanan

    1996-04-01

    We studied the propagation of Rayleigh waves at regional distances in central Asia using a combination of array processing techniques and surface wave analysis. We present results from the detailed analysis of three representative events recorded by a 10-station, broadband network that has been running in the central Asian country of Kyrgyzstan since 1991: an Ms = 5.1 event near Ashkhabad, Turkmenistan; an Ms = 5.8 event in south central Tibet; and the October 7, 1994, nuclear explosion at Lop Nor. We find there is a remarkable difference in the propagation characteristics of surface waves along these three paths. The path from the event in Turkmenistan is simple and is well approximated by propagation through a laterally homogeneous medium. Array processing shows the entire Rayleigh wave train stacks coherently and arrives from an azimuth close to that predicted by a great circle path. Furthermore, estimates of dispersion curves and fundamental mode signals determined for individual stations show little variation across the array. The Tibet and Lop Nor paths are completely different. We find strong evidence for complicated multipathing and scattering effects along both of these paths. We observe a three-stage pattern in the Tibet case: (1) the early, lowest-frequency part of the Rayleigh wave packet arrives as a coherent signal from close to the great circle path azimuth; (2) this is overpowered in the period range around 20 s by a strong multipath signal that propagates across the array from a much more southerly azimuth; and (3) periods below 20 s rapidly become incoherent, and the signal does not have a well-defined direction of propagation. The Lop Nor path shows similar complexity. On this path there is little dispersion for measurable periods greater than 10 s, so the low-frequency energy arrives in an Airy phase. The Airy phase stacks somewhat coherently (it stacks, but significant power is lost in the best beam), and slowness analysis shows it arrives from

  10. Dispersion and Polarization of Surface Waves Trapped in High Aspect Ratio Electrode Arrays

    DEFF Research Database (Denmark)

    Laude, Vincent; Dühring, Maria Bayard; Moubchir, Hanane

    2007-01-01

    .Phys., 90(5):2492, 2001; Appl. Phys. Lett., 89:083515, 2006.) an experimental and theoretical analysis of the transduction of SAW under a metallic array of electrodes with a large aspect ratio on a piezoelectric substrate, whereby allowing the electrode height to become larger than one wavelength....... The multimode character of SAW propagation was observed and the explicit dependence of the SAW velocities as a function of the electrode height was obtained experimentally. Up to a 10-fold slowing of surface waves was observed, with the phase velocity dropping from 4000 m/s down to 450 m/s. We present...

  11. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  12. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    Science.gov (United States)

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  13. Image enhancement for sub-harmonic phased array by removing surface wave interference with spatial frequency filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Su; Kim, Jun Woo; Cho, Seung Hyun; Seo, Dae Cheol [Center for Safety Measurements, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-06-15

    Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

  14. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  15. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  16. Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2016-09-01

    A Si-prism-array coupled terahertz (THz)-wave parametric oscillator with the pump totally reflected at the THz-wave exit surface (PR-Si-TPO) is demonstrated by manufacturing an 800 nm air gap between the crystal and the Si-prism array. Influence on the total reflection of the pump from the Si prisms is eliminated and efficient coupling of the THz wave is ensured by using this air gap. When the THz-wave frequency varies from 1.8 to 2.3 THz, compared with a Si-prism-array coupled TPO (Si-TPO) with the pump transmitting through the crystal directly, the THz-wave output energy is enhanced by 20-50 times, and the oscillating threshold is reduced by 10%-35%. Furthermore, the high end of the THz-wave frequency tuning range of the PR-Si-TPO is expanded to 3.66 THz compared with 2.5 THz for the Si-TPO.

  17. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    Science.gov (United States)

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Efficient wideband guided-wave acoustooptic Bragg diffraction using phased surface acoustic wave array in LiNbO(3) waveguides.

    Science.gov (United States)

    Nguyen, L T; Tsai, C S

    1977-05-01

    Efficient wideband guided-wave acoustooptic Bragg diffraction has been demonstrated using a phased surface acoustic wave array in Y-cut LiNbO(3) waveguides. The results of measurement made on the devices which employ the first-order acoustic beam steering from six-element phased-SAWs of relatively small total acoustic aperture, at the center frequency of 325 MHz, have shown that accurate tracking of the Bragg condition is achievable for a frequency band of more than 250 MHz. In one of the deflectors that employ a larger total acoustic aperture, only 68 mW of electric drive power or 3.5 mW of acoustic power was required to diffract 50% of the light over a bandwidth of 112 MHz. This bandwidth is a nearly sixfold increase over that of the deflector that employs a single SAW of identical aperture. The quality of both deflected and undeflected light beams was very good.

  19. Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface

    Science.gov (United States)

    Castagnède, Bernard; Sahraoui, Sohbi; Tournat, Vincent; Tahani, Najat

    2009-09-01

    The present Note is devoted to the study of the so-called cuspidal caustic at the surface of a hemi-cylindrical reflector illuminated with plane waves. In order to generate low frequency (e.g. in the range of 4 kHz) acoustical plane waves, a commercially available parametric array has been used. It produces powerful ultrasonic carrier waves at 40 kHz which can be electronically modulated between 200 Hz and 10 kHz. Further self-demodulation process during propagation in air generates an ultra-directive acoustical field (i.e. quasi-planar wavefronts) enabling to accurately study the focusing process occurring along the cuspidal caustic. The focusing coefficient can be computed locally by using two numerical tools, on one hand by computing the density of tangent rays to the caustic, and on the other hand by using some numerical results provided by a ray tracing algorithm. Some preliminary experimental data are then provided in order to validate the numerical predictions (spatial position of the caustic and focusing coefficient). To cite this article: B. Castagnède et al., C. R. Mecanique 337 (2009).

  20. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    Science.gov (United States)

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  1. Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station

    Science.gov (United States)

    Yamanaka, Hiroaki; Kato, Kei; Chimoto, Kosuke; Tsuno, Seiji

    2015-09-01

    A procedure for estimation of Rayleigh wave phase velocities from microtremor observations, using an array with a reference station, is investigated in this study. Simultaneous observation of microtremors at a reference station and at a strong motion observation array in the Kanto Basin, Japan, was carried out. We first calculated cross correlations between records at the reference station and those at stations in the array using a seismic interferometric processing method on a 4300-h data series. After identifying dispersive Rayleigh waves from results of multiple filtering analysis of the cross correlations, semblance analysis of the cross correlations for different segments was carried out to estimate phase velocities for fundamental and higher-mode Rayleigh waves. The phase velocities from the proposed method are more appropriate than those from conventional methods at long periods as they avoid contamination by higher mode Rayleigh waves. The fundamental Rayleigh wave phase velocities were inverted to an S-wave velocity profile for deep sedimentary layers. We also examined the variations in the phase velocity with decreasing data duration. The phase velocities at periods less than 3 s from 6-h records are similar to those from 4300-h records, suggesting that our method is possibly applicable in microtremor exploration.

  2. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  3. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  4. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array

    Science.gov (United States)

    Roux, Philippe; Moreau, Ludovic; Lecointre, Albanne; Hillers, Gregor; Campillo, Michel; Ben-Zion, Yehuda; Zigone, Dimitri; Vernon, Frank

    2016-08-01

    We present a new technique for deriving detailed information on seismic velocities of the subsurface material from continuous ambient noise recorded by spatially dense seismic arrays. This method uses iterative double beamforming between various subarrays to extract surface wave contributions from the ambient-noise data in complex environments with unfavourable noise-source distributions. The iterative double beamforming extraction makes it possible to retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band. The method is applied to data recorded by a highly dense Nodal array with 1108 vertical geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone south of Anza, California. The array covers a region of ˜650 × 700 m2, with instrument spacing of 10-30 m, and continuous recording at 500 samples s-1 over 30 d in 2014. Using this iterative double beamforming on subarrays of 25 sensors and cross-correlations between all of the station pairs, we separate surface waves from body waves that are abundant in the raw cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group velocity inversions at 2-4 Hz reveal depth and lateral variations in the structural properties within and around the San Jacinto Fault Zone in the study area. This method can be used over wider frequency ranges and can be combined with other imaging techniques, such as eikonal tomography, to provide unprecedented detailed structural images of the subsurface material.

  5. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  6. Delamination Detection Using Guided Wave Phased Arrays

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  7. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  8. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special conditi...

  9. Guided wave phased array beamforming and imaging in composite plates.

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  10. Applying of the array transducers' technology for surface acoustic waves materials characterization in the transient regime; Application de la technologie multi-elements a la caracterisation des materiaux par ondes acoustiques de surface en regime impulsionnel

    Energy Technology Data Exchange (ETDEWEB)

    Frenet, D

    2000-07-01

    In this document we present a theoretical and experimental study which has been led to design a surface acoustic wave device for local characterisation (relatively to the wavelength) of isotropic or anisotropic materials. The device is based on a phased-array transducer of conical shape we have specifically designed for this purpose. It operates in the impulsive mode, in the frequency range of 1-5 MHz. In order to deduce mechanical properties of the material, it is possible to measure the surface wave characteristics (velocity, attenuation,...). Different methods for measuring the wave velocity have been developed taking advantage of from the phased-array technology. The originality of theses methods relies on the fact that the measures are performed without moving the transducer. Consequently, the device requires no additional mechanical system and it is quite compact. In addition, this shortens the characterisation process duration comparatively to the usually available methods (e. g. the V(z) technique). In the theoretical section of this study, a versatile model allowing to simulate in the time harmonic regime as well as in the transient regime, the transmitted field, the field reflected on isotropic or anisotropic planar samples and the output voltage for transducers of arbitrary shapes has been developed. The model has been applied to the phased-array conical transducer as well as to more classical transducers such as planar (rectangular) or focusing (spherically or cylindrically shaped) transducers. It predicts not only the geometrical contributions of the reflected field and signal but also the leaky contributions related to the surface acoustic waves. (author)

  11. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  12. Analysis of Waves in the Near-Field of Wave Energy Converter Arrays through Stereo Video

    Science.gov (United States)

    Black, C.; Haller, M. C.

    2013-12-01

    Oregon State University conducted a series of laboratory experiments to measure and quantify the near-field wave effects caused within arrays of 3 and 5 Wave Energy Converters (WEC). As the waves and WECs interact, significant scattering and radiation occurs increasing/decreasing the wave heights as well as changing the direction the wave is traveling. These effects may vary based on the number of WECs within an array and their respective locations. The findings of this analysis will assist in selecting the WEC farm location and in improving WEC design. Analyzing the near-field waves will help determine the relative importance of absorption, scattering, and radiation as a function of the incident wave conditions and device performance. The WEC mooring system design specifications may also be impacted if the wave heights in the near-field are greater than expected. It is imperative to fully understand the near-field waves before full-scale WEC farms can be installed. Columbia Power Technologies' Manta served as the test WEC prototype on a 1 to 33 scale. Twenty-three wave gages measured the wave heights in both regular and real sea conditions at locations surrounding and within the WEC arrays. While these gages give a good overall picture of the water elevation behavior, it is difficult to resolve the complicated wave field within the WEC array using point gages. Here stereo video techniques are applied to extract the 3D water surface elevations at high resolution in order to reconstruct the multi-directional wave field in the near-field of the WEC array. The video derived wave information will also be compared against the wave gage data.

  13. Arrayed Continuous-wave THz Photomixers

    CERN Document Server

    Bauerschmidt, S T; Döhler, G H; Lu, H; Gossard, A C; Preu, S

    2013-01-01

    We present both chip-scale and free space coherent arrays of continuous-wave THz photomixers. By altering the relative phases of the exciting laser signals, the relative THz phase between the array elements can be tuned, allowing for beam steering. The constructive interference of the emission of N elements leads to an increase of the focal intensity by a factor of NxN while reducing the beam width by ~1/N, below the diffraction limit of a single source. Such array architectures strongly improve the THz power distribution for stand-off spectroscopy and imaging systems while providing a huge bandwidth at the same time. We demonstrate this by beam profiles generated by a free space 2x2 and a 4x1 array for a transmission distance of 4.2 meters. Spectra between 70 GHz and 1.1 THz have been recorded with these arrays.

  14. Ionization wave propagation on a micro cavity plasma array

    CERN Document Server

    Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas

    2011-01-01

    Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.

  15. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  16. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  17. Photorefractive surface nonlinearly chirped waveguide arrays

    Science.gov (United States)

    Qi, Pengfei; Feng, Tianrun; Wang, Sainan; Han, Rong; Hu, Zhijian; Zhang, Tianhao; Tian, Jianguo; Xu, Jingjun

    2016-05-01

    We report an alternate type of nonlinear waveguides, photorefractive surface nonlinearly chirped waveguide arrays, which can be directly induced by photorefractive surface waves in virtue of diffusion and drift nonlinearities. The amplitude of such nonlinearly chirped waveguide arrays has an apodized envelope owing to the diffusion nonlinearity. The refractive-index change of the apodized tails converges to a nonzero value which can be handily adjusted by an external electric field. Moreover, the chirp parameters such as amplitude, sign (positive or negative), and initial position can be conveniently adjusted by an external electric field, background illumination, incident beam, etc. Then the guided-wave properties of this type of waveguide arrays are analyzed by using the transfer matrix method. Owing to the flexible tail and the nonlinear chirp, the dispersion curves of the index-guided modes can be tailored by an external electric field and the dispersion curves of ordinary and extraordinary Bragg guided modes couple, intertwine, and anticross with each other. Meanwhile, there is a clear "competition" in the coupling hybrid mode near anticrossing.

  18. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor

    Science.gov (United States)

    Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.

    2016-03-01

    We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.

  19. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  20. River dykes investigation using seismic surface waves

    Science.gov (United States)

    Bitri, Adnand; Jousset, Philippe; Samyn, Kévin; Naylor, Adam

    2010-05-01

    Natural underground caves such as karsts are quite common in the region "Centre", France. These subsurface perturbations can be found underneath the protection dykes around "the Loire" River and the damage caused can create routes for floods. Geophysical methods such as Multi-channel Analysis of Surface Waves (MASW) can be used for locating voids or karsts systems, but its efficiency on surface with strong topography such as dykes is not certain. Three dimensional Rayleigh wave modelling was used to understand the role of topography in the propagation of surface waves and with the aim of determining the best way for MASW investigations of surfaces with strong topography such as river dykes. Numerical modelling shows that surface waves propagation is not strongly affected by topography for an array parallel to the dyke. For homogeneous models with topography, a diminution of surface waves amplitude is observed while higher propagation modes are amplified in the dispersion curves in the case of heterogeneous models with topography. For an array perpendicular to the dyke, numerical modeling shows that Rayleigh waves' velocity is lower. MASW investigations can then be applied if lateral variations of the topography are not too strong along the seismic line. Diffraction hyperbolas created by a full of water cavity were identified in numerical modelling with topography. According to these elements, a MASW survey has been performed on the dykes of "the Loire" river close to a collapsed cavity and potential karstic systems were discovered.

  1. Layout of wave gauge array for estimation of 3D waves

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller; Frigaard, Peter

    2012-01-01

    Wave gauge array are commonly used to estimate significant wave properties of multi-directional waves. The objective of this study is to gain insight into which parameters influence the accuracy of an array. The approach chosen is to determine the accuracy of an array by comparing generated waves...

  2. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  3. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  4. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  5. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    Science.gov (United States)

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  6. Ultrasonic guided wave focusing by a generalized phased array

    Science.gov (United States)

    Zhang, Bixing; Xie, Fuli; Dong, Hefeng; Gong, Junjie

    2013-01-01

    Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.

  7. Tamm-Langmuir surface waves

    Science.gov (United States)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  8. Tamm-Langmuir surface waves

    CERN Document Server

    Golenitskii, K U; Bogdanov, A A

    2016-01-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  9. Phased annular array transducers for ultrasonic guided wave applications

    Science.gov (United States)

    Yan, Fei; Borigo, Cody; Liang, Yue; Koduru, Jaya P.; Rose, Joseph L.

    2011-04-01

    Mode and frequency control always plays an important role in ultrasonic guided wave applications. In this paper, theoretical understanding of guided wave excitations of axisymmetric sources on plate structures is established. It is shown that a wave number spectrum can be used to investigate the guided wave excitations of an axisymmetric source. The wave number spectrum is calculated from a Hankel transform of the axial source loading profile. On the basis of the theoretical understanding, phased annular array transducers are developed as a powerful tool for guided wave mode and frequency control. By applying appropriate time delays to phase the multiple elements of an annular array transducer, guided wave mode and frequency tuning can be achieved fully electronically. The phased annular array transducers have been successfully used for various applications. Example applications presented in this paper include phased annular arrays for guided wave beamforming and a novel ultrasonic vibration modal analysis technique for damage detection.

  10. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  11. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...

  12. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  13. Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    CERN Document Server

    Semkin, V; Kyro, M; Kolmonen, V-M; Luxey, C; Ferrero, F; Devillers, F; Raisanen, A V

    2015-01-01

    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select betw...

  14. Multispectral Analysis of Surface Wave (MASW) Analysis of Near-Surface Structure at Brady Hot Springs from Active Source and Ambient Noise Using a 8700-meter Distributed Acoustic Sensing (DAS) Array

    Science.gov (United States)

    Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.

  15. NONLINEAR FREE SURFACE ACTION WITH AN ARRAY OF VERTICAL CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    HUANG J. B.

    2004-01-01

    Nonlinear diffraction of regular waves by an array of bottom-seated circular cylinders is investigated in frequency domain, based on a Stokes expansion approach. A complete semi-analytical solution is developed which allows an efficient evaluation of the second-order potentials in the entire fluid domain, and the wave forces on the structure. Expressions are derived for the second-order potential in the vicinity of individual cylinders. These expressions have a simple form, thus providing an effective means for investigating the wave enhancement due to nonlinear interactions with multiple cylinders. Based on the present method, the wave run-up and free-surface elevations around an array of two, three and four cylinders are investigated numerically.

  16. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  17. Multichannel analysis of surface waves

    Science.gov (United States)

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  18. Discrete Rogue waves in an array of waveguides

    CERN Document Server

    Efe, S

    2015-01-01

    We study discrete rogue waves in an array of nonlinear waveguides. We show that very small degree of disorder due to experimental imperfection has a deep effect on the formation of discrete rogue waves. We predict long-living discrete rogue wave solution of the discrete nonlinear Schrodinger equation.

  19. Wave directional spectrum from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Sarma, Y.V.B.; Menon, H.B.

    Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...

  20. Refracting surface plasmon polaritons with nanoparticle arrays.

    Science.gov (United States)

    Radko, Ilya P; Evlyukhin, Andrey B; Boltasseva, Alexandra; Bozhevolnyi, Sergey I

    2008-03-17

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive index increases inside the array by a factor of approximately 1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase deduced from the SPP refraction by triangular arrays. The SPP refractive index is found to decrease slightly for longer wavelengths within the wavelength range of 700-860 nm. Modeling based on the Green's tensor formalism is in a good agreement with the experimental results, opening the possibility to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation.

  1. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... index increases inside the array by a factor of ~1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase...

  2. A phased antenna array for surface plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.; Korterik, J.P.; Segerink, F.B.; Herek, J.L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optic

  3. Water wave transmission by an array of floating disks

    CERN Document Server

    Bennetts, Luke

    2014-01-01

    An experimental validation of theoretical models of transmission of regular water waves by large arrays of floating disks is presented. The experiments are conducted in a wave basin. The models are based on combined potential-flow and thin-plate theories, and the assumption of linear motions. A low-concentration array, in which disks are separated by approximately a disk diameter in equilibrium, and a high-concentration array, in which adjacent disks are almost touching in equilibrium, are used for the experiments. The proportion of incident wave energy transmitted by the disks is presented as a function of wave period, and for different wave amplitudes. Results indicate that the models predict wave energy transmission accurately for small-amplitude waves and low-concentration arrays. Discrepancies for large-amplitude waves and high-concentration arrays are attributed to wave overwash of the disks and collisions between disks. Validation of model predictions of rigid-body motions of a solitary disk are also p...

  4. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.

    Science.gov (United States)

    Poutrina, Ekaterina; Ciracì, Cristian; Gauthier, Daniel J; Smith, David R

    2012-05-07

    We consider the process of four-wave mixing in an array of gold nanowires strongly coupled to a gold film. Using full-wave simulations, we perform a quantitative comparison of the four-wave mixing efficiency associated with a bare film and films with nanowire arrays. We find that the strongly localized surface plasmon resonances of the coupled nanowires provide an additional local field enhancement that, along with the delocalized surface plasmon of the film, produces an overall four-wave mixing efficiency enhancement of up to six orders of magnitude over that of the bare film. The enhancement occurs over a wide range of excitation angles. The film-coupled nanowire array is easily amenable to nanofabrication, and could find application as an ultra-compact component for integrated photonic and quantum optic systems.

