WorldWideScience

Sample records for surface water river

  1. The impact of industries on surface water quality of River Ona and ...

    African Journals Online (AJOL)

    Samples of water from two rivers (River Ona and River Alaro) in Oluyole ... were higher in the industrial zones than those found in the upstream of both rivers. ... Key words: River Ona, River Alaro, industrial discharges, surface water quality.

  2. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  3. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  4. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  5. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  6. Physical basis for river segmentation from water surface observables

    Science.gov (United States)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  7. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. Microcystin-LR in surface water of Ponjavica river

    Directory of Open Access Journals (Sweden)

    Natić Dejan

    2012-01-01

    Full Text Available Background/Aim. Cyanobacterial toxins befall a group of various compounds according to chemical structure and health effects on people and animals. The most significant in this large group of compounds are microcystins. Their presence in water used for human consumption causes serious health problems, liver beeing the target organ. Microcystins are spread all over the world. Waterblooms of cyanobacterias and their cyanotoxins are also common in the majority of surface waters in Serbia. The aim of this study was to propose HPLC method for determination of mikrocystin-LR, to validate the method and to use it for determination of microcystin-LR in the surface water of the river Ponjavica. The Ponjavica is very eutrophic water and has ideal conditions for the cyanobacterial growth. Methods. Sample of water form the Ponjavica river were collected during the summer 2008. Coupled columns (HLB, Sep-Pak, were used for sample preparation and HPLC/PDA method was used for quantification of microcystin- LR. Results. Parameters of validation show that the proposed method is simple, fast, sensitive (0.1 mg/L and selective with the yield of 89%-92%. The measuring uncertainty of

  10. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  11. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  12. Oxygen and Hydrogen Isotopic Characteristics of the Kaveri River Surface Waters, Southern Peninsular India

    International Nuclear Information System (INIS)

    Achyuthan, Hema; Michelini, Marzia; Sengupta, Somasis D.; Kale, Vishwas S.; Stenni, Barbara; Flora, Onelio

    2010-12-01

    We present in this paper the spatial distribution of stable isotopic composition (δ 18 O and δD) of Kaveri River surface waters to understand how the evaporation and precipitation affect the isotopic signature and dynamics of surface river waters. In the southern peninsular India, Kaveri River is one of the longest tropical river. Our stable isotope data indicate that the upper Kaveri region is influenced strongly by the SW monsoon. There is a narrow range between the δ 18 O values found from the origin of the Kaveri River to its delta, and there is no significant orographic impact of the Western Ghats. A decreasing trend of d values is found along the course of the river. This is attributed to evaporation effects, which nevertheless are not very strong. This difference in deuterium excess due to evaporation is also an indication of the moisture recycling in the lower Kaveri area, which is primarily controlled by evaporation from the wetlands in the delta plain but also from the surface waters and as such from the rivers. (author)

  13. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain.

    Science.gov (United States)

    Navarro-Martinez, Francisco; Salas Garcia, Alejandro; Sánchez-Martos, Francisco; Baeza Espasa, Antonio; Molina Sánchez, Luis; Rodríguez Perulero, Antonio

    2017-12-01

    The identification of specific aquifers that supply water to river systems is fundamental to understanding the dynamics of the rivers' hydrochemistry, particularly in arid and semiarid environments where river flow may be discontinuous. There are multiple methods to identify the source of river water. In this study of the River Andarax, in the Southeast of Spain, an analysis of natural tracers (physico-chemical parameters, uranium, radium and radon) in surface water and groundwater indicates that chemical parameters and uranium clearly identify the areas where there is groundwater-surface water interaction. The concentration of uranium found in the river defines two areas: the headwaters with U concentrations of 2 μg L -1 and the lower reaches, with U of 6 μg L -1 . Furthermore, variation in the 234 U/ 238 U isotopic ratio allowed us to detect the influence that groundwater from the carbonate aquifer has on surface water in the headwaters of the river, where the saline content is lower and the water has a calcium bicarbonate facies. The concentration of 226 Ra and 222 Rn are low in the surface waters: aquifer on the surface waters. The results of this study indicate the utility in the use of physico-chemical and radiological data conjointly as tracers of groundwater-surface water interaction in semiarid areas where the lithology of aquifers is diverse (carbonate and detritic) and where evaporitic rocks are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  15. Controlling The Surface Water of Shatt Al Arab River by using Sluice Gates

    Directory of Open Access Journals (Sweden)

    Ahmed Naseh Ahmed Hamdan

    2016-03-01

    Full Text Available The purpose of this study is to find hydrodynamic simulations of river water by controlging gates in Shatt Al Arab river. This river is formed by the meeting of the Tigris and Euphrates rivers near the city of Qurna in the south of Iraq, and it pours into the Arabian Gulf. Hydrodynamic simulations give a proper understanding performance and optimize utilization of the gates controlging the water level. Three different sluice gates opening cases simulate the water surface level using HEC-RAS in Shatt Al Arab river. These cases where being studied within two situations of Tide (the highest high water level and the lowest low water level within the downstream of Shatt Al Arab river. The study also deals with six cases of flow rates in upstream of Shatt Al Arab river. Hec-Ras model is produced by US Army for analyzing river system. This model could simulate steady and unsteady open channel flow.

  16. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    Science.gov (United States)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.

  17. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.

    Science.gov (United States)

    Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang

    2010-06-01

    In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.

  19. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  20. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  1. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  2. Expected Performance of the Upcoming Surface Water and Ocean Topography Mission Measurements of River Height, Width, and Slope

    Science.gov (United States)

    Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.

    2017-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.

  3. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  4. Satellite-based estimates of surface water dynamics in the Congo River Basin

    Science.gov (United States)

    Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.

    2018-04-01

    In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.

  5. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  6. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  7. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].

    Science.gov (United States)

    Tang, Xi-Wen; Wu, Jin-Kui

    2014-01-01

    Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams. The results showed that: (1) the total dissolved solid (TDS) in river water mainly ranged between 136.7 mg x L(-1) and 376.5 mg x L(-1), and (2) it had an increasing trend along the river flow path. (3) The major cations and anions of river water were Ca2+ and HCO3-, respectively, and the chemical type of the river water varied from HCO3- -Ca2+ in the headwater area to HCO(3-)-Ca2+ Mg2+ in the lower part. (4) The variation in the concentration of major irons in surface water was not significant at the temporal scale. Usually, the concentration values of major irons were much higher in May than those in other months during the runoff season, while the values were a bit lower in 2007 than those in 2006 and 2008. Except for SO4(2-), the concentrations of other ions such as Ca2+, Na+, Mg2+, K+, Cl- and HCO3- showed a upward trend along the river flow path. Comparing major ion concentrations of the river water with those of local groundwater and precipitation, the concentration in river water was between those of precipitation and groundwater but was much closer to the concentration of groundwater. This indicated that the surface water was recharged by a mixture of precipitation and groundwater, and groundwater showed a larger impact. The Gibbs plot revealed that the chemical

  8. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  9. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  10. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  11. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  12. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic

  13. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    Science.gov (United States)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2017-12-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  14. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    Science.gov (United States)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2018-05-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  15. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    Science.gov (United States)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  16. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    Science.gov (United States)

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.

  17. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  18. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  19. Estimation of surface water quality in a Yazoo River tributary using the duration curve and recurrence interval approach

    Science.gov (United States)

    Ying Ouyang; Prem B. Parajuli; Daniel A. Marion

    2013-01-01

    Pollution of surface water with harmful chemicals and eutrophication of rivers and lakes with excess nutrients are serious environmental concerns. This study estimated surface water quality in a stream within the Yazoo River Basin (YRB), Mississippi, USA, using the duration curve and recurrence interval analysis techniques. Data from the US Geological Survey (USGS)...

  20. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    OpenAIRE

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-01-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second...

  1. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    Science.gov (United States)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  2. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  3. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    Science.gov (United States)

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients

  4. Surface water / groundwater interactions and their spatial variability, an example from the Avon River, South-East Australia

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Gilfedder, Benjamin

    2013-04-01

    Understanding the interaction between river water and regional groundwater has significant importance for water management and resource allocation. The dynamics of groundwater/surface water interactions also have implications for ecosystems, pollutant transport, and the quality and quantity of water supply for domestic, agriculture and recreational purposes. After general assumptions and for management purposes rivers are classified in loosing or gaining rivers. However, many streams alternate between gaining and loosing conditions on a range of temporal and spatial scales due to factors including: 1) river water levels in relation to groundwater head; 2) the relative response of the groundwater and river system to rainfall; 3) heterogeneities in alluvial sediments that can lead to alternation of areas of exfiltration and infiltration along a river stretch; and 4) differences in near river reservoirs, such parafluvial flow and bank storage. Spatial variability of groundwater discharge to rivers is rarely accounted for as it is assumed that groundwater discharge is constant over river stretches and only changes with the seasonal river water levels. Riverbank storage and parafluvial flow are generally not taken in consideration. Bank storage has short-term cycles and can contribute significantly to the total discharge, especially after flood events. In this study we used hydrogeochemistry to constrain spatial and temporal differences in gaining and loosing conditions in rivers and investigate potential sources. Environmental tracers, such as major ion chemistry, stables isotopes and Radon are useful tools to characterise these sources. Surface water and ground water samples were taken in the Avon River in the Gippsland Basin, Southwest Australia. Increasing TDS along the flow path from 70 to 250 mg/l, show that the Avon is a net gaining stream. The radon concentration along the river is variable and does not show a general increase downstream, but isolated peaks in

  5. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  6. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  7. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  8. Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA and principal component analysis (PCA. Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.

  9. Spatial-temporal particularities of the ecological status of surface water bodies and pollution sources from Siret river basin

    Directory of Open Access Journals (Sweden)

    Dan DĂSCĂLIȚA

    2011-06-01

    Full Text Available The ecological status of surface water bodies from Siret River Basin is monitored systematically and spatial in accordance with the requirements of European Directives in the water area. Analysis temporary and spatial of qualitative and quantitative status of surface waters (rivers, lakes is achieved according to the specificities of each body of water resulting from physical and geographical conditions, climatic and hydromorphological regimes of river basin and from human activities.In order to know of those features, there are needed specific monitoring systems of water bodies. The parametersunderlying the assessment of ecological status of rivers and lakes are monitored systematically and temporary: daily, monthly, quarterly, annually, according to these characteristics. In this context, the daily variations in environmental condition, expresses the current status of surface waters. Monthly changes are correlated with climate change and characterize the seasonal variations. On annual basis are identified the mean, minimum and maximum for each parameter and the trends (increase, decrease, regularity, periodicity, changes, etc.. Based on this information, extensive to multiannual level, itcan achieve medium and long term forecasts and it might be issued the concepts and strategies for maintaining a balance and sustainable development of water resources.In this paper we have presented some issues related to the synthesis of spatial-temporal ecological status of water bodies managed by Administration of Siret Water Basin(ABAS. Results of studies on the ecological status of water bodies have been presented for the year 2009. Also, in this paper it was presented an evolution of the quantities ofpollutants from wastewater discharged in surface receptors and their purification by water users from of activity of ABAS area in 1999-2009 periods.

  10. Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta

    International Nuclear Information System (INIS)

    Liu, Qiang; Li, Fadong; Zhang, Qiuying; Li, Jing; Zhang, Yan; Tu, Chun; Ouyang, Zhu

    2014-01-01

    Highlights: • We assess the response of different ecosystems to the water diversion. • We characterized the interaction between surface water and groundwater. • We use the Piper and HFE-D to illustrate the salinization process. - Abstract: The Yellow River Delta is undergoing severe ecosystem degradation through salinization caused mainly by seawater intrusion. The Yellow River diversion project, in operation since 2008, aims to mitigate a projected ecosystem disaster. We conducted field investigations across three ecosystems (Farmland, Wetland and Coast) in the delta to assess the effectiveness of the annual water pulse and determine the relationships between surface water and groundwater. The chemical characteristics of the groundwater in Farmland exclude the possibility of seawater intrusion. The Wetland is vulnerable to pollution by groundwater discharge from Farmland and to secondary salinization caused by rising water tables. The salinity values of groundwater at Coast sites likely reflect the presence of seawater trapped in the clay sediments, a premise corroborated through measurements of groundwater levels, stable isotopes and major ion signatures. Our δD–δ 18 O two-dimensional graphic plot demonstrated that groundwaters of Farmland and Wetland changed toward more depleted isotopic compositions following water diversion, but this was not the case in the Coast sites, where the water table varied little year-round. A hydrochemical facies evolution diagram (HFE-D) demonstrated that freshening is taking place in the largest portions of the aquifers and that, without sustained water diversion recharge, these underground water bodies may switch from freshening to salinization on a seasonal time scale. Thus, the qualities of waters in coastal aquifers in the Yellow River Delta are substantially influenced by the process of ecological water diversion, and also by land use practices and by the lithological properties of the drainage landscape

  11. Standard criteria for disposal of liquid radioactive wastes from nuclear power plants into surface waters (river systems)

    International Nuclear Information System (INIS)

    Pisarev, V.V.; Tsybizov, I.S.

    1976-01-01

    Radioactive products discharge into natural water streams results in the necessity to regulate nuclear power plant discharges to ensure radiation safety (RS) for population using a river and surrounding river territory. To ensure RS it is necessary to set scientific-founded standards of permissible discharge level of liquid radioactive wastes (LRW) from nuclear power plant assuring observance of hygienic requirements for surface water puring. Volume of permissible LRW discharge into river systems must be set both with provision for concrete physical-geographycal conditions, specficity of utilizing the river and river valley and social-economical peculiarities of crtical population groups. The value of permissible LRW discharge into river systems is determined by three criterion groups: radiological, ecological and hydrological ones. By means of radiological group the internal and external irradiation doses for the whole body and its separate organs are set and RS of population is determined. Ecological criteria include a number of parameters (coefficients of accumulation, distribution and transition) determining quantitative ratios between radioactive element contents in water and separate links of biological chains: soil/water, fish/water, vegetables/water and others. Hydrological criteria determine the degree of waste dilution in rivers, control radioactive contamination of flood-lands areas and in common with ecological criteria determine radionuclide contents in soil and food products. A method of determining average annual values of LRW dilution in river waters is presented [ru

  12. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  13. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China.

    Science.gov (United States)

    Yang, Ji-Feng; Ying, Guang-Guo; Zhao, Jian-Liang; Tao, Ran; Su, Hao-Chang; Liu, You-Sheng

    2011-01-01

    The distribution and occurrence of 15 antibiotics in surface water of the Pearl River System (Liuxi River, Shijing River and Zhujiang River) and effluents of four wastewater treatment plants (WWTPs) were investigated in two sampling events representing wet season and dry season by using rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode. Only eight antibiotics (sulfadiazine, sulfapyridine, sulfamethazine, sulfamethoxazole, trimethoprim, roxithromycin, erythromycin-H₂O and norfloxacin) were detected in the water samples of the three rivers and the effluents. The detection frequencies and levels of antibiotics in the dry season were higher than those in the wet season. This could be attributed to the dilution effects in the wet season and relatively lower temperature in the dry season under which antibiotics could persist for a longer period. The levels of the detected antibiotics in different sites are generally in a decreasing order as follows: Shijing River ≥WWTP effluent ≥Zhujiang River ≥ Liuxi River. Risk assessment based on the calculated risk quotients showed that only erythromycin-H₂O and roxithromycin detected in the Pearl Rivers might have adverse effects on aquatic organisms.

  14. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; project description

    Science.gov (United States)

    Stamer, J.K.; Jordan, P.R.; Engberg, R.A.; Dugan, J.T.

    1987-01-01

    In 1986 the U.S. Geological Survey began a National Water-Quality Assessment Program to: (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation 's surface water resources; (2) where possible, define trends in water quality; and (3) identify and describe the relation between water quality and natural and land use factors. This report describes the pilot study of the lower Kansas River basin, which is one of four surface water pilot studies that will be used to test, and modify as necessary, assessment concepts and approaches in preparation for future full implementation of the national program. Water quality issues in the lower Kansas River basin are dominated by possible nonpoint sources of contamination from agricultural land, with issues including: (1) large sediment discharge in the streams and sediment deposition in the reservoirs caused by intensive cultivation of row crops and subsequent erosion; (2) occurrence of pesticides in streams and reservoirs that could impair the suitability of water for aquatic life and has the potential for impairing the water 's suitability for public supply; (3) bacterial contamination caused by runoff from pastureland and feedlot operations and municipal wastewater discharges; and (4) nutrient enrichment of reservoirs. Data from fixed stations will be used to determine frequency distributions of constituent concentrations and mass balances of constituents between stations. Subbasin or river reach studies will provide a better understanding of the origin, movement, and fate of potential contaminants. (Lantz-PTT)

  15. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  16. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  17. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  19. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  20. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  1. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  2. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  3. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  4. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  5. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  6. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  7. Overview of total beta activity index and beta rest in surface waters of the Spanish rivers

    International Nuclear Information System (INIS)

    Pujol, L.; Payeras, J.; Pablo, M. A. de

    2013-01-01

    This work aims to give an overview of the index of total beta activity and the activity index beta rest in surface waters of the main Spanish rivers. These indices are a parameter over water quality that CEDEX comes determined by order of the Ministry of Agriculture, Food and Environment, in water policy. (Author)

  8. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  9. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    Science.gov (United States)

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent

  10. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  11. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  12. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    Science.gov (United States)

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays.

    Science.gov (United States)

    Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie

    2011-10-01

    This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.

  15. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  16. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries.

    Science.gov (United States)

    Lu, Guo-Hui; Gai, Nan; Zhang, Peng; Piao, Hai-Tao; Chen, Shu; Wang, Xiao-Chun; Jiao, Xing-Chun; Yin, Xiao-Cai; Tan, Ke-Yan; Yang, Yong-Liang

    2017-10-01

    Perfluoroalkyl acids (PFAAs) are widely used as multi-purpose surfactants or water/oil repellents. In order to understand the contamination level and compositional profiles of PFAAs in aqueous environment in textile, leather, and paper making industrial areas, surface waters and tap waters were collected along the watershed of the Qiantang River where China's largest textile, leather, and paper making industrial bases are located. For comparison, surface water and tapwater samples were also collected in Hangzhou and its adjacent areas. 17 PFAAs were analyzed by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. The results show that the total concentrations of PFAAs (ΣPFAAs) in the Qiantang River waters ranged from 106.1 to 322.9 ng/L, averaging 164.2 ng/L. The contamination levels have been found to be extremely high, comparable to the levels of the most serious PFAA contamination in surface waters of China. The PFAA composition profiles were characterized by the dominant PFOA (average 58.1% of the total PFAAs), and PFHxA (average 18.8%). The ΣPFAAs in tap water ranged from 9.5 to 174.8 ng/L, showing PFAA compositional pattern similar to the surface waters. Good correlations between PFAA composition profiles in tap waters and the surface waters were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of surface water contaminants in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Ford, C.; Madix, S.; Rash, C.

    1995-01-01

    Surface waters in the Clinch River and Poplar Creek have been contaminated by activities on the DOE's Oak Ridge Reservation throughout the more than 50 year history of Oak Ridge. Though the Clinch River and Poplar Creek drainage areas are contaminated with heavy metals, organics and radionuclides, public access to these sites is not restricted. The investigation, divided into discrete studies, was tailored to provide a statistically sound picture of contaminants and aqueous toxicity in Poplar Creek, investigate contaminant remobilization from sediments, and determine contaminant levels during a series of ''worst-case'' events. Results for Poplar Creek indicate that average contaminant values were below levels of concern for human health and ecological risk, though contaminant distributions suggest that episodic events contribute sufficiently to system contaminant levels to be of concern. Additionally, water column contaminant levels were significantly higher in particle deposition areas rather than at known contaminant sources. Levels of organic compounds in reference areas to Poplar Creek exceeded those in the Poplar Creek study area. In the Clinch River and Poplar Creek, statistical differences in metal and radionuclide levels from known contaminated areas confirmed previous results, and were used to independently distinguish between sites. Contaminant concentrations were elevated in association with sediments, though no distinction between deposition and remobilization could be made. Due to elevated contaminant levels, and some unexpected contaminant distributions, sites in Poplar Creek and off-channel embayments of the Clinch River were identified that will require additional characterization

  18. Controls on Surface Water Chemistry in the Upper Merced River Basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, David W.; Alisa Mast, M.; Campbell, Donald H.

    1996-05-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 equiv. l-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 equiv. l-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 equiv. l-1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 equiv. l-1, which was five times higher than in atmospheric deposition (4-5 equiv. l-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 equiv. l-1. Concentrations of sulphate in quarterly samples

  19. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  20. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  1. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  2. Surface water of Little River basin in southeastern Oklahoma (with a section on quality of water by R. P. Orth)

    Science.gov (United States)

    Westfall, A.O.; Orth, Richard Philip

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Little River basin above the Oklahoma-Arkansas state line near Cerrogordo, Okla., and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Little River basin above the state line includes 2,269 square miles, of which about 250 square miles of the Mountain Fork River is in Arkansas. The climate is humid and the annual precipitation averages about 46 inches. Gross annual lake evaporation averages 49 inches per year. There are three reservoirs totaling 2,831,800 acre-feet of storage, either authorized or under construction in the basin. The average annual discharge at the gaging stations for the period 1930-61 is 674,900 acre-feet for Little River near Wright City; 1,273,000 acre-feet for Little River below Lukfata Creek, near Idabel; and 989,000 acre-feet for Mountain Fork River near Eagletown. The average annual discharge of Little River at the Oklahoma-Arkansas state line near Cerrogordo is 2,401,000 acre-feet. Flow-duration curves have been developed from daily records for the gaging stations. These curves show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for defining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves for the gaging stations defining the recurrence intervals of 7, 14 or 15, 30, 60, and 120 day mean flows have been prepared. Curves showing the relation of instantaneous discharge at specified upstream points to the daily mean discharge at two gaging stations are presented. The storage requirements for suplementing natural flows have been prepared for the gaging-station sites. Chemical analyses show that the surface water in the basin is suitable for domestic and industrial uses.

  3. Nitrate Pollution and Preliminary Source Identification of Surface Water in a Semi-Arid River Basin, Using Isotopic and Hydrochemical Approaches

    Directory of Open Access Journals (Sweden)

    Ying Xue

    2016-08-01

    Full Text Available Nitrate contamination in rivers has raised widespread concern in the world, particularly in arid/semi-arid river basins lacking qualified water. Understanding the nitrate pollution levels and sources is critical to control the nitrogen input and promote a more sustainable water management in those basins. Water samples were collected from a typical semi-arid river basin, the Weihe River watershed, China, in October 2014. Hydrochemical assessment and nitrogen isotopic measurement were used to determine the level of nitrogen compounds and identify the sources of nitrate contamination. Approximately 32.4% of the water samples exceeded the World Health Organization (WHO drinking water standard for NO3−-N. Nitrate pollution in the main stream of the Weihe River was obviously much more serious than in the tributaries. The δ15N-NO3− of water samples ranged from +8.3‰ to +27.0‰. No significant effect of denitrification on the shift in nitrogen isotopic values in surface water was observed by high dissolved oxygen (DO values and linear relationship diagram between NO3−-N and δ15N-NO3−, except in the Weihe River in Huayin County and Shitou River. Analyses of hydrochemistry and isotopic compositions indicate that domestic sewage and agricultural activities are the main sources of nitrate in the river.

  4. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    throughout most of the year and the lower reaches have little or no gains. The Big Quilcene River generally gains water from the shallow ground-water system after it emerges from a bedrock canyon and loses water from the town of Quilcene to the mouth of the river in Quilcene Bay. The Little Quilcene River generally loses water to the shallow ground-water system, although two localized areas were found to have gaining conditions. The Big Quilcene and Little Quilcene Rivers incur significant losses on the alluvial plain at the head of Quilcene Bay. Each of the creeks examined had a unique pattern of gaining and losing reaches, owing to the hydraulic conductivity of the streambed material and the relative altitude of the surrounding water table. Although the magnitudes of gains and losses varied seasonally, the spatial distribution did not vary greatly, suggesting that patterns of gains and losses in surface-water systems depend greatly on the geology underlying the streambed.

  5. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  6. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  7. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  8. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.

    Science.gov (United States)

    Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I

    2014-08-01

    Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Surface Water Geochemistry, Sediment, and Field Parameters During Snowmelt and Monsoons in the New Mexico Reach of the Animas and San Juan Rivers, 2016

    Science.gov (United States)

    Blake, J.; Brown, J. E.; Mast, A.

    2017-12-01

    Following the release of three million gallons of metals laden surface water from the Gold King Mine in August 2015, surface-water samples were collected in the New Mexico reach of the Animas and San Juan Rivers during 2016 snowmelt and in the Animas River during three 2016 monsoonal storms. These samples were evaluated for dissolved (turbidity and specific conductance can provide insight to changes in concentrations of the river on a finer time scale. Regression models developed for selected sites on the Animas and San Juan Rivers show that flow, turbidity and specific conductance may be useful in understanding the relationship between total metal concentrations and real-time parameters. Surrogates for suspended sediment such as hydroacoustic may also be useful, and potentially the best option in this system, for monitoring the concentration of metals in surface water. Further evaluation of the chemistry of the watershed soils and bedrock, the streambed sediments, and suspended sediments will improve understanding of the geochemical processes in the Animas and San Juan Rivers.

  10. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  11. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    Science.gov (United States)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  12. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  13. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  14. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    Science.gov (United States)

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with

  15. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    Science.gov (United States)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  16. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available

  18. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    International Nuclear Information System (INIS)

    Kameda, Yutaka; Kimura, Kumiko; Miyazaki, Motonobu

    2011-01-01

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 μg/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: → Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. → The maximum concentration of total sun-blocking agents was 3422 μg/kg dry wt. in sediment. → Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. → Most of sun-blocking agents in sediment were significantly correlated with HHCB. → UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  19. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  20. Isotope Compositions Of Mekong River Flow Water In The South Of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Huynh Long; Le Danh Chuan; Nguyen Van Nhien; Tran Thi Bich Lien

    2008-01-01

    As a part of the Research Contract No. VIE/12569, isotope composition of Mekong river flow water in the South of Vietnam has been monitored to provide information on water origin and residence times, surface-groundwater exchange in the monitoring area. According to the primary results obtained, a seasonal variation as well as the dependence on local precipitation and on the river water level of isotopic composition of two distributaries of Mekong river water have been observed. At the same time a slight change on season of tritium in rivers water and the difference between tritium content in local rainy water and river water has been recorded. (author)

  1. Distribution of persistent organic pollutants and trace metals in surface waters in the Seversky Donets River basin (Eastern Ukraine)

    Science.gov (United States)

    Diadin, Dmytro; Celle-Jeanton, Hélène; Steinmann, Marc; Loup, Christophe; Crini, Nadia; Vystavna, Yuliya; Vergeles, Yuri; Huneau, Frédéric

    2017-04-01

    The paper is focused on surface water of the Seversky Donets River Basin in Eastern Ukraine which undergoes significant anthropogenic pressure due to municipal and industrial wastewater discharge, polluted runoff from both urban and agricultural areas, leakages at oil-gas extraction sites located in the region. In these conditions the Seversky Donets River is used for drinking water supply of the city of Kharkiv with 1.5 million inhabitants as well as other smaller settlements in the basin. The diversity of water pollution sources makes it reasonable to use complex indicators and assessment approaches such as combination of organic and inorganic pollutants. We have studied the distribution of major ions, metals and persistent organic compounds (PAHs and PCBs) in water of the Seversky Donets River and its tributaries. In total 20 sites have been sampled on the river catchment area as of 4.5 thousands km2. PAHs and PCBs were measured in surface water for the first time in the region. The most distinctive transformations of water composition have been found downstream wastewater treatment plants in the city of Kharkiv where treated mixture of municipal and industrial wastewater is discharged to the river. Such metals as Ni, Zn, Cr in combination with phosphates and nitrates has shown significant positive correlation indicating the common source of their input. Ten of sixteen total PAHs were detected in measurable concentrations in at least one sample of river water. Sum of PAHs ranged from 15.3 to 117.2 ng/L with mean of 43.8 ng/L. The ratios of PAHs have indicated rather pyrogenic than petrogenic inputs on all the studied sites. Elevated concentrations of low molecular weight PAHs in water were found close to a coal-burning power station and a coke chemical plant also confirming their origin from coal combustion and subsequent atmospheric deposition. PCBs distribution has appeared to be relatively uniform on the territory despite the vast area of the basin researched

  2. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    Science.gov (United States)

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality

  3. Groundwater-surface water relations in the Fox River watershed: insights from exploratory studies in Illinois and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.

    2014-01-01

    Exploratory studies were conducted at sites bordering the Fox River in Waukesha, Wisconsin, during 2010 and McHenry, Illinois, during 2011–13. The objectives of the studies were to assess strategies for the study of and insights into the potential for directly connected groundwater and surface-water systems with natural groundwater discharge to streams diverted and (or) streamflow induced (captured) by nearby production-well withdrawals. Several collection efforts of about 2 weeks or less provided information and data on site geology, groundwater and surface-water levels, hydraulic gradients, water-temperature and stream-seepage patterns, and water chemistry including stables isotopes. Overview information is presented for the Waukesha study, and selected data and preliminary findings are presented for the McHenry study.

  4. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  5. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  6. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  7. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  8. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Science.gov (United States)

    Patalano, Antoine; García, Carlos Marcelo; Rodríguez, Andrés

    2017-12-01

    LSPIV (Large Scale Particle Image Velocimetry) and LSPTV (Large Scale Particle Tracking Velocimetry) are used as relatively low-cost and non-intrusive techniques for water-surface velocity analysis and flow discharge measurements in rivers or large-scale hydraulic models. This paper describes a methodology based on state-of-the-art tools (for example, that apply classical PIV/PTV analysis) resulting in large-scale surface-flow characterization according to the first operational version of the RIVeR (Rectification of Image Velocity Results). RIVeR is developed in Matlab and is designed to be user-friendly. RIVeR processes large-scale water-surface characterization such as velocity fields or individual trajectories of floating tracers. This work describes the wide range of application of the techniques for comparing measured surface flows in hydraulic physical models to flow discharge estimates for a wide range of flow events in rivers (for example, low and high flows).

  9. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  10. Arsenic occurrence in water bodies in Kharaa river basin

    Directory of Open Access Journals (Sweden)

    Azzaya T

    2018-02-01

    Full Text Available Distribution of arsenic (As and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III and As(V, examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l, the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U at spring water nearby Gatsuurt-Boroo improved road.

  11. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  12. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Chittoor Viswanathan, Vidhya [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); Molson, John [Université Laval, Département de Géologie et Génie Géologique, Québec City, Québec (Canada); Schirmer, Mario [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ{sup 18}O-H{sub 2}O) as well as those of nitrate (δ{sup 15}N-NO{sub 3}{sup −} and δ{sup 18}O-NO{sub 3}{sup −}) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological

  13. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  14. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  15. Presence of e-EDCs in surface water and effluents of pollution sources in Sai Gon and Dong Nai river basin

    Directory of Open Access Journals (Sweden)

    Tam Le Thi Minh

    2016-01-01

    Full Text Available This study aimed to assess the presence of estrogenic endocrine disrupting compounds (e-EDCs including estriol, bisphenol A (BPA, atrazine (ATZ, octylphenol, octylphenol diethoxylate, octylphenol triethoxylate, nonylphenol, Nonylphenol triethoxylate (NPE3, nonylphenol diethoxylate (NPE2 and 17β-estradiol in: (i Sai Gon and Dong Nai river waters which have been major raw water sources for drinking water supply for Ho Chi Minh City (HCMC and neighbouring provinces, and (ii water pollution sources located in their catchment basin. NPE3 and NPE2 were detected in most of the surface water samples. Concentrations of NPE3 were in a range of less than 5.9–235 ng L−1, whereas BPA was detected at significantly high concentrations in the dry season in canals in HCMC. In the upstream of Sai Gon and Dong Nai Rivers, ATZ concentrations were observed at water intake of water treatment plants served for HCMC water supply system. Similarly, high potential risk of NPE2 and NPE3 contamination at Phu Cuong Bridge near Hoa Phu water intake was identified. The significant correlation between NPE2, dissolved organic carbon and total nitrogen was found. Estrogenic equivalent or estrogenic activity of Sai Gon and Dong Nai Rivers was lower than those of the previous studies. Compared with other studies, e-EDCs of pollution in Sai Gon river basin were relatively low.

  16. The Vistula River and water management in agriculture

    Directory of Open Access Journals (Sweden)

    Janusz Szablowski

    2013-06-01

    Full Text Available This article attempts to show how much in agriculture depends on appropriate water resources. The Kujawsko-Pomorskie Voivodeship is exposed to a significant deficiency of water resources. In addition, it experiences severe droughts, repeating in the period 1951–2006 on average every two years. The Vistula River flowing across the Voivodeship creates great chances for improved management conditions. These opportunities have been discussed on the example of investments, developed concepts of surface water management, agricultural irrigation programme and the opportunity of using the water resources of a planned second reservoir on the Vistula River below Włocławek.

  17. Residence times and mixing of water in river banks: implications for recharge and groundwater-surface water exchange

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-12-01

    Bank exchange processes within 50 m of the Tambo River, southeast Australia, have been investigated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River, which suggests the absence of significant bank storage. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 years) groundwater from a semi-confined aquifer and younger groundwater (bank infiltration. Furthermore, the more saline deeper groundwater likely controls the geochemistry of water in the river bank, minimising the chemical impact that bank infiltration has in this setting. These processes, coupled with the strongly gaining nature of the Tambo River are likely to be the factors reducing the chemical impact of bank storage in this setting. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  18. Mobility of major and trace elements in a coupled groundwater-surface water system: Merced River, CA

    Science.gov (United States)

    Wildman, R. A.; Domagalski, J. L.; Hering, J. G.

    2004-12-01

    Trace element transport in coupled surface water/groundwater systems is controlled not only by advective flow, but also by redox reactions that affect the partitioning of various elements between mobile and immobile phases. These processes have been examined in the context of a field project conducted by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. The Merced River flows out of Yosemite National Park and the Sierra Nevada foothills and into California's Central Valley, where it joins the San Joaquin River. Our field site is approximately twenty river kilometers from the confluence with the San Joaquin River. This deep alluvial plain has minimal topography. Agricultural development characterizes the land surrounding this reach of river; consequently, the hydrology is heavily influenced by irrigation. Riverbed groundwater samples were collected from ten wells aligned in two transects across the river located approximately 100 m apart. The wells were sampled from depths of 0.5 m, 1 m, and 3 m below the sediment-water interface. Groundwater flowpath samples were taken from wells positioned on a path perpendicular to the river and located 100 m, 500 m, and 1000 m from the river. The saturated groundwater system exists from 7 to 40 m below the surface and is confined below by a clay layer. Each well location samples from 3-5 depths in this surface aquifer. Samples were collected in December 2003, March-April, June-July, and October 2004. This served to provide an evenly-spaced sampling frequency over the course of a year, and also to allow observation of trends coinciding with the onset of winter, the spring runoff, and early and late summer irrigation. An initial survey of the elements in the riverbed samples was conducted using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). Elements for further study were selected based on variability in this survey, either with respect to depth or location, as well as to

  19. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels

    International Nuclear Information System (INIS)

    Konstantinou, Ioannis K.; Hela, Dimitra G.; Albanis, Triantafyllos A.

    2006-01-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far. - Information on pesticide pollution of surface waters in Greece is reviewed

  20. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  1. Seasonal variation and potential sources of Cryptosporidium contamination in surface waters of Chao Phraya River and Bang Pu Nature Reserve pier, Thailand.

    Science.gov (United States)

    Koompapong, Khuanchai; Sukthana, Yaowalark

    2012-07-01

    Using molecular techniques, a longitudinal study was conducted with the aims at identifying the seasonal difference of Cryptosporidium contamination in surface water as well as analyzing the potential sources based on species information. One hundred forty-four water samples were collected, 72 samples from the Chao Phraya River, Thailand, collected in the summer, rainy and cool seasons and 72 samples from sea water at Bang Pu Nature Reserve pier, collected before, during and after the presence of migratory seagulls. Total prevalence of Cryptosporidium contamination in river and sea water locations was 11% and 6%, respectively. The highest prevalence was observed at the end of rainy season continuing into the cool season in river water (29%) and in sea water (12%). During the rainy season, prevalence of Cryptosporidium was 4% in river and sea water samples, but none in summer season. All positive samples from the river was C. parvum, while C. meleagridis (1), and C. serpentis (1) were obtained from sea water. To the best of our knowledge, this is the first genetic study in Thailand of Cryptosporidium spp contamination in river and sea water locations and the first report of C. serpentis, suggesting that humans, household pets, farm animals, wildlife and migratory birds may be the potential sources of the parasites. The findings are of use for implementing preventive measures to reduce the transmission of cryptosporidiosis to both humans and animals.

  2. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  3. Surface-ground water interactions and hydrogeochemical evolution in a fluvio-deltaic setting: The case study of the Pinios River delta

    Science.gov (United States)

    Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Lazogiannis, Konstantinos; Botsou, Fotini; Dassenakis, Manos; Ghionis, George; Alexopoulos, John D.; Poulos, Serafim E.

    2018-06-01

    River deltas sustain important ecosystems with rich biodiversity and large biomass, as well as human populations via the availability of water and food sources. Anthropogenic activities, such as urbanization, tourism and agriculture, may pose threats to river deltas. The knowledge of the factors controlling the regional water quality regime in these areas is important for planning sustainable use and management of the water resources. Here, hydrochemical methods and multivariate statistical techniques were combined to investigate the shallow aquifer of the Pinios River (Thessaly) deltaic plain with respect to water quality, hydrogeochemical evolution and interactions between groundwater and surface water bodies. Water quality assessment indicated that most of the river and groundwater samples fully comply with the criteria set by the Drinking Water Directive (98/83/EC). The river is recharged mainly from springs of the Tempi valley and the shallow aquifer, and to a lesser degree from precipitation, throughout the year. The hydrogeochemical characteristics indicated a cation (Ca, Mg, and Na) bicarbonate water type, which evolves to calcium-chloride, sodium-bicarbonate and sodium-chloride water type, in the northern part of the delta. Calcite and dolomite dissolution determined the major ion chemistry, but other processes, such as silicate weathering and cation exchange reactions, also contributed. In the northern part of the plain, the interaction with the deeper aquifer enriched the shallow aquifer with Na and Cl ions. Principal Component Analysis showed that five components (PCs) explain 77% of the total variance of water quality parameters; these are: (1) salinity; (2) water-silicate rocks interaction; (3) hardness due to calcite dissolution, and cation exchange processes; (4) nitrogen pollution; and (5) non-N-related artificial fertilizers. This study demonstrated that the variation of water hydrochemistry in the deltaic plain could be attributed to natural and

  4. Spatial and temporal variability in the Quality of Surface water in a semi-arid mediterranean region (river orontes- Lebanon)

    International Nuclear Information System (INIS)

    SLIM, K.; SAAD, Z.; KAZPARD, V.; EL SAMAD, O.; NASREDDINE, M.

    2004-01-01

    The Orontes River is an international river, with its headwaters in Lebanon, its middle section in Syria and its mouth in Turkey. Fresh surface waters were sampled monthly during the year 2000 and analyzed for major ions and for trace metals. Sea-salt aerosols in rainwater partially influence the major ion composition in the river. The concentration of major cations and anions fall within the range of the most common natural Concentration of major ion assemblages established for world river(MCNC), with a cation and anion dominance in the order of Ca > Mg > Na> K and HCO3 > SO4 > Cl, which tend to be predominantly influenced by chemical weathering of rocks and minerals in a semi-arid region. Ca and HCO3 are mostly derived from the dissolution of carbonate rocks. The sources of SO4 could be attributed to anhydrite minerals and to anthropogenic impact from fertilizers. Increases in nutrient concentrations are attributed mainly to the increasing influence of agricultural runoff. δ18 0/ δH plots shows that the data either fits the Mediterranean Meteoric Water Line(MMWL) or have elevated values that indicate evaporative isotope enrichment in a semi-arid climate. The correlation matrix for trace elements shows a high coefficient of correlation for Fe, Zn and Cu indicating that these elements could be controlled by the same chemistry in water. The bicarbonate-alkaline type of Orontes surface water contribute to the formation of trace metals-carbonate complexes such as FeCO3(aq) and ZnCO3 (aq). The good correlation between Pb, Cd and Cr reflects the effect of increasing urbanization in the catchments. (author)

  5. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    Science.gov (United States)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  6. Effect of the Cedar River on the quality of the ground-water supply for Cedar Rapids, Iowa

    Science.gov (United States)

    Schulmeyer, P.M.

    1995-01-01

    The Surface Water Treatment Rule under the 1986 Amendment to the Safe Drinking Water Act requires that public-water supplies be evaluated for susceptibility to surface-water effects. The alluvial aquifer adjacent to the Cedar River is evaluated for biogenic material and monitored for selected water-quality properties and constituents to determine the effect of surface water on the water supply for the City of Cedar Rapids, Iowa. Results from monitoring of selected water-quality properties and constituents showed an inverse relation to river stage or discharge. Water-quality properties and constituents of the alluvial aquifer changed as water flowed from the river to the municipal well as a result of drawdown. The values of specific conductance, pH, temperature, and dissolved oxygen at observation well CRM-4 and municipal well Seminole 10 generally follow the trends of values for the Cedar River. Values at observation well CRM-3 and the municipal water-treatment plant showed very little correlation with values from the river. The traveltime of water through the aquifer could be an indication of the susceptibility of the alluvial aquifer to surface-water effects. Estimated traveltimes from the Cedar River to municipal well Seminole 10 ranged from 7 to 17 days.

  7. Residence times and mixing of water in river banks: implications for recharge and groundwater - surface water exchange

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-02-01

    The residence time of groundwater within 50 m of the Tambo River, South East Australia, has been estimated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River which implies a gaining river system and not increasing bank storage with proximity to the Tambo River. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 yr) groundwater from a semi-confined aquifer and younger groundwater (bank storage, as rapid pressure propagation into the semi-confined aquifer during flooding will minimise bank infiltration. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  8. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan

    2017-01-01

    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  9. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    Science.gov (United States)

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  10. Examples of Savannah River water dilution between the Savannah River Plant and the Beaufort-Jasper and Port Wentworth water-treatment plants

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1983-01-01

    A substantial dilution of the river water occurs between the Savannah River Plant (SRP) and the two treatment plants. This dilution results from inflow of surface and groundwater and from direct rainfall. The amount of dilution was estimated to be approximately 20% and 54% down to the Port Wentworth and Beaufort-Jasper plants, respectively

  11. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  12. Influence factors analysis of water environmental quality of main rivers in Tianjin

    Science.gov (United States)

    Li, Ran; Bao, Jingling; Zou, Di; Shi, Fang

    2018-01-01

    According to the evaluation results of the water environment quality of main rivers in Tianjin in 1986-2015, this paper analyzed the current situation of water environmental quality of main rivers in Tianjin retrospectively, established the index system and multiple factors analysis through selecting factors influencing the water environmental quality of main rivers from the economy, industry and nature aspects with the combination method of principal component analysis and linear regression. The results showed that water consumption, sewage discharge and water resources were the main factors influencing the pollution of main rivers. Therefore, optimizing the utilization of water resources, improving utilization efficiency and reducing effluent discharge are important measures to reduce the pollution of surface water environment.

  13. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  14. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  15. Traveltime and dispersion data, including associated discharge and water-surface elevation data, Kanawha River West Virginia, 1991

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents results of a study by the U.S. Geological Survey, in cooperation with the Virginia Environmental Endowment, Marshall University Research Corporation, and the West Virginia Depart- ment of Environmental Protection, to evaluate traveltime of a soluble dye on the Kanawha River. The Kanawha River originates in south-central West Virginia and flows northwestward to the Ohio River. Knowledge of traveltime and dispersion of a soluble dye could help river managers mitigate effects of an accidental spill. Traveltime and dispersion data were collected from June 20 through July 4, 1991, when river discharges decreased from June 24 through July 3, 1991. Daily mean discharges decreased from 5,540 ft 3/s on June 24 to 2,790 ft3/s on July 2 at Kanawha Falls and from 5,680 ft3/s on June 24 to 3,000 ft3/s on July 2 at Charleston. Water-surface elevations in regulated pools indicated a loss of water storage during the period. A spill at Gauley Bridge under similar streamflow conditions of this study is estimated to take 15 days to move beyond Winfield Dam. Estimated time of passage (elapsed time at a particular location) at Marmet Dam and Winfield Dam is approximately 2.5 days and 5.5 days, respectively. The spill is estimated to spend 12 days in the Winfield pool.

  16. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  17. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  18. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    Science.gov (United States)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  19. A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System

    Directory of Open Access Journals (Sweden)

    David J. Beale

    2017-03-01

    Full Text Available A multi-omics approach was applied to an urban river system (the Brisbane River (BR, Queensland, Australia in order to investigate surface water quality and characterize the bacterial population with respect to water contaminants. To do this, bacterial metagenomic amplicon-sequencing using Illumina next-generation sequencing (NGS of the V5–V6 hypervariable regions of the 16S rRNA gene and untargeted community metabolomics using gas chromatography coupled with mass spectrometry (GC-MS were utilized. The multi-omics data, in combination with fecal indicator bacteria (FIB counts, trace metal concentrations (by inductively coupled plasma mass spectrometry (ICP-MS and in-situ water quality measurements collected from various locations along the BR were then used to assess the health of the river ecosystem. Sites sampled represented the transition from less affected (upstream to polluted (downstream environments along the BR. Chemometric analysis of the combined datasets indicated a clear separation between the sampled environments. Burkholderiales and Cyanobacteria were common key factors for differentiation of pristine waters. Increased sugar alcohol and short-chain fatty acid production was observed by Actinomycetales and Rhodospirillaceae that are known to form biofilms in urban polluted and brackish waters. Results from this study indicate that a multi-omics approach enables a deep understanding of the health of an aquatic ecosystem, providing insight into the bacterial diversity present and the metabolic output of the population when exposed to environmental contaminants.

  20. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  2. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: impacts of geomorphological parameters and river flow representation

    Science.gov (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, L. Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-03-01

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes. This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that

  3. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  4. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  5. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  6. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    Science.gov (United States)

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  7. Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil.

    Science.gov (United States)

    Medeiros, Adaelson Campelo; Faial, Kleber Raimundo Freitas; do Carmo Freitas Faial, Kelson; da Silva Lopes, Iris Danielly; de Oliveira Lima, Marcelo; Guimarães, Raphael Mendonça; Mendonça, Neyson Martins

    2017-10-15

    In this study was to evaluate the waters quality of the Murucupi River, located in urban agglomerate area and intense industrial activity in Barcarena City, Pará State. The Arapiranga River in Abaetetuba City was used as control area (Background), next to Barcarena. Was used the Water Quality Index (WQI) based on nine variables analized. Waters quality of the Arapiranga and Murucupi rivers were regular to good and bad to good, respectively. Anthropogenic influence on the Murucupi River was higher, mainly by the disposal of domestic effluents from the urban agglomerate and of the industrial waste tailing basins upstream of this river. Due to its less inhabited environment and further away from the area urban and industrial, the Arapiranga River was more preserved. Waters pollution of around these area is increasingly intense, and restricted its uses for various purposes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Surface water quality and deforestation of the Purus river basin, Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio Ríos-Villamizar

    2016-12-01

    Full Text Available Abstract In the last years, deforestation constitutes a threat for the aquatic ecosystems. This paper aims to characterize the water quality of the Purus river in the Brazilian Amazon, and investigate the relations between water quality and deforestation of the Purus river basin over a 9-year period, as well as to quantify the Purus river basin’s land cover changes (% in a 5-year period. Sampling data from upstream to downstream show a decrease in pH-value, dissolved oxygen, electrical conductivity, and total suspended solids. Correlation analysis revealed a significant negative correlation of the accumulated total deforestation values (km2 with the pH-value (in all the study sites, and a significant positive correlation with temperature (only in two sites. However, the deforestation rates (km2/year did not present, in none of the study stations, any significant correlation with water quality parameters. It seems that the effects of deforestation on water quality are related not with the rate but with the total area deforested. It was estimated that the basin’s forested area decreased by 5.17%. Since similar attributes are common in other basins of the whitewater systems of the Brazilian Amazon, this results may be seen as a warning on the effects of deforestation on water quality (reduction in pH and increment in temperature values, in larger areas than those of our study sites. To maintain the conservation and preservation status of the Purus river basin, it is necessary, the implementation of a transboundary watershed management program that could serve as a conservation model for Brazil and other countries of the Amazonian region.