  5. Control of Spin-Wave Refraction Using Arrays of Skyrmions

    Science.gov (United States)

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Hwang, Chanyong

    2016-12-01

    A periodically patterned and magnetized medium for controlling spin waves is proposed in a magnonic device and presents a clear advantage compared with other metamaterials because of the tunability in reconfiguring its pattern during operation. We study the spin-wave propagation numerically by controlling the arrangement of two magnetic Skyrmion arrays instead of patterned structures. The adjustment the position of each of the Skyrmion arrays could result in distinct spin-wave propagation or refraction depending on the location of the Skyrmions in each array. Control of the arrangement of two Skyrmion arrays can be made by an asymmetric magnetic field generated by a symmetric electrode with different current directions. This simple method of spin-wave manipulation can be applied to the development of magnonic devices consisting of Skyrmions as the building blocks of the magnonic crystals.

  6. Detecting nanohertz gravitational waves with pulsar timing arrays

    CERN Document Server

    Zhu, Xing-Jiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M

    2015-01-01

    Complementary to ground-based laser interferometers, pulsar timing array experiments are being carried out to search for nanohertz gravitational waves. Using the world's most powerful radio telescopes, three major international collaborations have collected $\\sim$10-year high precision timing data for tens of millisecond pulsars. In this paper we give an overview on pulsar timing experiments, gravitational wave detection in the nanohertz regime, and recent results obtained by various timing array projects.

  7. Determination of wave direction from linear and polygonal arrays

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Gouveia, A.D.; Nagarajan, R.

    documentation of Borgman (1974) in case of linear arrays; and the second issue being the failure of Esteva (1976, 1977) to correctly determine wave directions over the design range 25 to 7 sec of his polygonal array. This paper presents requisite documentation...

  8. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  9. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  10. Lamb wave sensors array for nonviscous liquid sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN; Zhijun; HAN; Tao; JI; Xiaojun; GUO; Huawei; SHI; Wenkang

    2006-01-01

    The interdigital transducer (IDT) can excite Lamb wave in a piezoelectric plate loading with a liquid layer, and the phase velocity of Lamb wave is associated with the properties of the liquid layer. In this paper, the concept of effective permittivity is introduced to study the Lamb wave's potential application in liquid sensing. Considering the measuring of ideal nonviscous liquid, the sensors array is designed to sense the density and the dielectric constant of the liquid layer simultaneously. Using LiNbO3 as piezoelectric material, in order to improve the sensors array sensitivity and the electro-mechanical coupling coefficient, the optimized results including plate thicknesses and cut orientations are presented by numerical simulation. These studies show that the Lamb wave sensors array can be potential in liquid sensing.

  11. Surface wave chemical detector using optical radiation

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  12. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  13. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  14. S-wave velocity structures of the Taipei Basin, Taiwan, using microtremor array measurements

    Science.gov (United States)

    Huang, Huey-Chu; Wu, Cheng-Feng; Lee, Feng-Mei; Hwang, Ruey-Der

    2015-04-01

    The S-wave velocity structures of the Taipei Basin in Taiwan are investigated using the array records of microtremors at 15 sites. Dispersion curves at these sites are calculated using the frequency-wavenumber (F-K) spectrum method. The S-wave velocity structures in the Taipei Basin are then estimated by employing surface wave inversion technique. Harder strata sites have higher phase velocities than softer sites. If the S-wave velocity of the Tertiary Basement is assumed to be 1000 m/s, then the Quaternary alluvial thicknesses in the Taipei Basin are between about 100 m and 650 m. The thickness of the alluvium gradually increases from the southeast to the northwest. The inversion results are also in good agreement with well-logging data and seismic reflection studies of the Taipei Basin. The study concludes that microtremor array measurement is a useful tool for estimating S-wave velocity structure.

  15. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  16. Waves and instability in a one-dimensional microfluidic array

    CERN Document Server

    Liu, Bin; Feng, Yan

    2012-01-01

    Motion in a one-dimensional (1D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are arranged in a single row, and due to their hydrodynamic interactions spacing between these droplets oscillates with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in the interaction potential. The instability's growth is spatially localized. By selecting an appropriate correlation function, the interaction between the longitudinal and transverse waves is described.

  17. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  18. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    OpenAIRE

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained. Numerical examples are given in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.

  19. Enhanced millimeter-wave transmission through subwavelength hole arrays.

    Science.gov (United States)

    Beruete, M; Sorolla, M; Campillo, I; Dolado, J S; Martín-Moreno, L; Bravo-Abad, J; García-Vidal, F J

    2004-11-01

    We explore, both experimentally and theoretically, the existence in the millimeter-wave range of the phenomenon of extraordinary light transmission through arrays of subwavelength holes. We have measured the transmission spectra of several samples made on aluminum wafers by use of an AB Millimetre quasi-optical vector network analyzer in the wavelength range 4.2-6.5 mm. Clear signals of the existence of resonant light transmission at wavelengths close to the period of the array appear in the spectra.

  20. EMAT phased array: A feasibility study of surface crack detection.

    Science.gov (United States)

    Isla, J; Cegla, F

    2017-02-14

    Electromagnetic-acoustic transducers (EMATs) consist of a magnet and a coil. They are advantageous in some non-destructive evaluation (NDE) applications because no direct contact with the specimen is needed to send and receive ultrasonic waves. However, EMATs commonly require excitation peak powers greater than 1kW and therefore the driving electronics and the EMAT coils have to be bulky. This has hindered the development of EMAT phased arrays with characteristics similar to those of conventional piezoelectric phased arrays. Phased arrays are widely used in NDE because they offer superior defect characterization in comparison to single-element transducers. In this paper, we report a series of novel techniques and design elements that make it possible to construct an EMAT phased array that performs similarly to conventional piezoelectric arrays used in NDE. One of the key enabling features is the use of coded excitation to reduce the excitation peak power to less than 4.8W (24 Vpp and 200mA) so that racetrack coils with dimensions 3.2×18mm(2) can be employed. Moreover, these racetrack coils are laid out along their shortest dimension so that 1/3 of their area is overlapped. This helps to reduce the crosstalk between the coils, i.e., the array elements, to less than -15dB. We show that an 8-element EMAT phased array operating at a central frequency of 1MHz can be used to detect defects which have a width and a depth of 0.2 and 0.8mm respectively and are located on the surface opposite to the array.

  1. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  2. Using 2-D arrays for sensing multimodal Lamb waves

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-04-01

    Monitoring structural integrity of large planar structures requires normally a relatively dense network of uniformly distributed ultrasonic sensors. A 2-D ultrasonic phased array with all azimuth angle coverage would be extremely useful for the structural health monitoring (SHM) of such structures. Known techniques for estimating direction of arriving (DOA) waves cannot efficiently cope with dispersive and multimodal Lamb waves (LWs). In the paper we propose an adaptive spectral estimation technique capable of handling broadband LWs sensed by 2-D arrays, the modified Capon method. Performance of the technique is evaluated using simulated multiple-mode LWs, and verified using experimental data.

  3. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    Science.gov (United States)

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  4. Horizon effects for surface waves in wave channels and circular jumps

    CERN Document Server

    Jannes, Gil; Chaline, Jennifer; Maïssa, Philippe; Mathis, Christian; Rousseaux, Germain

    2011-01-01

    Surface waves in classical fluids experience a rich array of black/white hole horizon effects. The dispersion relation depends on the characteristics of the fluid (in our case, water and silicon oil) as well as on the fluid depth and the wavelength regime. In some cases, it can be tuned to obtain a relativistic regime plus high-frequency dispersive effects. We discuss two types of ongoing analogue white-hole experiments: deep water waves propagating against a counter-current in a wave channel and shallow waves on a circular hydraulic jump.

  5. Databases of surface wave dispersion

    Directory of Open Access Journals (Sweden)

    L. Boschi

    2005-06-01

    Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.

  6. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  7. Conformal array design on arbitrary polygon surface with transformation optics

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-06-01

    Full Text Available A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  8. Conformal array design on arbitrary polygon surface with transformation optics

    Science.gov (United States)

    Deng, Li; Wu, Yongle; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang

    2016-06-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  9. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  10. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational w

  11. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  12. Towards Robust Gravitational Wave Detection with Pulsar Timing Arrays

    CERN Document Server

    Cornish, Neil J

    2015-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the...

  13. Development of Surface Acoustic Wave Electronic Nose

    Directory of Open Access Journals (Sweden)

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  14. Gravitational-Wave Detection and Astrophysics with Pulsar Timing Arrays

    CERN Document Server

    Burke-Spolaor, Sarah

    2015-01-01

    We have begun an exciting era for gravitational wave detection, as several world-leading experiments are breaching the threshold of anticipated signal strengths. Pulsar timing arrays (PTAs) are pan-Galactic gravitational wave detectors that are already cutting into the expected strength of gravitational waves from cosmic strings and binary supermassive black holes in the nHz-$\\mu$Hz gravitational wave band. These limits are leading to constraints on the evolutionary state of the Universe. Here, we provide a broad review of this field, from how pulsars are used as tools for detection, to astrophysical sources of uncertainty in the signals PTAs aim to see, to the primary current challenge areas for PTA work. This review aims to provide an up-to-date reference point for new parties interested in the field of gravitational wave detection via pulsar timing.

  15. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  16. Array of dipoles near a hyperbolic metamaterial: Evanescent-to-propagating Floquet wave transformation

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2013-01-01

    We investigate the capabilities of hyperbolic metamaterials (HMs) to couple near-fields (i.e., evanescent waves) emitted by a two-dimensional periodic array of electric dipoles to propagating waves. In particular, large order Floquet harmonics with transverse magnetic (TM) polarization, that would be evanescent in free space and therefore confined near the array surface, are transformed into propagating spectrum inside the HM, and thus carry power away. Because of this property, independent of the finite or infinite extent of the HM, the power generated by an array of elementary electric dipoles is strongly enhanced when the array is located near a HM surface and is mostly directed into the HM. In particular, the power coupled to the HM exhibits narrow frequency features that can be employed in detection applications. The results shown in this paper provide a clear signature on wave dynamics in HMs. A link between the results pertaining to the case of an isolated dipole on top of HM and the planar array is fo...

  17. Parabolic Wave Equation for Surface Water Waves.

    Science.gov (United States)

    1986-11-01

    extended to wave propagation problems in other fields of physical sciences, such as nonlinear optics ( Svelto , 1974), plasma physics (Karpman, 1975...34 Journal of Fluid Mechanics, Vol. 72, pp. 373-384. Svelto , 0., 1974, Progress in Optics, North-Holland Pub., Chapter 1, pp. 1-51. Tappert, F.D., 1977, "The

  18. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  19. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  20. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....

  1. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...

  2. Confined spin wave spectra of Kagome artificial spin ice arrays

    Science.gov (United States)

    Panagiotopoulos, I.

    2017-01-01

    The spin wave modes of elongated magnetic islands arranged in Kagome artificial spin-ice arrays are micromagnetically simulated in the frequency regime between 3 and 16 GHz. The edge modes are more suitable in order to detect the signatures of various types of local order of the spin-ice lattice as they are much more sensitive to the magnetic configurations of neighboring elements. The spectra of arrays consisting up to 30 elements can be decomposed to those originating from local magnetic states of their vertices.

  3. Phased array tuning for optimal ultrasonic guided wave mode selection

    Science.gov (United States)

    Bostron, J. H.; Rose, J. L.; Moose, C. A.

    2014-02-01

    Ultrasonic guided waves have become widely used in a variety of nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection. An "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. In this work, we consider the use of guided interface waves for bond evaluation. A phased comb array transducer is used to sweep in the phase velocity - frequency space in an effort to determine optimal modes.

  4. Dyakonov surface waves in lossy metamaterials

    CERN Document Server

    Sorni, A J; Zapata-Rodríguez, C J; Miret, J J

    2015-01-01

    We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.

  5. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  6. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  7. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  8. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  9. An analytical filter design method for guided wave phased arrays

    Science.gov (United States)

    Kwon, Hyu-Sang; Kim, Jin-Yeon

    2016-12-01

    This paper presents an analytical method for designing a spatial filter that processes the data from an array of two-dimensional guided wave transducers. An inverse problem is defined where the spatial filter coefficients are determined in such a way that a prescribed beam shape, i.e., a desired array output is best approximated in the least-squares sense. Taking advantage of the 2π-periodicity of the generated wave field, Fourier-series representation is used to derive closed-form expressions for the constituting matrix elements. Special cases in which the desired array output is an ideal delta function and a gate function are considered in a more explicit way. Numerical simulations are performed to examine the performance of the filters designed by the proposed method. It is shown that the proposed filters can significantly improve the beam quality in general. Most notable is that the proposed method does not compromise between the main lobe width and the sidelobe levels; i.e. a narrow main lobe and low sidelobes are simultaneously achieved. It is also shown that the proposed filter can compensate the effects of nonuniform directivity and sensitivity of array elements by explicitly taking these into account in the formulation. From an example of detecting two separate targets, how much the angular resolution can be improved as compared to the conventional delay-and-sum filter is quantitatively illustrated. Lamb wave based imaging of localized defects in an elastic plate using a circular array is also presented as an example of practical applications.

  10. Surface Shear, Persistent Wave Groups and Rogue Waves

    CERN Document Server

    Chafin, Clifford

    2014-01-01

    We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.

  11. Improvements on Mean Free Wave Surface Modeling

    Institute of Scientific and Technical Information of China (English)

    董国海; 滕斌; 程亮

    2002-01-01

    Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).

  12. Beam pattern improvement by compensating array nonuniformities in a guided wave phased array

    Science.gov (United States)

    Kwon, Hyu-Sang; Lee, Seung-Seok; Kim, Jin-Yeon

    2013-08-01

    This paper presents a simple data processing algorithm which can improve the performance of a uniform circular array based on guided wave transducers. The algorithm, being intended to be used with the delay-and-sum beamformer, effectively eliminates the effects of nonuniformities that can significantly degrade the beam pattern. Nonuniformities can arise intrinsically from the array geometry when the circular array is transformed to a linear array for beam steering and extrinsically from unequal conditions of transducers such as element-to-element variations of sensitivity and directivity. The effects of nonuniformities are compensated by appropriately imposing weight factors on the elements in the projected linear array. Different cases are simulated, where the improvements of the beam pattern, especially the level of the highest sidelobe, are clearly seen, and related issues are discussed. An experiment is performed which uses A0 mode Lamb waves in a steel plate, to demonstrate the usefulness of the proposed method. The discrepancy between theoretical and experimental beam patterns is explained by accounting for near-field effects.

  13. Towards robust gravitational wave detection with pulsar timing arrays

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  14. Separating Noise from the Infrasonic Wave Field in the Lower Atmosphere Using Free Flying Arrays

    Science.gov (United States)

    Seiffert, K. T.; Bowman, D. C.; Lees, J. M.

    2016-12-01

    Historically, acoustic arrays have been concentrated at or near the ground surface, yielding only a 2D representation of the infrasonic wave field. Free flying arrays can quantify sound waves at different elevations in the atmosphere, providing a unique opportunity for recording and modelling acoustic fields far from the earth's surface. In 2014 and 2015, acoustic arrays were deployed aboard HASP (High Altitude Student Platforms) flights in order to explore low frequency acoustic signals in the lower atmosphere. These data, along with data collected in the 1960s, suggest that signal sources include wind turbulence, ocean microbaroms and city HVAC systems. Signals appear to have a strong microbarom peak 3-7 seconds, as well as longer period signals associated with the vertical displacement of the balloon payload. Furthermore, numerous higher frequency (2-20Hz) periodic signals are present in both HASP flights. In August/September 2016, new experimental arrays will be launched on two separate NASA high altitude balloons. The aim of these new experiments are to determine variables that influence the detection of the ocean microbarom, and eliminate suspected electronic noise interference from other scientific payloads and communication electronics. Isolating electrical noise is critical for distinguishing natural and anthropogenic signals. The new data will be compared to earlier flights analyzing and modelling the frequency and amplitude of the acoustic wave field, including known signals (chemical explosions) and any potentially new identifiable signals.

  15. Fully Nonlinear Simulations of Wave Resonance by An Array of Cylinders in Vertical Motions

    Institute of Scientific and Technical Information of China (English)

    HUANG Hao-cai; WANG Chi-zhong; LENG Jian-xing

    2013-01-01

    The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.

  16. Bandwidth enhancement using Polymeric Grid Array Antenna for millimeter-wave application

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new grid array antenna designed on a polymeric polydimethylsiloxane (PDMS) substrate is presented. A good relative permittivity of the PDMS substrate increases the antenna bandwidth. The PDMS surface is also hardened to protect the proposed grid array antenna's radiating element. A SMA coaxial connector is used to feed the 36 × 35 mm2 antenna from its bottom. A bandwidth enhancement of 72.1% is obtained compared to conventional antenna. Besides, its efficiency is increased up to 70%. The simulated and measured results agreed well and the proposed antenna is validated to suit millimeter-wave applications.

  17. A Wave Modulation Model of Ripples over Long Surface Waves

    Institute of Scientific and Technical Information of China (English)

    CONG Peixiu; ZHENG Guizhen

    2011-01-01

    A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.

  18. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  19. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  20. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  1. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  2. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation)

    Science.gov (United States)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung

    2017-04-01

    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  3. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  4. Wave Forces on Linear Arrays of Rigid Vertical Circular Cylinders in Regular Wave

    Directory of Open Access Journals (Sweden)

    V.J. Kurian

    2014-06-01

    Full Text Available The present investigation aims to experimentally determine the variation of forces and force coefficients acting on circular cylinders, which are arranged in a linear array along the direction of the waves. Most commonly used structural and non-structural elements in the construction of offshore platforms are circular cylindrical members. In many cases, these members are found in very close neighbourhood of each other, thus modifying the surrounding flow and wave forces acting on them. Model tests were conducted in the wave tank on a maximum of four cylinders of the same diameter. A reasonable scale factor was chosen considering the pertinent factors such as water depth, wave generating capability and accuracy of measurements. The cylinders were installed inside the wave tank as vertical cantilevers fixed at the top. Wave forces acting on the cylinders were measured using special wave force sensors exclusively designed and fabricated for the present project, while the wave profiles were recorded using wave probes installed in the wave basin. The results confirmed the presence of a force shielding effect on the trailing cylinders by the leading cylinders with few exceptions. The findings also substantiated the significant modification of the forces on cylinders when they are present in a linear array. A common practice adopted for the design of offshore platforms was identified with a possibility of underestimating the wave forces acting on the cylindrical elements. In many cases, the experimentally computed hydrodynamic force coefficients were found to be lower than the standard values adopted by various design codes. These findings portray the significance of the present work in achieving economy in the design of jacket platforms and risers.

  5. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  6. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  7. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  8. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  9. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  10. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  11. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    Science.gov (United States)

    Helmboldt, J. F.; Intema, H. T.

    2014-02-01

    This paper presents a case study from a single, 6h observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal-to-noise ratio (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the GPS data when combining all available satellite/receiver pairs, which probe a larger physical area and likely have a wider variety of measurement errors than in the single-satellite case. In this instance, we found that the peak S/N of the detected waves was improved by more than an order of magnitude. The data products generated by the deconvolution procedure also allow for a reconstruction of the fluctuations as a two-dimensional waveform/phase screen that can be used to correct for their effects.

  12. The Preparation of Microzonation Map of the Gulf of Buyukcekmece using results obtain by Vertical Electrical Sounding Measurements with Multi-Channel Analysis of Surface Wave and Microtremor Array Method

    Science.gov (United States)

    Tezel, Okan; Karabulut, Savas; Imre, Nazire; Caglak, Faruk; Yeziz, Hatice; Ozcep, Ferhat

    2013-04-01

    Istanbul is a megacity with 17 million inhabitants. After the 17 August 1999 earthquake, many researchers have focused on the mitigation of earthquake hazards in the Sea of Marmara and its vicinity. If we want to lessen the effects of such an earthquake, we have to learn about three different types of problems which are properties of the earthquake's source, whether of site effect or properties of engineering structures. When İstanbul Metropolitian Municipilaty obtained a World Bank Credit 5 years ago, they had a microzonation report for only a limited area which finished at Har amidere in the western site of Istanbul. Because they will not have any new project, the western side of Haramidere hasn't been studied by any scientist. For this reason, we focused on the Gulf of Buyukcekmece which is located on the western part of Haramidere and suffered in the 1999 earthquake. There are five geological units in the study area such as Bakirkoy formation, Gurpinar formation, Çukurçeşme formation, Güngören formation and Alluvial deposit. We conducted some measurements which are multi-channel analysis of surface wave (MASW), microtremor array method (MAM) and vertical electrical sounding(VES). The aim of using VES data is to determine bedrock depth, learn whether there is a new fault and learn the electrical properties of each layer of bedrock. The MASW method is so attactive, cheap and fast. According to seismic refraction, it has some advantages that are determining the deeper part of sub-surface, lower velocity layers and velocity contrast. Especially, we use natural sources; MAM methods are more useful method in the city. For all of these purposes, we collected MASW and MAM measurements at 80 sites and VES measurements at 20 sites. As primary results for VES measurements, we determined the bedrock depth by evaluating the VES measurements for the central, eastern and western part of Buyukcekmece Gulf. Bedrock depth is 308 meters in the central and eastern part of

  13. Superdirected Beam of the Surface Spin Wave

    CERN Document Server

    Annenkov, Alexander Yu; Lock, Edwin H

    2016-01-01

    Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.