  9. St. Louis River water quality assessment 2012, 2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — St. Louis River Area of Concern surface water nutrient (TP, TN, NOx-N, NH4-N), dissolved oxygen, and particulate (TSS, chlorophyll a) concentration data from 2012...

  10. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  11. The spatial geochemical characteristics of groundwater and surface in the Tuul River basin, Ulaanbatar, Mongolia

    Science.gov (United States)

    Batdelger, Odsuren; Tsujimura, Maki; Zorigt, Byambasuren; Togtokh, Enkhjargal

    2017-04-01

    The capital city, Ulaanbaatar, is located along the Tuul River and its water supply totally dependent on the groundwater, which comes from the aquifer of the Tuul River. Due to the rapid growth of the population and the increasing human pressures in this basin, water quality has been deteriorating and has become a crucial issue for sustainable environmental and socio-economic development. Hydro-chemical and stable isotope tracing approaches were applied into the groundwater and surface water in order to study geochemical characteristics and groundwater and surface water interaction. The Tuul River water was mostly characterized by the Ca-HCO3 type, spatially variable and it changed into Ca-Na-HCO3 type in the downstream of the city after wastewater (WW) meets the river. Also, electrical conductivity (EC) values of Tuul River are increasing gradually with distance and it increased more than 2 times after WW meets the stream, therefore anthropogenic activities influence to the downstream of the river. The dominant hydro-chemical facies of groundwater were the Ca-HCO3 type, which represents 83% of the total analyzed samples, while Ca- HCO3-Cl-NO3, Na-HCO3, Ca-HCO3-SO4 each represent 4%, and Ca-mixed and Ca-Mg-HCO3 each represent 2% of the total samples. This suggests that groundwater chemistry is controlled by rock-water interaction and anthropogenic pollution. The floodplain groundwater chemical characteristics were similar to Tuul River water and showing lowest EC values. Groundwater far from floodplain showed higher EC (mean value of 498 μs/cm) values than river waters and floodplain groundwater. Also, different kinds of hydro-chemical facies were observed. The stable isotopic compositions revealed less evaporation effect on the groundwater and surface water, as well as an altitude effect in the river water. The similarity of stable isotopes and chemical characteristics of floodplain groundwater and river water suggests that alluvial groundwater is recharged by

  12. Water withdrawals, wastewater discharge, and water consumption in the Apalachicola-Chattahoochee-Flint River Basin, 2005, and water-use trends, 1970-2005

    Science.gov (United States)

    Marella, Richard L.; Fanning, Julia L.

    2011-01-01

    The Apalachicola-Chattahoochee-Flint (ACF) River Basin covers about 20,500 square miles that drains parts of Alabama, Florida, and Georgia. The basin extends from its headwaters northern Georgia to the Gulf of Mexico. Population in the basin was estimated to be 3.7 million in 2005, an increase of about 41 percent from the 1990 population of 2.6 million. In 2005, slightly more than 721,000 acres of crops were irrigated within the basin. In 2005, the total amount of water withdrawn in the ACF River Basin was about 1,990 million gallons per day (Mgal/d). Of this, surface water accounted for 1,591 Mgal/d (80 percent) and groundwater accounted for 399 Mgal/d (20 percent). Surface water was the primary water source of withdrawals in the northern and central parts of the basin, and groundwater was the primary source in the southern part. The largest surface-water withdrawals was from Cobb County, Georgia (410 Mgal/d, mostly from the Chattahoochee River and Lake Alatoona), and the largest groundwater withdrawals was from Dougherty County, Georgia (38 Mgal/d, mostly from the Upper Floridan aquifer system).

  13. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  14. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  15. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    Science.gov (United States)

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  16. Geology, Hydrology, and Water Quality of the Little Blackwater River Watershed, Dorchester County, Maryland, 2006-09

    Science.gov (United States)

    Fleming, Brandon J.; DeJong, Benjamin D.; Phelan, Daniel J.

    2011-01-01

    The Little Blackwater River watershed is a low-lying tidal watershed in Dorchester County, Maryland. The potential exists for increased residential development in a mostly agricultural watershed that drains into the Blackwater National Wildlife Refuge. Groundwater and surface-water levels were collected along with water-quality samples to document hydrologic and geochemical conditions within the watershed prior to potential land-use changes. Lithologic logs were collected in the Little Blackwater River watershed and interpreted with existing geophysical logs to conceptualize the shallow groundwater-flow system. A shallow water table exists in much of the watershed as shown by sediment cores and surface geophysical surveys. Water-table wells have seasonal variations of 6 feet, with the lowest water levels occurring in September and October. Seasonally low water-table levels are lower than the stage of the Little Blackwater River, creating the potential for surface-water infiltration into the water table. Two stream gages, each equipped with stage, velocity, specific conductance, and temperature sensors, were installed at the approximate mid-point of the watershed and near the mouth of the Little Blackwater River. The gages recorded data continuously and also were equipped with telemetry. Discharge calculated at the mouth of the Little Blackwater River showed a seasonal pattern, with net positive discharge in the winter and spring months and net negative discharge (flow into the watershed from Blackwater National Wildlife Refuge and Fishing Bay) in the summer and fall months. Continuous water-quality records showed an increase in specific conductance during the summer and fall months. Discrete water-quality samples were collected during 2007--08 from 13 of 15 monitoring wells and during 2006--09 from 9 surface-water sites to characterize pre-development conditions and the seasonal variability of inorganic constituents and nutrients. The highest mean values of

  17. Influence of a water regulation event on the age of Yellow River water in the Bohai

    Science.gov (United States)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  18. MECHANISMS CONTROLLING SURFACE WATER QUALITY IN THE COBRAS RIVER SUB-BASIN, NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    ALEXANDRE DE OLIVEIRA LIMA

    2017-01-01

    Full Text Available Stream water quality is dependent on many factors, including the source and quantity of the streamflow and the types of geology and soil along the path of the stream. This study aims to evaluate the origin and the mechanisms controlling the input of ions that effect surface water quality in the sub-basin of the Rio das Cobras, Rio Grande do Norte state, Northeastern Brazil. Thirteen ponds were identified for study: three in the main river and ten in the tributaries between, thus covering the whole area and lithology of the sub-basin. The samples were collected at two different times (late dry and rainy periods in the hydrological years 2009 and 2010, equating to total of four collection times. We analyzed the spatial and seasonal behavior of water quality in the sub-basin, using Piper diagrams, and analyzed the source of the ions using Guibbs diagram and molar ratios. With respect to ions, we found that water predominate in 82% sodium and 76% bicarbonate water (cations and anions, respectively. The main salinity control mechanism was related to the interaction of the colloidal particles (minerals and organic sediment with the ions dissolved in water. Based on the analysis of nitrates and nitrites there was no evidence of contamination from anthropogenic sources.

  19. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  20. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    International Nuclear Information System (INIS)

    Haron, S. H.; Ismail, B. S.

    2015-01-01

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from May to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively

  1. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. H., E-mail: ismail@ukm.edu.my; Ismail, B. S., E-mail: sthumaira@yahoo.com [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM, Bangi, Selangor (Malaysia)

    2015-09-25

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from May to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively.

  2. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  3. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China

    International Nuclear Information System (INIS)

    Zhao, Shengnan; Liu, Xinhui; Cheng, Dengmiao; Liu, Guannan; Liang, Baocui; Cui, Baoshan; Bai, Junhong

    2016-01-01

    As special zones, the intertidal zones of the Yellow River Delta (YRD) are highly variable along with time and space. Fluvial–marine and land–ocean interactions which frequently occur in these areas have a great impact on the fate of pollutants. Antibiotics, which contribute to antibiotic-resistant genes (ARGs), are widely detected in wastewater, natural water, soil, sediments, and even drinking water. Therefore, it is meaningful to investigate the occurrence and fate of antibiotics in these special zones. In this study, eight antibiotics belonging to tetracyclines (TCs), fluoroquinolones (FQs), and macrolides (MLs) were detected in the surface water and sediments from the intertidal zones of YRD during two seasons. Two models were established to predict the partitioning coefficients of norfloxacin (NOR) and erythromycin (ETM) using physicochemical properties of sediments, respectively. The total concentrations of these antibiotics were 82.94–230.96 ng·L"− "1 and 40.97–207.44 ng·g"− "1, respectively, in the surface water and sediments. Seasonal variation was mainly influenced by the frequency of antibiotics use and environment factors. The regions with river supply exhibited the highest concentrations of antibiotics in surface water and sediments. Meanwhile, particle-size fractions, cation exchange capability (CEC), and metal ions content played dominant roles in the partitioning behaviors of NOR and ETM between the surface water and sediments. Both models established in this study featured accuracy and feasibility, which provided the methods for predicting the partitioning coefficients of emerging contaminants similar in structures to NOR and ETM in the intertidal zones. - Highlights: • The intertidal zones of YRD were polluted by antibiotics to some extent. • The river supply was a major pathway for the antibiotic pollution of the intertidal zones of YRD. • The partitioning coefficients of NOR and ETM can be predicted using the physicochemical

  4. Reproductive toxicity assessment of surface water of the Tai section of the Yangtze River, China by in vitro bioassays coupled with chemical analysis

    International Nuclear Information System (INIS)

    Wang Xiaoyi; Wu Jiang; Hao Yingqun; Zhu Bingqing; Shi Wei; Hu Guanjiu; Han Xiaodong; Giesy, John P.; Yu Hongxia

    2011-01-01

    Reproductive toxicity of organic extracts of the surface water from the Tai section of the Yangtze River was assessed by in vitro cytotoxity assays and selected persistent organic pollutants including PCBs, OCPs and PAHs were quantified by instrumental analysis. Eleven of the US EPA priority PAHs were detected. Individual PAHs were found to range from 0.7 to 20 ng/L. Concentrations of BaP did not exceed the national drinking water source quality standard of China. However, a 286-fold concentrated organic extract induced significant reproductive toxicity in adult male rats. The morphology of cells, MTT assay and LDH release assay were all affected by exposure to the organic extracts of water. The results of the reproductive toxicity indicated that PAHs posed the greatest risk of the chemicals studied. The compounds present in the water could be bioconcentrated and result in adverse effects. - Highlights: → Only 11 PAHs of US EPA priority PAHs were detected in surface water the Yangtze River. → Level of BaP didn't exceed national drinking water source quality standard of China. → 286-fold concentrated organic extracts induced great reproductive toxicity in rats. → PAHs posed the greatest risk of the chemicals studied. → The compounds in the water could be bioconcentrated and result in adverse effects. - In vitro bioassay responses observed in Yangtze River source water extracts showed great reproductive toxicity, and PAHs were responsible.

  5. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  6. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  7. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  8. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  9. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  10. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  11. Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jorge L., E-mail: jlmarti@ig.com.br [Queensland University of Technology, Brisbane (Australia); Raiber, Matthias [CSIRO Land and Water Flagship, Brisbane (Australia); Cox, Malcolm E. [Queensland University of Technology, Brisbane (Australia)

    2015-12-01

    A spatial analysis of hydrochemical data of groundwater and surface water was undertaken to identify groundwater-surface water connectivity in the headwaters of the Condamine River catchment, Southeast Queensland, Australia. An assessment of long-term hydrochemical and water level data supplemented by stable- and radioisotope measurements following a prolonged dry period dominated by baseflow, helped in determining patterns of interaction in different tributaries of the upper Condamine catchment. A conceptual hydrological model representing the major hydrochemical processes and their implications for stream-aquifer connectivity was developed and tested using multiple lines of evidence. The results of a multivariate statistical analysis highlight that there are two main regions with distinct hydrochemical facies (salinity, alkalinity, and predominant ions) in surface water. Geomorphology, geology, anthropogenic and climate influence were identified as the most relevant controlling factors of the spatial variability in water quality. Stable isotope data confirmed a clear evaporation trend in almost all surface water samples during baseflow conditions. Two water types can be identified and separated by the degree of evaporation and the proximity of one group to the local meteoric water line. The results confirm the discharge of groundwater from aquifers recharged by rainfall and located upstream of the surface water sampling sites. Overall, {sup 222}Rn data show a trend of increased activity in surface water towards the upstream portions of these tributaries, validating the use of this tracer to estimate groundwater input to the local creeks. The proportion of groundwater contribution to stream flow calculated by {sup 222}Rn and chloride mass balance is in agreement, and ranges between 20–70% in tributaries in the northern areas, and between 8–50% in the upper reaches of the main river channel. This study shows the efficacy of an integrated approach combining long

  12. Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Martinez, Jorge L.; Raiber, Matthias; Cox, Malcolm E.

    2015-01-01

    A spatial analysis of hydrochemical data of groundwater and surface water was undertaken to identify groundwater-surface water connectivity in the headwaters of the Condamine River catchment, Southeast Queensland, Australia. An assessment of long-term hydrochemical and water level data supplemented by stable- and radioisotope measurements following a prolonged dry period dominated by baseflow, helped in determining patterns of interaction in different tributaries of the upper Condamine catchment. A conceptual hydrological model representing the major hydrochemical processes and their implications for stream-aquifer connectivity was developed and tested using multiple lines of evidence. The results of a multivariate statistical analysis highlight that there are two main regions with distinct hydrochemical facies (salinity, alkalinity, and predominant ions) in surface water. Geomorphology, geology, anthropogenic and climate influence were identified as the most relevant controlling factors of the spatial variability in water quality. Stable isotope data confirmed a clear evaporation trend in almost all surface water samples during baseflow conditions. Two water types can be identified and separated by the degree of evaporation and the proximity of one group to the local meteoric water line. The results confirm the discharge of groundwater from aquifers recharged by rainfall and located upstream of the surface water sampling sites. Overall, 222 Rn data show a trend of increased activity in surface water towards the upstream portions of these tributaries, validating the use of this tracer to estimate groundwater input to the local creeks. The proportion of groundwater contribution to stream flow calculated by 222 Rn and chloride mass balance is in agreement, and ranges between 20–70% in tributaries in the northern areas, and between 8–50% in the upper reaches of the main river channel. This study shows the efficacy of an integrated approach combining long

  13. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  14. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  15. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  16. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    Science.gov (United States)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  17. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  18. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  19. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  20. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  1. Identification of anthropogenic influences on water quality of rivers in Taihu watershed

    NARCIS (Netherlands)

    Wang, X.L.; Lu, Y.L.; Han, Jingyi; He, G.Z.; Wang, T.Y.

    2007-01-01

    Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface

  2. Effect of abattoir wastes on the water quality of Aleto River in the ...

    African Journals Online (AJOL)

    The effects of abattoir effluent on the water quality parameters, pH, dissolved oxygen, nitrate (NO3), phosphate (PO4), sulphate (SO4), hardness, conductivity, faecal coliform and the biochemical oxygen demand (BOD), of the receiving surface water of Aleto River in River State (Niger Delta, Nigeria) was monitored monthly ...

  3. Water reuse in river basins with multiple users : A literature review

    NARCIS (Netherlands)

    Simons, G. W H (Gijs); Bastiaanssen, W. G M (Wim); Immerzeel, W. W (Walter)

    2015-01-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface

  4. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  5. Analysis of Surface Water Pollution in the Kinta River Using Multivariate Technique

    International Nuclear Information System (INIS)

    Hamza Ahmad Isiyaka; Hafizan Juahir

    2015-01-01

    This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76 % in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41 % of the total pollution load is from rock weathering and untreated waste water, 26 % from waste discharge, 24 % from surface runoff and 7 % from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics. (author)

  6. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  7. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes.

    Science.gov (United States)

    Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim

    2010-10-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.

  8. UMTRA water sampling and analysis plan, Green River, Utah

    International Nuclear Information System (INIS)

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations

  9. Modeling Surface Water Dynamics in the Amazon Basin Using Mosart-Inundation-v1.0: Impacts of Geomorphological Parameters and River Flow Representation

    Science.gov (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-01-01

    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for 15 large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel 20 varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 25 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients

  10. Data Assimilation of AirSWOT and Synthetically Derived SWOT Observations of Water Surface Elevation in a Multichannel River

    Science.gov (United States)

    Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.

    2017-12-01

    Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.

  11. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  12. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  13. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; results of investigations, 1987-90

    Science.gov (United States)

    Helgesen, J.O.

    1995-01-01

    Surface-water-quality conditions and trends were assessed in the lower Kansas River Basin, which drains about 15,300 square miles of mainly agricultural land in southeast Nebraska and northeast Kansas. On the basis of established water-quality criteria, most streams in the basin were suitable for uses such as public-water supply, irrigation, and maintenance of aquatic life. However, most concerns identified from a previous analysis of available data through 1986 are substantiated by analysis of data for May 1987 through April 1990. Less-than-normal precipitation and runoff during 1987-90 affected surface-water quality and are important factors in the interpretation of results.Dissolved-solids concentrations in the main stem Kansas River during May 1987 through April 1990 commonly exceeded 500 milligrams per liter, which may be of concern for public-water supplies and for the irrigation of sensitive crops. Large concentrations of chloride in the Kansas River are derived from ground water discharging in the Smoky Hill River Basin west of the study unit. Trends of increasing concentrations of some dissolved major ions were statistically significant in the northwestern part of the study unit, which could reflect substantial increases in irrigated acreage.The largest concentrations of suspended sediment in streams during May 1987 through April 1990 were associated with high-density cropland in areas of little local relief and medium-density irrigated cropland in more dissected areas. The smallest concentrations were measured downstream from large reservoirs and in streams draining areas having little or no row-crop cultivation. Mean annual suspended-sediment transport rates in the main stem Kansas River increased substantially in the downstream direction. No conclusions could be reached concerning the relations of suspended-sediment transport, yields, or trends to natural and human factors.The largest sources of nitrogen and phosphorus in the study unit were fertilizer

  14. EU-wide survey of polar organic persistent pollutants in European river waters

    International Nuclear Information System (INIS)

    Loos, Robert; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni

    2009-01-01

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE 1 C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants

  15. EU-wide survey of polar organic persistent pollutants in European river waters

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Robert [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)], E-mail: robert.loos@jrc.it; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)

    2009-02-15

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE{sub 1}C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

  16. Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

    Science.gov (United States)

    Zhang, Y.; Xie, H.

    2015-11-01

    Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with

  17. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    upper Lake Quinsigamond, upper West River, and Stone Brook aquifers are capable of sustaining withdrawals of at least 1 million gallons per day more than their rates in the mid-1980s. The upper Mill River and Auburn aquifers are not capable of sustaining additional withdrawals of 0.25 million gallons per day. Ground-water quality in the Auburn aquifer has been degraded by activities and contaminants associated with urbanization.A nearly continuous deposit of stratified drift almost 30 miles long and from 400 feet to more than 1 mile wide occupies lowland areas along the southeastern part of the Blackstone River. These deposits were divided into four aquifers ranging in areal extent from 1.8 to 3.5 square miles. These aquifers have maximum saturated thicknesses ranging from 54 to 170 feet and maximum transmissivities ranging from less than 1,500 to more than 20,000 feet squared per day. The Blackstone River receives substantial amounts of treated municipal wastewater. Infiltration of poor-quality surface water has significantly increased the specific conductance and the concentrations of all major ions, ammonia, iron, and manganese in the water pumped from at least two wells near the river. These wells derive about 41 and 48 percent of their yield from infiltrated surface water. At both sites, aquifer heterogeneity controlled the movement of infiltrated water to the wells. At one of these sites, where the flow of infiltrated water was tracked (by use of a digital model) in three dimensions, infiltrated water moved to the well through gravel layers that did not constitute the entire thickness of the aquifer. Changes in stream discharge that resulted in changes in surface-water quality also affected the quality of ground water at that site. The western part of the Blackstone River Basin contains the smallest aquifers evaluated in the study area. Six aquifers, ranging in areal extent from 0.05 to 1.3 square miles, were identified. The hydraulic properties of most of these

  18. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  19. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shengnan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Liu, Xinhui, E-mail: xhliu@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Cheng, Dengmiao [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081 (China); Liu, Guannan [MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037 (China); Liang, Baocui; Cui, Baoshan; Bai, Junhong [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2016-11-01

    As special zones, the intertidal zones of the Yellow River Delta (YRD) are highly variable along with time and space. Fluvial–marine and land–ocean interactions which frequently occur in these areas have a great impact on the fate of pollutants. Antibiotics, which contribute to antibiotic-resistant genes (ARGs), are widely detected in wastewater, natural water, soil, sediments, and even drinking water. Therefore, it is meaningful to investigate the occurrence and fate of antibiotics in these special zones. In this study, eight antibiotics belonging to tetracyclines (TCs), fluoroquinolones (FQs), and macrolides (MLs) were detected in the surface water and sediments from the intertidal zones of YRD during two seasons. Two models were established to predict the partitioning coefficients of norfloxacin (NOR) and erythromycin (ETM) using physicochemical properties of sediments, respectively. The total concentrations of these antibiotics were 82.94–230.96 ng·L{sup −} {sup 1} and 40.97–207.44 ng·g{sup −} {sup 1}, respectively, in the surface water and sediments. Seasonal variation was mainly influenced by the frequency of antibiotics use and environment factors. The regions with river supply exhibited the highest concentrations of antibiotics in surface water and sediments. Meanwhile, particle-size fractions, cation exchange capability (CEC), and metal ions content played dominant roles in the partitioning behaviors of NOR and ETM between the surface water and sediments. Both models established in this study featured accuracy and feasibility, which provided the methods for predicting the partitioning coefficients of emerging contaminants similar in structures to NOR and ETM in the intertidal zones. - Highlights: • The intertidal zones of YRD were polluted by antibiotics to some extent. • The river supply was a major pathway for the antibiotic pollution of the intertidal zones of YRD. • The partitioning coefficients of NOR and ETM can be predicted using

  20. Surface-water hydrology of the Little Black River basin, Missouri and Arkansas, before water-land improvement practices

    Science.gov (United States)

    Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.

    1987-01-01

    The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons

  1. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Roy, Debasri; Goswami, A.B.; Bose, Balaram

    2004-01-01

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  2. Quantifying Changes in Accessible Water in the Colorado River Basin

    Science.gov (United States)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  3. IDENTIFICATION OF DANGER ZONES FOR SURFACE WATER USING GIS (SIP – MAPINFO SYSTEM ON AN EXAMPLE OF UPPER NAREW RIVER CATCHMENT

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-07-01

    Full Text Available Creating the buffer zones is a function intended to designate an area in particular, of a constant distance around the spatial objects. The aim of the study was to create maps as thematic layers, which served to identify areas of existing and potential contamination of surface water and other environmental elements. Among others, it made possible to localize the areas potentially affected by the surface water pollution due to transport; localize the areas potentially affected by the surface water pollution due to the discharge of sewage from human settlements; localize the zones with mitigated impact of communication emissions due to the natural protection of forests taking the form of so-called geochemical barriers. The spatial analyzes allowed to generate model-zones of the existing and potential threat of water pollution in the Narew river catchment. Designated danger zones can be verified by studies as well as they can be very helpful in determining the monitoring network and for water quality modeling process.

  4. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  5. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia

    Science.gov (United States)

    Urushadze, Teo

    2018-01-01

    Water quality contamination by heavy metal pollution has severe effects on public health. In the Mashavera River Basin, an important agricultural area for the national food system in Georgia (e.g., vegetable, dairy and wine production), water contamination has multiple influences on the regional and country-wide health. With new industrial activities in the region, sediment extraction, and discharge of untreated wastewater into the river, its tributaries and irrigation canals, a comprehensive study of water quality was greatly needed. This study examined sediment and water samples from 17 sampling sites in the Mashavera River Basin during the high and low precipitation seasons. The results were characterized utilizing the Geo-accumulation Index (Igeo), Enrichment Factor (EF), Pollution Load index (PLI), Contamination Factor (CF) and Metal Index (MI). According to the CFs, Cu > Cd > Zn > Pb > Fe > Mn > Ni > Cr > Hg is the descending order for the content of all observed heavy metals in sediments collected in both seasons. Fe and As were additionally examined in water samples. Overall, As, Cd and Pb, all highly toxic elements, were found in high concentrations in downstream sample sites. According to these results, comprehensive monitoring with narrow intervals between sampling dates, more sample sites along all waterways, and proximate observation of multiple trace metal elements are highly recommended. Moreover, as the part of the water quality governance system, an immediate and sustainable collective action by all stakeholders to control the pollution level is highly recommended, as this issue is linked to the security of the national food system and poses a local public health risk. PMID:29597320

  6. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Science.gov (United States)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  7. Estimating River Surface Elevation From ArcticDEM

    Science.gov (United States)

    Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.

    2018-04-01

    ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.

  8. Water balance versus land surface model in the simulation of Rhine river discharges

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Moel, de H.; Aerts, J.C.J.H.; Troch, P.A.

    2008-01-01

    Accurate streamflow simulations in large river basins are crucial to predict timing and magnitude of floods and droughts and to assess the hydrological impacts of climate change. Water balance models have been used frequently for these purposes. Compared to water balance models, however, land

  9. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  10. A conceptual model for groundwater - surface water interactions in the Darling River Floodplain, N.S.W., Australia

    Science.gov (United States)

    Brodie, R. S.; Lawrie, K.; Somerville, P.; Hostetler, S.; Magee, J.; Tan, K. P.; Clarke, J.

    2013-12-01

    Multiple lines of evidence were used to develop a conceptual model for interaction between the Darling River and associated floodplain aquifers in western New South Wales, Australia. Hydrostratigraphy and groundwater salinities were mapped using airborne electromagnetics (AEM), validated by sonic-core drilling. The AEM was highly effective in mapping groundwater freshening due to river leakage in discrete zones along the river corridor. These fresh resources occurred in both the unconfined Quaternary aquifers and the underlying, largely semi-confined Pliocene aquifers. The AEM was also fundamental to mapping the Blanchetown Clay aquitard which separates these two aquifer systems. Major-ion chemistry highlighted a mixing signature between river waters and groundwaters in both the Quaternary and Pliocene aquifers. Stable isotope data indicates that recharge to the key Pliocene aquifers is episodic and linked to high-flow flood events rather than river leakage being continuous. This was also evident when groundwater chemistry was compared with river chemistry under different flow conditions. Mapping of borehole levels showed groundwater mounding near the river, emphasising the regional significance of losing river conditions for both aquifer systems. Critically, rapid and significant groundwater level responses were measured during large flood events. In the Pliocene aquifers, continuation of rising trends after the flood peak receded confirms that this is an actual recharge response rather than hydraulic loading. The flow dependency of river leakage can be explained by the presence of mud veneers and mineral precipitates along the Darling River channel bank when river flows are low. During low flow conditions these act as impediments to river leakage. During floods, high flow velocities scour these deposits, revealing lateral-accretion surfaces in the shallow scroll plain sediments. This scouring allows lateral bank recharge to the shallow aquifer. During flood

  11. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  12. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  13. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  14. Analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

    International Nuclear Information System (INIS)

    Kutnik, P.

    2004-01-01

    In this presentation author deals with the analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

  15. The environmental cost of a reference withdrawal from surface waters: Definition and geography

    Science.gov (United States)

    Soligno, Irene; Ridolfi, Luca; Laio, Francesco

    2017-12-01

    World freshwater ecosystems are significantly deteriorating at a faster rate than other ecosystems. Water withdrawals are recognized as one of the main drivers of growing water stress in river basins worldwide. Over the years, much effort has been devoted to quantify water withdrawals at a global scale; however, comparisons are not simple because the uneven spatiotemporal distribution of surface water resources entails that the same amount of consumed water does not have the same environmental cost in different times or places. In order to account for this spatiotemporal heterogeneity, this work proposes a novel index to assess the environmental cost of a withdrawal from a generic river section. The index depends on (i) the environmental relevance of the impacted fluvial ecosystem (e.g., bed-load transport capacity, width of the riparian belt, biodiversity richness) and (ii) the downstream river network affected by the water withdrawal. The environmental cost has been estimated in each and every river section worldwide considering a reference withdrawal. Being referred to a unitary reference withdrawal that can occur in any river section worldwide, our results can be suitably arranged for describing any scenario of surface water consumption (i.e., as the superposition of the actual pattern of withdrawals). The index aims to support the interpretation of the volumetric measure of surface water withdrawal with a perspective that takes into account the fluvial system where the withdrawal actually occurs. The application of the index highlights the river regions where withdrawals can cause higher environmental costs, with the challenge of weighting each water withdrawal considering the responsibilities that it has on downstream freshwater ecosystems.

  16. Characterizing water surface elevation under different flow conditions for the upcoming SWOT mission

    Science.gov (United States)

    Domeneghetti, A.; Schumann, G. J.-P.; Frasson, R. P. M.; Wei, R.; Pavelsky, T. M.; Castellarin, A.; Brath, A.; Durand, M. T.

    2018-06-01

    The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. Even though the scientific literature has highlighted several fields of application for the expected products, detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in the literature. Understanding the error of the most fundamental "raw" SWOT hydrology product is important in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This study focuses on a reach (∼140 km in length) of the middle-lower portion of the Po River, in Northern Italy, and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100 to 500 m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the spatial observations potentially provided by SWOT. We evaluate SWOT performance under different hydraulic conditions and assess possible effects of river embankments, river width, river topography and distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which receives minimal processing, the present study highlights the promising potential of this Ka-band interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21

  17. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  18. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  19. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  20. Impacts of lake water environmental condition on bioavailable-phosphorus of surface sediments in Lixia River basin, China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-05-01

    Full Text Available Bioavailable-phosphorus (BAP fractions of the lake surface sediments (the upper 0−5cm depth and environmental indicators of the related lake water column were investigated in five lakes in Lixia River basin during three seasons in order to evaluate the impacts of environmental indicators of the water column on the BAP fractions of surface sediments. The concentration of BAP varied significantly in different seasons. Factor analysis was used to identify the factors which influence sedimentary BAP significantly in the different seasons. The results showed that AAP and Olsen-P were significantly affected by the chemical oxygen demand through the bacterial activity in summer. The high intensity of bacterial activity and density of algae, and low concentrations of NO3-N and dissolved oxygen under high temperature enhanced the BAP released from anaerobic sediment and significantly contributed to the eutrophication of the lake, especially in summer. In addition, macrophyte roots were beneficial to absorption of AAP and Olsen-P.

  1. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Dailey, Kelsey R.; Welch, Kathleen A.; Lyons, W. Berry

    2014-01-01

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl − and Na + data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl − and Na + showed increased concentration and flux downstream near urban areas. • Cl − /Br − mass ratios in waters suggest the origin of Cl − is in part from road salt. • 36 Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl − ) and sodium (Na + ), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl − and Na + concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl − /Br − ) ratios and nitrate (N-NO 3 − ) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl − and Na + concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na + were slightly lower than respective Cl − concentrations (in equivalents). High Cl − /Br − mass ratios in the Ohio surface waters indicated the source of Cl − was likely halite, or road salt. In addition, analysis of 36 Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl − into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl − and Na + concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in

  2. The derivation of water quality criteria of copper in Biliu River

    Science.gov (United States)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  3. Chemometric Analysis of Selected Organic Contaminants in Surface Water of Langat River Basin

    International Nuclear Information System (INIS)

    Mohamad Rafaie Mohamed Zubir; Rozita Osman; Norashikin Saim

    2016-01-01

    Chemometric techniques namely hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA) were applied to the distribution of selected organic contaminants (polycyclic aromatic hydrocarbons (PAHs), sterols, pesticides (chloropyrifos), and phenol) to assess the potential of using these organic contaminants as chemical markers in Langat River Basin. Water samples were collected from February 2012 to January 2013 on a monthly basis for nine monitoring sites along Langat River Basin. HACA was able to classify the sampling sites into three clusters which can be correlated to the level of contamination (low, moderate and high contamination sites). DA was used to discriminate the sources of contamination using the selected organic contaminants and relate to the existing DOE local activities groupings. Forward and backward stepwise DA was able to discriminate two and five organic contaminants variables, respectively, from the original 13 selected variables. The five significant variables identified using backward stepwise DA were fluorene, pyrene, stigmastanol, stigmasterol and phenol. PCA and FA (varimax functionality) were used to identify the possible sources of each organic contaminant based on the inventory of local activities. Five principal components were obtained with 66.5 % of the total variation. Result from FA indicated that PAHs (pyrene, fluorene, acenaphthene, benzo[a]anthracene) originated from industrial activity and socio-economic activities; while sterols (coprostanol, stigmastanol and stigmasterol) were associated to domestic sewage and local socio-economic activities. The occurrence of chloropyrifos was correlated to agricultural activities, urban and domestic discharges. This study showed that the application of chemometrics on the distribution of selected organic contaminants was able to trace the sources of contamination in surface water. (author)

  4. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    Science.gov (United States)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the

  5. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    Science.gov (United States)

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  6. IMPROVING THE ACCURACY OF EXTRACTING SURFACE WATER QUALITY LEVELS (SWQLs USING REMOTE SENSING AND ARTIFICIAL NEURAL NETWORK: A CASE STUDY IN THE SAINT JOHN RIVER, CANADA

    Directory of Open Access Journals (Sweden)

    E. Sharaf El Din

    2017-09-01

    Full Text Available Delineating accurate surface water quality levels (SWQLs always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2 > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair and 59 (Marginal for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  7. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: a Case Study in the Saint John River, Canada

    Science.gov (United States)

    Sammartano, G.; Spanò, A.

    2017-09-01

    Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  8. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  9. Effects of the Upper Taum Sauk Reservoir Embankment Breach on the Surface-Water Quality and Sediments of the East Fork Black River and the Black River, Southeastern Missouri - 2006-07

    Science.gov (United States)

    Barr, Miya N.

    2009-01-01

    On December 14, 2005, a 680-foot wide section of the upper reservoir embankment of the Taum Sauk pump-storage hydroelectric powerplant located in Reynolds County, Missouri, suddenly failed. This catastrophic event sent approximately 1.5 billion gallons of water into the Johnson's Shut-Ins State Park and into the East Fork Black River, and deposited enormous quantities of rock, soil, and vegetation in the flooded areas. Water-quality data were collected within and below the impacted area to study and document the changes to the riverene system. Data collection included routine, event-based, and continuous surface-water quality monitoring as well as suspended- and streambed-sediment sampling. Surface water-quality samples were collected and analyzed for a suite of physical and chemical constituents including: turbidity; nutrients; major ions such as calcium, magnesium, and potassium; total suspended solids; total dissolved solids; trace metals such as aluminum, iron, and lead; and suspended-sediment concentrations. Suspended-sediment concentrations were used to calculate daily sediment discharge. A peculiar blue-green coloration on the water surface of the East Fork Black River and Black River was evident downstream from the lower reservoir during the first year of the study. It is possible that this phenomenon was the result of 'rock flour' occurring when the upper reservoir embankment was breached, scouring the mountainside and producing extremely fine sediment particles, or from the alum-based flocculent used to reduce turbidity in the lower reservoir. It also was determined that no long-term effects of the reservoir embankment breach are expected as the turbidity and concentrations of trace metals such as total recoverable aluminum, dissolved aluminum, dissolved iron, and suspended-sediment concentration graphically decreased over time. Larger concentrations of these constituents during the beginning of the study also could be a direct result of the alum

  10. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    Science.gov (United States)

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  11. Determination of pesticides in surface and ground water used for human consumption in Guatemala

    International Nuclear Information System (INIS)

    Knedel, W.; Chiquin, J.C.; Perez, J.; Rosales, S.

    1999-01-01

    A 15 month sampling and analysis programme was carried out to monitor concentrations of 37 targeted organochlorine, organophosphorus and organopyrethroid pesticides in surface and ground water in Guatemala. The 80 sampling points included 4 points in a lake, one point in each of the four lagoons, 10 municipal water systems of major towns, and 62 points along 52 rivers, most of which are located in the southern coast along borders with Mexico and El Salvador, and are one of the most productive areas in the country. The sampling used provided only preliminary information on the pattern of pesticide contamination of surface and ground water. It showed contamination of surface water in Los Esclavos watershed, Motagua river watershed as well as Villalobos, lake Amatitlan and Michatoya river watershed. Cypermethrin was the ubiquitous pesticides in some areas present in concentrations exceeding toxic levels for fish and other aquatic organisms. Several of the other targeted organophosphorus and ECD detectable pesticides were also detected in surface water. Some municipal water samples also had low levels of pesticides. (author)

  12. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.

    2012-01-01

    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is

  13. Seasonal water chemistry variability in the Pangani River basin, Tanzania.

    Science.gov (United States)

    Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali

    2017-11-01

    The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6  mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.

  14. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  15. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment.

    Science.gov (United States)

    Hu, Ying; Yan, Xue; Shen, Yun; Di, Mingxiao; Wang, Jun

    2018-08-15

    Thirteen antibiotics including sulfonamides (SAs), tetracyclines (TETs) and fluoroquinolones (FQs) were measured in Hanjiang River (HR) during two periods. The total concentrations of 13 antibiotics in surface water and sediments ranged from 3.1 to 109 ng/l and from 10 to 45 ng/g dry weight, respectively. SAs were dominant in water while the concentrations of TETs were the highest in sediments in two seasons. For their spatial distribution, total concentrations of 13 antibiotics in both matrices were significantly higher in the lower section of HR (p  5.15) due to wastewater release, agricultural activities and water transfer project. Obvious seasonal variations of sulfadiazine, sulfameter, trimethoprim and oxytetracycline in water were observed (p  4.62). Phase partition of antibiotics between water and sediments suggested a greater affinity of TETs and FQs to sediments. In addition, significantly positive relationships were found between SAs (sulfameter, sulfamethoxazole and trimethoprim) and sediment TOC (p Risk assessment indicated that the hazard quotients of antibiotics were higher in the sediment than those in the water. Moreover, antibiotic mixtures posed higher ecological risks to aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  17. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  18. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  19. Study of a conceptual nuclear energy center at Green River, Utah: water allocation issues

    International Nuclear Information System (INIS)

    Harper, N.J.

    1982-04-01

    According to preliminary studies, operation of a nine-reactor Nuclear Energy Center near Green River, Utah would require the acquisition of 126,630 acre-feet per year. Groundwater aquifers are a potential source of supply but do not present a viable option at this time due to insufficient data on aquifer characteristics. Surface supplies are available from the nearby Green and San Rafael Rivers, tributaries of the Colorado River, but are subject to important constraints. Because of these constraints, the demand for a dependable water supply for a Nuclear Energy Center could best be met by the acquisition of vested water rights from senior appropriators in either the Green or San Rafael Rivers. The Utah Water Code provides a set of procedures to accomplish such a transfer of water rights

  20. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  1. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    Science.gov (United States)

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red

  2. Surface water quality and isotopic study at a section of the Lower Volta River (Akuse to Sogakope area), Ghana

    International Nuclear Information System (INIS)

    Gampson, E. K.

    2012-01-01

    The water quality examination at a section of the Lower Volta River (Akuse to the Sogakope area), Ghana, was conducted by determining the physicochemical parameters at 38 sampling sites in September (2011) during the wet season and February (2012) during the dry season. Isotope analysis was also conducted during the same period. The ranges of physicochemical parameters analysed in the surface water were 6.45 to 7.26 for pH, -053 to -010 mV for Eh, 23.6 to 27 degrees celsius for temperature, 61.7 to 83.6 μS/cm for EC, 0% 0 for salinity, 29.7-39.4 mg/L for TDS, 0.63 to 2.28 mg/L for DO, 0 to 4 NTU for turbidity, 0 to 8mg/L for TSS, 36 to 108mg/L for total hardness, 0.8 to 5mg/L for BOD 5 , 23.16 to 46.33mg/L for HCO 3 - , 2.92 to 23.33mg/L for Mg 2+ , 7.8 to 11.0mg/L for Na + , 4.0 to 5.9mg/L for K + , 1.99 to 13.99mg/L for CI - , 3.2 to 14.4MG/L for Ca 2+ , 1.0 to 24.889mg/L for NO 3 - , 6.556 to 28.111mg/L for SO 4 2- and 1.333 to 11.667mg/L for PO 4 3- . While the results for dissolved metals (μg/L) were 32 to 348 for Fe, 12 to 278 for Mn, 16 to 84 for Cu, 4 to 38 for Pb, 20 to 162 for Ni, 12 to 32 for Cd and 12μg/L to 98 for Cd, Hg, Se, V and Zn were below detection limit. The river water will support agricultural activities. Except Cu which was low, about 37%, 89%, 29%, 33%, 8% and 29% of the sampled sites had Pb, Ni, Cd, Cr, Fe and Mn values respectively above the WHO (2004) standard for drinking water. Therefore, water quality monitoring and control of release of untreated anthropogenic wastes into the river is strongly needed. Stable isotope data of water (δ 2 H and δ 18 O) obtained showed stream waters are depleted and possibly recharge by rain and waters from the Akwapim Mountains than the isotopically heavy evaporated waters found within the Lower Volta River. (au)

  3. Reconnaissance of the Manistee River, a cold-water river in the northwestern part of Michigan's Southern Peninsula

    Science.gov (United States)

    Hendrickson, G.E.; Doonan, C.J.

    1972-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, trout fishing), but expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, irrigation, and dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of water resources for recreation and other demands, an analysis of hydrologic factors related to recreation is essential.The Manistee River is one of Michigan's well-known trout streams-a stream having numerous public access sites and campgrounds. Upstream from Cameron Bridge (see location map) the Manistee is rated as a first-class trout stream but below Cameron Bridge the river is rated only as a fair trout stream by the Michigan Department of Natural Resources. As a Michigan canoe trail it is second only to the Au Sable River in popularity. Esthetically, the Manistee is one of Michigan's most attractive rivers, its waters flowing cool and clean, and around each bend a pleasant wilderness scene. This report deals with that part of the river upstream from State Highway M-66 at Smithville. Several hard-surface roads give access to the upper river as shown on the location map. Numerous dirt roads and trails give access to the river at intermediate points. The recreational values of the Manistee depend on its characteristics of streamflow, water quality, and bed and banks. This atlas describes these characteristics and shows how they relate to recreational use.Much of the information presented here was obtained from basic records of the U.S. Geological Survey's Water Resources Division. Additional information was obtained from field reconnaissance surveys in 1968 and 1969. The study was made in cooperation with the Michigan Geological Survey, Gerald E. Eddy, Chief. Assistance was also obtained from other sections of the Michigan Department of

  4. Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain, central China

    Science.gov (United States)

    Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie

    2018-01-01

    Quantifying groundwater/surface-water interactions is essential for managing water resources and revealing contaminant fate. There has been little concern on the exchange between streams and aquifers through an extensive aquitard thus far. In this study, hydrogeologic calculation and tritium modeling were jointly applied to characterize such interactions through an extensive aquitard in the interior of Jianghan Plain, an alluvial plain of Yangtze River, China. One groundwater simulation suggested that the lateral distance of influence from the river was about 1,000 m; vertical flow in the aquitard followed by lateral flow in the aquifer contributed significantly more ( 90%) to the aquifer head change near the river than lateral bank storage in the aquitard followed by infiltration. The hydrogeologic calculation produced vertical fluxes of the order 0.01 m/day both near and farther from the river, suggesting that similar shorter-lived (half-monthly) vertical fluxes occur between the river and aquitard near the river, and between the surface end members and aquitard farther from the river. Tritium simulation based on the OTIS model produced an average groundwater residence time of about 15 years near the river and a resulting vertical flux of the order 0.001 m/day. Another tritium simulation based on a dispersion model produced a vertical flux of the order 0.0001 m/day away from the river, coupled with an average residence time of around 90 years. These results suggest an order of magnitude difference for the longer-lived (decadal) vertical fluxes between surface waters and the aquifer near and away from the river.

  5. A method for screening for the risk of chronic effects of surface water pollution.

    Science.gov (United States)

    Soldán, Přemysl; Badurová, Jana

    2013-01-01

    The article describes a method for screening for the risk of chronic surface water pollution which was developed at the T. G. Masaryk Water Research Institute. The approach, which is based on exotoxicological analyses, can be classed as a rapid method of assessment. The degree of risk of chronic effects surface water pollution is determined from an evaluation of two major parameters-toxicity and genotoxicity. As the method utilizes relative simple procedures for sample collection, pretreatment of the sample, chemical analyses, bioassays and results assessment, this approach is suitable for widespread practical use. Extensive utilization of this approach for assessing river basins in the Czech Republic has proved its suitability for a more sophisticated detection of the biological impact of surface water pollution. This is documented in the article where the method is used in a study of the Bílina River, and in the overview of the results of the risk assessment of chronic effects of surface water pollution in selected sections of three international river basins in the Czech Republic.

  6. Study on Water Quality of Surface Runoff and Groundwater Runoff on the Basis of Separation by a Numerical Filter

    OpenAIRE

    Kawara, Osami; Fukumoto, Kohji

    1994-01-01

    In this study we investigated the water quality of surface runoff and groundwater runoff from the basins of the Yodo River and the Asahi River based on that separated by a numerical filter. The water quality of the surface runoff is greatly different from the groundwater runoff. The tendency of concentration change in accordance with river discharges is different from each other. The water qtiality of groundwater runoff changes with river discharges clockwise in many cases. The differences of...

  7. Characterization of water commercial filters based on activated carbon for water treatment of the Tumbes river – Peru

    Directory of Open Access Journals (Sweden)

    Carmen Rosa Silupú García

    2017-09-01

    Full Text Available Comercial activated carbon samples (A, B, C, and D used in filters for the treatment of water were characterized and evaluated in the decontamination of heavy metals present in river water and in the elimination of coliform microorganisms. The carbon samples had microporous and mesoporous structures. Surface areas of between 705 and 906 m2/g were found. The carbons samples were amorphous and the presence of antibacterial agents such as Ag, Cl, Cu, and Si was detected. It was determined that for As and Pb, whose initial concentrations in contaminated water (water of the Tumbes river-Peru were 56.7 and 224.0 μg/L, respectively, the percentage of adsorption was close to 100%. The relationship between point of zero charge pH of the activated carbons and pH of the river water during the experiments plays a determinant role in the adsorption of the analyzed elements. The antibacterial capacity was evaluated satisfactorily against the following strains of fecal gram negative bacteria: Escherichia coli (ATCC® 25922™, Salmonella typhimurium (ATCC® 14028™, and Shigella flexneri (ATCC® 12022™. This ability is based on the surface presence in the carbons of the mentioned antibacterial agents.

  8. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China

    Directory of Open Access Journals (Sweden)

    Jiao Ding

    2015-08-01

    Full Text Available Understanding the relationship between land use and surface water quality is necessary for effective water management. We estimated the impacts of catchment-wide land use on water quality during the dry and rainy seasons in the Dongjiang River basin, using remote sensing, geographic information systems and multivariate statistical techniques. The results showed that the 83 sites can be divided into three groups representing different land use types: forest, agriculture and urban. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of forested land was positively associated with dissolved oxygen concentration but negatively associated with water temperature, electrical conductivity, permanganate index, total phosphorus, total nitrogen, ammonia nitrogen, nitrate nitrogen and chlorophyll-a. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. Forested and urban land use had stronger impacts on water quality in the dry season than in the rainy season. However, agricultural land use did not have a significant impact on water quality. Our study indicates that urban land use was the key factor affecting water quality change, and limiting point-source waste discharge in urban areas during the dry season would be critical for improving water quality in the study area.