  14. Post-Processing of the Full Matrix of Ultrasonic Transmit-Receive Array Data for Guided Wave Pipe Inspection

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2009-03-01

    The paper describes a method for processing data from a guided wave transducer array on a pipe. The raw data set from such an array contains the full matrix of time-domain signals from each transmitter-receiver combination. It is shown that for certain configurations of an array the total focusing method can be applied which allows the array to be focused at every point on a pipe surface in both transmission and reception. The effect of array configuration parameters on the sensitivity of the proposed method to the random and coherent noise is discussed. Experimental results are presented using electromagnetic acoustic transducers (EMAT) for exciting and detecting the S0 Lamb wave mode in a 12 inch steel pipe at 200 kHz excitation frequency. The results show that using the imaging algorithm a 2-mm-diameter (0.08 wavelength) half-thickness hole can be detected.

  15. SAW devices based on novel surface wave excitations

    Science.gov (United States)

    Therrien, Joel; Dai, Lian

    2015-03-01

    Surface Acoustic Wave (SAW) devices have applications in radio frequency and microwave filtering as well as highly sensitive sensors. Current SAW design employs the use of an array of electrode pairs, referred to as Inter-Digitated Transducers (IDTs) for creating and receiving surface waves on piezoelectric substrates. The pitch of the electrode pairs along with the properties of the substrate determine the operating frequency. The number of electrode pairs determine the bandwidth of the emitted waves. We will present a novel configuration that eliminates the need for the IDTs and replaces with with a single circular electrode located inside a larger ground ring. This configuration induces drumhead modes. We will show that the resonant frequencies follow the zeros of Bessel functions of the first kind. Applications in RF filtering and mass sensing will be presented.

  16. Analysis of seismic waves crossing the Santa Clara Valley using the three-component MUSIQUE array algorithm

    Science.gov (United States)

    Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter

    2016-10-01

    We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity

  17. Experimental Validation of aWave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...

  18. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  19. Spatiotemporal discrete surface solitons in binary waveguide arrays.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Kivshar, Yuri S; Lederer, Falk

    2007-08-20

    We study spatiotemporal solitons at the edge of a semi-infinite binary array of optical waveguides and, in particular, predict theoretically the existence of a novel type of surface soliton, the surface gap light bullets. We analyze the stability properties of these solitons in the framework of the continuous-discrete model of an array of two types of optical waveguides.

  20. Ruts and waves in the road surface.

    NARCIS (Netherlands)

    Tromp, J.P.M.

    1989-01-01

    The characteristics of a road and a road surface should not unexpectedly change, if the traffic process is to be kept safe and under control. Knowledge on accidents, in which ruts and waves played a part does not seem to exist. Knowledge on driver behaviour due to the occurrence of waves or ruts is

  1. PZT Network and Phased Array Lamb Wave Based SHM Systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C [Academia da Forca Aerea, Granja do Marques, 2715-021 Pero Pinheiro (Portugal); Rocha, B; Suleman, A, E-mail: cbsilva@emfa.pt [University of Victoria, Department of Mechanical Engineering, PO Box 3055, Stn.CSC, Victoria, BC, V8W 3P6 (Canada)

    2011-07-19

    With the application of newer materials, such as composite materials, and growing complexity and capacity of current aircraft structures, reliably and completely assess the condition of the total structures in real time is then of growing and utmost importance. PZT Network and Phased Array, Lamb wave based Structural Health Monitoring (SHM) systems were developed to be applied to thin panels. The selection of transducers, their size and selected locations for their installation are described. The development and selection of the signal generation and data acquisition systems is also presented in detail. The requirements conducing to the development and selection of these systems are laid and particularly the selection of the actuation signal applied is justified. The development of a damage detection algorithm based in the comparison of the current structural state to a reference state is described, to detect damage reflected Lamb waves. Such method was implemented in software and integrated in the SHM system developed. Subsequently the detection algorithm, based in discrete signals correlation, was further improved by incorporating statistical methods. For phased arrays, a novel damage location algorithm is presented based on the individual sensors response. A visualization method based concurrently in the statistical methods developed and superposition of the different results obtained from a test set was implemented. These tests conducted to the successful and repeatable detection of 1mm damages in a multiple damaged plate with great confidence. Finally, a brief comparison and a hybrid system implementation is presented.

  2. Origins of high-frequency scattered waves near PKKP from large aperture seismic array data

    Science.gov (United States)

    Earle, P.S.

    2002-01-01

    This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.

  3. S-Wave Velocity Structures of the Northern Taichung Area, Taiwan, Using Microtremor Array Data

    Science.gov (United States)

    Huang, H. C.; Shih, T. H.; Wu, C. F.

    2016-12-01

    S-wave velocities have widely been used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures at the northern Taichung area, Taiwan are investigated using the array records of microtremors at 24 sites. The dispersion curves at these sites are calculated using the F-K method (Capon, 1969); then, the S-wave velocity structures at the Taichung area are estimated by employing the surface wave inversion technique (Herrmann, 1991). At most sites, observed phase velocities are almost flat with the phase velocity of about 1000 m/sec in the frequency range from 0.5 to 2Hz. This suggests that a thickness layer with an S-wave velocity of about 1100 1400m/sec was deposited. If the S-wave velocity of the Tertiary bedrock is assumed to be 1500m/sec, the depth of the alluvium at the northern Taichung area is about 270 m 1400 m. The depth of the alluvium gradually increases from east to west. The S-wave velocity decreases from east to west while the depth is larger than 400 m at the area.

  4. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  5. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  6. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    Science.gov (United States)

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  7. Surface optical Bloch oscillations in semi-infinite waveguide arrays.

    Science.gov (United States)

    Chremmos, I D; Efremidis, N K

    2012-06-01

    We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.

  8. Surface waves of Min-proteins

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  9. Nonlinear waves in a positive-negative coupled waveguide zigzag array

    CERN Document Server

    Kazantseva, Elena V

    2013-01-01

    We consider the coupled electromagnetic waves propagating in a waveguide array, which consists of alternating waveguides of positive and negative refraction indexes. Due to zigzag configuration there are interactions between both nearest and next nearest neighboring waveguides exist. It is shown that there is a stop band in the spectrum of linear waves. The system of evolution equations for coupled waves has the steady state solution describing the electromagnetic pulse running in the array. Numerical simulation demonstrates robustness of these solitary waves.

  10. Phased array beamforming and imaging in composite laminates using guided waves

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-04-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple simulated defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple simulated defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  11. Structure of the airflow above surface waves

    Science.gov (United States)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  12. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  13. Collective waves in dense and confined microfluidic droplet arrays

    Science.gov (United States)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic crystals which is a promising approach for the production of dynamically programmable metamaterials.

  14. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  15. Bidirectional surface wave splitter at visible frequencies.

    Science.gov (United States)

    Gan, Qiaoqiang; Bartoli, Filbert J

    2010-12-15

    We experimentally demonstrate a metal-film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green-red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.

  16. Guided wave phased array sensor tuning for improved defect detection and characterization

    Science.gov (United States)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  17. A numerical simulation of surface wave excitation in a rectangular planar-type plasma source

    Institute of Scientific and Technical Information of China (English)

    Chen Zhao-Quan; Liu Ming-Hai; Lan Chao-Hui; Chen Wei; Tang Liang; Luo Zhi-Qing; Yan Bao-Rong; Lu Jian-Hong; Hu Xi-Wei

    2009-01-01

    The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory.The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures.And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed.Combined with the distribution of surface wave excitation and experimental results,the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.

  18. Versatile Directional Searches for Gravitational Waves with Pulsar Timing Arrays

    CERN Document Server

    Madison, D R; Hobbs, G; Coles, W; Shannon, R M; Wang, J; Tiburzi, C; Manchester, R N; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Dempsey, J; Keith, M; Kerr, M; Lasky, P; Levin, Y; Oslowski, S; Ravi, V; Reardon, D; Rosado, P; Spiewak, R; van Straten, W; Toomey, L; Wen, L; You, X

    2015-01-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straight-forward technique by which a PTA can be "phased-up" to form time series of the two polarisation modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodeled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power fr...

  19. Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    Science.gov (United States)

    Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.

    2016-02-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.

  20. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  1. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  2. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  3. Analysis of Circular Arrays on Cylindrical Surfaces

    NARCIS (Netherlands)

    Gerini, G.; Guglielmi, M.; Rozzi, T.; Zappelli, L.

    2000-01-01

    The analysis of conformal arrays has been deeply developed and many authors have proposed either simplified models, based on single mode theory [1]-[4] or more accurate models but at the cost of a long computation time[5]. In this contribution we use the Multimode Equivalent Network (MEN) formulatio

  4. Analysis of Circular Arrays on Cylindrical Surfaces

    NARCIS (Netherlands)

    Gerini, G.; Guglielmi, M.; Rozzi, T.; Zappelli, L.

    2000-01-01

    The analysis of conformal arrays has been deeply developed and many authors have proposed either simplified models, based on single mode theory [1]-[4] or more accurate models but at the cost of a long computation time[5]. In this contribution we use the Multimode Equivalent Network (MEN)

  5. Analysis of Circular Arrays on Cylindrical Surfaces

    NARCIS (Netherlands)

    Gerini, G.; Guglielmi, M.; Rozzi, T.; Zappelli, L.

    2000-01-01

    The analysis of conformal arrays has been deeply developed and many authors have proposed either simplified models, based on single mode theory [1]-[4] or more accurate models but at the cost of a long computation time[5]. In this contribution we use the Multimode Equivalent Network (MEN) formulatio

  6. Femtosecond laser fabrication of microspike-arrays on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Tomokazu [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan)]. E-mail: sano@mapse.eng.osaka-u.ac.jp; Yanai, Masato [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Ohmura, Etsuji [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nomura, Yasumitsu [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Miyamoto, Isamu [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Hirose, Akio [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Kobayashi, Kojiro F. [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

    2005-07-15

    Microspike-arrays were fabricated by irradiating a femtosecond laser on a tungsten surface through a mask opening in air. The natural logarithms of the calculated intensity distributions diffracted at the edge of the mask opening were qualitatively consistent with the experimental results of the shape and arrays of microspikes fabricated. The shape and the array of microspikes depend on the intensity distribution diffracted at the edge of the mask opening. This microspike-array has the potential to be used as a source of micro emitter tips.

  7. Surface Micromachined Arrays of Transition-Edge Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative surface micromachining technique is described for the fabrication of closely-packed arrays of transition edge sensor (TES) x-ray microcalorimeters....

  8. Blackfolds, plane waves and minimal surfaces

    OpenAIRE

    Armas, Jay; Blau, Matthias

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...

  9. Optimized in situ construction of oligomers on an array surface

    Science.gov (United States)

    Tolonen, Andrew C.; Albeanu, Dinu F.; Corbett, Julia F.; Handley, Heather; Henson, Charlotte; Malik, Pratap

    2002-01-01

    Oligonucleotide arrays are powerful tools to study changes in gene expression for whole genomes. These arrays can be synthesized by adapting photolithographic techniques used in microelectronics. Using this method, oligonucleotides are built base by base directly on the array surface by numerous cycles of photodeprotection and nucleotide addition. In this paper we examine strategies to reduce the number of synthesis cycles required to construct oligonucleotide arrays. By computer modeling oligonucleotide synthesis, we found that the number of required synthesis cycles could be significantly reduced by focusing upon how oligonucleotides are chosen from within genes and upon the order in which nucleotides are deposited on the array. The methods described here could provide a more efficient strategy to produce oligonucleotide arrays. PMID:12384609

  10. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  11. A review of hydrodynamic investigations into arrays of ocean wave energy converters

    CERN Document Server

    De Chowdhury, S; Sanchez, A Madrigal; Fleming, A; Winship, B; Illesinghe, S; Toffoli, A; Babanin, A; Penesis, I; Manasseh, R

    2015-01-01

    Theoretical, numerical and experimental studies on arrays of ocean wave energy converter are reviewed. The importance of extracting wave power via an array as opposed to individual wave-power machines has long been established. There is ongoing interest in implementing key technologies at commercial scale owing to the recent acceleration in demand for renewable energy. To date, several reviews have been published on the science and technology of harnessing ocean-wave power. However, there have been few reviews of the extensive literature on ocean wave-power arrays. Research into the hydrodynamic modelling of ocean wave-power arrays is analysed. Where ever possible, comparisons are drawn with physical scaled experiments. Some critical knowledge gaps have been found. Specific emphasis has been paid on understanding how the modelling and scaled experiments are likely to be complementary to each other.

  12. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  13. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  14. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  15. Lithium niobate guided-wave beam former for steering phased-array antennas.

    Science.gov (United States)

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  16. Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-04-01

    Full Text Available Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wave polarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface plasmon polariton theory. In addition, the minima of the transmission spectra were in agreement with the location predicted by the theory of Wood’s anomalies. Furthermore, it was found that the resonance profiles through the carbon nanotube films could be well described by the Fano model.

  17. Chiral Surface Waves for Enhanced Circular Dichroism

    CERN Document Server

    Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2016-01-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  18. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  19. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  20. Surface acoustic wave propagation in graphene film

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  1. Gas sensing with surface acoustic wave devices

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  2. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  3. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    Science.gov (United States)

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-10-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of `water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour.

  4. Mode control of guided wave in magnetic hollow cylinder using electromagnetic acoustic transducer array

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akiniri; Kojima, Fumio; Morikawa, Atsushi [Dept. of Systems Science, Graduate School of System Informatics, Kobe University, Kobe (Japan)

    2015-03-15

    The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

  5. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  6. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  7. Determining surface wave arrival angle anomalies

    Science.gov (United States)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  8. The surface detector array of the Telescope Array experiment to explore the highest energy cosmic rays

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah,USA, is designed for observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  9. Multi-directional random wave interaction with an array of cylinders

    DEFF Research Database (Denmark)

    Ji, Xinran; Liu, Shuxue; Bingham, Harry B.;

    2015-01-01

    . The biggest transverse force is found to occur on the rear cylinder rather than the front one. This is quite different from the results in unidirectional waves and should be paid much more attention in the design of offshore structures. At last, the possibility of the near-trapping under the multi......Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...

  10. Seismic waves damping with arrays of inertial resonators

    CERN Document Server

    Achaoui, Younes; Enoch, Stefan; Brûlé, Stéphane; Guenneau, Sébastien

    2015-01-01

    We investigate the elastic stop band properties of a theoretical cubic array of iron spheres con- nected to a bulk of concrete via iron or rubber ligaments. Each sphere can move freely within a surrounding air cavity, but ligaments couple it to the bulk and further facilitate bending and ro- tational motions. Associated low frequency local resonances are well predicted by an asymptotic formula. We ?nd complete stop bands (for all wave-polarizations) in the frequency range [16-21] Hz (resp. [6-11] Hz) for 7:4-meter (resp. 0:74-meter) diameter iron spheres with a 10-meter (resp. 1-meter) center-to-center spacing, when they are connected to concrete via steel (resp. rubber) liga- ments. The scattering problem shows that only bending modes are responsible for damping and that the rotational modes are totally overwritten by bending modes. Regarding seismic applications, we further consider soil as a bulk medium, in which case the relative bandwidth of the low frequency stop band can be enlarged through ligaments o...

  11. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array

    Institute of Scientific and Technical Information of China (English)

    LIANG Hui-Min; WANG Jing-Quan; FAN Feng; QIN Ai-Li; ZHANG Chun-Yuan; CHENG Hui

    2010-01-01

    @@ A practical interference lithography scheme based on surface plasmon polaritions (SPPs) is suggested.In this scheme,a micro-cylinder-lens array is employed to generate the evanescent wave (EW) carrying much energy.When the top of the cylinder lenses are in dose contact with a metal film coated on a resist,the energy of EW will launch strong SPPs and form enhanced interference nanopatterns in the resist.

  12. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  13. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  14. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  15. Physical Modelling of an Array of 25 Heaving Wave Energy Converters to Quantify Variation of Response and Wave Conditions

    DEFF Research Database (Denmark)

    2013-01-01

    for the evaluation of array interaction models and environmental scale models. Each wave energy converter unit has a diameter of 0.315 m and power absorption is due to friction of both a power take off system and bearings. Response is measured on all floats and surge force on five floats. Wave gauges are located...

  16. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  17. Observation of Defect-Free Surface Modes in Optical Waveguide Arrays

    Science.gov (United States)

    Szameit, Alexander; Garanovich, Ivan L.; Heinrich, Matthias; Sukhorukov, Andrey A.; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Kivshar, Yuri S.

    2008-11-01

    We report on the experimental observation of novel defect-free surface modes predicted theoretically for modulated photonic lattices [I. L. Garanovich et al., Phys. Rev. Lett. 100, 203904 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.203904]. We generate the linear surface modes in truncated arrays of periodically curved optical waveguides created in fused silica by a laser direct-writing technique. Our results demonstrate that the degree of surface wave localization can be controlled by selecting the waveguide bending amplitude.

  18. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  19. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  20. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  1. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    Science.gov (United States)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  2. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  3. Guided wave structural health monitoring with an array of novel piezoelectric transducers

    Science.gov (United States)

    Lesky, A.; Lissenden, C. J.

    2014-02-01

    Multi-element, conformable piezoelectric strip transducers have been designed and fabricated for structural health monitoring using ultrasonic guided waves. The piezoelectric fiber composite elements function as a strip transducer to activate a planar wave. A mockup of a storage tank or pressure vessel has been constructed from a steel shell and a hexagonal array of strip transducers. A hot spot to which artificial damage has been induced is monitored with the strip transducers. In addition, conventional piezoelectric disks have also been affixed to the shell in a circular pattern for the purpose of comparison. Different operating conditions are represented by the presence of water inside the shell and temperature variations between 20 and 35°C. The strip transducers have been designed to excite the S1 Lamb wave mode at the dilatational wave speed, which is oblivious to the presence of liquid loaded boundary conditions. An artificial defect simulated a surface breaking fatigue crack. Preliminary results are presented for baseline and damaged conditions using transmission and reflection coefficients as a damage-sensitive feature. At the request of the Proceedings Editor, and all authors of the paper, an updated version of this article was published on 8 April 2014. The Corrigendum attached to the corrected article PDF file explains the changes made to the original paper.

  4. 2D aperture synthesis for Lamb wave imaging using co-arrays

    Science.gov (United States)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  5. NUMERICAL STUDY ON EFFECT OF WAVING BED ON THE SURFACE WAVE

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ren; CHENG You-liang; WANG Song-ling

    2006-01-01

    The effect of the waving bed on the surface wave was investigated. The wave equation was reduced from the potential flow theory with the perturbation technique, and then was solved by using the pseudo-spectral method. The waterfall of the surface wave was simulated with the Matlab. It is shown that for the waving bed, an additional harmonic wave appears on the surface together with the solitary wave existing for the non-waving bed, and two kinds of waves do not interfere with each other. With the development of time, the waveform for the waving bed is kept invariable, and just the amplitude is reduced gradually. Wave-breaking phenomenon for the non-waving bed does not appear, so the waving bed seems useful to prevent the breaking of the wave.

  6. Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array

    Science.gov (United States)

    Ferrazzini, Valerie; Aki, Keiiti; Chouet, Bernard

    1991-04-01

    A correlation method, specifically designed for describing the characteristics of a complex wave field, is applied to volcanic tremor and gas-piston events recorded by a semicircular array of GEOS instruments set at the foot of the Puu Oo crater on the east rift of Kilauea volcano, Hawaii. The spatial patterns of correlation coefficients obtained as functions of frequency for the three components of motion over the entire array are similar for gas-piston events and tremor, and clearly depict dispersive waves propagating across the array from the direction of Puu Oo. The wave fields are composed of comparable amounts of Rayleigh and Love waves propagating with similar and extremely slow phase velocities ranging from 700 m/s at 2 Hz to 300 m/s at 8 Hz. The highly cracked solidified lava flow on which the array was deployed, and subjacent structure of alternating lava and ash layers formed during repeated eruptions of Puu Oo since 1983, appear to be responsible for the low velocities observed. The results from Puu Oo stand in sharp contrast to those obtained in an experiment conducted in 1976 on the partially solidified lava lake of Kilauea Iki. Rayleigh waves were not observed in Kilauea Iki, but well-developed trains of Love waves were seen to propagate there with velocities twice as high as those observed near Puu Oo. These differences in the propagation characteristics of surface waves at the two sites may be attributed to the presence of a soft horizontal layer of molten rock in Kilauea Iki, which may have lowered the phase velocity of Rayleigh waves more drastically than that of Love waves, resulting in severe scattering of the Rayleigh wave mode. On the other hand, the thin superficial pahoehoe flow under our array at Puu Oo may have favored the development of vertical columnar joints more extensively at this location than at Kilauea Iki, which may have reduced the shear moduli controlling the Love wave mode. The average phase velocities in the frequency band

  7. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  8. Blackfolds, Plane Waves and Minimal Surfaces

    CERN Document Server

    Armas, Jay

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...