  9. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  10. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  11. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate

  12. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    were investigated in this study: Nine samples from different surface water bodies, two samples from two effluent sources ... Ezeagu, Udi, Nkanu, Oji River and some parts of Awgu and Aninri ..... Study of Stream Output from Small Catchments.

  13. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  14. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  15. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  16. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.

    Science.gov (United States)

    Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha

    2003-07-20

    A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.

  17. Ecological Status of Rivers and Streams in Saxony (Germany According to the Water Framework Directive and Prospects of Improvement

    Directory of Open Access Journals (Sweden)

    Uwe Müller

    2012-11-01

    Full Text Available The Federal State of Saxony (Germany transposed the EU Water Framework Directive into state law, identifying 617 surface water bodies (rivers and streams for implementation of the water framework directive (WFD. Their ecological status was classified by biological quality elements (macrophytes and phytobenthos, benthic invertebrates and fish, and in large rivers, phytoplankton and specific synthetic and non-synthetic pollutants. Hydromorphological and physico-chemical quality elements were used to identify significant anthropogenic pressures, which surface water bodies are susceptible to, and to assess the effect of these pressures on the status of surface water bodies. In 2009, the data for classification of the ecological status and the main pressures and impacts on water bodies were published in the river basin management plans (RBMP of the Elbe and Oder rivers. To that date, only 23 (4% streams achieved an ecological status of “good”, while the rest failed to achieve the environmental objective. The two main reasons for the failure were significant alterations to the stream morphology (81% of all streams and nutrient enrichment (62% caused by point (industrial and municipal waste water treatment plants and non-point (surface run-off from arable fields, discharges from urban drainages and decentralized waste water treatment plants sources. It was anticipated that a further 55 streams would achieve the environmental objective by 2015, but the remaining 539 need extended deadlines.

  18. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  19. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  20. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico)]. E-mail: gzo@nuclear.inin.mx; Avila-Perez, P. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Tejeda, S. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Barcelo-Quintal, I. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Mexico, D.F. (Mexico); Martinez, T. [Universidad Nacional Autonoma de Mexico, Facultad de Quimica, Mexico, D.F. (Mexico)

    2006-11-15

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 {mu}g/L) > Mn (300 {mu}g/L) > Cu (66 {mu}g/L) > Cr (21 {mu}g/L) > Pb (15 {mu}g/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  1. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  2. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila-Perez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martinez, T.

    2006-01-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits

  3. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  5. Water quality modelling in the San Antonio River Basin driven by radar rainfall data

    Directory of Open Access Journals (Sweden)

    Almoutaz Elhassan

    2016-05-01

    Full Text Available Continuous monitoring of stream water quality is needed as it has significant impacts on human and ecological health and well-being. Estimating water quality between sampling dates requires model simulation based on the available geospatial and water quality data for a given watershed. Models such as the Soil and Water Assessment Tool (SWAT can be used to estimate the missing water quality data. In this study, SWAT was used to estimate water quality at a monitoring station near the outlet of the San Antonio River. Precipitation data from both rain gauges and weather radar were used to force the SWAT simulations. Virtual rain gauges which were based on weather radar data were created in the approximate centres of the 163 sub-watersheds of the San Antonio River Basin for SWAT simulations. This method was first tested in a smaller watershed in the middle of the Guadalupe River Basin resulting in increased model efficiency in simulating surface run-off. The method was then applied to the San Antonio River watershed and yielded good simulations for surface run-off (R2 = 0.7, nitrate (R2 = 0.6 and phosphate (R2 = 0.5 at the watershed outlet (Goliad, TX – USGS (United States Geological Survey gauge as compared to observed data. The study showed that the proper use of weather radar precipitation in SWAT model simulations improves the estimation of missing water quality data.

  6. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China

    Institute of Scientific and Technical Information of China (English)

    Lifei Zhang; Liang Dong; Lijun Ren; Shuangxin Shi; Li Zhou; Ting Zhang; Yeru Huang

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated.Fourteen surface water samples were collected in June 2010.Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry.Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L,respectively.Fluoranthene,naphthalene,pyrene,phenanthrene,di-2-ethylhexyl phthalate,and di-n-butyl phthalate were the most abundant compounds in the samples.The water samples were moderately Polluted with benzo[a]pyrene according to China's environmental quality standard for surface water.The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake,Wuxi City and the western section of Yangchenghu Lake.Potential sources of Pollution at S7 were petroleum combustion and the plastics industry,and at Yangchenghu Lake were petroleum combustion and domestic waste.Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines.There were no obvious sources of pollution for the other water samples.These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  7. CryoSat-2 radar altimetry for monitoring surface water in China

    DEFF Research Database (Denmark)

    Jiang, Liguang; Bauer-Gottwein, Peter; Nielsen, Karina

    storage (SWS) changes to terrestrial water storage (TWS) was evaluated in combination with results from the Gravity Recovery and Climate Experiment (GRACE). Moreover, water level dynamics in the Yangtze and Yellow Rivers were mapped. Results show that 1) surface water levels change significantly...

  8. Effect of Lakhara chemical power station (LPTS) effluents on the river Indus water quality

    International Nuclear Information System (INIS)

    Mahar, R.B.; Memon, H.M.; Khushwar, M.Y.

    2000-01-01

    The variation of the quality of river Indus water with respect to the seasonal changes, discharge of water and dilution with the effluents of Lakhra Thermal Power Station (LTPS), has been monitored. The studies were focussed on the river Indus water quality before and after mixing the effluents of the power station. The samples were collected monthly from the representative locations of the river Indus, and analyzed for the residues (total, filterable, non-filterable, volatile and fixed), pH, temperature (air and water), conductance, chloride, hardness, alkalinity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD) /sub 5/- nitrate, phosphate, sulfate, ammonia, ammonium, silicates, magnesium, potassium, calcium and sodium. The results have been compared with the permissible limits of ECC (European Economic Community) standards for drinking and surface water. (author)

  9. Emerging contaminants in surface waters in China—a short review

    International Nuclear Information System (INIS)

    Yang, Guang; Zhang, Guangming; Fan, Maohong

    2014-01-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L −1 to μg L −1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched. (letter)

  10. Emerging contaminants in surface waters in China—a short review

    Science.gov (United States)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  11. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  12. WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS

    Directory of Open Access Journals (Sweden)

    D. Karthe

    2017-01-01

    Full Text Available The Kharaa River Basin has some of the highest densities of population, agricultural and industrial activities in Mongolia. This puts the naturally limited water resources under pressure in both a quantitative and qualitative perspective. Besides mining, key sources of surface water contamination include large numbers of livestock in riverine floodplains and the discharge of untreated or poorly treated waste waters, both into rivers and by soil infiltration. Since both shallow groundwater and river water are used by people and for livestock, there are at least theoretical risks related to the transmission of water-borne pathogens. Only a very limited number of studies on water and hygiene have so far been conducted in Mongolia, all indicating (potential risks to water users. However, a lack of current and reliable water microbiology data leads to the need of systematic screening of water hygiene in order to derive conclusions for public health and drinking water management at the local and regional scale.

  13. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  14. Assesment of pesticide fluxes to surface water using Uranine in Colombia

    Science.gov (United States)

    Garcia-Santos, G.; Scheiben, D.; Diaz, J.; Leuenberger, F.; Binder, C. R.

    2009-04-01

    In the highlands of Colombia, potato farmers maximize their yields by the application of pesticides. Properly applied pesticides can significantly reduce yield loss and improve product quality; however their misuse leads to human health and environmental problems, i.e. water bodies contaminated with pesticides. Due to the lack of control regarding local pesticide use, unmeasured hydrological parameters and use of local water runoff as a drinking water supply, an assessment of the impact of agricultural practice on water quality is mandatory as first stage. In order to accomplish this, our study assesses pesticide fluxes to surface water using the tracer Uranine. The experimental area La Hoya main basin (3 km2) contains the Pantano Verde river which flows into the Teatinos river in the Boyaca region (Colombia). Some facts such as the deep soils in the area and the importance of the unsaturated zone for the sorption and degradation of pesticides suggest a lack of contaminants in groundwater. However, due to the humid conditions, steep slopes and an intensive agricultural with high pesticide use, we expect surface water to be highly contaminated. In order to assess pesticide pathways, a tracer (Uranine), detectable at very low amount was used. Four local farmers applied the tracer instead of the pesticide mixture covering a total surface of 1.2 10-2 km2. Meteorological data were measured every 15 min with one compact meteorological station installed within the basin and water flow and water sampling were obtained using an ISCO-6700 water sampler, during one week every 10 min in the outlet of Pantano Verde River. In addition, three pairs of membranes were installed down the river and collected 1 week, one month and 4 months after the experiment to measure tracer accumulation. The tracer in water was analysed using a fluorescent spectrometer. Results of this study show first variations of tracer concentration in water in La Hoya basin and constitute an initial steep in

  15. Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2017-02-01

    Full Text Available The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs, cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion.

  16. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  17. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River

    Science.gov (United States)

    Para, J.; Coble, P. G.; Charrière, B.; Tedetti, M.; Fontana, C.; Sempéré, R.

    2010-12-01

    Seawater samples were collected monthly in surface waters (2 and 5 m depths) of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m-1) in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm-1) in summer than in fall and winter periods (0.017 ± 0.002 nm-1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30-21.94 QSU) and marine humic-like component (peak M; 0.55-5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34-2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2-3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peaks C and A). Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties

  18. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    Science.gov (United States)

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical

  19. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  20. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  1. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  2. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    Science.gov (United States)

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  4. Evaluation of the possibility of using the water of the Bystrytsya-Nadvirnyans'ka River in Cherniiv (Ukraine) to supply the population with drinking water

    Science.gov (United States)

    Pietrzak, D.; Mandryk, O.; Wątor, K.; Kmiecik, E.; Zelmanowych, A.

    2018-02-01

    The article presents the results of the research carried out in order to assess the possibility of using surface water of the Bystrytsya-Nadvirnyans'ka River in Cherniiv (western Ukraine), for the public supply of water intended for human consumption. For this purpose an existing database that contains the results of analyses of surface water samples collected in 1999, 2002, 2005, 2008, 2011 and 2014 was used. Each year, from 8 to 13 samples were collected from the Bystrytsya-Nadvirnyans'ka River in Cherniiv. Physicochemical analyses of the samples taken included the determination of pH value, temperature, TDS, alkalinity, hardness, dissolved oxygen, BOD5, COD, suspended solids and ions: Ca2+, Mg2+, Na+, K+, Fe2+, NH4+, Cu2+, Cl-, SO42-, PO43-, HCO3-, NO2-, NO3-. These chemical analyses were verified by calculation of errors based on the ionic balance. The results of the analyses were referred to the polish applicable requirements for surface water used for public supply of water intended for human consumption and to the regulation regarding the classification of the surface water status and environmental quality standards for priority substances. The results indicate that water of the Bystrytsya-Nadvirnyans'ka River in the area of Cherniiv was out of the class in the years 1999 and 2002 due to exceeding the limit values for category A3 for Cu2+. On the basis of incomplete assessment of the status of the Bystrytsya-Nadvirnyans'ka River water (due to the tests limitation to the physical and chemical components) determined that the water has a bad status because it exceeded the limits for class II for Cl-, SO42-, NO3- and TDS. In the samples collected in 1999 and 2002 it is also observed exceeding the maximum limit concentrations for Cu2+.

  5. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  6. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  7. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    Science.gov (United States)

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  8. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  9. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    Science.gov (United States)

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  11. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    Science.gov (United States)

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  13. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  14. The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Peiru Kong

    2018-01-01

    Full Text Available Aquatic environmental deterioration is becoming a serious problem due to rapid urbanization and economic development, particularly in developing countries. As two important components of the aquatic environment, water quality and sediment pollution are widely considered to be concerns; however, they are considered separately in most cases. The relationship between water quality and sediment pollution with heavy metals has been little addressed. In this study, the Haihe River Basin (HRB, one of the most polluted areas in China, was used as a case study, and the eutrophication index (EI and the potential ecological risk index (RI were employed to evaluate water quality and sediment pollution of heavy metals, respectively. The results showed that generally in the HRB, the water quality was poor, while the risk of heavy metal pollution was relatively low. Surface water quality was mainly influenced by sewage discharges from human daily life, and heavy metal pollution was affected by industry structure, in that the areas with resource/energy consumption industries and high-pollution industries often have high risks of heavy metal pollution Synergic pollution from water eutrophication and sediment pollution with heavy metals was found, especially in the central areas of the HRB, and it was largely dependent on the type of human activities. In the places with intensive human activities, such as secondary industry, eutrophication occurred simultaneously with heavy metal pollution, other than in less human-affected areas. These findings are useful for planning aquatic environment protections and river ecosystem management.

  15. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  16. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  17. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  18. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    contribution from runoff and storage. More than half of the drinking water, including domestic and public-supply use, in the LIRB is from ground water. Fifty-two percent of the public-supply water is from surface water. Ground-water withdrawals mostly are from glacial sand and gravel aquifers. Structural features, such as monoclines, synclines, and anticlines, in the buried bedrock affect the water quality of the aquifers. There are five natural environmental divisions in the LIRB. The Grand Prairie covers most of the northeastern half of the basin, and the Western Forest-Prairie covers most of the southwestern half. Implications of environmental setting for water quality in the LIRB are related primarily to land use. The balanced fish community indicates that the lower Illinois River is affected less from urban and industrial waste than the upper Illinois River. A decrease in dissolved oxygen concentrations and turbidity in the lower reaches of the basin in 1993 have resulted from the recent influx of European zebra mussels to the LIRB. Many factors affect water quality in the LIRB. Bedrock and surface topography, type of glacial material, and land use most directly affect water quality in the basin.

  19. Multielement analysis of water in Yodo River

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Matsunami, Tadao; Matsuda, Yatsuka

    1980-01-01

    Yodo River is a major source of water supplies in the Osaka district. Three tributaries including Katsura River flow into this river at close positions. It is known that the Katsura River is considerably polluted due to the sewage treatment in Kyoto City. Following the previous survey in September, 1970, a similar survey by neutron activation has been carried out on the pollution of the Yodo River in October, 1977, by increasing the number of sampling points. Because it is reported that the pollution of the Katsura River has been largely lowered from that in the previous survey, the purpose was to grasp the present situation of the water pollution of the Yodo River due to metal elemens and others, and further to examine in relation of material balance. The procedures used were, first, the evaporation and solidification of sample water, and then neutron activation analysis. The correlation among the concentrations of elements, the pattern of the concentrations of elements, the material balance along the Yodo River, etc. are described in this paper. (J.P.N.)

  20. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  1. trend analysis of raw water parameters in river benue at the reach

    African Journals Online (AJOL)

    PROF EKWUEME

    important element to man. It is essential to humanity and the largest source of fresh water lies underground. It constitutes the largest part of most living matters. The human body takes from. 55% to 70% water depending on ..... by surface runoff into the river should be discouraged. 4. Benue Brewery limited (BBL) and Nigeria.

  2. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    Science.gov (United States)

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based

  3. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    Science.gov (United States)

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  4. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons

  5. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    estimate water demand and calculate water use balance in 2015, 2021. The result of the water balance estimation shows that water consumption-use will be increased 3 times in the river basin by 2021. As the water consumption-use source, surface water - 6.4 % and groundwater is 93.6 percent. The current consumption of the mining sector is shares 71 percent of the total users; it would be 82 percent in 2021. However, the livestock water consumption-use is 27 percent of the current demand; it would be decrease up to 16 percent in 2021. Ecosystem based approach IWRM plan would be efficient to the local resident to adapt the climate change situation. Thus, the results of the research study on the river basin ecosystem services and values are the base of the planning.

  6. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of Ravi river water quality

    International Nuclear Information System (INIS)

    Ahmed, K.; Ali, W.

    2000-01-01

    Investigation from 1989 to 1998 on river Ravi pollution was carried out to study the effects of wastewater discharges on its water quality in relation to its various water use. The sources of pollution entering the river between Syphon (20 Km upstream) and Balloki Head works (75 Km downstream) includes Upper Chenab Canal (U.C.) which bring industrial effluents through Deg municipal swage from the city of Lahore. Investigation revealed that the flow in the river are highly variable with time during the year U.C. canal with a capacity of 220 m/sup 3//S at the tail and Qadiarabad (Q.B.) Link canal with a capacity of 410 m3/S are mainly responsible for higher flows during dry season. A desecrating trend has been observed in the D.O. Levels indicating increasing pollution. Over times D.O values are above 4 mg/l indicating recovery due to dilution biodegradation and aeration. An increasing trend has been observed in Biochemical Oxygen Demand (BOD), suspended solids, total dissolved solids and indicator organisms. Even with the discharges of pollutions from U.C. canal, Hudiara Nullah and city sewage, BOD at Balloki was unexpectedly low. It was investigated that because of pollution free Q.B. link canal which joins the river just before Balloki Head works makes the water diluted, which accounted for low BOD. Water of river Ravi meet the chemical water quality requirement for irrigation. However the water quality does not meet the coliform and faecal coliform criteria for most water use. (orig../A.B.)

  8. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  9. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  10. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  11. Source Water Identification and Chemical Typing for Nitrogen at the Kissimmee River, Pool C, Florida--Preliminary Assessment

    National Research Council Canada - National Science Library

    Phelps, G. G

    2002-01-01

    As part of the South Florida Water Management District's Ground Water-Surface Water Interactions Study, a project was undertaken to identify the ages and sources of water in the area of Pool C, Kissimmee River, Florida...

  12. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to

  13. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  14. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  15. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  16. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation

  17. Effect of river excavation on a bank filtration site - assessing transient surface water - groundwater interaction by 3D heat and solute transport modelling

    Science.gov (United States)

    Wang, W.; Oswald, S. E.; Munz, M.; Strasser, D.

    2017-12-01

    Bank filtration is widely used either as main- or pre-treatment process for water supply. The colmation of the river bottom as interface to groundwater plays a key role for hydraulic control of flow paths and location of several beneficial attenuation processes, such as pathogen filtration, mixing, biodegradation and sorption. Along the flow path, mixing happens between the `young' infiltrated water and ambient `old' groundwater. To clarify the mechanisms and their interaction, modelling is often used for analysing spatial and temporal distribution of the travelling time, quantifying mixing ratios, and estimating the biochemical reaction rates. As the most comprehensive tool, 2-D or 3-D spatially-explicit modelling is used in several studies, and for area with geological heterogeneity, the adaptation of different natural tracers could constrain the model in respect to model non-uniqueness and improve the interpretation of the flow field. In our study, we have evaluated the influence of a river excavation and bank reconstruction project on the groundwater-surface water exchange at a bank filtration site. With data from years of field site monitoring, we could include besides heads and temperature also the analysis of stable isotope data and ions to differentiate between infiltrated water and groundwater. Thus, we have set up a 3-D transient heat and mass transport groundwater model, taking the strong local geological heterogeneity into consideration, especially between river and water work wells. By transferring the effect of the river excavation into a changing hydraulic conductivity of the riverbed, model could be calibrated against both water head and temperature time-series observed. Finally, electrical conductivity dominated by river input was included as quasi-conservative tracer. The `triple' calibrated, transient model was then used to i) understand the flow field and quantify the long term changes in infiltration rate and distribution brought by the

  18. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  20. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  1. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water

    International Nuclear Information System (INIS)

    Jongh, Cindy M. de; Kooij, Pascal J.F.; Voogt, Pim de; Laak, Thomas L. ter

    2012-01-01

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical

  2. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  3. Kyiv Small Rivers in Metropolis Water Objects System

    Science.gov (United States)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  4. Water security evaluation in Yellow River basin

    Science.gov (United States)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  5. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  6. Surface and groundwater quality assessment of Marikina river

    International Nuclear Information System (INIS)

    Dela Pena, Jowell P.; Pael, Limela G.

    2009-03-01

    The study used the physico-chemical characteristics to determine the degree of pollution in different surface and groundwater sources in Marikina. The hydrogen ion concentration in all the stations for surface water was generally basic ranging from 7.24 to 7.44, while conductivity was observed to be highest in Royal Ville station that has a value of 253 μ/cm. Among the four stations in groundwater which obtained an acidic pH, Brgy. Singkamas deep-well has a neutral value. The conductivity was observed to be highest in Brgy. Conception which has a value of 1026 μ/cm. The major ions result showed that the three stations from Marikina River have conformed to the water quality criteria for fresh waters set by the Department of Environment and Natural Resources, while results from different deep-well stations showed that among four stations, Brgy. Singkamas and Conception deep-well have exceeded the recommended value concentration for drinking water quality standards. The multi-element results were obtained from an Energy-Dispersive X-ray Fluorescence Spectroscopy. Results showed that significant concentrations of metals like Al, Cd, Cr, Fe, and Pb in both surface and groundwater stations have exceeded the maximum concentrations set by both DENR and PNSDW. The significant differences in the concentrations of physico-chemical components facilitate detection of contamination from domestic and industrial wastes. (author)

  7. Biomarker as an Indicator of River Water Quality Degradation

    Directory of Open Access Journals (Sweden)

    Dwina Roosmini

    2006-11-01

    Full Text Available Generally physical and chemical methods are use in river water quality monitoring; currently biomarker is developed as alternative biomonitoring method. The aim of this study is to look at the probability using aquatic species in monitoring river water pollutants exposure. This study was done by using Hyposarcus pardalis as biomarker to analyze river water quality in Upstream Citarum River. Hyposarcus pardalis were taken along the river at five sampling point and look at the Cu and Zn concentration. Results from this study show that there was an indication that river water quality has been degrading along the river from upstream to downstream. Zn concentration in Hyposarcus pardalis were increasing as well as Cu concentration. The increase of Zn concentration in Hyposarcus pardalis indicating that the river was polluted by Zn. Secondary data and observation at sampling location shown that textile was the dominant industry which may contribute the Zn concentration in river as they received the effluent. Cu is use in metal coating process, as well as textile industry metal industries were identified at Majalaya, Bantar Panjang, Dayeuh Kolot and Katapang in Bandung-Indonesia. As a receiving water from many activities along the river, upstream Citarum River water quality become degrading as the increasing of heavy metal Zn and Cu concentration in Hyposarcus pardalis.

  8. Summary of radiological monitoring of Columbia River water along the Hanford Reach, 1980 through 1989

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1994-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) at the Hanford Site in southeastern Washington State. The Columbia River monitoring program, conducted as part of the SESP, provides a historical record of contaminant concentrations in the river attributable to natural causes, worldwide fallout, and operations conducted at the Hanford Site. In addition to ongoing monitoring, special studies are conducted periodically to enhance the understanding of the transport and fate of contaminants in the river. The Columbia River monitoring program includes sampling of river water, river sediment, river-bank springs entering the river, and various types of aquatic biota found in or along the river. These samples are analyzed for radiological constituents and a wide range of chemical parameters. This report describes the water sampling component of the overall Columbia River monitoring program conducted during the years 1980 through 1989 and summarizes the radiological results generated through the program during this time period. The only radionuclides found in the river that were consistently influenced by Hanford were tritium and iodine-129. Strontium-90 and uranium, also attributable to Hanford operations, were present in localized areas within the river near ground-water discharge points; however, these contaminants are quickly dispersed within the river to concentrations similar to background

  9. Environmental radioactivity and water supply. Pt. 3. The contamination of surface waters in Germany after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Haberer, K.

    1988-03-01

    After the reactor accident, german surface waters have been monitored in numerous positions over a long period of time. The highest concentrations of iodine 131 occurred in the lower german region of the Danube river with more than 200 Bg/l whereas the Rhine river had the lowest concentrations. The sudden rise of the radioactivity of the river water have been followed by a slower decrease but nevertheless much faster than the radioactive decay. Probably this is caused by the interaction with river sediments. For the german lakes and reservoirs it was very important whether the water masses have been stratified or not when the radioactive cloud arrived. Where this was the case, the radioactive contaminants remained predominantly in the upper layer, the epilimnion for a long period of time [fr

  10. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  11. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  12. Water resources inventory of Connecticut Part 2: Shetucket River Basin

    Science.gov (United States)

    Thomas, Mendall P.; Bednar, Gene A.; Thomas, Chester E.; Wilson, William E.

    1967-01-01

    The Shetucket River basin has a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 inches to 75 inches and has averaged about 45 inches over a 35-year period. Approximately 20 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Shetucket River or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basins whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered groundwater levels. The mean monthly storage of water in the basin on an average is 3.5 inches higher in November than it is in June.

  13. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  14. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River

    Directory of Open Access Journals (Sweden)

    J. Para

    2010-12-01

    Full Text Available Seawater samples were collected monthly in surface waters (2 and 5 m depths of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N during one year from November 2007 to December 2008 and studied for total organic carbon (TOC as well as chromophoric dissolved organic matter (CDOM optical properties (absorbance and fluorescence. The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350] was very low (0.10 ± 0.02 m−1 in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350 could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM was significantly higher (0.023 ± 0.003 nm−1 in summer than in fall and winter periods (0.017 ± 0.002 nm−1, reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs, was dominated by protein-like component (peak T; 1.30–21.94 QSU and marine humic-like component (peak M; 0.55–5.82 QSU, while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T without adding terrestrial fluorescence signatures (peaks C and A. Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M CDOM from the bottom into the surface and thus appeared also as an important source

  15. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    International Nuclear Information System (INIS)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Wang, Yuan; Liu, Jiemin; Cai, Yaqi

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L −1 , followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at environmentally

  16. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  17. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  18. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  19. Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada

    Science.gov (United States)

    Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar

    2017-08-01

    Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the

  20. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.

    Science.gov (United States)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi

    2015-09-01

    The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.

  1. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    Science.gov (United States)

    Barnes, Kimberlee K.

    2001-01-01

    The U.S. Geological Survey began data-collection activities in the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program in September 1995 with the purpose of determining the status and trends in water quality of water from the Wapsipinicon, Cedar, Iowa, and Skunk River basins. From March 1996 through September 1998, monthly surface-water samples were collected from 11 sites on the study's rivers and streams representing three distinct physiographic regions, the Des Moines Lobe, the Iowan Surface, the Southern Iowa Drift Plain, and one subregion, the Iowan Karst. These water samples were analyzed for basic water chemistry, including, but not limited to the following cations: sodium, potassium, magnesium, calcium, and silica; anions: chloride, fluoride, sulfate, and bicarbonate; and two metals - iron and maganese. Although none of the concentrations of the constituents exceeded health advisories or drinking-water regulations, extremely high or low concentrations could potentially affect aquatic life. Calcium, magnesium, and potassium are essential elements for both plant and animal life; manganese is an essential element in plant metabolism; and silica is important in the growth of diatom algae. Calcium had the largest median concentration of 61 milligrams per liter (mg/L) of the cations, and the largest maximum concentration of 100 mg/L. Bicarbonate had the largest median concentration of 210 mg/L of the anions, and the largest maximum concentration of 400 mg/L.

  2. Research NoteEffect of drought and fires on the quality of water in Lithuanian rivers

    Directory of Open Access Journals (Sweden)

    G. Sakalauskiene

    2003-01-01

    Full Text Available In August and September 2002, concentrations of heavy metals (copper, lead, and zinc were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water. Keywords: heavy metals, river water quality, Lithuania

  3. Suitability Evaluation of River Bank Filtration along the Second Songhua River, China

    Directory of Open Access Journals (Sweden)

    Lixue Wang

    2016-04-01

    Full Text Available The Second Songhua River is the biggest river system in Jilin Province, China. In recent years, the rapid economic development in this area has increased the prominence of water resources and water-related environmental problems; these include surface water pollution and the overexploitation of groundwater resources. Bank infiltration on the floodplains of the Second Songhua River is an important process of groundwater-surface water exchange under exploitation conditions. Understanding this process can help in the development of water resource management plans and strategies for the region. In this research, a multi-criteria evaluation index system was developed with which to evaluate the suitability of bank filtration along the Second Songhua River. The system was comprised of main suitability indexes for water quantity, water quality, the interaction intensity between surface water and groundwater, and the exploitation condition of groundwater resources. The index system was integrated into GIS (Geographic Information System to complete the evaluation of the various indicators. According to the weighted sum of each index, the suitability of river bank filtration (RBF in the study area was divided into five grades. Although the evaluation index system and evaluation method are applicable only to the Second Songhua River basin, the underlying principle and techniques it embodies can be applied elsewhere. For future generalization of the evaluation index system, the specific evaluation index and its scoring criteria should be modified appropriately based on local conditions.

  4. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  5. Radium-226 in waters of the Amazon river

    International Nuclear Information System (INIS)

    Shirshova, M.P.; Vinogradova, A.S.; Popov, N.I.

    1987-01-01

    Analysis of the Amazon river waters for 226 Ra content is carried out. Exploration works are carried out in the framework of the soviet investigations of the Amazon river in 1983 by the Academy of Science of USSR on board a research ship ''Professor Schtokman'' with the agreement and participation of brazilian scientists. Radium determination has been carried out in reference with equilibrium radon preliminary accumulated in samples (30 y) tightly closed. The general 226 Ra concentrations observed in the Amazon waters exceed 4-6 times the values known before relating to a ''diluted'' element fraction. It happens due to the presence of the river suspended matter in the water analysed; it is a carrier of additional quantities of 226 Ra, and considerable. The mixture zone of river and ocean waters is shown to be no ''geochemical barrier'' on the way to the ocean for river radium inlike the other microelements of the river run-off

  6. Hydrologic parameters and land use reflection on water quality at Mun river, Thailand

    International Nuclear Information System (INIS)

    Akter, A.; Babel, M.S.

    2005-01-01

    The 'River Basin' is the land area surrounding one river from its headwaters to its mouth whereas the area drained by a river and its tributaries. So that the land use changes and excessive application of nutrients (Nitrogen and Phosphorus) in predominant agricultural river basins may have a great influence on water quality. Here the study area Mun River Basin is approximately of 69,701 km/sup 2/ and in 1994, out of the total basin area 'about 80 percent was covered by agricultural purposes. Also one of the driest parts of Thailand as well as one of the industrialized provinces in Thailand, Nakhon Ratchasima is situated at the upstream of the river. Accordingly the downstream part Ubon Ratchathani seems totally agricultural based area. To get the water quality changing trends due to land use, there are around forty water quality parameters has considered for the last ten years along with the basins hydrological parameters. For this study based on the fifteen years rainfall data, the whole year divided into two seasons namely wet season (May to October) and dry season (November to April). The result shows: (1) most of the physicochemical parameters are high in wet season; (2) heavy metals moreover appear higher at wet season and (3) although the presences of pesticides are very nominal, the higher values are detected at wet season. The conclusion draws for the water quality by having wet season water sampling and then the testing of water samples for selected seven parameters whereas the water samples are collected at a duration of one-week to three-week from April to October 2004. And this short duration analysis shows that the mean value of the nutrient shows not only higher at wet season (May to October) than April's data also exceed the existing Thailand's surface water quality standard. (author)

  7. Thermophilic campylobacters in surface waters around Lancaster, UK: negative correlation with Campylobacter infections in the community.

    Science.gov (United States)

    Jones, K; Betaieb, M; Telford, D R

    1990-11-01

    The incidence of campylobacter enteritis in Lancaster City Health Authority is three times the UK average for similar sizes of population and has marked seasonal peaks in May and June. Environmental monitoring of surface waters around Lancaster showed that thermophilic campylobacters were absent from drinking water from the fells and from the clean upper reaches of the River Conder but were present in the main rivers entering Morecambe Bay, the lower reaches of the River Conder, the Lancaster canal, and seawater from the Lune estuary and Morecambe Bay. All the surface waters tested showed the same seasonality, namely, higher numbers in the winter months and low numbers or none in May, June and July. The absence of thermophilic campylobacters in the summer months may be due to high sunshine levels because experiments on the effects of light showed that campylobacters in sewage effluent and seawater were eliminated within 60 and 30 min of daylight respectively but survived for 24 h in darkness. As the concentrations of campylobacters in surface waters were at their lowest precisely at the time of peak infections in the community it is unlikely that surface waters form Lancaster's reservoir of campylobacter infection for the community.

  8. Water reuse in river basins with multiple users: A literature review

    Science.gov (United States)

    Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)

    2015-03-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.

  9. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  10. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  11. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    Science.gov (United States)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2017-05-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  12. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  13. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    Water quality (pH, suspended solids, chlorides, DO, BOD, reactive and total phosphorus, nitrates and boron) of River Damanganga which receives 0.2 mld of industrial waste into its fresh water zone through Pimparia River and 3.7 mld in its tidal zone...

  14. Effect of community activities on water qualities of the Bangpakong River, Chachoengsao Province

    Directory of Open Access Journals (Sweden)

    Paibulkichakul, C.

    2006-03-01

    Full Text Available The effect of community activities on water qualities of the Bangpakong River were investigated. Water from three different areas, Huasai temple, Thayai market and Sothorn temple, were sampled for quality monitoring for its physical, chemical and biological properties during July-September 2004. Analysis of variance was used for data analysis, and Duncan's Multiple Range Test was applied for means comparison at 95% confidence level.The results showed that ranges of dissolved oxygen, ammonia, nitrite, nitrate and orthophosphatephosphorus in all stations were 4.10-6.35, 0.022-0.156, 0.012-0.050, 0.084-0.299 and 0.004-0.047 mg/L, res the large food market, had the lowest water quality. Sothorn temple, the well-known tourist temple, had water quality in the middle of the three stations. Huasai temple, the agricultural site, had the best water qualities. The differences of water quality may be caused by the differences of community activities. The other parameters of this study could not clearly indicate the resons for the difference on water qualities.However, water quality from three areas met the Surface Water Quality Standard, class 3. Bangpakong River, the main river of Chachoengsao Province, is not only the source of water supply for households consumption as well as agricultural and industrial activities, but also receives untreated waste water from households, markets and industrial estates. Consequently, unless wastewater has been treated properly before discharging into the Bangpakong River, there will be water pollution in the near future.

  15. Remote Sensing of Surface Water and Recent Developments in the SWOT Mission

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.; SWOT Virtual Mission Team

    2011-12-01

    CNES, NASA, and the CSA are partners in the Surface Water and Ocean Topography satellite mission (SWOT, http://swot.jpl.nasa.gov/). The following exemplify some of the recent challenges in mission development that are being solved by an international team. (1) River discharge is typically defined as the flux through a channel cross-sectional area, thus river bathymetry is required to estimate discharge. While SWOT will not measure bottom-depths, it will enable cross-section measurements above the lowest water levels that occur during the mission. Moreover, recent algorithm developments combined with data assimilation show promise of using fluvial geomorphology and SWOT's hydraulic measurements to provide reasonable discharge estimates. Depending on algorithm complexity, errors in total discharge are 17% RMS for a non-data assimilation method and 10.5% RMS for a method that uses assimilation. Under development is an idea based on SWOT's hydraulic measurements that will enable discharge anomalies, perhaps even more accurate than total discharge. (2) The impact of floods on economies and on life is of great importance and thus SWOT researchers are investigating how the satellite-based hydraulic measurements will improve our understanding of flood processes. Simulation experiments using SWOT's orbital configuration over the Kanawha River (an Ohio River tributary) show an ability to measure flow hydraulics and hence estimate discharge at the initial arrival of the flood wave and again three days later during the falling limb of the wave. An important advance that will be made by the mission is that measurements will be made all along river reaches, thus providing a high-spatial resolution mapping of flood wave hydraulics and the connectivity to associated floodplains. This is particularly important as demonstrated by a study of the River Po, Italy, showing that 2D modeling inclusive of floodplain geomorphology improves model performance compared to a 1D version. (3

  16. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  17. Drugs of abuse and tranquilizers in Dutch surface waters, drinking water and wastewater: Results of screening monitoring 2009

    NARCIS (Netherlands)

    van der Aa, N.G.F.M.; Dijkman, E.; Bijlsma, L.; Emke, E.; van de Ven, B.M.; van Nuijs, A.L.N.; de Voogt, P.

    2011-01-01

    In the surface waters of the rivers Rhine and Meuse, twelve drugs that are listed in the Dutch Opium act were detected at low concentrations. They are from the groups amphetamines, tranquilizers (barbiturates and benzodiazepines) opiates and cocaine. During drinking water production, most compounds

  18. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... establishing special local regulations on the waters of the Wando River and Cooper River in Mount Pleasant... River and Cooper River along the shoreline of Mount Pleasant, South Carolina. The Lowcountry Splash...

  19. Full 2D observation of water surface elevation from SWOT under different flow conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  20. What maintains the waters flowing in our rivers?

    Science.gov (United States)

    Vasconcelos, Vitor Vieira

    2017-07-01

    This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.

  1. Tritium in the Savannah River Estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1978-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing, and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is 5 pCi/ml, whereas other rivers in the southeastern United States average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the River and from sea water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary, respectively

  2. Summary of biological investigations relating to surface-water quality in the Kentucky River Basin, Kentucky

    International Nuclear Information System (INIS)

    Bradfield, A.D.; Porter, S.D.

    1990-01-01

    The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and south Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. 205 refs., 7 figs., 1 tab

  3. MIKE-SHE integrated groundwater and surface water model used to ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... for Arid Rivers (DRIFT-ARID) decision support system (DSS). The DRIFT-ARID ... Most methods start with a description of the present day (PD) and ... or coupled groundwater and surface water hydrological model to produce a ...

  4. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination.

    Science.gov (United States)

    Yang, Yuan-Yuan; Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Zhang, Qian-Qian; Yao, Li; Hu, Li-Xin; Zhang, Jin-Na; Jiang, Yu-Xia; Ying, Guang-Guo

    2018-03-01

    We systematically investigated the occurrence and distribution of 93 pharmaceuticals and personal care products (PPCPs) and 5 artificial sweeteners (ASs) in surface water and groundwater of Dongjiang River basin in south China. In surface water, 52 compounds were detected with median concentrations ranging from 0.06ng/L to 504ng/L, while in groundwater, 33 compounds were detected with concentrations up to 4580ng/L for acesulfame. PPCPs and ASs were widely detected in the surface water and groundwater samples, which indicated contamination by domestic wastewater in the surface water and groundwater of Dongjiang River basin. Temporal and spatial variations of the detected chemicals were observed in surface water. Acesulfame, sucralose and cyclamate can be used as wastewater indicators to imply contamination in groundwater caused by domestic wastewater due to their hydrophilicity, anthropogenic sources and ubiquity in groundwater. Moreover, the detection of the readily degradable ASs, cyclamate, was a strong indication of untreated wastewater in groundwater. Sucralose was found to be a suitable wastewater indicator to reflect domestic wastewater contamination in surface water and groundwater qualitatively and quantitatively, and it can be used to evaluate wastewater burden in surface water and groundwater of Dongjiang River basin. The wastewater burden data from this survey implied serious contamination in surface water and groundwater by domestic wastewater at Shima River, a tributary of the Dongjiang River. The findings from this study suggest that the selected labile and conservative chemicals can be used as indication of wastewater contamination for aquatic environments qualitatively and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  6. Radioactivity in the Rhine - the LWA controls North-Rhine-Westphalian surface waters

    International Nuclear Information System (INIS)

    Kloes, H.

    1985-01-01

    The State Authority for Water and Waste Management has been testing the Rhine and the most important surface waters of North-Rhine Westphalia for radioactivity ever since it was founded in 1969. Radiation exposure of human beings who use Rhine water is far below the permitted maximum values of the 'radiation protection ordinance'. Pollution of the Rhine and its tributaries in North-Rhine Westphalia with artificial radioactive substances has even slightly decreased over the past ten years; pollution of the River Emscher with natural radioactive material remained high, the Lippe River now contains less radium than before. (orig./PW) [de

  7. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  8. Tritium in the Savannah River estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1979-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is approximately 5 pCi/ml, whereas other rivers in the southeastern United States of America average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the river and from sea-water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary respectively. (author)

  9. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  10. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  11. DETERMINATION OF WATER RESOURCES IN RIVERS IN THE BULGARIAN BASINS OF THE LOWER DANUBE

    Directory of Open Access Journals (Sweden)

    Plamen Iliev Ninov

    2017-04-01

    Full Text Available Object of the study is surface water bodies from category “rivers” according to Water Framework Directive 2000/60/ЕС. Surface water assessment is important for number of activities such as: water management in the country, making reports to international agencies, determining the change of the resources in the light of upcoming climate changes. The determination of water resources is based on information of hydrometric stations from the monitoring network system in the National Institute of Meteorology and Hydrology — Bulgarian Academy of Sciences (NIMH-BAS in which real ongoing and available water flows that are subject of management are registered. In the study a technology for surface water bodies in the Bulgarian basins of the lower Danube is applied which has been developed in the frame of cooperative project together with the Ministry of Environment and Water. This is absolutely true for the Bulgarian section of the Danube River basin which is expressed in big number and variety of hydrological homogeneous sections. The river flow is characterized with annual and inter-annual variability determined by climatic factors and anthropogenic influences. The main obtained results of the present hydrologic studies are the usage of transferred information from gauged to ungauged watersheds and the estimation of the surface water bodies’ resources using original regression relationships based on multiannual hydrological information from the NIMH-BAS monitoring network. The relationships delineate the hydrological homogeneous areas with similar conditions of flow formation. The estimated resources have significant usefulness for all State institutions managing the water in the Danube basin and have already been introduced in the operative and management practice.

  12. Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data

    OpenAIRE

    Xavier , L.; Becker , M.; Cazenave , A.; Longuevergne , L.; Llovel , W.; Rotunno Filho , Otto Correa

    2012-01-01

    International audience; We investigate the interannual variability over 2003-2008 of different hydrological parameters in the Amazon river basin: (1) vertically-integrated water storage from the GRACE space gravimetry mission, (2) surface water level of the Amazon River and its tributaries from in situ gauge stations, and (3) precipitation. We analyze the spatio-temporal evolution of total water storage from GRACE and in situ river level along the Amazon River and its main tributaries and not...

  13. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  14. The effects of river run-off on water clarity across the central Great Barrier Reef.

    Science.gov (United States)

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  16. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  17. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water.

    Science.gov (United States)

    Carmona, Eric; Andreu, Vicente; Picó, Yolanda

    2014-06-15

    The occurrence of 21 acidic pharmaceuticals, including illicit drugs, and personal care products (PPCPs) in waste, surface and drinking water and in sediments of the Turia River Basin (Valencia, Spain) was studied. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the determination of these PPCPs with electrospray (ESI) in negative ionization (NI) mode. Ammonium fluoride in the mobile phase improved ionization efficiency by an average increase in peak area of 5 compared to ammonium formate or formic acid. All studied compounds were detected and their concentration was waste water>surface water>drinking water. PPCPs were in waste water treatment plants (WWTPs) influents up to 7.26μgL(-1), dominated by ibuprofen, naproxen and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCOOH). WWTPs were highly effective in removing most of them, with an average removal rate of >90%. PPCPs were still detected in effluents in the 6.72-940ngL(-1) range, with the THCOOH, triclocarban, gemfibrozil and diclofenac as most prevalent. Similarly, diclofenac, gemfibrozil, ibuprofen, naproxen and propylparaben were detected quite frequently from the low ngL(-1) range to 7μgL(-1) in the surface waters of Turia River. Ibuprofen, methylparaben, salicylic acid and tetrahydrocannabinol (THC) were at concentrations up to 0.85ngg(-1) d.w. in sediments. The discharge of WWTP as well as of non-treated waters to this river is a likely explanation for the significant amount of PPCPs detected in surface waters and sediments. Mineral and tap waters also presented significant amounts (approx. 100ngL(-1)) of ibuprofen, naproxen, propylparaben and butylparaben. The occurrence at trace levels of several PPCPs in drinking water raises concerns about possible implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  19. Water quality study of Sunter River in Jakarta, Indonesia

    Science.gov (United States)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  20. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure

    International Nuclear Information System (INIS)

    Sharma, Brij Mohan; Bharat, Girija K.; Tayal, Shresth; Larssen, Thorjørn; Bečanová, Jitka; Karásková, Pavlína; Whitehead, Paul G.; Futter, Martyn N.; Butterfield, Dan; Nizzetto, Luca

    2016-01-01

    Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4–4.7 ng L"−"1) and PFBS (< MQL – 10.2 ng L"−"1) among PFCAs and PFSAs, respectively. Prevalence of short-chain PFAS indicates that the effects of PFOA and PFOS substitution are visible in environmental samples from India. The spatial pattern of C_5–C_7 PFCAs co-varied with that of PFOS suggesting similar emission drivers. PFDA and PFNA had much lower concentrations and covaried with PFOA especially in two hotspots downstream of Kanpur and Patna. PFOS and PFOA emissions to the river varied dramatically along the transect (0.20–190 and 0.03–150 g d"−"1, respectively). PFOS emission pattern could be explained by the number of urban residents in the subcatchment (rather than total population). Per-capita emissions were lower than in many developed countries. In groundwater, PFBA (< MQL – 9.2 ng L"−"1) and PFBS (< MQL – 4.9 ng L"−"1) had the highest concentrations among PFCAs and PFSAs, respectively. Concentrations and trends in groundwater were generally similar to those observed in surface water suggesting the aquifer was contaminated by wastewater receiving river water. Daily PFAS exposure intakes through drinking water were below safety

  1. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    Science.gov (United States)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with

  2. Agricultural Water Use Sustainability Assessment in the Tarim River Basin under Climatic Risks

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-02-01

    Full Text Available Proper agricultural water management in arid regions is the key to tackling climatic risks. However, an effective assessment of the current response to climate change in agricultural water use is the precondition for a group adaptation strategy. The paper, taking the Tarim River basin (TRB as an example, aims to examine the agricultural water use sustainability of water resource increase caused by climatic variability. In order to describe the response result, groundwater change has been estimated based on the Gravity Recovery and Climate Experiment (GRACE and the Global Land Data Assimilation System (GLDAS–Noah land surface model (NOAH data. In order to better understand the relationship between water resource increase and agricultural water consumption, an agricultural water stress index has been established. Agricultural water stress has been in a severe state during the whole period, although it alleviated somewhat in the mid–late period. This paper illustrates that an increase in water supply could not satisfy agricultural production expansion. Thus, seasonal groundwater loss and a regional water shortage occurred. Particularly in 2008 and 2009, the sharp shortage of water supply in the Tarim River basin directly led to a serious groundwater drop by nearly 20 mm from the end of 2009 to early 2010. At the same time, a regional water shortage led to water scarcity for the whole basin, because the water consumption, which was mainly distributed around Source Rivers, resulted in break-off discharge in the mainstream. Therefore, current agricultural development in the Tarim River basin is unsustainable in the context of water supply under climatic risks. Under the control of irrigation, spatial and temporal water allocation optimization is the key to the sustainable management of the basin.

  3. Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters.

    Science.gov (United States)

    Lopes, C B; Figueira, P; Tavares, D S; Lin, Z; Daniel-da-Silva, A L; Duarte, A C; Rocha, J; Trindade, T; Pereira, E

    2013-09-01

    The sorption capacity of nanoporous titanosilicate Engelhard titanosilicate number 4 (ETS-4) and silica-coated magnetite particles derivatised with dithiocarbamate groups towards Hg(II) was evaluated and compared in spiked ultra-pure and spiked surface-river water, for different batch factors. In the former, and using a batch factor of 100 m(3)/kg and an initial Hg(II) concentrations matching the maximum allowed concentration in an effluent discharge, both materials achieve Hg(II) uptake efficiencies in excess of 99 % and a residual metal concentration lower than the guideline value for drinking water quality. For the surface-river water and the same initial concentration, the Hg(II) uptake efficiency of magnetite particles is outstanding, achieving the quality criteria established by the Water Framework Directive (concerning Hg concentration in surface waters) using a batch factor of 50 m(3)/kg, while the efficiency of ETS-4 is significantly inferior. The dissimilar sorbents' Hg(II) removal efficiency is attributed to different uptake mechanisms. This study also highlights the importance of assessing the effective capacity of the sorbents under realistic conditions in order to achieve trustable results.

  4. Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)

    Science.gov (United States)

    Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh

    2018-03-01

    Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.