  9. Search for the gravitational wave memory effect with the Parkes Pulsar Timing Array

    CERN Document Server

    Wang, Jingbo; Wang, Na

    2012-01-01

    Gravitational wave bursts produced by supermassive binary black hole mergers will leave a persistent imprint on the space-time metric. Such gravitational wave memory signals are detectable by pulsar timing arrays as a glitch event that would seem to occur simultaneously for all pulsars. In this paper, we describe an initial algorithm which can be used to search for gravitational wave memory signals. We apply this algorithm to the Parkes Pulsar Timing Array data set. No significant gravitational wave memory signal is founded in the data set.

  10. Watching surface waves in phononic crystals.

    Science.gov (United States)

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling....... Tuning of the field then also follows by formulating a least-squares design for the transducer surface pressure with respect to a given desired field in space and time. Simulated and experimental results for both field computation and tuning are presented in the context of a 10-ring annular array...

  12. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  13. Performance of a mmWave beamformed phased array system for indoor LOS communication

    Science.gov (United States)

    Amjad, Kinnan; Xu, Huaping

    2016-11-01

    Millimeter waves (mmWaves) spectrum ranging from 30GHz to 300GHz is emerging as a potential solution to the bandwidth problem faced by the wireless communication now a days. The advancements in the antenna technology has enabled the fabrication of antenna arrays or phased array systems which when used with techniques like spatial multiplexing and beamforming has enabled the use of mmWaves for both indoor and outdoor communication systems by providing gain and selectivity. This has also opened the doors for its potential use in long range and cellular communications. The 60GHz band also know as the oxygen absorption band due to its higher attenuation and unlicensed operation is a good candidate for use in secure and confined communications. In this paper we have investigated the performance of a beamformed phased array system in the mmWave spectrum. The performance is measured for varying the source and noise location and compared for a Linear and Rectangular array.

  14. The strain in the array is mainly in the plane (waves below ~1 Hz)

    Science.gov (United States)

    Gomberg, J.; Pavlis, G.; Bodin, P.

    1999-01-01

    We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering

  15. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  16. Broadband surface-wave transformation cloak

    Science.gov (United States)

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-01-01

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  17. Parallel Algorithm in Surface Wave Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.

  18. On the development and testing of a guided ultrasonic wave array for structural integrity monitoring

    OpenAIRE

    Fromme, P.; Wilcox, P. D.; Lowe, M. J. S.; Canvley, P.

    2006-01-01

    The prototype of a guided ultrasonic wave array for the structural integrity monitoring of large, plate-like structures has been designed, built, and tested. The development of suitably small transducers for the excitation and measurement of the first antisymmetric Lamb wave mode A(0) is described. The array design consists of a ring of 32 transducers, permanently bonded to the structure with a protective membrane, in a compact housing with the necessary multiplexing electronics. Using a phas...

  19. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  20. Megaquakes, prograde surface waves and urban evolution

    Science.gov (United States)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  1. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large portio

  2. Performance Measurements of the Submillimeter Wave Astronomy Satellite (SWAS) Solar Array Deployment System

    OpenAIRE

    Sneiderman, Gary

    1995-01-01

    This paper discusses some unique features of the solar array deployment system used on the Submillimeter Wave Astronomy Satellite (SWAS). The mechanism system is highly optimized, incorporates no single-use components, and is fully testable in a one-"g" environment. A single High Output Paraffin (HOP) linear actuator drives the mechanisms used to deploy and lock each wing of solar array panels. The solar arrays open slowly, requiring only enough force to overcome inefficiencies and friction. ...

  3. Fabrication of cell container arrays with overlaid surface topographies.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  4. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    CERN Document Server

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  5. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  6. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  7. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  8. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  9. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    Directory of Open Access Journals (Sweden)

    Kaoshan Dai

    2015-09-01

    Full Text Available The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  10. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    Science.gov (United States)

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  11. Localized waves supported by the rotating waveguide array

    Science.gov (United States)

    Zhang, Xiao; Ye, Fangwei; Kartashov, Yaroslav V.; Vysloukh, Victor A.; Chen, Xianfeng

    2016-09-01

    We show that truncated rotating square waveguide arrays support new types of localized modes that exist even in the linear case, in complete contrast to localized excitations in nonrotating arrays requiring nonlinearity for their existence and forming above the energy flow threshold. These new modes appear either around array center, since rotation leads to the emergence of the effective attractive potential with a minimum at the rotation axis, or in the array corners, in which case localization occurs due to competition between centrifugal force (in terms of quasi-particle analogy) and total internal reflection at the interface of the truncated array. The degree of localization of the central and corner modes mediated by rotation increases with rotation frequency. Stable rotating soliton families bifurcating from linear modes are analyzed in both focusing and defocusing media.

  12. Tracking antenna arrays for near-millimeter waves

    Science.gov (United States)

    Tong, P. P.; Neikirk, D. P.; Psaltis, D.; Rutledge, D. B.; Wagner, K.; Young, P. E.

    1983-01-01

    A two-dimensional monolithic array has been developed that gives the elevation and azimuth of point source targets. The array is an arrangement of rows and columns of antennas and bismuth bolometer detectors on a fused quartz substrate. Energy is focused onto the array through a lens placed on the back side of the substrate. At 1.38 mm with a 50 mm diameter objective lens, the array has demonstrated a positioning accuracy of 26 arcmin. In a differential mode this precision improves to 9 arcsec, limited by the mechanics of the rotating stage. This tracking could be automated to a fast two-step procedure where a source is first located to the nearest row and column, and then precisely located by scanning. With signal processing the array should be able to track multiple sources.

  13. Localized waves supported by the rotating waveguide array

    CERN Document Server

    Zhang, Xiao; Kartashov, Yaroslav V; Vysloukh, Victor A; Chen, Xianfeng

    2016-01-01

    We show that truncated rotating square waveguide arrays support new types of localized modes that exist even in the linear case, in complete contrast to localized excitations in nonrotating arrays requiring nonlinearity for their existence and forming above the energy flow threshold. These new modes appear either around array center, since rotation leads to the emergence of the effective attractive potential with a minimum at the rotation axis, or in the array corners, in which case localization occurs due to competition between centrifugal force (in terms of quasi-particle analogy) and total internal reflection at the interface of the truncated array. The degree of localization of the central and corner modes mediated by rotation increases with rotation frequency. Stable rotating soliton families bifurcating from linear modes are analyzed in both focusing and defocusing media.

  14. Wavefront modulation of water surface wave by a metasurface

    Science.gov (United States)

    Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun

    2015-10-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  15. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices.

  16. Imaging of lateral heterogeneity by using reflected surface waves. Hansha hyomenha wo mochiita suihei hoko no chika kozo fukinshitsusei no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Y. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kobayashi, Y. (Kyoto Univ., Kyoto (Japan). Faculty of Science)

    1991-06-01

    Surface wave holography was applied to the reflected surface waves obtained on the Uji ground, Kyoto University. Clear reflected surface waves were confirmed in the records of waves and it was found possible to detect the surface waves generated by an artificial hypocenter. The reflected waves consisted of two groups having different frequency zones, which were the reflected waves from two different reflectors. It is clear from this result that in the case of the reflected wave groups due to the multiple scatterers, the surface wave holography enables to determine the corresponding locations of respective scatterers. The combination of the back projection method using the reflected wave envelopes and the other method such as incident angles to the array is most effective as the analyzing method. The surface wave holography can be used sufficiently to detect the lateral heterogeneity. 17 refs., 12 figs., 4 tabs.

  17. Surface and downhole shear wave seismic methods for thick soil site investigations

    Science.gov (United States)

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  18. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel

    2009-01-01

    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  19. Frequency Invariant Uniform Circular Array for Wideband mm-Wave Channel Characterization

    DEFF Research Database (Denmark)

    Zhang, Fengchun; Fan, Wei; Pedersen, Gert F.

    2017-01-01

    A new approach for designing frequency invariant (FI) uniform circular array (UCA) is proposed, and its application to wideband multipath estimation at millimeter wave bands is studied. Both numerical simulations and channel sounding results at mm-Wave bands are provided to demonstrate...... the effectiveness and improvement of the proposed method in channel parameter estimation over conventional FI UCA method....

  20. Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; FAN Bin; ZHAO Xin-Jie; YUE Hong-Wei; HE Ming; JI Lu; YAN Shao-Lin; FANG Lan; Klushin A. M.

    2011-01-01

    @@ We investigate the self-emissions from serial high-temperature superconductor bicrystal Josephson junction ar- rays embedded in a quasi-optical resonator.A bicrystal substrate is used as a dielectric resonator antenna, which increases the coupling strength between the junction array and the electromagnetic (EM) wave.Both three-dimension (3D) electromagnetic simulations and experiments are performed.Strong ofT-chip radiations axe measured from the junction array at 78 GHz and 78 K.The proposed method and the experimental results are important for millimeter wave applications in junction arrays.

  1. Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays

    CERN Document Server

    Kato, Ryo

    2015-01-01

    We study the detectability of circular polarization in a stochastic gravitational wave background from various sources such as supermassive black hole binaries, cosmic strings, and inflation in the early universe with pulsar timing arrays. We calculate generalized overlap reduction functions for the circularly polarized stochastic gravitational wave background. We find that the circular polarization can not be detected for an isotropic background. However, there is a chance to observe the circular polarization for an anisotropic gravitational wave background. We also show how to separate polarized gravitational waves from unpolarized gravitational waves.

  2. Ultra Low Surface Brightness Imaging with the Dragonfly Telephoto Array

    CERN Document Server

    Abraham, Roberto G

    2014-01-01

    We describe the Dragonfly Telephoto Array, a robotic imaging system optimized for the detection of extended ultra low surface brightness structures. The array consists of eight Canon 400mm f/2.8 telephoto lenses coupled to eight science-grade commercial CCD cameras. The lenses are mounted on a common framework and are co-aligned to image simultaneously the same position on the sky. The system provides an imaging capability equivalent to a 0.4m aperture f/1.0 refractor with a 2.6 deg X 1.9 deg field of view. The system has no obstructions in the light path, optimized baffling, and internal optical surfaces coated with a new generation of anti-reflection coatings based on sub-wavelength nanostructures. As a result, the array's point spread function has a factor of ~10 less scattered light at large radii than well-baffled reflecting telescopes. The Dragonfly Telephoto Array is capable of imaging extended structures to surface brightness levels below 30 mag/arcsec^2 in 10h integrations (without binning or foregro...

  3. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.

    Science.gov (United States)

    Zhang, Ying; Wang, Lei; Wang, Xuejing; Qi, Guodong; Han, Xiaojun

    2013-07-01

    A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer-by-layer technique on a silicon oxide surface modified with a 3-aminopropyltriethoxysilane (APTES) monolayer. The surface pK(a) value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer-by-layer assembly. Micropatterned polyelectrolyte films were obtained by deep-UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm(2) s(-1) in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.

  4. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Science.gov (United States)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  5. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.

    2013-12-01

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.

  6. Scattered surface wave energy in the seismic coda

    Science.gov (United States)

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  7. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  8. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  9. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  10. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    CERN Document Server

    Helmboldt, Joseph

    2014-01-01

    This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the...

  11. Phase-delayed laser diode array allows ultrasonic guided wave mode selection and tuning

    Science.gov (United States)

    Karppinen, Pasi; Salmi, Ari; Moilanen, Petro; Karppinen, Timo; Zhao, Zuomin; Myllylä, Risto; Timonen, Jussi; Hæggström, Edward

    2013-04-01

    Selecting and tuning modes are useful in ultrasonic guided wave non-destructive testing (NDT) since certain modes at various center frequencies are sensitive to specific types of defects. Ideally one should be able to select both the mode and the center frequency of the launched waves. We demonstrated that an affordable laser diode array can selectively launch either the S0 or A0 ultrasonic wave mode at a chosen center frequency into a polymer plate. A fiber-coupled diode array (4 elements) illuminated a 2 mm thick acrylic plate. A predetermined time delay matching the selected mode and frequency was employed between the output of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results imply that this array permits non-contacting guided wave ultrasonic NDT. The solution is small, affordable, and robust in comparison to conventional pulsed lasers. In addition, it does not require experienced operators.

  12. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    Science.gov (United States)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  13. Surface detector array for the Pierre Auger observatory

    Science.gov (United States)

    Salazar, H.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The Pierre Auger international collaboration will install two observatories, one in the southern hemisphere and other in the northern hemisphere. Each observatory will consist of two different subsystem: a surface detector array of about 1600 water Cherenkov detectors (WCD) and a set of fluorescence eyes to measure the longitudinal development of air showers. The large area covered by the surface detectors requires efficient calibration and monitoring methods that can be implemented remotely. We present several complementary methods to calibrate and monitor the performance of the individual surface detector stations. We also present some results of the studies made with a full size prototype tank in Puebla, Mexico and in Malargue, Argentina. .

  14. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    P R Sengupta; Sisir Nath

    2001-08-01

    The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the fibre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.

  15. THE INTERACTION BETWEEN SHOCK WAVES AND SOLID SPHERES ARRAYS IN A SHOCK TUBE

    Institute of Scientific and Technical Information of China (English)

    SHI Honghui; Kazuki YAMAMURA

    2004-01-01

    When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array,size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.

  16. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  17. Resonant surface acoustic wave chemical detector

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  18. A spacing compensation factor for the optimization of guided wave annular array transducers.

    Science.gov (United States)

    Borigo, Cody; Rose, Joseph L; Yan, Fei

    2013-01-01

    Transducer arrays can be utilized in ultrasonic guided wave applications to achieve preferential excitation of particular points on a dispersion curve. These arrays are designed according to the principles of wave interference and the influence of the wavelength excitation spectrum. This paper develops the relationships between the peak wavelength in the excitation spectra and the element spacing of linear comb and annular arrays. The excitation spectra are developed by applying Fourier and Hankel transforms to the spatial loading distribution functions of the comb and annular arrays, respectively. Although the peak wavelength of excitation of a comb array is typically assumed to be equal to the element spacing, it is shown that this can be an inaccurate assumption for annular arrays. The ratio of element spacing to the peak wavelength in the excitation spectrum is termed the spacing compensation factor, and is dependent on the number of array elements and the inner radius. It is determined that the compensation factor is negligible for comb arrays but is crucial for annular arrays in order to achieve optimal mode selection. Finite element analyses and experimental data are used to verify the calculations and demonstrate the significance of the compensation factor.

  19. Interaction between a microplasma array and an adjacent dielectric surface

    Science.gov (United States)

    Dzikowski, Sebastian; Schulz-von der Gathen, Volker

    2016-09-01

    Microplasma pixel devices are interesting for applications such as surface modification. A representative is the metal grid array, which is a stable alternative to silicon-based arrays and consists of a dielectric, a grounded electrode and a metal grid with symmetrically arranged cavities. Typically, microplasma arrays are operated close to atmospheric pressure with noble gases like argon and helium. By applying a bipolar triangular voltage waveform with an amplitude of 700 V peak-to-peak and a frequency of 10 kHz to the metal grid, the discharge is ignited in the cavities having a diameter of about 200 and depth of 50 µm. For future applications, such as coating and catalysis, the interaction between the array and a dielectric surface positioned at close distance (emission spectroscopy, the phase dependent expansion of the emission out of the cavities has been observed. Here, we present results of investigations on the dependence of emission structures of the cavities (individually or as group) on pressure, applied voltage and distance between grid and dielectric. Supported by the DFG in the Research Unit FOR1123.

  20. Properies of the microseism wave field in Australia from three component array data

    Science.gov (United States)

    Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje

    2016-04-01

    In the last two decades, ambient noise studies in the range of 1-20 seconds have predominantly focused on the analysis of source regions for Rayleigh and P waves. The theoretical excitation of these phases is well understood for primary microseisms (direct coupling of gravity waves in sloping shallow bathymetry) and secondary microseisms (wave-wave interaction) and correlates well with observations. For Love waves, the excitation mechanism in the secondary microseism band is to date unknown. It has been shown, that LQ waves can exhibit larger amplitudes than Rg waves for certain frequencies. Therefore detailed analysis of the wave field are necessary to find indications on the generation mechanism. We analyse data from two spiral-shaped arrays located in Australia, the Pilbara Array (PSAR) in the North-West and an array in South Queensland (SQspa) in the East. The two arrays are different in aperture and allow for the study of primary and secondary microseisms with SQspa and higher secondary microseisms with PSAR. We use a deconvolution enhanced beamforming approach, which is based on the CLEAN algorithm. It allows the accurate detection of weaker sources and the estimation of power levels on each component or wave type. For PSAR we evaluate 1 year of data in the frequency range of 0.35-1 Hz and find fundamental and higher mode Rg and LQ waves. For the low end of the frequency range, we find the strongest fundamental mode Rg waves to originate from multiple direction, but confined to coastline reflectors, i.e. coastlines that are perpendicular to the main swell direction, while higher mode Rg waves are mainly generated in the Great Australian Bight. For higher frequencies, the source locations of Rg waves move toward the north coast, which is closest to the array and we see an increase in the Lg phase. The majority of fundamental LQ waves are generated at the west coast of Australia and we find some agreement between low frequency Rg and LQ source locations, which

  1. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  2. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  3. Photonic Heterodyne Pixel for Imaging Arrays at Microwave and MM-Wave Frequencies

    Directory of Open Access Journals (Sweden)

    Á. R. Criado

    2012-01-01

    Full Text Available The use of photonic heterodyne receivers based on semiconductor optical amplifiers to be used in imaging arrays at several GHz frequencies is evaluated. With this objective, a imaging array based on such photonic pixels has been fabricated and characterized. Each of the receiving optoelectronic pixels is composed of an antipodal linear tapered slot antenna (LTSA that sends the received RF signal directly to the electrical port of a semiconductor opticalamplifier (SOA acting as the optoelectronic mixer. Both the local oscillator (LO and the intermediate frequency (IF signals are directly distributed to/from the array pixels using fiber optics, that allows for remote LO generation and IF processing to recover the image. The results shown in this work demonstrate that the performances of the optoelectronic imaging array are similar to a reference all-electronic array, revealing the possibility of using this photonic architecture in future high-density, scalable, compact imaging arrays in microwave and millimeter wave ranges.

  4. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    Science.gov (United States)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  5. Molecular Synchronization Waves in Arrays of Allosterically Regulated Enzymes

    CERN Document Server

    Casagrande, Vanessa; Mikhailov, Alexander S

    2007-01-01

    Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave patterns of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.

  6. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Rose, Joseph L.

    2014-10-01

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1-3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure.

  7. Interaction Between Waves and An Array of Floating Porous Circular Cylinders

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fen-fang; KINOSHITA Takeshi; BAO Wei-guang; HUANG Liu-yi; LIANG Zhen-lin; WAN Rong

    2012-01-01

    The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory.To design more effective floating breakwaters,the transmission rate of waves propagating through the array is evaluated.Each cylinder in the array is partly made of porous materials.Specifically,it possesses a porous sidewall and an impermeable bottom.In addition,an inner porous plate is horizontally fixed inside the cylinders.It dissipates the wave more effectively and eliminates the sloshing phenomenon.The approach suggested by Kagemoto and Yue (1986) is adopted to solve the multiple-scatter problem,while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies,which efficiently saves computation time.Meanwhile,a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results.The draft of the cylinders,the location of the inner porous plate,and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.

  8. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces

    Science.gov (United States)

    Huang, K.; Pan, W.; Zhu, J. F.; Li, J. C.; Gao, N.; Liu, C.; Ji, L.; Yu, E. T.; Kang, J.Y.

    2015-01-01

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates. PMID:26679353

  9. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz, E-mail: ambrozin@agh.edu.pl; Stepinski, Tadeusz, E-mail: ambrozin@agh.edu.pl; Uhl, Tadeusz, E-mail: ambrozin@agh.edu.pl [AGH University of Science and technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  10. Engineered metabarrier as shield from seismic surface waves

    OpenAIRE

    2016-01-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by bu...

  11. On elliptic cylindrical Kadomtsev-Petviashvili equation for surface waves

    CERN Document Server

    Khusnutdinova, K R; Matveev, V B; Smirnov, A O

    2012-01-01

    The `elliptic cylindrical Kadomtsev-Petviashvili equation' is derived for surface gravity waves with nearly-elliptic front, generalising the cylindrical KP equation for nearly-concentric waves. We discuss transformations between the derived equation and two existing versions of the KP equation, for nearly-plane and nearly-concentric waves. The transformations are used to construct important classes of exact solutions of the derived equation and corresponding approximate solutions for surface waves.

  12. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  13. Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases

    NARCIS (Netherlands)

    Marquering, H.A.

    1996-01-01

    This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie

  14. Elastic waves at periodically-structured surfaces and interfaces of solids

    Directory of Open Access Journals (Sweden)

    A. G. Every

    2014-12-01

    Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  15. Elastic waves at periodically-structured surfaces and interfaces of solids

    Energy Technology Data Exchange (ETDEWEB)

    Every, A. G., E-mail: arthur.every@wits.ac.za [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa); Maznev, A. A., E-mail: alexei.maznev@gmail.com [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-15

    This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW) and interfacial (IW) waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  16. An Internal Wave as a Frequency Filter for Surface Gravity Waves on Water

    CERN Document Server

    Lossow, K

    2010-01-01

    We consider one-dimensional model of the interaction between surface and the internal gravity water waves. The internal wave is modeled by its basic form: a non-dispersive field with a horizontal current that is uniform over all depth, insignificantly affected by the surface waves, while ignoring surface tension and wind growth/decay effects. The depth is infinite. Approximation for the height of the surface wave on the flow by the "elementary quasi stationary" solutions was found. It was shown that the flow acts as a frequency filter for gravitational waves on water.

  17. Amplitude controlled array transducers for mode selection and beam steering of guided waves in plates

    Science.gov (United States)

    Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.

    2013-01-01

    We present a method for mode selection of guided wave modes and beam steering using purely amplitude variation across a one dimensional linear array of transducers. The method is distinct from apodization of phased array transducers that involves amplitude variation in addition to time delays and merely aims to improve the spectral characteristics of the transducer. The relationship between amplitude variation and the pitch of the array is derived by considering the resulting transduction as analogous to a spatio-temporal filter approach. It is also shown analytically and through numerical examples that the proposed method results in bidirectional guided waves when the steering angle is zero. Further, for non-zero steering angles, the waves travel in four directions, including the desired direction. Experimental studies are suggested.

  18. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  19. Surface Waves in Almost Incompressible Elastic Materials

    CERN Document Server

    Virta, Kristoffer

    2013-01-01

    A recent study shows that the classical theory concerning accuracy and points per wavelength is not valid for surface waves in almost incompressible elastic materials. The grid size must instead be proportional to $(\\frac{\\mu}{\\lambda})^{(1/p)}$ to achieve a certain accuracy. Here $p$ is the order of accuracy the scheme and $\\mu$ and $\\lambda$ are the Lame parameters. This accuracy requirement becomes very restrictive close to the incompressible limit where $\\frac{\\mu}{\\lambda} \\ll 1$, especially for low order methods. We present results concerning how to choose the number of grid points for 4th, 6th and 8th order summation-by-parts finite difference schemes. The result is applied to Lambs problem in an almost incompressible material.

  20. The radiation of surface wave energy: Implications for volcanic tremor

    Science.gov (United States)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  1. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  2. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.

    Science.gov (United States)

    Nguyen, Kim-Cuong T; Le, Lawrence H; Tran, Tho N H T; Sacchi, Mauricio D; Lou, Edmond H M

    2014-07-01

    Long bones are good waveguides to support the propagation of ultrasonic guided waves. The low-order guided waves have been consistently observed in quantitative ultrasound bone studies. Selective excitation of these low-order guided modes requires oblique incidence of the ultrasound beam using a transducer-wedge system. It is generally assumed that an angle of incidence, θi, generates a specific phase velocity of interest, co, via Snell's law, θi=sin(-1)(vw/co) where vw is the velocity of the coupling medium. In this study, we investigated the excitation of guided waves within a 6.3-mm thick brass plate and a 6.5-mm thick bovine bone plate using an ultrasound phased array system with two 0.75-mm-pitch array probes. Arranging five elements as a group, the first group of a 16-element probe was used as a transmitter and a 64-element probe was a receiver array. The beam was steered for six angles (0°, 20°, 30°, 40°, 50°, and 60°) with a 1.6-MHz source signal. An adjoint Radon transform algorithm mapped the time-offset matrix into the frequency-phase velocity dispersion panels. The imaged Lamb plate modes were identified by the theoretical dispersion curves. The results show that the 0° excitation generated many modes with no modal discrimination and the oblique beam excited a spectrum of phase velocities spread asymmetrically about co. The width of the excitation region decreased as the steering angle increased, rendering modal selectivity at large angles. The phenomena were well predicted by the excitation function of the source influence theory. The low-order modes were better imaged at steering angle ⩾30° for both plates. The study has also demonstrated the feasibility of using the two-probe phased array system for future in vivo study.

  3. Spectrum analysis of seismic surface waves and its applications in seismic landmine detection.

    Science.gov (United States)

    Alam, Mubashir; McClellan, James H; Scott, Waymond R

    2007-03-01

    In geophysics, spectrum analysis of surface waves (SASW) refers to a noninvasive method for soil characterization. However, the term spectrum analysis can be used in a wider sense to mean a method for determining and identifying various modes of seismic surface waves and their properties such as velocity, polarization, etc. Surface waves travel along the free boundary of a medium and can be easily detected with a transducer placed on the free surface of the boundary. A new method based on vector processing of space-time data obtained from an array of triaxial sensors is proposed to produce high-resolution, multimodal spectra from surface waves. Then individual modes can be identified in the spectrum and reconstructed in the space-time domain; also, reflected waves can be separated easily from forward waves in the spectrum domain. This new SASW method can be used for detecting and locating landmines by analyzing the reflected waves for resonance. Processing examples are presented for numerically generated data, experimental data collected in a laboratory setting, and field data.

  4. Wave front engineering from an array of thin aperture antennas.

    Science.gov (United States)

    Kang, Ming; Feng, Tianhua; Wang, Hui-Tian; Li, Jensen

    2012-07-01

    We propose an ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metamaterial. A circularly polarized light is completely converted to the cross-polarized light which can either be bent or focused tightly near the diffraction limit. It depends on a precise control of the optical-axis profile of the antennas on a subwavelength scale, in which the rotation angle of the optical axis has a simple linear relationship to the phase discontinuity. Such an approach enables effective wave front engineering within a subwavelength scale.

  5. Performance of the Pierre Auger Observatory Surface Array

    CERN Document Server

    Bertou, X

    2005-01-01

    The surface detector of the Pierre Auger Observatory is a 1600 water Cherenkov tank array on a triangular 1.5 km grid. The signals from each tank are read out using three 9'' photomultipliers and processed at a sampling frequency of 40 MHz, from which a local digital trigger efficiently selects shower candidates. GPS signals are used for time synchronization and a wireless communication system connects all tanks to the central data acquisition system. Power is provided by a stand-alone solar panel system. With large ambient temperature variations, that can reach over 20 degrees in 24 hours, high salinity, dusty air, high humidity inside the tank, and remoteness of access, the performance and reliability of the array is a challenge. Several key parameters are constantly monitored to ensure consistent operation. The Surface Array has currently over 750 detectors and has been in reliable operation since January 2004. Good uniformity in the response of different detectors and good long term stability is observed.

  6. Impacts of tropical cyclone inflow angle on ocean surface waves

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; HONG Xin

    2011-01-01

    The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, the effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.

  7. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    Science.gov (United States)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  8. Angular-profile tuning of guided waves in hollow cylinders using a circumferential phased array.

    Science.gov (United States)

    Li, Jian; Rose, Joseph L

    2002-12-01

    Angular-profile tuning of guided waves in hollow cylinders is implemented by using partial loading of the elements in a circumferentially placed phased array. Each partial loading element generates nonaxisymmetric guided waves in a pipe. In earlier work, numerical calculations and experiments have shown that, for nonaxisymmetric guided waves, circumferential distribution of particle displacements (i.e., the angular profile) changes with propagation distance, frequency, and mode. To change the angular profile at a certain distance, either frequency or mode has to be changed for a single partial loading element. This is not the case, however, for a circumferential phased array. The total angular profile of a circumferential array is the superposition of contributions from all elements. If given the knowledge of the angular profile for a single element, the total guided wave angular profile can be controlled and thus focused at any specific circumferential location by a circumferentially placed phased array with adjustable voltage level and phase inputs. This angular profile tuning technique can be used for implementing a circumferential scan with focused, guided wave beams, which leads to the detection of smaller defects as a result of stronger focused beams. Algorithms and specific nondestructive evaluation (NDE) applications for pipe inspection using this technique are discussed.

  9. Detection of near-surface and surface-breaking defects using ultrasonic arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.; Drinkwater, B. W.

    2012-05-01

    An efficient Finite Element procedure for predicting the complete scattering behavior for an arbitrarily-shaped defect which is located near a free surface in an otherwise homogeneous isotropic half-space is presented. The data provided by this model is then used for simulating an ultrasonic array response for different near-surface and surface-breaking defects. Example results for 2D array (3D defects) are presented and compared with the experiment. Its practical application to the volumetric inspections of thin section is discussed.

  10. Multilayer Array Antennas With Integrated Frequency Selective Surfaces Conformal to a Circular Cylindrical Surface

    NARCIS (Netherlands)

    Gerini, G.; Zappelli, L.

    2005-01-01

    In this paper, we present the analysis of periodic arrays on cylindrical surfaces using open-ended waveguide radiators loaded with radomes and frequency selective surfaces (FSS). The multilayer structure can be used to obtain a filtering behavior by properly choosing the radomes and the size of the

  11. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model of a piezoele......In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...

  12. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es

    2008-12-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  13. Novel Method for Optimal Synthesis of 5G Millimeter Wave Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    Zarko Rosic

    2017-01-01

    Full Text Available We will propose a useful method for 5G mm wave antenna array synthesis, based on Genetic Algorithm for the synthesis of linear array with nonuniform interelement spacing. Our design method was used to obtain the optimal position of the elements in order to get the minimum side lobe level and nulls in desired directions. The simulation results verify that proposed method outperforms the previously published methods in terms of suppression side lobe level while maintaining nulls in specified directions. The flexibility of proposed algorithm shows good potential for the antenna array synthesis.

  14. Sparse Multi-Static Arrays for Near-Field Millimeter-Wave Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.

    2013-12-31

    This paper describes a novel design technique for sparse multi-static linear arrays. The methods described allow the development of densely sampled linear arrays suitable for high-resolution near-field imaging that require dramatically fewer antenna and switch elements than the previous state of the art. The techniques used are related to sparse array techniques used in radio astronomy applications, but differ significantly in design due to the transmit-receive nature of the arrays, and the application to linear arrays that achieve dense uniform sampling suitable for high-resolution near-field imaging. As many as 3 to 5 or more samples per antenna can be obtained, compared to 1 sample per antenna for the current state of the art. This could dramatically reduce cost and improve performance over current active millimeter-wave imaging systems.

  15. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  16. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.

    2017-02-07

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  17. Surface acoustic wave (SAW) vibration sensors.

    Science.gov (United States)

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  18. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  19. An Efficient Hydrodynamic Model for Surface Waves

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LU Gang

    2009-01-01

    In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.

  20. Statistical model on the surface elevation of waves with breaking

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.

  1. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  2. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder.

    Science.gov (United States)

    Luo, Wei; Rose, Joseph L

    2007-04-01

    Guided wave phased array focusing has shown many advantages in long-range pipeline inspection, such as, longer inspection distance, greater wave penetration power and higher detection resolution. Viscoelastic coatings applied to a large percentage of pipes for protection purposes created some challenges in terms of focusing feasibility and inspection ability. Previous studies were all based on bare pipe models. In this work, guided wave phased array focusing in viscoelastic coated pipes is studied for the first time. Work was carried out with both numerical and experimental methods. A three-dimensional finite element model was developed for quantitatively and systematically modeling guided waves in pipes with different viscoelastic materials. A method of transforming measured coating properties to finite element method inputs was created in order to create a physically based model of guided waves in coated pipes. Guided wave focusing possibilities in viscoelastic coated pipes and the effects from coatings were comprehensively studied afterwards. A comparison of focusing and nonfocusing inspections was also studied quantitatively in coated pipe showing that focusing increased the wave energy and consequently the inspection ability tremendously. This study provides an important base line and guidance for guided wave propagation and focusing in a real field pipeline under various coating and environmental conditions.

  3. Experimental verification of directional liquid surface wave emission at band edge frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzyu@zju.edu.cn; Zhang, Pei; Zhang, Yongqiang; Nie, Xiaofei

    2013-12-15

    Directional liquid surface wave emission at band edge frequencies is an interesting physical phenomenon and has already been studied in theoretical research. There has been no experimental validation of it to date, however. This paper has as its subject the experimental investigation of the emission effect when a point source is placed inside a finite square array of rigid cylinders standing vertically in liquid. Both the wave patterns and spatial intensities are obtained by experiment and compared with simulated results calculated by using the finite element method. We can see from this comparison that the two results correspond closely both at lower and upper band edge frequency. Obvious directional wave emission along a desired direction is observed in the source structures, confirming previous theoretical predictions. In the future, this method could serve as a directional liquid wave source in applications used in hydraulic and ocean engineering for the concentration of wave energy.

  4. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    Science.gov (United States)

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH0 transducers have been proposed so far. In this work, an omnidirectional SH0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH0 wave transmitter or a SH0 wave receiver. This work may greatly promote the applications of SH0 waves in NDT and SHM.

  5. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  6. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays

    Science.gov (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.

    2015-12-01

    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  7. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    Science.gov (United States)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  8. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  9. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  10. Determination of ocean surface wave shape from forward scattered sound.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

  11. Electromagnetic Wave Propagation in a Quasi-1D Rhombic Linear Optical Waveguide Array

    CERN Document Server

    Maimistov, Andrey I

    2016-01-01

    The quasi-one-dimensional rhombic array of the waveguides is considered. System of equations describing coupled waves in the waveguide in the linear limit is solved exactly. The electric field distribution was found both for the diffractionless (or dispersionless) flat band modes and for the dispersive modes.

  12. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...

  13. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Maci, S.; Ettorre, M.; Neto, A.; Gerini, G.

    2008-01-01

    A leaky-wave slot array antenna fed by a dual offset Gregorian reflector system is realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflector system is fe

  14. European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background

    NARCIS (Netherlands)

    Lentati, L.; Taylor, S.R.; Mingarelli, C.M.F.; Sesana, A.; Sanidas, S.A.; Vecchio, A.; Caballero, R.N.; Lee, K.J.; van Haasteren, R.; Babak, S.; Bassa, C.G.; Brem, P.; Burgay, M.; Champion, D.J.; Cognard, I.; Desvignes, G.; Gair, J.R.; Guillemot, L.; Hessels, J.W.T.; Janssen, G.H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M.B.; Rosado, P.A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J.P.W.

    2015-01-01

    We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each p

  15. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to sear

  16. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  17. Freely decaying weak turbulence for sea surface gravity waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C

    2002-09-30

    We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.

  18. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    Changjiang Deng

    2013-01-01

    Full Text Available This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.

  19. PVDF array sensor for Lamb wave reception: Aircraft structural health monitoring

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2016-02-01

    Fracture critical structures need structural health monitoring (SHM) to improve safety and reliability as well as reduce downtime and maintenance costs. Lamb waves provide promising techniques for on-line SHM systems because of their large volumetric coverage and good sensitivity to defects. Extensive research has focused on using features derived from time signals obtained at sparse locations distributed across the structure. Commonly used features are wave amplitude, energy, and time of arrival. However, the modal content of received Lamb waves contains valuable information about the existence and characteristics of defects, but cannot be determined from these signal features. Wave scattering at a defect often results in mode conversions in both transmitted and reflected waves. Features like change in time of arrival or amplitude reduction can be interpreted as being a result of mode conversion. This work is focused on the design of a 1D array sensor such that received wave signals at equally spaced locations are available for modal analysis in the wavenumber-frequency domain. PVDF (polyvinylidene fluoride) is selected as the active material of the sensor because of its low interference with wave fields in structures. The PVDF array sensor is fabricated to have 16 independent channels and its capability to detect and characterize different types of defects is demonstrated experimentally.

  20. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  1. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  2. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  3. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  4. Surface Acoustic Waves to Drive Plant Transpiration

    Science.gov (United States)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  5. ESTIMATION OF S-WAVE VELOCITY STRUCTURE OF FUKUI PLAIN BASED ON MICROTREMOR ARRAY OBSERVATION

    Science.gov (United States)

    Kojima, Keisuke; Moto, Koudai

    The precise evaluations of Quaternary structure of the region are indispensable in order to accurately predict the seismic damage. However, deep borehole, PS-logging and elastic wave exploration have been executed only on limited points around the Fukui Plain. The problem analyzed in this study is statistical estimation of the 3D S-wave velocity structure down to the Tertiary bedrock of the Fukui Plain based on the data from 75 microtremor array observation sites. The Rayleigh wave phase velocities at each array site were calculated by the spatial autocorrelation method. The phase velocities at each site were inverted to a 1D S-wave profile using a genetic inversion. The 3-components single-site microtremor observations were carried out to compensate the array observations. The 3D S-wave velocity structure around the Fukui plain have been interpolated by using Kriging and Co-Kriging techniques. In the Co-Kriging procedure, the correlations between the estimated depths of Quaternary and the observed predominant periods of the sites were taken into account. The validity of the estimated structure from the microtremor observation was confirmed by comparing with the density structure and with the existing PS-logging data.

  6. Sea-state Modification and Heaving Float Interaction Factors from Physical Modelling of Arrays of Wave Energy Converters

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2015-01-01

    Waveenergy converters (WECs) extract energy from ocean waves and have the potential to produce a significant amount of electricity from a renewable resource. However, large “WEC farms” or “WEC arrays” (composed of a large number of individual WECs) are expected to exhibit “WEC array effects...... response, wave induced forces on the WECs, and wave field modifications have been measured. A first understanding of WEC array effects is obtained. This unique experimental set-up of up to 25 individual WEC units in an array layout, placed in a large wave tank, is at present the largest set-up of its kind...

  7. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  8. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays

    CERN Document Server

    Guo, R; Törmä, P

    2016-01-01

    Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting frontier in plasmonics. Compared with the localized surface plasmon resonance (LSPR) in individual particles, these collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths. Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry can be straightforwardly obtained by a simple comparison of the diffractive order (DO) vectors and orientation of the nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that while square, hexagonal, rectangular, honeycomb and Lieb lattice arrays have similar spectra near the $\\Gamma$-point ($k=0$), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on the polarization. Num...

  9. Anomalous wave as a result of the collision of two wave groups on sea surface

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of the sea surface has shown that the collision of two groups of relatively low waves with close but noncollinear wave vectors (two or three waves in each group with a steepness of about 0.2) can result in the appearance of an individual anomalous wave whose height is noticeably larger than that in the linear theory. Since such collisions quite often occur on the ocean surface, this scenario of the formation of rogue waves is apparently most typical under natural conditions.

  10. LiNbO3/p+n diode surface acoustic wave memory correlator

    Institute of Scientific and Technical Information of China (English)

    张朝; 水永安; 印建华

    1997-01-01

    A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is analyzed and calculated, including the amplitudes of reference, read and write signal, duration of write signal and doping density of the diode array. The conclusions can be employed for the design of improved strip-coupled SAW memorycorrelators.

  11. Coherent and tunable light radiation from nanoscale surface plasmons array via an exotic Smith-Purcell effect.

    Science.gov (United States)

    Liu, Weihao

    2015-10-15

    We demonstrate that surface plasmons on a nanoscale metallic array can be transformed into radiation waves via an exotic Smith-Purcell effect. Although the radiation frequency and direction satisfy the Smith-Purcell relation, it is coherent radiation with directions specified, which is essentially different from the ordinary Smith-Purcell radiation. Its radiation spectral density is an order of magnitude higher. By adjusting the material and structure of the array, the radiation frequency can be tuned from an infrared to ultraviolet region. Its remarkable advantages in intensity, coherence, tunability, and miniature size indicate new prospects in developing nanoscale light sources and related techniques.