  5. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    Science.gov (United States)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  6. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  7. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  8. Evaluation of the depth-integration method of measuring water discharge in large rivers

    Science.gov (United States)

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  9. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  10. Change in corrosion potential of SUS304 in natural river water

    International Nuclear Information System (INIS)

    Yamamoto, Masahiro; Satoh, Tomonori; Tsukada, Takashi; Katayama, Hideki

    2014-01-01

    In the Fukushima Dai-ichi nuclear power plant, seawater and natural river water were poured into the spent nuclear fuel pools (SFP) for emergency cooling. At the early stage of the accident, corrosion of SFP's materials was worried because of high chloride ion concentration from seawater. The chloride ion concentration of the present time was decreased by dechlorination operation of feeding water of SFPs. However, the water was not treated in the viewpoint of microbial breeding and SFPs were in contact with open atmosphere, so that many microbes could be alive in the cooling water. Some researchers have reported microbially induced corrosion (MIC) occurred in the natural seawater or river water. So, we attempted to examine the ability of MIC occurrence by using of corrosion potential analysis. Corrosion potential measurements were performed in test solutions using SUS304 simple plate, creviced and welded samples. Natural river water in Ibaraki prefecture was used as standard test solution, and some amounts of NaCl and nutrient broth (NB) were added to the other solutions. Temperatures of these solutions were kept in 303 K. Growth of microbes in the test solution was confirmed using test kit. Corrosion potentials of all samples rose to about 300 mV nobler than the initial values in the NB added solution. The potentials of the welded samples more easily rose than the simple plate. These potential changes are attributed to the biofilms formed on the sample surface. (author)

  11. Disaggregating Orders of Water Scarcity - The Politics of Nexus in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Anna Mdee

    2017-02-01

    Full Text Available This article considers the dilemma of managing competing uses of surface water in ways that respond to social, ecological and economic needs. Current approaches to managing competing water use, such as Integrated Water Resources Management (IWRM and the concept of the water-energy-food nexus do not adequately disaggregate the political nature of water allocations. This is analysed using Mehta’s (2014 framework on orders of scarcity to disaggregate narratives of water scarcity in two ethnographic case studies in the WamiRuvu River Basin in Tanzania: one of a mountain river that provides water to urban Morogoro, and another of a large donor-supported irrigation scheme on the Wami River. These case studies allow us to explore different interfaces in the food-water-energy nexus. The article makes two points: that disaggregating water scarcity is essential for analysing the nexus; and that current institutional frameworks (such as IWRM mask the political nature of the nexus, and therefore do not provide an adequate platform for adjudicating the interfaces of competing water use.

  12. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    Chatani, Kunio

    1983-01-01

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  13. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  14. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  15. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  16. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  17. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  18. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  19. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  20. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  1. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  2. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  3. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  4. Water Availability in the Tigris-Euphrates River Basin and the Middle East from GRACE

    Science.gov (United States)

    Voss, K.; Famiglietti, J. S.; Lo, M.; de Linage, C.; Swenson, S. C.; Rodell, M.

    2010-12-01

    As water security becomes more tenuous, conflicts and disputes over the appropriate management and allocation of transboundary water resources are sure to arise. In particular, the Middle East faces extreme scarcity as a result of both natural climate variations and the impacts of water management decisions and policies. A recent drought, which began in 2007, caused regional hardships as precious water resources dwindled and collaboration between nations failed to accommodate shared needs. In this work, the area surrounding the Tigris and Euphrates River Basin was selected as a case study to evaluate trends in fresh water availability. Because few complete datasets exist for precipitation, streamflow, evapotranspiration, groundwater or surface water in the area, remote sensing techniques, including GRACE and altimetry, as well as land-surface models were utilized to develop an understanding of the regional hydrology. These observations and model results were used to estimate trends in total water storage and its individual components - soil moisture, snow water equivalent, surface water and groundwater. GRACE data show a clear decrease in total water storage in the Middle East from January 2003 to December 2009, and indicate that the selected region experienced a total volume loss of 143 km3 of water. Supporting datasets suggest that approximately two-thirds of this was a loss of groundwater. These results highlight the impacts of drought conditions on groundwater consumption and of agricultural expansion on available water resources in the region. Furthermore, they raise important political issues regarding water use in transboundary river basins and aquifers, while amplifying the need for increased monitoring and datasets for the core components of the water budget.

  5. Assessment of the dynamics of the radioactivity contents in surface waters in contaminated areas

    International Nuclear Information System (INIS)

    Komissarov, F.D.; Datskevich, P.I.; Golikov, Y.N.; Basharina, L.P.; Churack, T.N.; Khvaley, O.D.

    1997-01-01

    In the connection with Chernobyl APS accident, since 1988 a network of sites was established for radioecological monitoring of surface water systems, mainly, small rivers on all Belarus territory. Small rivers are the principal way of radionuclides run off in liquid and solid discharges during rains and high-floods and their re-distribution in landscapes. The components of water systems radio-monitoring were water and water suspensions, area water-collection, bottom deposits and biota. In the paper the data are cited of radioecological studies of water systems components. Their analysis is done and some conclusions made which may be used for the development of radioecological prognosis and for taking environmental measures

  6. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  7. Flood Disaster Mitigation as Revealed by Cawang-Manggarai River Improvement of Ciliwung River

    Directory of Open Access Journals (Sweden)

    Airlangga Mardjono

    2015-06-01

    The final result of this simulation shows that Scenario 3 gives the lowest water surface elevation profile. Scenario 3 is subjected to river normalization, revetment works along the river, and also flood control structure improvement through the additional sluice gate on Manggarai Barrage. This scenario results 167 cm, 163 cm, 172 cm, 179 cm, 167 cm and 171 cm or 17,60%, 17,16%, 18,09%, 18,76%, 17,38% and 17,72% of maximum water level reduction respectively over cross section number S 20 to S 25, for several simulations with 100 year of design discharge. Keywords: Simulation, river improvement, flood water surface elevation.

  8. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    Science.gov (United States)

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  9. Use of Isotopic Techniques for the Assessment of Hydrological Interactions Between Ground and Surface Waters - Rio Man, Cienaga Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, P.; Dapena, C.; Betancur, T. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Man River basin is located in the lower foothills of the western and central ranges of the tropical Andes, Colombia. In this area hydrological studies and hydrochemical analyses were carried out and isotopic techniques applied to describe and understand the interactions between ground and surface waters. To expand this model and to include elements other than local hydrodynamics, relationships between regional precipitation, recharge, regional flow paths and hydraulic gradients controlling water flows from big rivers to groundwater are currently being explored. Accordingly, an isotope local meteoric water line was derived and it was discovered that the relationship between ground and surface waters is similar in wet and dry seasons. Precipitation constitutes the main recharge source, base flow is important in supporting flow in rivers, streams and wetlands, and evaporation causes effects over water systems in dry periods. A tendency towards increasing air temperatures has been detected in the Man River; this change may cause negative impacts over the hydrological system, affecting evapotranspiration- recharge processes. (author)

  10. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    Science.gov (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  11. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    Science.gov (United States)

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mega drought in the Colorado River Basin, water supply, and adaptive scenario planning for the Phoenix Metropolitan Area; simulations using WaterSim 5.

    Science.gov (United States)

    Sampson, D. A.

    2015-12-01

    The Decision Center for a Desert City (DCDC), a boundary organization, bridges science and policy (to foster knowledge-based decision making); we study how decisions are made in the face of uncertainty. Our water policy and management model for the Phoenix Metropolitan Area (hereafter "Phoenix"), termed WaterSim, represents one such bridging mechanism. We evaluated the effect of varying the length of drought on water availability for Phoenix. We examined droughts (starting in 2000) lasting 15, 25, and 50 years. We picked a 60-year window of runoff estimates from the paleo reconstruction data for the Colorado River (CO) (1121 through 1180 A.D.), and the two local rivers (1391 through 1450 A.D.), and assumed that the proportional difference in median flow between these periods and the long-term record represented an estimate of potential drought reductions on river flows. This resulted in a 12%, and 19% reduction in flows for the CO River and the Salt-Verde (SV) Rivers, respectively. WaterSim uses 30-year trace periods from the historical flow records to simulate river flow for future projections. We used each 30-year trace from the historical record (1906 to present, CO River; 1945 to present SV Rivers) , and default settings, to simulate 60 year projections of Lake Mead elevation and the accompanying Colorado River water shortages to Phoenix. Overall, elevations for Lake Mead fell below the 1st shortage sharing tier (1075 ft) in 83% of the simulations; 74% of the simulations fell below the 2nd tier (1050 ft), and 64% fell below the 3rd (1025 ft). Length of drought, however, determined the shortage tiers met. Median elevations for droughts ending in 2015, 2025, and 2050 were 1036, 1019, and 967 feet msl, respectively. We present the plausible water futures with adaptive anticipatory scenario planning for the projected reductions in surface water availability to demonstrate decision points for water conservation measures to effectively manage shortage conditions.

  13. Surface water pollution and water quality studies at Prestea Goldfields Limited (P. G. L.) Prestea, Ghana

    International Nuclear Information System (INIS)

    Ampong, Charles Horace

    1993-11-01

    Prestea is a mining community developed around Prestea Goldfields Limited, which is engaged in mining Sulphide gold ores known to give rise to several environmental problems like air pollution in the form of emissions of arsenic or arsenous oxides, with concurrent production of large amounts of Sulphur dioxide. As a result of extensive mining since 1929 using underground methods, involving about 18 million tons of ore, an estimated 3.5 - 4 million tons of tailings have been left on the surface in the vicinity of both current and historic treatment sites. Since the mine is located in an area of heavy rainfall, incessant rain will flush contaminants from tailings dumps and waste sites into the downstream environment and subsequently into surface waters. Water supply for the population in the area is derived from rivers and streams flowing in the area, supplemented by boreholes and spring water. Not much is known with respect to pollution levels along the rivers and streams which serve as water for domestic uses by settlers along these river banks and around. It therefore became necessary to carry out studies to ascertain the pollution levels of various water resources and to make some suggestions to guide pollution of these waters and uses of them as well. Water sampling was carried out in the rivers and streams. A spring water and well water were also sampled as reference data to ascertain background levels of pollutants. The work highlights activities of the mine and that of the surrounding inhabitants which are likely to result in the pollution of surface waters. It also discusses results of water samples within the area, Sample analysis included determination of parameters like pH, Temperature, Conductivity, Alkalinity, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Solids (TS), Total hardness, Cyanide and Sulphate concentrations among others. Concentrations of some heavy metals were also determined. Based on standards prevailing in the country

  14. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    Science.gov (United States)

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  15. Long-term evolution of the composition of surface water from the River Gharasoo, Iran: a case study using multivariate statistical techniques.

    Science.gov (United States)

    Rezaei, A; Sayadi, M H

    2015-04-01

    We report an assessment of the quality of surface water from the River Gharasoo, Iran, with rainfall data. EC, pH, HCO(3)(-), Cl(-), SO(4), Ca(2+), Mg(2+), Na(+), %Na, and sodium adsorption ratio results, monitored monthly by two sampling stations over a period of 40 years, were held by the Hydraulic Works Organization in Kermanshah City. Principal-components analysis of the data revealed three factors for each station explaining 90.36 and 79.52 % of the total variance in the respective water-quality data. The first factor was chemical components resulting from point and non-point source pollution, especially industrial and domestic waste, and agricultural runoff, as a result of anthropogenic activity. Rainfall had significant negative correlation with bicarbonate only, at a level of 0.05, at station 1. Box-plot analysis revealed that, except for pH, the other studied characteristics were indicative of high pollution at station 1. Among the sources of pollution at station 1, Mg(2+) and Cl(-) data deviated most from normal distribution and included outliers and extremes. Hierarchical cluster analysis showed EC was substantially affected by rainfall. It is thus essential to treat industrial wastewater and municipal sewage from point sources by adoption of the best management practices to control diffuse pollutants and improve water quality of the Gharasoo River basin.

  16. Treatment of Surface water in lebanon by using the coagulation-flocculation procedure

    International Nuclear Information System (INIS)

    SLIM, K.; Saad, Z.; Kazpard, V.; El Samarani, A.

    2005-01-01

    In the absence of application of environmental protection laws in Lebanon. Anthropic effluents are directly discharged in the course of rivers. More specially two coastal rivers (GHadir and Ibrahim)located near Beirut. Treatment of these surface waters is done by coagulation-flocculation process by using Al13 coagulant. The elimination of suspended matters in Ghadir and Ibrahim rivers is studied by simple jar test coupled to measurement of supernatant turbidity and sediment volume. Physical and chemical parameters of water before and after treatment are given by Atomic absorption and ion chromatography analysis. The optimal coagulation concentration of Al was defined relatively to lowest concentration of Aluminum needed for maximum turbidity removal in treated water. This study showed that hydrolysis of aluminum salts before adding to water is relevant to the use of similar quantities of Al for the coagulation-flocculation process that eliminates primarily suspended matter in river. Restabilisation is shown in all Jar tests of Ibrahim river, but not in Ghadir where buffering effect is elevated. Results also showed that waters with low turbidity request low concentration of aluminum for the destabilization process. For this, Ibrahim water treatment was found better than river Ghadir characterized by higher inputs of anthropogenic effluents in its course. In all cases, cationic exchanges with Al 1 3 polycations within the sediments caused the release of calcium and the elevation of its concentration in the supernatant. Sulfate concentration diminished continuously in supernatant after the addition of the optimal coagulation concentration of aluminum. (author)

  17. Evaluation Of Water Quality At River Bian In Merauke Papua

    Science.gov (United States)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  18. Evaluation Of Water Quality At River Bian In Merauke Papua

    Directory of Open Access Journals (Sweden)

    Djaja Irba

    2018-01-01

    Full Text Available River Bian in Merauke Regency has been utilized by local people in Papua (the Marind who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  19. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  20. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  1. The Effect of Reduced Water Availability in the Great Ruaha River on the Vulnerable Common Hippopotamus in the Ruaha National Park, Tanzania.

    Directory of Open Access Journals (Sweden)

    Claudia Stommel

    Full Text Available In semi-arid environments, 'permanent' rivers are essential sources of surface water for wildlife during 'dry' seasons when rainfall is limited or absent, particularly for species whose resilience to water scarcity is low. The hippopotamus (Hippopotamus amphibius requires submersion in water to aid thermoregulation and prevent skin damage by solar radiation; the largest threat to its viability are human alterations of aquatic habitats. In the Ruaha National Park (NP, Tanzania, the Great Ruaha River (GRR is the main source of surface water for wildlife during the dry season. Recent, large-scale water extraction from the GRR by people upstream of Ruaha NP is thought to be responsible for a profound decrease in dry season water-flow and the absence of surface water along large sections of the river inside the NP. We investigated the impact of decreased water flow on daytime hippo distribution using regular censuses at monitoring locations, transects and camera trap records along a 104km section of the GRR within the Ruaha NP during two dry seasons. The minimum number of hippos per monitoring location increased with the expanse of surface water as the dry seasons progressed, and was not affected by water quality. Hippo distribution significantly changed throughout the dry season, leading to the accumulation of large numbers in very few locations. If surface water loss from the GRR continues to increase in future years, this will have serious implications for the hippo population and other water dependent species in Ruaha NP.

  2. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  3. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  4. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  5. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    Science.gov (United States)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  6. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  7. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  8. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Science.gov (United States)

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  9. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    Science.gov (United States)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface

  10. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  11. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  12. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  13. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  14. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  15. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  16. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    Science.gov (United States)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  17. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    Science.gov (United States)

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  18. Dispersion of inorganic contaminants in surface water in the vicinity of Potchefstroom

    Science.gov (United States)

    Manyatshe, A.; Fosso-Kankeu, E.; van der Berg, D.; Lemmer, N.; Waanders, F.; Tutu, H.

    2017-08-01

    Potchefstroom and the neighbouring cities rely mostly on the Mooi River and Vaal River for their water needs. These rivers flow through the gold mining areas and farms, and are therefore likely to be contaminated with substantial amounts of inorganic pollutants. Water was collected along the rivers network, streams, canals and dams in Potchefstroom and the vicinity. The samples were characterized for geochemical parameters, metals and anions concentrations. The results showed high concentrations of potentially toxic elements such as As (4.53 mg/L - 5.74 mg/L), Cd (0.25 mg/L - 0.7 mg/L), Pb (1.14 mg/L - 5.13 mg/L) and U (0.04 mg/L - 0.11 mg/L) which were predominantly found around the mining areas. Elevated concentrations of anions such SO42- and CN- were detected around mining areas while NO3- was dominant near farms. The relatively high levels of anions and metals in the surface water made it unfit for domestic or agricultural use. The study showed that contaminants in mining and agricultural facilities were potentially mobilised, thus impacting the nearby water systems.

  19. Chemical composition of the mineral waters of the Congo River

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Lobo, K.K.; Tshisumpa, M.; Wembo, L.S.

    2003-01-01

    Atomic absorption spectrophotometry has been applied to river Congo waters for a global monitoring of trace element contents. 15 elements Ag, Au, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn have been determined in samples collected at 2 sites along the river Congo. Results are compared with those observed in other river waters collected in Kinshasa and elsewhere and for compliance with the international quality standards elaborated by the Who, USA and SSRU. The waters of river Congo have been found less mineralized than those of river Niger. They are of the same order of magnitude than those observed in some local rivers such as Ndjili, Lubudi, Funa, Tshangu and Tshenke.

  20. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  1. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  2. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  3. Depletion of barium and radium-226 in Black Sea surface waters over the past thirty years

    International Nuclear Information System (INIS)

    Kenison Falkner, K.K.; Edmond, J.M.; O'Neill, D.J.; Todd, J.F.; Moore, W.S.

    1991-01-01

    The nearly landlocked waters of the Black Sea support a valuable fishery, but are also particularly vulnerable to anthropogenic disturbance. Here we use dissolved barium and radium-226 as tracers, to investigate the biogeochemical health of the sea. Both elements are brought to surface waters by vertical mixing of deeper, enriched waters, and by rivers; these inputs should ordinarily be balanced by outflow of surface waters at the Bosphorus, and by biologically mediated removal of 226 Ra-bearing barite. We show, however, that surface-water inventories have been substantially depleted over the past few decades: recent (1988-89) barium concentrations were 1.6 times lower than in 1958 and 1967. These observations suggest that steady-state cycling of these elements has been perturbed by increased primary productivity, presumably fuelled by nutrients from industry and agricultural runoff, and to a lesser extent by decreased fluvial sediment loads owing to extensive impoundment of rivers in the region. (author)

  4. CLASSIFICATION OF WATER SURFACES USING AIRBORNE TOPOGRAPHIC LIDAR DATA

    Directory of Open Access Journals (Sweden)

    J. Smeeckaert

    2013-05-01

    Full Text Available Accurate Digital Terrain Models (DTM are inevitable inputs for mapping areas subject to natural hazards. Topographic airborne laser scanning has become an established technique to characterize the Earth surface: lidar provides 3D point clouds allowing a fine reconstruction of the topography. For flood hazard modeling, the key step before terrain modeling is the discrimination of land and water surfaces within the delivered point clouds. Therefore, instantaneous shoreline, river borders, inland waters can be extracted as a basis for more reliable DTM generation. This paper presents an automatic, efficient, and versatile workflow for land/water classification of airborne topographic lidar data. For that purpose, a classification framework based on Support Vector Machines (SVM is designed. First, a restricted set of features, based only 3D lidar point coordinates and flightline information, is defined. Then, the SVM learning step is performed on small but well-targeted areas thanks to an automatic region growing strategy. Finally, label probabilities given by the SVM are merged during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that survey of millions of points are labelled with high accuracy (>95% in most cases for coastal areas, and >89% for rivers and that small natural and anthropic features of interest are still well classified though we work at low point densities (0.5–4 pts/m2. Our approach is valid for coasts and rivers, and provides a strong basis for further discrimination of land-cover classes and coastal habitats.

  5. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  6. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  7. The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay

    Science.gov (United States)

    LeBlanc, Lawrence A.; Latimer, James S.; Ellis, John T.; Quinn, James G.

    1992-05-01

    A geochemical study of coprostanol (5β-Cholestan-3β-ol) was undertaken, to examine the transport and fate of a compound of moderate polarity and reactivity in the marine environment, and also because of the interest in coprostanol for use as a sewage tracer. During 1985-86, 20 sites in Narragansett Bay, including the major point sources and rivers discharging into the bay estuary, were sampled at four different times. In addition, surface sediments from 26 stations in the bay were collected. The large number and diversity of samples allowed for an assessment of major inputs of sewage into the bay as well as the recent fate of sewage-derived particles in surface sediments. Results from the study revealed that 50% of the total particulate coprostanol entering the bay was discharged into the Providence River, primarily due to inputs from the wastewater treatment facility (WWTF) at Fields Point, as well as input from the Pawtuxet and Blackstone Rivers. In the lower bay, the Newport WWTF was the largest single source of coprostanol (37% of the total particulate coprostanol) to the bay. Effluent concentrations of coprostanol from secondary WWTFs were consistently lower than those of primary treatment facilities, demonstrating the usefulness of corporstanol as an indicator of treatment plant efficiency. The distribution of coprostanol in waters and surface sediments showed a gradient of decreasing concentration downbay. When coprostanol concentrations in surface sediments were normalized to organic carbon (OC) concentrations, elevated levels were seen only in the Providence River, with a more or less even distribution throughout the rest of the bay. Results also suggest that coprostanol degrades more rapidly in the water column compared to the petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), however, it is relatively stable once it is buried in the sediments. Coprostanol concentrations in waters (0·02-0·22

  8. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  9. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    Science.gov (United States)

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  10. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  11. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  12. A Study on the Surface and Subsurface Water Interaction Based on the Groundwater Recession Curve

    Science.gov (United States)

    Wang, S. T.; Chen, Y. W.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.

    2017-12-01

    The interaction of surface to subsurface water is an important issue for groundwater resources assessment and management. The influences of surface water to groundwater are mainly through the rainfall recharge, river recharge and discharge and other boundary sources. During a drought period, the interaction of river and groundwater may be one of the main sources of groundwater level recession. Therefore, this study explores the interaction of surface water to groundwater via the groundwater recession. During drought periods, the pumping and river interaction together are the main mechanisms causing the recession of groundwater level. In principle, larger gradient of the recession curve indicates more groundwater discharge and it is an important characteristic of the groundwater system. In this study, to avoid time-consuming manual analysis, the Python programming language is used to develop a statistical analysis model for exploring the groundwater recession information. First, the slopes of the groundwater level hydrograph at every time step were computed for each well. Then, for each well, the represented slope to each groundwater level was defined as the slope with 90% exceedance probability. The relationship between the recession slope and the groundwater level can then be obtained. The developed model is applied to Choushui River Alluvial Fan. In most wells, the results show strong positive correlations between the groundwater levels and the absolute values of the recession slopes.

  13. Pilot monitoring study of ibuprofen in surface waters of north of Portugal.

    Science.gov (United States)

    Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina

    2013-04-01

    Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.

  14. Air-water oxygen exchange in a large whitewater river

    Science.gov (United States)

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  15. New Module to Simulate Groundwater-Surface Water Interactions in Small-Scale Alluvial Aquifer System.

    Science.gov (United States)

    Flores, L.

    2017-12-01

    Streamflow depletion can occur when groundwater pumping wells lower water table elevations adjacent to a nearby stream. Being able to accurately model the severity of this process is of critical importance in semi-arid regions where groundwater-surface water interactions affect water rights and the sustainability of water resource practices. The finite-difference flow model MODFLOW is currently the standard for estimating groundwater-surface water interactions in many regions in the western United States. However, certain limitations of the model persist when highly-resolved spatial scales are used to represent the stream-aquifer system, e.g. when the size of computational grid cells is much less than the river width. In this study, an external module is developed and linked with MODFLOW that (1) allows for multiple computational grid cells over the width of the river; (2) computes streamflow and stream stage along the length of the river using the one-dimensional (1D) steady (over a stress period) shallow water equations, which allows for more accurate stream stages when normal flow cannot be assumed or a rating curve is not available; and (3) incorporates a process for computing streamflow loss when an unsaturated zone develops under the streambed. Use of the module not only provides highly-resolved estimates of streamflow depletion, but also of streambed hydraulic conductivity. The new module is applied to the stream-aquifer alluvial system along the South Platte River south of Denver, Colorado, with results tested against field-measured groundwater levels, streamflow, and streamflow depletion.