  12. Orbit analysis of a geostationary gravitational wave interferometer detector array

    CERN Document Server

    Tinto, Massimo; Kuga, Helio K; Alves, Marcio E S; Aguiar, Odylio D

    2014-01-01

    We analyze the trajectories of three geostationary satellites forming the GEOstationary GRAvitational Wave Interferometer (GEOGRAWI)~\\cite{tinto}, a space-based laser interferometer mission aiming to detect and study gravitational radiation in the ($10^{-4} - 10$) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation's three arms with respect to a chosen reference frame, and the time changes of the triangle's enclosed angles. We find that, during the time between two consecutive station-keeping maneuvers (about two weeks), the relative variations of the inter-satellite distances do not...

  13. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals

    Science.gov (United States)

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog

    2013-07-01

    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices.

  14. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  15. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  16. Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays Claire...arrays to the surface of a composite hydrofoil and reports on an experiment to measure surface strains from the hydrofoil under static and fatigue...July 2015 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using

  17. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  18. Strategies for Finding Prompt Radio Counterparts to Gravitational Wave Transients with the Murchison Widefield Array

    Science.gov (United States)

    Kaplan, D. L.; Murphy, T.; Rowlinson, A.; Croft, S. D.; Wayth, R. B.; Trott, C. M.

    2016-10-01

    Wepresent and evaluate several strategies to search for prompt, low-frequency radio emission associated with gravitational wave transients using the Murchison Widefield Array. As we are able to repoint the Murchison Widefield Array on timescales of tens of seconds, we can search for the dispersed radio signal that has been predicted to originate along with or shortly after a neutron star-neutron star merger. We find that given the large, 600 deg2 instantaneous field of view of the Murchison Widefield Array, we can cover a significant fraction of the predicted gravitational wave error region, although due to the complicated geometry of the latter, we only cover > 50% of the error region for approximately 5% of events, and roughly 15% of events will be located < 10° from the Murchison Widefield Array pointing centre such that they will be covered in the radio images. For optimal conditions, our limiting flux density for a 10-s long transient would be 0.1 Jy, increasing to about 1 Jy for a wider range of events. This corresponds to luminosity limits of 1038-39 erg s-1 based on expectations for the distances of the gravitational wave transients, which should be sufficient to detect or significantly constrain a range of models for prompt emission.

  19. Implementing guided wave mode control by use of a phased transducer array.

    Science.gov (United States)

    Li, J; Rose, J L

    2001-05-01

    A multi-channel time-delay system has been built and applied to a transducer array for implementing guided wave mode control. The time-delay system has a capability of sending high energy controllable tone-burst signals from eight independent channels with arbitrary time delays from 0 to 30 microseconds with resolution of 0.025 microsecond. Software time delays are also provided for summing up received signals of each channel. Theoretical discussions indicate the impact of the time delay capability on the bandwidth and sensitivity improvement of a transducer array for guided wave generation. Determination of both physical and software time delay values is based on a knowledge of dispersion curves and element spacing. Based on reference signals, a non-knowledge-based automatic time-delay searching algorithm was introduced for guided wave mode selection. Experiments were conducted with a phased comb transducer array mounted on a carbon steel pipe. The experimental results show that signal to noise ratio has been greatly improved by use of the time-delay system. Some other benefits of the phased array, including unidirection generation and mode control flexibility, are discussed.

  20. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  1. Estimation of Shallow S-Wave Velocity Structure of Two Practical Sites from Microtremors Array Observation in Tangshan Area

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched. The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method. Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities, and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex. The results are compared with the PS logging data of the two sites, showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.

  2. Crustal and uppermost mantle anisotropy in the western US and China inferred from surface wave dispersion

    Science.gov (United States)

    Ritzwoller, M. H.; Lin, F.; Shen, W.; Xie, J.; Yang, Y.; Zheng, Y.; Quan, Z. L.

    2011-12-01

    The construction of large continental seismic arrays provides simultaneous access to hundreds of broad-band seismometers extending across hundreds or even thousands of kilometers in some cases (e.g., USArray, Chinese Provincial Networks, PASSCAL experiments, Virtual European Broadband Seismic Network, etc.). Such arrays present the opportunity to map anisotropy in the crust and uppermost mantle at a resolution of about the inter-station spacing over large and growing regions of the earth's surface. In this presentation, we discuss new methods to exploit the broad-band surface waves that are observed to propagate across the arrays. Observations are obtained from two sources of surface waves: inter-station cross-correlations of ambient noise at periods ranging from about 8 to 40 sec and earthquake waves between 25 and 80 sec period. The overlapping period band allows for the identification and quantification of errors in one data source or the other. We discuss a new method to measure azimuthal anisotropy based on constructing surface wave travel time and amplitude maps across the array. In this method, the Helmholtz equation guides the local estimation of phase velocity (magnitude and direction) for each central station with ambient noise or for each earthquake without the performance of an inversion. Rather certain spatial filters (gradient, Laplacian) are computed based on the travel time and amplitude fields and interpreted via the Helmholtz equation. At each location, these constraints are accumulated over all central stations and earthquakes to yield the azimuthal variation of phase speed at each period, which is interpreted in terms of a 3-D model of azimuthal anisotropy in the crust and uppermost mantle. We present results in the western US and eastern China. In principle, the method corrects for a wide range of finite frequency effects such as wave interference, back-scattering near the station, and wavefront healing. For elastic structures, these

  3. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  4. Teleseismic P-wave polarization analysis at the Gräfenberg array

    Science.gov (United States)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric

  5. Near-surface properties using seismograms from the GONAF-Tuzla vertical array, SE Istanbul

    Science.gov (United States)

    Raub, C.; Malin, P. E.; Bohnhoff, M.; Bulut, F.; Dresen, G. H.; Kilic, T.; Kartal, R. F.; Kadirioglu, F. T.; Nurlu, M.

    2014-12-01

    As part of the ICDP-GONAF project (Geophysical Observatory at the North Anatolian Fault) geophone arrays have been installed in 300 m deep boreholes around the eastern Sea of Marmara. The objectives of GONAF are to (1) monitor the North Anatolian Fault Zone (NAFZ) at the transition from the 1999 Izmit rupture to the Princes Islands segment offshore Istanbul, where a M ~ 7 earthquake can reasonably be expected to occur and (2) to determine ground-motion amplification and near-surface properties at the GONAF sites. Here we use recordings from the first GONAF borehole on the Tuzla peninsula in eastern Istanbul. The array consists of one 1 Hz 3C Mark Products L4 seismometer at the surface, three 1 Hz vertical Mark Products L4 seismometers at 75 m depth-spacing, and 2 Hz and 15 Hz 3C Geospace HS-1 and DM2400 seismometers at 288 m depth. During April - May 2013 this array recorded a microearthquake swarm located ~ 3.5 km epicentral distance south of the Tuzla site. By cross-correlating the continuous Tuzla data with the only swarm event detected by the regional network (20th of April 2013, Md 1.6) we retrieved an additional of 113 events. The swarm and an additional 15 events located throughout the eastern Marmara region were used to analyze the near-surface properties of the Tuzla site. We derive a velocity model from sonic-log measurements which were conducted upon completion of the Tuzla well. This model is confirmed by modeling travel-time curves with forward ray-tracing and by an analysis of spectral interference effects. In the uppermost ~80 m at this site we observe an unexpectedly high velocity lid (VP ~ 4000 m/s) over a much slower (VP ~ 3000 m/s) ~50 m thick zone. These velocity structure leads to interference effects between up and downgoing waves even at the deepest stations. As a result of this the standard spectral ratio technique for deriving the site response becomes poor approximation. However, waveform deconvolution techniques allow determination of the

  6. Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars

    Science.gov (United States)

    Verba, Roman; Tiberkevich, Vasil; Bankowski, Elena; Meitzler, Thomas; Melkov, Gennadiy; Slavin, Andrei

    2013-08-01

    It is demonstrated that collective spin waves (SWs) propagating in complex periodic arrays of dipolarly coupled magnetic nanopillars existing in a saturated (single-domain) ground state in a zero bias magnetic field could be nonreciprocal. To guarantee the SW nonreciprocity, two conditions should be fulfilled: (i) existence of a nonzero out-of-plane component of the pillars' static magnetization and (ii) a complex periodicity of array's ground state with at least two elements per a primitive cell, if the elements are different, and at least three elements per a primitive cell, if the elements are identical.

  7. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdais, F.; Le Polles, T. [Non Destructive Testing Department at the French Atomic Energy Commission (CEA), Saclay, 91191 Gif sur Yvette CEDEX, (France); Baque, F. [Department of Sodium Technology at the French Atomic Energy Commission (CEA), Cadarache, 13108 St Paul lez Durance CEDEX, (France)

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  8. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  9. An experimental study of wave coupling in gravity surface wave turbulence

    Science.gov (United States)

    Aubourg, Quentin; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2016-11-01

    Weak turbulence is a theoretical framework aimed at describing wave turbulence (in the weakly nonlinear limit) i.e. a statistical state involving a large number of nonlinearly coupled waves. For gravity waves at the surface of water, it provides a phenomenology that may describe the formation of the spectrum of the ocean surface. Analytical predictions of the spectra are made based on the fact that energy transfer occurs through 4-wave coupling. By using an advanced stereoscopic imaging technique, we measure in time the deformation of the water surface. We obtain a state of wave turbulence by using two small wedge wavemakers in a 13-m diameter wavetank. We then use high order correlator (bi- and tri-coherence) in order to get evidence of the active wave coupling present in our system as used successfully for gravity-capillary wave turbulence. At odds with the weak turbulence theory we observe 3-wave interaction involving 2 quasi linear wave and a bound wave whose frequency lies on the first harmonics of the linear dispersion relation. We do not observe 4-wave coupling within the accuracy of our measurement. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 647018-WATU).

  10. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    Science.gov (United States)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an

  11. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    Science.gov (United States)

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-07-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

  12. Surface waves in a vertically excited circular cylindrical container

    Institute of Scientific and Technical Information of China (English)

    Jian Yong-Jun; E Xue-Quan; Zhang Jie; Meng Jun-Min

    2004-01-01

    The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder,is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies,contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition,the comparison of the surface wave modes is made between theoretical calculations and experimental measurements,and the results are reasonable although there are some differences in the forced frequency.

  13. Spatial characteristics of ocean surface waves

    Science.gov (United States)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  14. Surface Waves in the paritally ionized solar plasma slab

    CERN Document Server

    Pandey, B P

    2013-01-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.

  15. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    Science.gov (United States)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  16. Experimental study of three-wave interactions among capillary-gravity surface waves

    CERN Document Server

    Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-01-01

    In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...

  17. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  18. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  19. Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Guan-Nan Tan

    2016-01-01

    Full Text Available A novel Vivaldi rectenna operated at 35 GHz with high millimeter wave to direct current (MMW-to-DC conversion efficiency is presented and the arrays are investigated. The measured conversion efficiency is 51.6% at 35 GHz and the efficiency higher than 30% is from 33.2 GHz to 36.6 GHz when the input MMW power is 79.4 mW. The receiving Vivaldi antenna loaded with metamaterial units has a high gain of 10.4 dBi at 35 GHz. A SIW- (substrate integrated waveguide- to-microstrip transition is designed not only to integrate the antenna with the rectifying circuit directly but also to provide the DC bypass for the rectifying circuit. When the power density is 8.7 mW/cm2, the received MMW power of the antenna is 5.6 mW, and the maximum conversion efficiency of the rectenna element is 31.5%. The output DC voltage of the element is nearly the same as that of the parallel array and is about half of the series array. The DC power obtained by the 1 × 2 rectenna arrays is about two times as much as that of the element. The conversion efficiencies of the arrays are very close to that of the element. Large scale arrays could be expended for collecting more DC power.

  20. Proton irradiation results for long-wave HgCdTe infrared detector arrays for NEOCam

    CERN Document Server

    Dorn, M; McMurtry, C; Hartman, S; Mainzer, A; McKelvey, M; McMurray, R; Chevara, D; Rosser, J

    2016-01-01

    HgCdTe detector arrays with a cutoff wavelength of ~10 ${\\mu}$m intended for the NEOCam space mission were subjected to proton beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested - one with 800 $\\mu$m substrate intact, one with 30 $\\mu$m substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes elevated signal in non-hit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in non-hit pixels during proton testing for both the substrate-removed detector array and the array with 30 ${\\mu}$m substrate. The detector array with full 800 ${\\mu}$m substrate exhibited substantial photocurrent for a flux of 103 protons/cm$^2$-s at a beam energy of 18.1 MeV (~ 750 e$^-$/s) and 34.4 MeV ($\\sim$ 6...

  1. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Mihaela Puiu; Ana-Maria Gurban; Lucian Rotariu; Simona Brajnicov; Cristian Viespe; Camelia Bala

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  2. The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves

    CERN Document Server

    Yardley, D R B; Jenet, F A; Verbiest, J P W; Wen, Z L; Manchester, R N; Coles, W A; van Straten, W; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Champion, D J; Hotan, A W; Sarkissian, J M

    2010-01-01

    We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby ($z < 0.6$) black-hole binaries in the early phases of coalescence with a chirp mass of $10^{10}\\,\\rmn{M}_\\odot$ of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.

  3. A CMB-based approach to mapping gravitational-wave backgrounds: application to pulsar timing arrays

    CERN Document Server

    Gair, Jonathan R; Taylor, Stephen; Mingarelli, Chiara M F

    2014-01-01

    We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction function for individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic uncorrelated background can be accurately represented using only three components, and so a search of this type ...

  4. Damage detection in multilayered fiber-metal laminates using guided-wave phased array

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Ameneh; Ohadi, Abdolrezap; Sadighi, Mojtaba; Amindavar, Hamidreza [Amirkabir University, Tehran (Iran, Islamic Republic of)

    2016-05-15

    This study employs the Lamb wave method to detect damage in Fiber-metal laminates (FMLs). The method is based on quasiisotropic behavior approximation and beam forming techniques. Delay and sum and minimum variance distorsionless response beam formers are applied to a uniform linear phased array. The simulation in finite element software is conducted to evaluate the performance of the presented procedure. The two types of damage studied are the following: (1) Delamination between fiber-epoxy and metal layers and (2) crack on the metal layer. The present study has the following important contributions: (1) Health monitoring of multi-damaged FMLs using Lamb waves and beam forming technique, (2) detection of damage type, (3) detection of damage size by 1D phased array, and (4) identification of damages that occurred very close to the laminate edges or close to each other.

  5. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  6. Numerical simulation of floating bodies in extreme free surface waves

    Science.gov (United States)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  7. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  8. Palladium nanoparticle-based surface acoustic wave hydrogen sensor.

    Science.gov (United States)

    Sil, Devika; Hines, Jacqueline; Udeoyo, Uduak; Borguet, Eric

    2015-03-18

    Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room temperature.

  9. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  10. Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.

    1985-09-01

    The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.

  11. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  12. Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes

    Science.gov (United States)

    Lee, K. J.

    2016-02-01

    In this paper, we estimate the sensitivity of gravitational wave (GW) detection for future Chinese pulsar timing array (PTA) projects. The calculation of sensitivity is based on the well-known Crámer-Rao bound idea. The red noise and dispersion measure (DM) variation noise has be included in the modeling. We demonstrate that the future Chinese telescope can be very valuable for future PTA experiments and GW detection efforts.

  13. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  14. Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi; Narbudowicz, Adam

    2017-01-01

    This paper introduces a new multilayered polymeric comb array antenna fabricated on a polydimethylsiloxane (PDMS) dielectric substrate. PDMS is selected due to its excellent electrical and mechanical properties such as low permittivity, water resistance and robustness. The polymeric comb array antenna consists of a zigzag array aligned at -90° with respect to the radiating patch with full ground plane. The radiating patch is embedded inside the PDMS substrate while the coaxial connector is located at the bottom of the transmission line. The proposed antenna functions from 22.649 to 27.792 GHz. Simulated and measured reflection coefficients and radiation patterns agreed well. A maximum gain of 9.856 dB is recorded at 25 GHz, indicating suitability for implementation in millimeter-wave applications.

  15. Adaptive beamforming for array imaging of plate structures using lamb waves.

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-12-01

    Lamb waves are considered a promising tool for the monitoring of plate structures. Large areas of plate structures can be monitored using active arrays employing beamforming techniques. Dispersion and multiple propagating modes are issues that need to be addressed when working with Lamb waves. Previous work has mainly focused on standard delay-and-sum (DAS) beamforming while reducing the effects of multiple modes through frequency selectivity and transducer design. This paper presents a minimum variance distortionless response (MVDR) approach for Lamb waves using a uniform rectangular array (URA) and a single transmitter. Theoretically calculated dispersion curves are used to compensate for dispersion. The combination of the MVDR approach and the two-dimensional array improves the suppression of interfering Lamb modes. The proposed approach is evaluated on simulated and experimental data and compared with the standard DAS beamformer. It is shown that the MVDR algorithm performs better in terms of higher resolution and better side lobe and mode suppression capabilities. Known issues of the MVDR approach, such as signal cancellation in highly correlated environments and poor robustness, are addressed using methods that have proven effective for the purpose in other fields of active imaging.

  16. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.

    Science.gov (United States)

    Matatagui, D; Fontecha, J; Fernández, M J; Aleixandre, M; Gràcia, I; Cané, C; Horrillo, M C

    2011-09-15

    An array of Love-wave sensors based on quartz and Novolac has been developed to detect chemical warfare agents (CWAs). These weapons are a risk for human health due to their efficiency and high lethality; therefore an early and clear detection is of enormous importance for the people safety. Love-wave devices realized on quartz as piezoelectric substrate and Novolac as guiding layer have been used to make up an array of six sensors, which have been coated with specific polymers by spin coating. The CWAs are very dangerous and for safety reasons their well known simulants have been used: dimethylmethyl phosphonate (DMMP), dipropyleneglycol methyl ether (DPGME), dimethylmethyl acetamide (DMA), dichloroethane (DCE), dichloromethane (DCM) and dichloropentane (DCP). The array has been exposed to these CWA simulants detecting very low concentrations, such as 25 ppb of DMMP, a simulant of nerve agent sarin. Finally, principal component analysis (PCA) as data pre-processing and discrimination technique, and probabilistic neural networks (PNN) as patterns classification technique have been applied. The performance of the sensor array has shown stability, accuracy, high sensitivity and good selectivity to these simulants.

  17. Laser surface micro-/nano-structuring by a simple transportable micro-sphere lens array

    NARCIS (Netherlands)

    Sedao, X.; Derrien, T.J.Y.; Romer, G.W.R.B.E.; Pathiraj, B.; Huis in 't Veld, A.J.

    2012-01-01

    A micro-sphere array optic was employed for laser surface micro-structuring. This array optic consists of a hexagonally close-packed monolayer of silica micro-spheres. It was organized through a self-assembly process and held together on a glass support, without using any adhesives. The array assemb

  18. Laser surface micro-/nano-structuring by a simple transportable micro-sphere lens array

    NARCIS (Netherlands)

    Sedao, X.; Derrien, T.J.Y.; Romer, G.W.R.B.E.; Pathiraj, B.; Huis in 't Veld, A.J.

    2012-01-01

    A micro-sphere array optic was employed for laser surface micro-structuring. This array optic consists of a hexagonally close-packed monolayer of silica micro-spheres. It was organized through a self-assembly process and held together on a glass support, without using any adhesives. The array

  19. Array projector design for projection on arbitrarily curved surfaces

    Science.gov (United States)

    Fischer, Stephanie; Schreiber, Peter; Riedel, Alf; Sieler, Marcel

    2015-09-01

    The micro-optical array projector is a new and innovative possibility to project patterns onto arbitrary shaped surfaces1 . In contrast to single-aperture systems the illuminance of the projected image is raised by only increasing the lateral extent of the projector while keeping the length constant. Thanks to the setup - analogous to a fly's eye condenser - we obtain a very compact design with homogenization of illumination. The images to be projected are presented as arbitrarily curved CAD-objects. Because of its complexity, the first attempt was a chief-ray backtrace implemented into a CAD-program, with the individual projectorlets modelled as pinhole cameras. With this principle one can trace the slides for several applications like the projection on perpendicular, as well as tilted and curved surfaces. Since aberrations cannot be considered with the simple CAD backtrace described above, we used the commercially available raytracer Zemax®, controlled by a macro, working in conjunction with a CADprogram for improved slide mask generation. Despite both methods, depending on the complexity of the optical system, are generating the fundamental mask data, the paper will show that there is a tradeoff between calculation time and accuracy. Based on this evaluation we will discuss further development as well as the possibility of improvement concerning the calculation methods. The different methods were investigated to determine their advantages and disadvantages. This provides the basis for the scope of application. Further we will demonstrate simulations as well as results obtained with built demonstrators.

  20. Radiative transfer through an array of discrete surfaces. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Welty, J.R.

    1995-08-01

    The aim of this research has been to examine how the transfer of radiant energy through a two-dimensional array of typical packing elements is affected by geometric variables (spacing, packing arrangement, and element shapes). The information resulting from this study will be relevant to a spectrum of applications including fibrous insulation, ceramic fabrics, and air heating solar receivers. Computational and experimental results will also be useful in establishing criteria for the valid application of participating media models to systems of discrete surfaces. Additional studies, related to the principal goal, were undertaken as the research effort progressed. These side-issues resulted in three out of the total of 12 publications that resulted from this effort. Collaboration between OSU and PNL has been interactive regarding the experimental and numerical modeling phases of this effort with the results of one group offering guidance to the other. Accomplishments achieved during the course of this effort include the following: (1) a state-of-the-art bidirectional reflectometer was designed, constructed and operated, (2) measurements were made and the results characterized of the bidirectional reflectance of several materials, (3) it was demonstrated that there is a need for information on the full bidirectional reflectance distribution function (BDRF) to describe radiant interchange involving striated surfaces, and (4) validation of results using the two-dimensional Monte Carlo code, developed at PNL, was achieved and the code was used to extend the results of a classic geometric problem in the radiant heat transfer literature.

  1. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  2. Wave Generated by the NACA4412 Hydrofoil near Free Surface

    Directory of Open Access Journals (Sweden)

    Hassan Ghassemi

    2013-01-01

    Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.

  3. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  5. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  6. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  7. Visualization of Surface Acoustic Waves in Thin Liquid Films

    OpenAIRE

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, Jonathan M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with anWe demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfl...

  8. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  9. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves

    CERN Document Server

    Issenmann, Bruno; Falcon, Eric

    2016-01-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain most of these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths.s.

  10. Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)

    2014-10-15

    Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.

  11. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    are measured to provide data for understanding WEC array interactions and to evaluate array interaction numerical models. Each WEC consists of a buoy with a diameter of 0.315 m and power take-off (PTO) is modeled by realizing friction based energy dissipation through damping of the WEC’s motion. Wave gauges...

  12. Energy budget of surface waves in the global ocean

    Institute of Scientific and Technical Information of China (English)

    TENG Yong; YANG Yongzeng; QIAO Fangli; LU Jing; YIN Xunqiang

    2009-01-01

    Mechanical energy input from atmosphere and losses from wave-breaking dissipation of sea surface waves are estimated by a direct scheme. This scheme is based on the integration in the wavenumber space of the wind input and breaking dissipation source functions of the MASNUM wave model.The global amount of wind energy input, averaged in 2005, is about 57 TW, and the wave-breaking dissipation summed in deep-water is about 33 TW, over a half of the wind energy input. The residual may be dissipated by beach processes. Global distributions of the energy input and breaking dissipation concentrate in the westerlies of the Southern Hemisphere.

  13. Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

    Science.gov (United States)

    Fu, Jinxiang; Liang, Hao; Zhang, Jingyuan; Wang, Yibo; Liu, Yannan; Zhang, Zhiyan; Lin, Xuechun

    2017-04-01

    A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v=100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200-400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.

  14. Aspects of radiation heat transfer in arrays of fixed discrete surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Palmer, B.J. [Pacific Northwest Lab., Richland, WA (United States); Welty, J.R. [Oregon State Univ., Corvallis, OR (United States)

    1993-08-01

    Arrays of fixed discrete surfaces are encountered in a number of important applications. Evaluating radiant heat transfer in an array of fixed discrete surfaces is challenging because array optical properties are often nonhomogeneous and anisotropic. This article presents the results of a Monte Carlo simulation of radiation heat transfer in several array geometries. The results show that for the array geometries included in the study, the extinction coefficient is strongly anisotropic and that optical properties are dependent on both the geometric arrangement of the elements and the scattering characteristics of individual elements.

  15. The Surface Wave Scattering-Microwave Scanner (SWS-MS)

    Science.gov (United States)

    Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe

    2016-01-01

    The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.

  16. Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays

    Science.gov (United States)

    Lontsi, A. M.; Ohrnberger, M.; Krüger, F.

    2016-07-01

    We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the

  17. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  18. Polarization controlled directional propagation of Bloch surface wave.

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry

    2017-03-06

    Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

  19. W-Band Characterization of Grounded Frequency Selective Surface Arrays Composed of Nonequal Slot Length Subarrays

    Directory of Open Access Journals (Sweden)

    S. Islam

    2009-01-01

    Full Text Available We present the design and construction of Frequency Selective Surface arrays composed of two subarrays of different slot lengths. We investigated their response variations with the variation of slot length differences of the elementary sub-arrays. Such nonhomogeneous arrays cannot be simulated with Computer Aided Design (CAD programs because the boundary conditions are not fulfilled by the simulator. In infinite array simulation, the periodic boundary conditions are prescribed on the walls of the unit cell, whereas in the case of sub-arrays of unequal slot length such boundary conditions are not applicable. The CAD simulation of such combined array gives incorrect values of amplitude and phase responses. In this work, we investigate the characteristics of such complex arrays by using heuristic experimental approach. The results of the experimental approach demonstrate that the resultant reflection amplitude and phase of such complex array depend on the difference of slot lengths (ΔL of the two sub-arrays.

  20. Acoustomicrofluidic application of quasi-shear surface waves.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2017-02-20

    The paper analyzes the possibility of using predominantly boundary polarized surface acoustic waves for actuating fluidic effects in microchannels fabricated inside containers made of PDMS. The aim is to remove a shortcoming peculiar to conventionally utilized predominantly vertically polarized waves. Such waves strongly attenuate while they propagate under container side walls because of the leakage into them. Due to a specific feature of PDMS - extremely small shear elastic modulus - losses of boundary polarized modes should be far smaller. The amplitude of vertical mechanical displacements can be increased right inside the channel owing to the scattering of acoustic fields. As an example, the predominantly vertically polarized surface wave on 128YX LiNbO3 is compared with the quasi-shear leaky wave on 64YX LiNbO3. Our computations predict that, given the electric power supplied to the launching transducer, the quasi-shear wave will drive the fluid more efficiently than the surface wave on 128YX LiNbO3 when the container wall thickness is larger than 25-30 wavelengths, if there are no additional scatterers inside the channel. In the presence of a scatterer, such as a thin gold strip, the quasi-shear wave can be more efficient when the wall thickness exceeds 10-15 wavelengths.

  1. Steep waves in free-surface flow past narrow topography

    Science.gov (United States)

    Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.

    2017-06-01

    In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.

  2. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    Ashim P Jain; J Parashar

    2003-09-01

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.

  3. Some aspects of dispersive horizons: lessons from surface waves

    CERN Document Server

    Chaline, J; Maïssa, P; Rousseaux, G

    2012-01-01

    Hydrodynamic surface waves propagating on a moving background flow experience an effective curved space-time. We discuss experiments with gravity waves and capillary-gravity waves in which we study hydrodynamic black/white-hole horizons and the possibility of penetrating across them. Such possibility of penetration is due to the interaction with an additional "blue" horizon, which results from the inclusion of surface tension in the low-frequency gravity-wave theory. This interaction leads to a dispersive cusp beyond which both horizons completely disappear. We speculate the appearance of high-frequency "superluminal" corrections to be a universal characteristic of analogue gravity systems, and discuss their relevance for the trans-Planckian problem. We also discuss the role of Airy interference in hybridising the incoming waves with the flowing background (the effective spacetime) and blurring the position of the black/white-hole horizon.

  4. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  5. Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field

    Science.gov (United States)

    Boué, Pierre; Denolle, Marine; Hirata, Naoshi; Nakagawa, Shigeki; Beroza, Gregory C.

    2016-08-01

    Seismic wave resonance in sedimentary basins is a well-recognized seismic hazard; however, concentrated areas of earthquake damage have been observed near basin edges, where wave propagation is particularly complex and difficult to understand with sparse observations. The Tokyo metropolitan area is densely populated, subject to strong shaking from a diversity of earthquake sources, and sits atop the deep Kanto sedimentary basin. It is also instrumented with two seismic arrays: the dense MEtropolitan Seismic Observation network (MeSO-net) within the basin, and the High sensitivity seismograph network (Hi-net) surrounding it. In this study, we explore the 3-D seismic wavefield within and throughout the Kanto basin, including near and across basin boundaries, using cross-correlations of all components of ambient seismic field between the stations of these two arrays. Dense observations allow us to observe clearly the propagation of three modes of both Rayleigh and Love waves. They also show how the wavefield behaves in the vicinity of sharp basin edges with reflected/converted waves and excitation of higher modes.

  6. Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures.

    Science.gov (United States)

    Wilcox, Paul D

    2003-06-01

    Omni-directional guided wave array transducers contain a circular pattern of elements that individually behave as omni-directional point transmitters or receivers. The data set acquired from such an array contains time-domain signals from each permutation of transmitter and receiver. A phased addition algorithm is developed that allows an omni-directional, B-scan image of the surrounding plate to be synthesized from any geometry of array. Numerically simulated data from a single reflector is used to test the performance of the algorithm. The results from an array containing a fully populated circular area of elements (Type I array) are found to be good, but those from an array containing a single ring of elements (Type II array) contain many large side-lobes. An enhancement to the basic-phased addition algorithm is presented that uses deconvolution to suppress these side-lobes. The deconvolution algorithm enables a Type II array to equal the performance of a Type I array of the same overall diameter. The effect of diameter on angular resolution is investigated. Experimental data obtained from a guided wave array containing electromagnetic acoustic transducers (EMAT) elements for exciting and detecting the So Lamb wave mode in a 5-mm thick aluminium plate are processed with both algorithms and the results are discussed.

  7. Photonic antenna enhanced middle wave and longwave infrared focal plane array with low noise and high operating temperature Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...

  8. Acoustic nonlinearity of narrowband laser-generated surface waves in the bending fatigue of Al6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Taehyung; Choi, Sungho; Lee, Taehun; Jhang, Kyungyoung; Kim, Chungseok [Hanyang University, Seoul (Korea, Republic of)

    2010-11-15

    The present study describes the acoustic nonlinearity phenomenon of a narrowband laser generated surface wave for the characterization of an aluminum alloy subjected to bending fatigue. The surface wave is very attractive for field applications because it does not require both sides of the test materials to access the transducers and has strong acoustic nonlinear effects on the surface. The intrinsic higher-order harmonic components generated by a line-arrayed laser beam have been analyzed theoretically, and a relative acoustic nonlinear parameter has been successfully measured on the surface of a fatigue-damaged aluminum 6061 alloy. The results show that the acoustic nonlinear parameter increased after fatigue damage with respect to dislocation evolution. Consequently, this study suggests that the new acoustic nonlinearity technique of a laser-generated surface wave can be potentially used to characterize surface damage resulting from bending fatigue prior to the formation of fatigue cracks.

  9. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  10. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Dianyuan Fan

    2011-01-01

    We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.

  11. Numerical simulation of nonlinear long waves interacting with arrays of emergent cylinders

    CERN Document Server

    Zainali, Amir; Weiss, Robert; Irish, Jennifer L; Yang, Yongqian

    2016-01-01

    We presented numerical simulation of long waves, interacting with arrays of emergent cylinders inside regularly spaced patches, representing discontinues patchy coastal vegetation. We employed the fully nonlinear and weakly dispersive Serre-Green-Naghdi equations (SGN) until the breaking process starts, while we changed the governing equations to nonlinear shallow water equations (NSW) at the vicinity of the breaking-wave peak and during the runup stage. We modeled the cylinders as physical boundaries rather than approximating them as macro-roughness friction. We showed that the cylinders provide protection for the areas behind them. However they might also cause amplification in local water depth in those areas. The presented results are extensively validated against the existing numerical and experimental data. Our results demonstrate the capability and reliability of our model in simulating wave interaction with emergent cylinders.

  12. Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe

    Science.gov (United States)

    Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine

    2016-04-01

    Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.

  13. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    Science.gov (United States)

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-08-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation.

  14. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  15. Experimental study of breaking and energy dissipation in surface waves

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  16. Research into surface wave phenomena in sedimentary basins

    Science.gov (United States)

    Wojcik, G. L.; Isenberg, J.; Ma, F.; Richardson, E.

    1981-12-01

    This study is a continuation of an engineering seismology research effort prompted by the sensitivity of guidance sets in Minuteman Wing V to distant earthquakes. An earlier report considers the probable cause of anomalous patterns of seismic alarms triggered by two North American earthquakes. This report extends the previous study by examining the propagation of surface waves from the 1975 Pocatello Valley, Idaho earthquake sequence across Wyoming to Wing V. In addition, the more general question of surface wave phenomena in sedimentary basins is addressed, particularly the effect of laterally inhomogeneous (dipping) basin-bedrock interfaces. Findings indicate that fundamental and first overtone surface waves are significantly modified by the travel path. In contrast, higher modes are relatively unchanged by the travel path, and affect Wing V in much the same way as body waves considered in the previous study.

  17. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius;

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... modified partitions were similar and significantly lower than for arrays formed using untreated ETFE partitions. For single side n-hexene modification average membrane array lifetimes were not significantly changed compared to untreated ETFE. Double-sided n-hexene modification greatly improved average...... membrane array lifetimes compared to membrane arrays formed across untreated ETFE partitions. n-hexene modifications resulted in BLM membrane arrays which over time developed significantly lower conductance (Gm) and higher capacitance (Cm) values compared to the other membranes with the strongest effect...

  18. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. Full-Wave Analysis of Stable Cross Fractal Frequency Selective Surfaces Using an Iterative Procedure Based on Wave Concept

    Directory of Open Access Journals (Sweden)

    V. P. Silva Neto

    2015-01-01

    Full Text Available This work presents a full-wave analysis of stable frequency selective surfaces (FSSs composed of periodic arrays of cross fractal patch elements. The shapes of these patch elements are defined conforming to a fractal concept, where the generator fractal geometry is successively subdivided into parts which are smaller copies of the previous ones (defined as fractal levels. The main objective of this work is to investigate the performance of FSSs with cross fractal patch element geometries including their frequency response and stability in relation to both the angle of incidence and polarization of the plane wave. The frequency response of FSS structures is obtained using the wave concept iterative procedure (WCIP. This method is based on a wave concept formulation and the boundary conditions for the FSS structure. Prototypes were manufactured and measured to verify the WCIP model accuracy. A good agreement between WCIP and measured results was observed for the proposed cross fractal FSSs. In addition, these FSSs exhibited good angular stability.

  20. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Blair, D G; Coward, D; Davidson, J; Dumas, J-C; Howell, E; Ju, L; Wen, L; Zhao, C [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); McClelland, D E; Scott, S M; Slagmolen, B J J; Inta, R [Department of Physics, Faculty of Science, Australian National University, Canberra, ACT 0200 (Australia); Munch, J; Ottaway, D J; Veitch, P; Hosken, D [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Melatos, A; Chung, C; Sammut, L, E-mail: pbarriga@cyllene.uwa.edu.a [School of Physics University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-04-21

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  1. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations

    Science.gov (United States)

    Poggi, Valerio; Fäh, Donat

    2010-01-01

    Several methods have been proposed in the past years to extract the Rayleigh wave ellipticity from horizontal-to-vertical spectral ratios of single station ambient noise recordings. The disadvantage of this set of techniques is the difficulty in clearly identifying and separating the contribution of higher modes. In most cases, only the fundamental mode of ellipticity can be identified. Moreover, it is generally difficult to correct for the energy of SH and Love waves present in the horizontal components of the ambient vibration wavefield. We introduce a new methodology to retrieve Rayleigh wave ellipticity using high-resolution frequency-wavenumber array analysis. The technique is applied to the three components of motion and is based on the assumption that an amplitude maximum in the f-k cross-spectrum must represent the true power amplitude of the corresponding signal. In the case of Rayleigh waves, therefore, the ratio between maxima obtained from the horizontal (radial-polarized) and vertical components of motion will also represent the frequency-dependent ellipticity function. Consequently, if we can identify the Rayleigh dispersion curves of several modes on the f-k plane, then the corresponding modal ellipticity patterns can also be separated and extracted. To test the approach, synthetic and real data sets were processed. In all tested cases, a reliable estimation of segments of the fundamental mode ellipticity was obtained. The identification of higher modes is possible in most cases. The quality of results depends on the selected array geometry and the signal-to-noise ratio, with a major improvement achieved by increasing the number of receivers employed during the survey. An experiment conducted in the town of Visp (Switzerland) allowed the retrieval of portions of ellipticity curves up to the second Rayleigh higher mode, using two concentric circular array configurations of 14 and 11 receivers each.

  2. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  3. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    OpenAIRE

    N. Ramakrishnan; Parthiban, R.; Sawal Hamid Md Ali; Md. Shabiul Islam; Ajay Achath Mohanan

    2013-01-01

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film...

  4. Simple equations guide high-frequency surface-wave investigation techniques

    Science.gov (United States)

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  5. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  6. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  7. Magnetoacoustic surface gravity waves at a spherical interface

    Science.gov (United States)

    Ballai, I.; Forgács-Dajka, E.; Douglas, M.

    2011-03-01

    Aims: The plasma structured by magnetic fields in the solar atmosphere is a perfect medium for the propagation of guided magnetic and magnetoacoustic waves. Geometrical restriction of wave propagation is known to confer a dispersive character for waves. In addition, waves propagating along discontinuities in the medium are known to remain localized. As an extension to theories of guided waves in magnetic slabs and cylinders under solar and stellar conditions, we aim to study the propagation of magnetoacoustic-gravity waves at a spherical interface in the low solar corona (considered here as a density discontinuity), modelling global waves recently observed in the corona in EUV wavelengths. Methods: Using conservation laws at the interface we derive the dispersion relation in spherical geometry with a radially expanding magnetic field in the presence of gravitational stratification. The obtained dispersion relation describing fast magnetoacoustic-gravity surface waves is derived using an approximative method taking into account that propagation takes place near the solar surface. Results: Theoretical results obtained in the present study are applied to investigate the propagation of EIT waves in the low corona. The frequency of waves is shown to increase with decreasing density contrast at the interface. We also show that, for a given azimuthal wavenumber, the magnetic field has a very small effect on the value of the frequency of waves. When plotted against the location of the interface (in the radial direction) the frequency varies inversely proportional to the distance, while for a fixed density ratio and location of the interface the frequency is obtained to be defined in a very narrow region.

  8. Characters of surface deformation and surface wave in thermal capillary convection

    Institute of Scientific and Technical Information of China (English)

    DUAN; Li; KANG; Qi; HU; Wenrei

    2006-01-01

    In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mm×42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns. The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 μm. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.

  9. Generation of 1D interference patterns of Bloch surface waves

    Science.gov (United States)

    Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.

    2016-09-01

    Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.

  10. Active millimeter-wave video rate imaging with a staring 120-element microbolometer array

    Science.gov (United States)

    Luukanen, Arttu; Miller, Aaron J.; Grossman, Erich N.

    2004-08-01

    Passive indoors imaging of weapons concealed under clothing poses a formidable challenge for millimeter-wave imagers due to the sub-picowatt signal levels present in the scene. Moreover, video-rate imaging requires a large number of pixels, which leads to a very complex and expensive front end for the imager. To meet the concealed weapons detection challenge, our approach uses a low cost pulsed-noise source as an illuminator and an array of room-temperature antenna-coupled microbolometers as the detectors. The reflected millimeter-wave power is detected by the bolometers, gated, integrated and amplified by audio-frequency amplifiers, and after digitization, displayed in real time on a PC display. We present recently acquired videos obtained with the 120-element array, and comprehensively describe the performance characteristics of the array in terms of sensitivity, optical efficiency, uniformity and spatial resolution. Our results show that active imaging with antenna-coupled microbolometers can yield imagery comparable to that obtained with systems using MMIC amplifiers but with a cost per pixel that is orders of magnitude lower.

  11. On the development and testing of a guided ultrasonic wave array for structural integrity monitoring.

    Science.gov (United States)

    Fromme, Paul; Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter

    2006-04-01

    The prototype of a guided ultrasonic wave array for the structural integrity monitoring of large, plate-like structures has been designed, built, and tested. The development of suitably small transducers for the excitation and measurement of the first antisymmetric Lamb wave mode Ao is described. The array design consists of a ring of 32 transducers, permanently bonded to the structure with a protective membrane, in a compact housing with the necessary multiplexing electronics. Using a phased addition algorithm with dispersion compensation and deconvolution in the wavenumber domain, a good dynamic range can be achieved with a limited number of transducers. Limitations in the transducer design and manufacture restricted the overall dynamic range achieved to 27 dB. Laboratory measurements for a steel plate containing various defects have been performed. The results for standard defects are compared to theoretical predictions and the sensitivity of the array device for defect detection has been established. Simulated corrosion pitting and a defect cut with an angle grinder simulating general corrosion were detected.

  12. Detecting super-Nyquist-frequency gravitational waves using a pulsar timing array

    Science.gov (United States)

    Yi, Shu-Xu; Zhang, Shuang-Nan

    2016-08-01

    The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ( f Ny) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they appear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency > f Ny (super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data. Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is λs = -0.82, βs = -1.03 (rad); the corresponding minimum GW strain is h = 6.31 × 10-11 at f = 1 × 10-5 Hz.

  13. Data-driven and calibration-free Lamb wave source localization with sparse sensor arrays.

    Science.gov (United States)

    Harley, Joel B; Moura, José M F

    2015-08-01

    Most Lamb wave localization techniques require that we know the wave's velocity characteristics; yet, in many practical scenarios, velocity estimates can be challenging to acquire, are unavailable, or are unreliable because of the complexity of Lamb waves. As a result, there is a significant need for new methods that can reduce a system's reliance on a priori velocity information. This paper addresses this challenge through two novel source localization methods designed for sparse sensor arrays in isotropic media. Both methods exploit the fundamental sparse structure of a Lamb wave's frequency-wavenumber representation. The first method uses sparse recovery techniques to extract velocities from calibration data. The second method uses kurtosis and the support earth mover's distance to measure the sparseness of a Lamb wave's approximate frequency-wavenumber representation. These measures are then used to locate acoustic sources with no prior calibration data. We experimentally study each method with a collection of acoustic emission data measured from a 1.22 m by 1.22 m isotropic aluminum plate. We show that both methods can achieve less than 1 cm localization error and have less systematic error than traditional time-of-arrival localization methods.

  14. A Tutorial on Optical Feeding of Millimeter-Wave Phased Array Antennas for Communication Applications

    Directory of Open Access Journals (Sweden)

    Ivan Aldaya

    2015-01-01

    Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.

  15. From Newton's Second Law to Huygens's Principle: Visualizing Waves in a Large Array of Masses Joined by Springs

    Science.gov (United States)

    Dolinko, A. E.

    2009-01-01

    By simulating the dynamics of a bidimensional array of springs and masses, the propagation of conveniently generated waves is visualized. The simulation is exclusively based on Newton's second law and was made to provide insight into the physics of wave propagation. By controlling parameters such as the magnitude of the mass and the elastic…

  16. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    Science.gov (United States)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  17. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  18. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    Science.gov (United States)

    Compelli, Alan; Ivanov, Rossen I.

    2016-08-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  19. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan

    2016-01-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  20. Propagation of elastic waves in a plate with rough surfaces

    Institute of Scientific and Technical Information of China (English)

    DAI Shuwu; ZHANG Hailan

    2003-01-01

    The characteristics of Lamb wave propagating in a solid plate with rough surfacesare studied on the basis of small perturbation approximation. The Rayleigh-Lamb frequencyequation expressed with SA matrix is presented. The Rayleigh-Lamb frequency equation fora rough surface plate is different from that for a smooth surface plate, resulting in a smallperturbation Ak on Lamb wave vector k. The imaginary part of Ak gives the attenuationcaused by wave scattering. An experiment is designed to test our theoretical predications.By using wedge-shape pipes, different Lamb wave modes are excited. The signals at differentpositions are received and analyzed to get the dispersion curves and attenuations of differentmodes. The experimental results are compared with the theoretical predications.

  1. On the cascade mechanism of short surface wave modulation

    Directory of Open Access Journals (Sweden)

    M. Charnotskii

    2002-01-01

    Full Text Available Modulation of short surface ripples by long surface or internal waves by a cascade mechanism is considered. At the first stage, the orbital velocity of the long wave (LW adiabatically modulates an intermediate length nonlinear gravity wave (GW, which generates a bound (parasitic capillary wave (CW near its crest in a wide spatial frequency band. Due to strong dependence of the CW amplitude on that of the GW, the resulting ripple modulation by LW can be strong. Adiabatic modulation at the first stage is calculated for an arbitrarily strong LW current. The CWs are calculated based on the Lonquet-Higgins theory, in the framework of a steady periodic solution, which proves to be sufficient for the cases considered. Theoretical results are compared with data from laboratory experiments. A discussion of related sea clutter data is given in the conclusion.

  2. The Whitham Equation as a Model for Surface Water Waves

    CERN Document Server

    Moldabayev, Daulet; Dutykh, Denys

    2014-01-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better tha...

  3. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  4. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Science.gov (United States)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  5. Constraints of relic gravitational waves by Pulsar Timing Array: Forecasts for the FAST and SKA projects

    CERN Document Server

    Zhao, Wen; You, Xiao-Peng; Zhu, Zong-Hong

    2013-01-01

    Measurement of the pulsar timing residuals provides a direct way to detect relic gravitational waves at the frequency $f\\sim 1/{\\rm yr}$. In this paper, we investigate the constraints on the inflationary parameters, the tensor-to-scalar ratio $r$ and the tensor spectral index $n_t$, by the current and future Pulsar Timing Arrays (PTAs). We find that Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China and the planned Square Kilometer Array (SKA) projects have the fairly strong abilities to test the phantom-like inflationary models. If $r=0.1$, FAST could give the constraint on the spectral index $n_t<0.38$, and SKA gives $n_t<0.30$. While an observation with the total time T=20yr, the pulsar noise level $\\sigma_w=30$ns and the monitored pulsar number $n=200$, could even constrain $n_t<0.05$. These are much tighter than those inferred from the current results of Parkers Pulsar Timing Array (PPTA) and European Pulsar Timing Array (EPTA). Especially, by studying the effects of various o...

  6. Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formulation of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply surface-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave-mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The balance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.

  7. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  8. Gravitational waves from surface inhomogeneities of neutron stars

    Science.gov (United States)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  9. Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array

    CERN Document Server

    Wang, J B; Coles, W; Shannon, R M; Zhu, X J; Madison, D R; Kerr, M; Ravi, V; Keith, M J; Manchester, R N; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Oslowski, S; van Straten, W; Toomey, L; Wang, N; Wen, L

    2014-01-01

    Anisotropic bursts of gravitational radiation produced by events such as super-massive black hole mergers leave permanent imprints on space. Such gravitational wave "memory" (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected.

  10. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  11. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  12. Expected properties of the first gravitational wave signal detected with pulsar timing arrays

    CERN Document Server

    Rosado, Pablo A; Gair, Jonathan

    2015-01-01

    In this paper we attempt to investigate the nature of the first gravitational wave (GW) signal to be detected by pulsar timing arrays (PTAs): will it be an individual, resolved supermassive black hole binary (SBHB), or a stochastic background made by the superposition of GWs produced by an ensemble of SBHBs? To address this issue, we analyse a broad set of simulations of the cosmological population of SBHBs, that cover the entire parameter space allowed by current electromagnetic observations in an unbiased way. For each simulation, we construct the expected GW signal and identify the loudest individual sources. We then employ appropriate detection statistics to evaluate the relative probability of detecting each type of source as a function of time for a variety of PTAs; we consider the current International PTA (IPTA), and speculate into the era of the Square Kilometre Array (SKA). The main properties of the first detectable individual SBHBs are also investigated. Contrary to previous work, we cast our resu...

  13. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    Science.gov (United States)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  14. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  15. Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Walter, W R; Lay, T; Wu, R

    2003-11-04

    A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), and the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.

  16. Lateral Flooding Associated to Wave Flood Generation on River Surface

    Science.gov (United States)

    Ramírez-Núñez, C.; Parrot, J.-F.

    2016-06-01

    This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.

  17. A Transient UWB Antenna Array Used with Complex Impedance Surfaces

    Directory of Open Access Journals (Sweden)

    A. Godard

    2010-01-01

    Full Text Available The conception of a novel Ultra-Wideband (UWB antenna array, designed especially for transient radar applications through the frequency band (300 MHz–3 GHz, is proposed in this paper. For these applications, the elementary antenna must be compact and nondispersive, and the array must be able to steer in two dimensions. The geometry of the elementary antenna and its radiation characteristics are presented. The array beam steering is analyzed and a technique making the increase of the transient front-to-back ratio possible is described.

  18. Including the pulsar-term in continuous gravitational-wave searches using pulsar timing arrays: a blessing and a curse

    CERN Document Server

    Taylor, Stephen; Gair, Jonathan

    2014-01-01

    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar timing arrays. These techniques mitigate the problematic increase of search-dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational-wave as it propagates past each pulsar so that we can coherently include the pulsar-term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates, and conclude that these techniques make excellent first-cut tools for detection and characterisation of continuous gravitational-wave signals with pulsar timing arrays. Crucially, at low to moderate signal-t...

  19. Surface waves propagation on a turbulent flow forced electromagnetically

    CERN Document Server

    Gutiérrez, Pablo

    2015-01-01

    We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...

  20. Analysis of tiling array expression studies with flexible designs in Bioconductor (waveTiling

    Directory of Open Access Journals (Sweden)

    Beuf Kristof

    2012-09-01

    Full Text Available Abstract Background Existing statistical methods for tiling array transcriptome data either focus on transcript discovery in one biological or experimental condition or on the detection of differential expression between two conditions. Increasingly often, however, biologists are interested in time-course studies, studies with more than two conditions or even multiple-factor studies. As these studies are currently analyzed with the traditional microarray analysis techniques, they do not exploit the genome-wide nature of tiling array data to its full potential. Results We present an R Bioconductor package, waveTiling, which implements a wavelet-based model for analyzing transcriptome data and extends it towards more complex experimental designs. With waveTiling the user is able to discover (1 group-wise expressed regions, (2 differentially expressed regions between any two groups in single-factor studies and in (3 multifactorial designs. Moreover, for time-course experiments it is also possible to detect (4 linear time effects and (5 a circadian rhythm of transcripts. By considering the expression values of the individual tiling probes as a function of genomic position, effect regions can be detected regardless of existing annotation. Three case studies with different experimental set-ups illustrate the use and the flexibility of the model-based transcriptome analysis. Conclusions The waveTiling package provides the user with a convenient tool for the analysis of tiling array trancriptome data for a multitude of experimental set-ups. Regardless of the study design, the probe-wise analysis allows for the detection of transcriptional effects in both exonic, intronic and intergenic regions, without prior consultation of existing annotation.

  1. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  2. Formation of Combined Surface Features of Protrusion Array and Wrinkles atop Shape-Memory Polymer

    Science.gov (United States)

    Sun, L.; Zhao, Y.; Huang, W. M.; Tong, T. H.

    We demonstrate a simple and cost-effective approach to realize two combined surface features of different scales together, namely submillimeter-sized protrusion array and microwrinkles, atop a polystyrene shape-memory polymer. Two different types of protrusions, namely flat-top protrusion and crown-shaped protrusion, were studied. The array of protrusions was produced by the Indentation-Polishing-Heating (IPH) process. Compactly packed steel balls were used for making array of indents. A thin gold layer was sputter deposited atop the polymer surface right after polishing. After heating for shape recovery, array of protrusions with wrinkles on the top due to the buckling of gold layer was produced.

  3. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  4. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  5. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    Science.gov (United States)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2017-01-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  6. Human Skin as Arrays of Helical Antennas in the Millimeter and Submillimeter Wave Range

    Science.gov (United States)

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Agranat, Aharon J.

    2008-03-01

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. A computer simulation study of these structures in millimeter and submillimeter wave bands show that the human skin functions as an array of low-Q helical antennas. Experimental evidence is presented that the spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure.

  7. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    Science.gov (United States)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2016-09-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  8. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  9. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  10. Determination of Rayleigh wave ellipticity across the Earthscope Transportable Array using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli; Lin, Fan-Chi; Koper, Keith D.

    2017-01-01

    We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.

  11. The Feasibility of Using Black Widow Pulsars in Pulsar Timing Arrays for Gravitational Wave Detection

    CERN Document Server

    Bochenek, Christopher; Demorest, Paul

    2015-01-01

    In the past five years, approximately one third of the 65 pulsars discovered by radio observations of Fermi unassociated sources are black widow pulsars (BWPs). BWPs are binary millisecond pulsars with companion masses ranging from 0.01-0.1 solar masses which often exhibit radio eclipses. The bloated companions in BWP systems exert small torques on the system causing the orbit to change on small but measurable time scales. Because adding parameters to a timing model reduces sensitivity to a gravitational wave (GW) signal, the need to fit many orbital frequency derivatives to the timing data is potentially problematic for using BWPs to detect GWs with pulsar timing arrays. Using simulated data with up to four orbital frequency derivatives, we show that fitting for orbital frequency derivatives absorbs less than 5% of the low frequency spectrum expected from a stochastic gravitational wave background signal. Furthermore, this result does not change with orbital period. Therefore, we suggest that if timing syste...

  12. Uniplanar Millimeter-Wave Log-Periodic Dipole Array Antenna Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Guohua Zhai

    2013-01-01

    Full Text Available A uniplanar millimeter-wave broadband printed log-periodic dipole array (PLPDA antenna fed by coplanar waveguide (CPW is introduced. This proposed structure consists of several active dipole elements, feeding lines, parallel coupled line, and the CPW, which are etched on a single metallic layer of the substrate. The parallel coupled line can be optimized to act as a transformer between the CPW and the PLPDA antenna. Meanwhile, this transform performs the task of a balun to achieve a wideband, low cost, low loss, simple directional antenna. The uniplanar nature makes the antenna suitable to be integrated into modern printed communication circuits, especially the monolithic millimeter-wave integrated circuits (MMIC. The antenna has been carefully examined and measured to present the return loss, far-field patterns, and antenna gain.

  13. Numerical modeling of nonlinear acoustic waves in a tube with an array of Helmholtz resonators

    CERN Document Server

    Lombard, Bruno

    2013-01-01

    Wave propagation in a 1-D guide with an array of Helmholtz resonators is studied numerically, considering large amplitude waves and viscous boundary layers. The model consists in two coupled equations: a nonlinear PDE of nonlinear acoustics, and a linear ODE describing the oscillations in the Helmholtz resonators. The dissipative effects in the tube and in the throats of the resonators are modeled by fractional derivatives. Based on a diffusive representation, the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. An optimization procedure provides an efficient diffusive representation. A splitting strategy is then applied to the evolution equations: the propagative part is solved by a standard TVD scheme for hyperbolic equations, whereas the diffusive part is solved exactly. This approach is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, existenc...

  14. Constraints on Individual Supermassive Black Hole Binaries from Pulsar Timing Array Limits on Continuous Gravitational Waves

    CERN Document Server

    Schutz, Katelin

    2015-01-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent measurements of the dynamical masses $M_{\\rm bh}$ of supermassive black holes in specific galaxies at known distances and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of $M_{\\rm bh}$ in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves can already constrain the mass ratios of hypothetical black hole binaries in a...

  15. Multichannel analysis of surface wave method with the autojuggie

    Science.gov (United States)

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  16. Engineered metabarrier as shield from seismic surface waves

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-01

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  17. Engineered metabarrier as shield from seismic surface waves.

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-20

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  18. Sensitivity of surface acoustic wave devices

    Science.gov (United States)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  19. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  20. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  1. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  2. Investigation of surface magnetostatic wave propagation in ferrite superconductor structure

    CERN Document Server

    Semenov, A A; Melkov, A A; Bobyl', A V; Suris, R A; Gal'perin, Y M; Iokhansen, T K

    2001-01-01

    Electrodynamic model describing dispersion properties of surface magnetostatic wave in ferrite/superconductor structure was suggested. On the basis of the model a new method of ascertaining superhigh frequency surface resistance R sub s of superconducting films in magnetic fields was developed. The calculated values agree with the results obtained by the Tauber method, making up R sub s =0.20-1.96 m Ohm. A regulated incursion of wave phase amounting to about 1.5 pi with the change in penetration depth 2.0-0.8 mu m for YBCO film was attained for YIG/YBCO structures

  3. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  4. Photonic crystal biosensor based on optical surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  5. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  6. Coda Wave Analysis in Central-Western North America Using Earthscope Transportable Array Data

    Science.gov (United States)

    Escudero, C. R.; Doser, D. I.

    2011-12-01

    We determined seismic wave attenuation in the western and central United States (e.g. Washington, Oregon, California, Idaho, Nevada, Montana, Wyoming, Colorado, New Mexico, North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, and Texas) using coda waves. We selected approximately twenty moderate earthquakes (magnitude between 5.5 and 6.5) located along the Mexican subduction zone, Gulf of California, southern and northern California, and off the coast of Oregon for the analysis. These events were recorded by the EarthScope transportable array (TA) network from 2008 to 2011. In this study we implemented a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. In this work, we present coda Q resolution maps along with a correlation analysis between coda Q and seismicity, tectonic and geology setting. We observed higher attenuation (low coda Q values) in regions of sedimentary cover, and lower attenuation (high coda Q values) in hard rock regions. Using the 4-6 Hz frequency band, we found the best general correlation between coda Q and central-western North America bedrock geology.

  7. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  8. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  9. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  10. Experimental evidence of wave chaos from a double slit experiment with water surface waves.

    Science.gov (United States)

    Tang, Yunfei; Shen, Yifeng; Yang, Jiong; Liu, Xiaohan; Zi, Jian; Li, Baowen

    2008-10-01

    In this paper, we report experimental evidence of wave chaos using the double slit water surface wave experiment. We demonstrate that classical dynamics of a domain manifests itself in the interference patterns after the diffraction behind the double slit. For a domain whose classical dynamics is integrable clear interference fringes can be observed behind the double slits; for a domain whose classical dynamics is chaotic, however, interference fringes can totally disappear. Our experimental results clearly demonstrate that the centuries-old double slit experiment can render an excellent tool to observe the manifestations of wave chaos.

  11. Attenuation of Rayleigh Surface Waves in a Porous Material

    Institute of Scientific and Technical Information of China (English)

    DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek

    2012-01-01

    Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.

  12. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    Science.gov (United States)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  13. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  14. Self-Organized Two-Dimensional Vidro-Nanodot Array on Laser-Irradiated Si Surface

    Science.gov (United States)

    Yoshida, Yutaka; Sakaguchi, Norihito; Watanabe, Seiichi; Kato, Takahiko

    2011-05-01

    We report a periodic two-dimensional (2D) array of uniquely shaped dotlike nanoprotrusions (NPs), which simultaneously self-organize on a Si surface under pulsed laser irradiation. The shape of the dotlike NPs can be controlled by adjusting the number of laser pulses. The flask-shaped dotlike NP array is named a vidro-nanodot (VND) array. We present a detailed analysis of the internal structure of VND using high-resolution electron microscopy.

  15. Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry

    2016-09-01

    Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.

  16. Boussinesq modeling of surface waves due to underwater landslides

    Directory of Open Access Journals (Sweden)

    D. Dutykh

    2013-05-01

    Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

  17. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  18. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  19. Observations of surface waves interacting with ice using stereo imaging

    Science.gov (United States)

    Campbell, Alexander J.; Bechle, Adam J.; Wu, Chin H.

    2014-06-01

    A powerful Automated Trinocular Stereo Imaging System (ATSIS) is used to remotely measure waves interacting with three distinct ice types: brash, frazil, and pancake. ATSIS is improved with a phase-only correlation matching algorithm and parallel computation to provide high spatial and temporal resolution 3-D profiles of the water/ice surface, from which the wavelength, frequency, and energy flux are calculated. Alongshore spatial frequency distributions show that pancake and frazil ices differentially attenuate at a greater rate for higher-frequency waves, causing a decrease in mean frequency. In contrast, wave propagation through brash ice causes a rapid increase in the dominant wave frequency, which may be caused by nonlinear energy transfer to higher frequencies due to collisions between the brash ice particles. Consistent to the results in frequency, the wavelengths in pancake and frazil ices increase but decrease in brash ice. The total wave energy fluxes decrease exponentially in both pancake and frazil ice, whereas the overall energy flux remain constant in the brash ice due to thin layer thickness. The spatial energy flux distributions also reveal that wave reflection occurs at the boundary of each ice layer, with reflection coefficient decaying exponentially away from the ice interface. Reflection is the strongest at the pancake/ice-free and frazil/brash interfaces and the weakest at the brash/ice-free interface. These high resolution observations measured by ATSIS demonstrate the spatially variable nature of waves propagating through ice.

  20. Evolution of ion-induced nanoparticle arrays on GaAs surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M.; Al-Heji, A. A.; Shende, O.; Huang, S.; Jeon, S.; Goldman, R. S., E-mail: rsgold@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2014-05-05

    We have examined the evolution of irradiation-induced Ga nanoparticle (NP) arrays on GaAs surfaces. Focused-ion-beam irradiation of pre-patterned GaAs surfaces induces monotonic increases in the NP volume and aspect ratio up to a saturation ion dose, independent of NP location within the array. Beyond the saturation ion dose, the NP volume continues to increase monotonically while the NP aspect ratio decreases monotonically. In addition, the NP volumes (aspect ratios) are highest (lowest) for the corner NPs. We discuss the relative influences of bulk and surface diffusion on the evolution of Ga NP arrays.