  16. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  17. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  18. Contribution of groundwater to the discharge and quality of surface flow: example of the Garonne river upstream of its confluence with the Tarn river

    International Nuclear Information System (INIS)

    Danneville, L.

    1998-01-01

    Very few studies have been made of the contribution of groundwater to the discharge and quality of surface flow at regional scale, such as that of the catchment area of the Garonne river upstream of its confluence with the Tarn river (15.000 km 2 ). Three main types of groundwater reservoir exist in the area: karstic aquifers, alluvial aquifers, and colluvial and local aquifers that are still poorly understood. The contribution from the karstic aquifers to surface flow varies seasonally depending on the nature, hydraulic behaviour and elevation of the karst. Minor exchange occurs between the alluvial aquifers and rivers, mainly during flooding. The Garonne river, which has an average flow of 199 m 3 /s, is mainly replenished by the Salat and Ariege tributaries, regardless of the season. Study of the low-water stage using Maillet's formula has given a good estimate of the groundwater storage of certain tributaries, and the role played by the groundwater is demonstrated by correlation and spectrum analysis of discharge time series. For example, during 1985, the main storage was shown to be in the river basins of Ariege (142 million m 3 ), Salat (111 million m 3 ) and Ger (21 million m 3 ). The Ger, which is the smallest tributary, has the highest specific storage (224 I/m 2 ) and presents an important buffer effect related to numerous karstic springs. The total groundwater storage of the entire recharge area is estimated at 2.1-2.9 billion m 3 for 1993. It is the largest water storage of the basin, greater than the snow cover (371 million m 3 ) and the artificial storage for electric power plants, discharge buffering and irrigation. The groundwater contribution to the total flow of the Garonne river at the Portet gauging station has been estimated at 46-60% of total discharge in 1993 by extrapolating the low-water stage from the residual hydrograph (hydrograph without the influence of dam reservoirs and snow cover), Direct runoff is estimated at 34-48% and the snow

  19. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Science.gov (United States)

    2010-07-01

    ..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability. This... control management within the Mississippi River Basin. (c) Objectives. The objectives of the Board are: (1...) Composition. The Mississippi River Water Control Management Board is a continuing board consisting of the...

  20. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany).

    Science.gov (United States)

    Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita

    2017-01-01

    The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances

  1. Water quality assessment of the Shatt al-Arab River, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Moyel

    2015-06-01

    Full Text Available Objective: To assess suitability of the water quality of Shatt al-Arab River for protection of aquatic life, potable water supply and irrigation uses. Methods: The Shatt al-Arab River was monitored on a monthly basis from July 2009 to June 2010. A water quality index (WQI was calculated to assess the suitability of water for protection of aquatic life, potable water supply and irrigation uses during the dry season from July to December 2009 and the wet season from January until June 2010. Results: The results of the WQI showed that the lowest water quality values were scored during the dry season for all three uses of the river. Marginal water quality values were recorded for protection of aquatic life and fair (upstream to poor (downstream water quality values were recorded for irrigation uses. Moreover, the river water was not suitable for potable water supply without elaborate treatment. Conclusions: Deterioration of the Shatt al-Arab water quality has been attributed to reduced freshwater discharges from Tigris and Euphrates Rivers, low annual precipitations and an advancing salt wedge from the Arabian Gulf. However, a combination of those factors such as low riverine discharge and advancing salt wedge with a continuous discharge of agriculture, oil industry and urban point effluent has polluted the waters and fostered the decline of the Shatt al-Arab River water quality during the study period. The study indicated that application of WQIs was a useful tool to monitor and assess the overall water quality of the Shatt al-Arab River.

  2. Overview of total beta activity index and beta rest in surface waters of the Spanish rivers; Vision general del indice de actividad beta total y beta resto en las aguas superficiales de los rios espanoles

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, L.; Payeras, J.; Pablo, M. A. de

    2013-07-01

    This work aims to give an overview of the index of total beta activity and the activity index beta rest in surface waters of the main Spanish rivers. These indices are a parameter over water quality that CEDEX comes determined by order of the Ministry of Agriculture, Food and Environment, in water policy. (Author)

  3. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  4. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  5. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  6. Development of water facilities in the Santa Ana River Basin, California, 1810-1968: a compilation of historical notes derived from many sources describing ditch and canal companies, diversions, and water rights

    Science.gov (United States)

    Scott, M.B.

    1977-01-01

    This report traces by text, maps, and photographs, the development of the water supply in the Santa Ana River basin from its beginning in 1810 or 1811 to 1968. The value of the report lies in the fact that interpretation of the hydrologic systems in the basin requires knowledge of the concurrent state of development of the water supply, because that development has progressively altered the local regimen of both surface water and ground water. Most of the information for the earlier years was extracted and condensed from an investigation made by W. H. Hall, California State Engineer during the years 1878-87. Hall's study described irrigation development in southern California from its beginning through 1888. Information for the years following 1888 was obtained from the archives of the numerous water companies and water agencies in the Santa Ana River basin and from the various depositories of courthouse, county, and municipal records. The history of water-resources development in the Santa Ana River basin begins with the introduction of irrigation in the area by the Spanish, who settled in southern California in the latter part, of the 18th century. The first irrigation diversion from the Santa Ana River was made in 1810 or 1811 by Jose Antonio Yorba and Juan Pablo Peralta. Irrigation remained a localized practice during the Mexican-Californian, or rancho, period following the separation of Mexico from Spain in 1821. Rancho grantees principally raised cattle, horses, and sheep and irrigated only small· plots of feed grain for their livestock and fruit crops for household use. The breakup of the ranchos through sales to Americans, who were migrating to California in ever-increasing numbers following the acquisition of California by the United States in 1848, marked the beginning of a rapid increase in water use and the beginning of widespread irrigation. Many water companies and water agencies were organized to divert the surface flow of the Santa Ana River and

  7. A regional coupled surface water/groundwater model of the Okavango Delta, Botswana

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gumbricht, T.; Kinzelbach, W.

    2006-01-01

    In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being...... of a surface water flow component based on the diffusive wave approximation of the Saint- Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation......, spectacular wildlife, and a first- class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction...

  8. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    Science.gov (United States)

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  9. Zirconium/niobium-95 determined in Hudson River water

    International Nuclear Information System (INIS)

    Linsalata, P.; Cohen, N.

    1982-01-01

    Zirconium 95 and Niobium 95 are the fission products detected in greatest abundance in Hudson River water following the atmospheric testing of a nuclear device in N.W. China in 1980. Water samples, collected continuously and on a 'grab' basis, and processed monthly, have been studied to determine 95 Zr and 95 Nb concentrations, and plotted against collection time. Total precipitation values for each month, averaged over the whole Hudson River are also plotted. Airborne concentration data were obtained from sites in Lower Manhattan and Chester, N.J. A maximum value for 95 Zr in the Hudson River was found for February 1981. Half-time removal of 95 Zr from water was also calculated. (U.K.)

  10. Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Ramli, Mohammad Firuz; Juahir, Hafizan

    2012-01-01

    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.

  11. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  12. INTEGRATION OF RS/GIS FOR SURFACE WATER POLLUTION RISK MODELING. CASE STUDY: AL-ABRASH SYRIAN COASTAL BASIN

    Directory of Open Access Journals (Sweden)

    Y. Yaghi

    2017-09-01

    Full Text Available Recently the topic of the quality of surface water (rivers – lakes and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP and non-point Source pollution (NPSP. Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  13. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    Science.gov (United States)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  14. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  15. Hanford Site environmental data for calendar year 1989, surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.; Woodruff, R.K.

    1990-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor chemicals on the site and in the Columbia River. Pacific Northwest Laboratory publishes an annual environmental report Hanford Site Environmental Report for Calendar Year 1989. That report is a comprehensive source of offsite and onsite environmental monitoring data collected during 1989 by PNL's Environmental Monitoring Program. Appendix C of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries. Ground-water monitoring data will be available separately. Questions concerning the data appearing here can be directed to R. K. Woodruff, PNL Project Manager, Surface Environmental Surveillance Project

  16. Seasonal variations in the level of heavy metals in the water of minor rivers

    Directory of Open Access Journals (Sweden)

    I. L. Sukhodolska

    2017-01-01

    Full Text Available This article analyses the level of heavy metals (Zn, Mn, Fe, Pb, Co, Ni, Cd and characteristics of their transportation through the water of minor rivers in Rivne region, Ukraine. The levels of Zn, Cu, Mn, Fe, Ni, Co in the waters of these fisheries exceeded the maximum permissible concentration limit in different months. We found that the concentration of Pb and Cd did not exceed the permissible concentration limit in the waters of the fisheries during the year of research, while the level of other metals exceeded the permissible levels by 1.1 to 151.0 times. This research confirms that the surface waters of Rivne region are characterized by high concentrations of iron, manganese, zinc, and nickel. The level of iron exceeded the maximum permissible concentration limit by 1.1 to 5.0 times, the level of zinc by 1.5 to 15.0 times, that of manganese by1.3 to 6.7 times and the nickel level by 1.3 to 151.0 times in the fishery waters. In principle, the increase in the level of heavy metals (Zn, Cu, Mn, Fe, Ni, Co is connected with the lithological composition of reservoirs in the water-collecting areas of the investigated rivers, and besides with the significant influence of the anthropogenic load (fuel combustion, aqueous wastes of factory units, agricultural effluent, etc., and with the increase in aquatic vegetation, pH balance, temperature change and so on. The appearance of iron-manganese compounds can be explained by natural causes such as reformation of the source minerals into secondary minerals in the conditions of pH level recession in water, which causes the release of these molecular entities; leaching of iron from the iron-manganese septarian nodules, a substantial amount of which is contained in the illuvial horizon. The increase in the level of zinc and nickel in the river water is connected with the leaching of these elements from subsurface rocks, soil and forest leaf litter. Atmospheric condensation is a significant source of the

  17. Physico-chemical and biological studies on water from Aries River (Romania).

    Science.gov (United States)

    Butiuc-Keul, A; Momeu, L; Craciunas, C; Dobrota, C; Cuna, S; Balas, G

    2012-03-01

    Our work was focused on physico-chemical and biological characteristics of Aries River, one of the largest rivers from Romania. Water samples were collected from 11 sites along Aries River course. We have measured de (18)O and D isotopic composition of Aries River water in these locations and correlated these data with the isotopic composition of aquatic plants and with the pollution degree. Some ions from Aries River water were also analyzed: NO(3)(-), NO(2)(-), PO(4)(3-) Cu(2+), Fe(3+). Analysis of diatom communities has been performed in order to quantify the level of water pollution of Aries River. All physico-chemical analyses revealed that the most polluted site is Abrud; the source of pollution is most probably the mining enterprise from Rosia Montana. Water isotope content increases from upstream to downstream of the locations analyzed. The structure of diatom communities is strongly influenced by the different pollution sources from this area: mine waters, industrial waters, waste products, land cleaning, tourism etc. The water eutrophication increases from upstream of Campeni to downstream of Campia Turzii. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Science.gov (United States)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  19. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.

    2013-09-01

    The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1) due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).

  20. Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016

    Science.gov (United States)

    Carmichael, John K.; Johnson, Gregory C.

    2017-12-14

    The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.

  1. Hepatitis A and E Viruses in Wastewaters, in River Waters, and in Bivalve Molluscs in Italy.

    Science.gov (United States)

    Iaconelli, M; Purpari, G; Della Libera, S; Petricca, S; Guercio, A; Ciccaglione, A R; Bruni, R; Taffon, S; Equestre, M; Fratini, M; Muscillo, M; La Rosa, Giuseppina

    2015-12-01

    Several studies have reported the detection of hepatitis A (HAV) and E (HEV) virus in sewage waters, indicating a possibility of contamination of aquatic environments. The objective of the present study was to assess the occurrence of HAV and HEV in different water environments, following the route of contamination from raw sewage through treated effluent to the surface waters receiving wastewater discharges . Bivalve molluscan shellfish samples were also analyzed, as sentinel of marine pollution. Samples were tested by RT-PCR nested type in the VP1/2A junction for HAV, and in the ORF1 and ORF2 regions for HEV. Hepatitis A RNA was detected in 12 water samples: 7/21 (33.3%) raw sewage samples, 3/21 (14.3%) treated sewage samples, and 2/27 (7.4%) river water samples. Five sequences were classified as genotype IA, while the remaining 7 sequences belonged to genotype IB. In bivalves, HAV was detected in 13/56 samples (23.2%), 12 genotype IB and one genotype IA. Whether the presence of HAV in the matrices tested indicates the potential for waterborne and foodborne transmission is unknown, since infectivity of the virus was not demonstrated. HEV was detected in one raw sewage sample and in one river sample, both belonging to genotype 3. Sequences were similar to sequences detected previously in Italy in patients with autochthonous HEV (no travel history) and in animals (swine). To our knowledge, this is the first detection of HEV in river waters in Italy, suggesting that surface water can be a potential source for exposure .

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  4. Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia

    Directory of Open Access Journals (Sweden)

    Voza Danijela

    2015-12-01

    Full Text Available The aim of this article is to evaluate the quality of the Danube River in its course through Serbia as well as to demonstrate the possibilities for using three statistical methods: Principal Component Analysis (PCA, Factor Analysis (FA and Cluster Analysis (CA in the surface water quality management. Given that the Danube is an important trans-boundary river, thorough water quality monitoring by sampling at different distances during shorter and longer periods of time is not only ecological, but also a political issue. Monitoring was carried out at monthly intervals from January to December 2011, at 17 sampling sites. The obtained data set was treated by multivariate techniques in order, firstly, to identify the similarities and differences between sampling periods and locations, secondly, to recognize variables that affect the temporal and spatial water quality changes and thirdly, to present the anthropogenic impact on water quality parameters.

  5. Mapping Water Level Dynamics over Central Congo River Using PALSAR Images, Envisat Altimetry, and Landsat NDVI Data

    Science.gov (United States)

    Kim, D.; Lee, H.; Jung, H. C.; Beighley, E.; Laraque, A.; Tshimanga, R.; Alsdorf, D. E.

    2016-12-01

    Rivers and wetlands are very important for ecological habitats, and it plays a key role in providing a source of greenhouse gases (CO2 and CH4). The floodplains ecosystems depend on the process between the vegetation and flood characteristics. The water level is a prerequisite to an understanding of terrestrial water storage and discharge. Despite the lack of in situ data over the Congo Basin, which is the world's third largest in size ( 3.7 million km2), and second only to the Amazon River in discharge ( 40,500 m3 s-1 annual average between 1902 and 2015 in the main Brazzaville-Kinshasa gauging station), the surface water level dynamics in the wetlands have been successfully estimated using satellite altimetry, backscattering coefficients (σ0) from Synthetic Aperture Radar (SAR) images and, interferometric SAR technique. However, the water level estimation of the Congo River remains poorly quantified due to the sparse orbital spacing of radar altimeters. Hence, we essentially have limited information only over the sparsely distributed the so-called "virtual stations". The backscattering coefficients from SAR images have been successfully used to distinguish different vegetation types, to monitor flood conditions, and to access soil moistures over the wetlands. However, σ0 has not been used to measure the water level changes over the open river because of very week return signal due to specular scattering. In this study, we have discovered that changes in σ0 over the Congo River occur mainly due to the water level changes in the river with the existence of the water plants (macrophytes, emergent plants, and submersed plant), depending on the rising and falling stage inside the depression of the "Cuvette Centrale". We expand the finding into generating the multi-temporal water level maps over the Congo River using PALSAR σ0, Envisat altimetry, and Landsat Normalized Difference Vegetation Index (NDVI) data. We also present preliminary estimates of the river

  6. Assessment of Surface Water Quality Using Multivariate Statistical Techniques in the Terengganu River Basin

    International Nuclear Information System (INIS)

    Aminu Ibrahim; Hafizan Juahir; Mohd Ekhwan Toriman; Mustapha, A.; Azman Azid; Isiyaka, H.A.

    2015-01-01

    Multivariate Statistical techniques including cluster analysis, discriminant analysis, and principal component analysis/factor analysis were applied to investigate the spatial variation and pollution sources in the Terengganu river basin during 5 years of monitoring 13 water quality parameters at thirteen different stations. Cluster analysis (CA) classified 13 stations into 2 clusters low polluted (LP) and moderate polluted (MP) based on similar water quality characteristics. Discriminant analysis (DA) rendered significant data reduction with 4 parameters (pH, NH 3 -NL, PO 4 and EC) and correct assignation of 95.80 %. The PCA/ FA applied to the data sets, yielded in five latent factors accounting 72.42 % of the total variance in the water quality data. The obtained varifactors indicate that parameters in charge for water quality variations are mainly related to domestic waste, industrial, runoff and agricultural (anthropogenic activities). Therefore, multivariate techniques are important in environmental management. (author)

  7. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  8. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  9. Fifteen Years (1993–2007 of Surface Freshwater Storage Variability in the Ganges-Brahmaputra River Basin Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Edward Salameh

    2017-03-01

    Full Text Available Surface water storage is a key component of the terrestrial hydrological and biogeochemical cycles that also plays a major role in water resources management. In this study, surface water storage (SWS variations are estimated at monthly time-scale over 15 years (1993–2007 using a hypsographic approach based on the combination of topographic information from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER and Hydrological Modeling and Analysis Platform (HyMAP-based Global Digital Elevation Models (GDEM and the Global Inundation Extent Multi-Satellite (GIEMS product in the Ganges-Brahmaputra basin. The monthly variations of the surface water storage are in good accordance with precipitation from Global Precipitation Climatology Project (GPCP, river discharges at the outlet of the Ganges and the Brahmaputra, and terrestrial water storage (TWS from the Gravity Recovery And Climate Experiment (GRACE, with correlations higher than 0.85. Surface water storage presents a strong seasonal signal (~496 km3 estimated by GIEMS/ASTER and ~378 km3 by GIEMS/HyMAPs, representing ~51% and ~41% respectively of the total water storage signal and it exhibits a large inter-annual variability with strong negative anomalies during the drought-like conditions of 1994 or strong positive anomalies such as in 1998. This new dataset of SWS is a new, highly valuable source of information for hydrological and climate modeling studies of the Ganges-Brahmaputra river basin.

  10. Numerical Simulation of Flood Levels for Tropical Rivers

    International Nuclear Information System (INIS)

    Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor

    2011-01-01

    Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.

  11. QSAR models for the removal of organic micropollutants in four different river water matrices

    KAUST Repository

    Sudhakaran, Sairam

    2012-04-01

    Ozonation is an advanced water treatment process used to remove organic micropollutants (OMPs) such as pharmaceuticals and personal care products (PPCPs). In this study, Quantitative Structure Activity Relationship (QSAR) models, for ozonation and advanced oxidation process (AOP), were developed with percent-removal of OMPs by ozonation as the criterion variable. The models focused on PPCPs and pesticides elimination in bench-scale studies done within natural water matrices: Colorado River, Passaic River, Ohio River and Suwannee synthetic water. The OMPs removal for the different water matrices varied depending on the water quality conditions such as pH, DOC, alkalinity. The molecular descriptors used to define the OMPs physico-chemical properties range from one-dimensional (atom counts) to three-dimensional (quantum-chemical). Based on a statistical modeling approach using more than 40 molecular descriptors as predictors, descriptors influencing ozonation/AOP were chosen for inclusion in the QSAR models. The modeling approach was based on multiple linear regression (MLR). Also, a global model based on neural networks was created, compiling OMPs from all the four river water matrices. The chemically relevant molecular descriptors involved in the QSAR models were: energy difference between lowest unoccupied and highest occupied molecular orbital (E LUMO-E HOMO), electron-affinity (EA), number of halogen atoms (#X), number of ring atoms (#ring atoms), weakly polar component of the solvent accessible surface area (WPSA) and oxygen to carbon ratio (O/C). All the QSAR models resulted in a goodness-of-fit, R 2, greater than 0.8. Internal and external validations were performed on the models. © 2011 Elsevier Ltd.

  12. Improvements in Hudson River Water Quality Create the Need for a new Approach to Monitoring and Management

    Science.gov (United States)

    O'Mullan, G. D.; Juhl, A.; Sambrotto, R.; Lipscomb, J.; Brown, T.

    2008-12-01

    The lower Hudson River is a well-flushed temperate estuary that continues to support diverse wildlife populations although its shores are home to the nation's most populated metropolitan area. Data sets from the last hundred years clearly demonstrate extreme nutrient concentrations, pathogen loading, and periods of persistent hypoxia. These data also show a clear trend of steadily improving water quality in the last thirty years. Recent increases in recreational activity, expanded shoreline parks, and waterfront redevelopment, indicate the return of the people of New York to the River, concomitant with improved water quality. While mean seasonal water quality indicators are now often acceptable for large portions of the River, there remains a lack of information about the finer scale spatial and temporal variability of water quality. A new water quality sampling program was initiated in the Fall of 2006 to address this challenge. Monthly sampling cruises collected continuous underway surface measurements of hydrographic variables in parallel with discrete sampling for nutrients and microbiology. In general, these data indicate that mid-channel locations are often within acceptable water quality standards during dry weather, but that wet weather events deliver large quantities of sewage to the River, leading to short-term deterioration in water quality. In 2006-2007, only 6 of 27 sample sites had geometric mean values for Enterococcus , a sewage-indicating microorganism, that suggest consistently poor water quality. In contrast, single-day exceedances of EPA recommended guidelines for Enterococcus were found at 21 of the 27 sites. Although the mid-channel of the River was relatively homogenous with respect to sewage indicators, large changes were observed at tributary mixing interfaces and along the shallow edges of the River where human contact is most likely. The changing use of the River, together with new information about the importance of episodic and

  13. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  14. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China

    International Nuclear Information System (INIS)

    Guo Wei; He Mengchang; Yang Zhifeng; Lin Chunye; Quan Xiangchun; Men Bing

    2009-01-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) were analyzed in 29 surface water, 29 suspended particulate matter (SPM), 28 sediment, and 10 pore water samples from Daliao River water system in dry season. The total PAH concentration ranged from 570.2 to 2318.6 ng L -1 in surface water, from 151.0 to 28483.8 ng L -1 in SPM, from 102.9 to 3419.2 ng g -1 in sediment and from 6.3 to 46.4 μg l -1 in pore water. The concentration of dissolved PAHs was higher than that of particulate PAHs at many sites, but the opposite results were generally observed at the sites of wastewater discharge. The soluble level of PAHs was much higher in the pore water than in the water column. Generally, the water column of the polluted branch streams contained higher content of PAHs than their mainstream. The environmental behaviors and fates of PAHs were examined according to some physicochemical parameters such as pH, organic carbon, SPM content, water content and grain size in sediments. Results showed that organic carbon was the primary factor controlling the distribution of the PAHs in the Daliao River water system. Partitioning of PAHs between sediment solid phase and pore water phase was studied, and the relationship between log K oc and log K ow of PAHs on some sediments and the predicted values was compared. PAHs other than naphthalene and acenaphthylene would be accumulated largely in the sediment of the Dalaio River water system. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and different wastewater discharge sources, indicating that combustion was the main source of PAHs input.

  15. Environmental data for calendar year 1992: Surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.; Woodruff, R.K.

    1993-06-01

    Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1992 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1992 by PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries. Ground-water monitoring data are available in a separate volume (Hanford Site Environmental Data for Calendar Year 1992--Ground Water)

  16. Environmental data for calendar year 1992: Surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.; Woodruff, R.K.

    1993-06-01

    Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1992 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1992 by PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries. Ground-water monitoring data are available in a separate volume (Hanford Site Environmental Data for Calendar Year 1992--Ground Water).

  17. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  18. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  19. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  20. [Tritium in the Water System of the Techa River].

    Science.gov (United States)

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs.