WorldWideScience

Sample records for surface water results

  1. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  2. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  3. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  4. Idaho's surface-water-quality monitoring program: results from five sites sampled during water years 1990-93

    Science.gov (United States)

    ,

    1994-01-01

    In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.

  5. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  6. Drugs of abuse and tranquilizers in Dutch surface waters, drinking water and wastewater: Results of screening monitoring 2009

    NARCIS (Netherlands)

    van der Aa, N.G.F.M.; Dijkman, E.; Bijlsma, L.; Emke, E.; van de Ven, B.M.; van Nuijs, A.L.N.; de Voogt, P.

    2011-01-01

    In the surface waters of the rivers Rhine and Meuse, twelve drugs that are listed in the Dutch Opium act were detected at low concentrations. They are from the groups amphetamines, tranquilizers (barbiturates and benzodiazepines) opiates and cocaine. During drinking water production, most compounds

  7. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  8. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  9. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  10. Watershed Assessment, Tracking & Environmental ResultS (WATERS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Watershed Assessment, Tracking & Environmental Results (WATERS) is an integrated information system for the nation's surface waters connecting Office of...

  11. Tracing transfer processes of metal pollutants from soils to surface water using environmental magnetic techniques - results from Paris suburbia (France)

    Science.gov (United States)

    Franke, Christine; Lamy, Isabelle; van Oort, Folkert; Thiesson, Julien; Barsalini, Luca

    2015-04-01

    Major river systems in Europe are potential sinks for environmental pollutions and therefore reflect the consequences of European industrialization and urbanization. Surface water pollution is a major concern for the health of the population and its related ecosystems as well as for the water quality. Within the variety of different typical pollutants in a river watershed, the metallic fraction embraces many toxic/dangerous contaminants. Each of these elements comprises different sources and follows specific processes throughout its pathways from its origin to and within the river system. But the detection, estimation and follow up of the different contaminants is highly complex. Physico-chemical techniques such as environmental and rock magnetics are powerful complementary tools to traditional methods because they comprise the possibility to trace the entire metal fraction and do offer the possibility to perform spatio-temporal analyze campaigns directly in the field and on a relative high number of samples from both the river and the adjacent areas (suspended particular matter, soils, dust, sediments, etc). In this study, we took advantages of the recent results on the Seine river (France) that have shown the high potential of environmental magnetic methods to estimate the metal fraction in suspended particular matter samples, and to allow the discrimination of its natural detrital, biogenic or anthropogenic origin (see parallel EGU abstract of Kayvantash et al. in this session). We focused on a suburban agricultural area west of Paris (Pierrelaye-Bessancourt) adjacent to the Seine river, which suffers from a high accumulation of heavy metal pollutants caused by long-term historical irrigation with urban waste waters. For the time being, these heavy metals seem to be geochemically fixed in the surface layer mainly by the soil organic matter. Future land use planning, however, arises questions on the fate of these pollutants and their potential remobilization by

  12. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  13. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Science.gov (United States)

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  14. Ephemeral liquid water at the surface of the martian North Polar Residual Cap: Results of numerical modelling

    Science.gov (United States)

    Losiak, Anna; Czechowski, Leszek; Velbel, Michael A.

    2015-12-01

    Gypsum, a mineral that requires water to form, is common on the surface of Mars. Most of it originated before 3.5 Gyr when the Red Planet was more humid than now. However, occurrences of gypsum dune deposits around the North Polar Residual Cap (NPRC) seem to be surprisingly young: late Amazonian in age. This shows that liquid water was present on Mars even at times when surface conditions were as cold and dry as the present-day. A recently proposed mechanism for gypsum formation involves weathering of dust within ice (e.g., Niles, P.B., Michalski, J. [2009]. Nat. Geosci. 2, 215-220.). However, none of the previous studies have determined if this process is possible under current martian conditions. Here, we use numerical modelling of heat transfer to show that during the warmest days of the summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles (albedo ⩽ 0.13) lying on the steepest sections of the equator-facing slopes of the spiral troughs within martian NPRC. During the times of high irradiance at the north pole (every 51 ka; caused by variation of orbital and rotational parameters of Mars e.g., Laskar, J. et al. [2002]. Nature 419, 375-377.) this process could have taken place over larger parts of the spiral troughs. The existence of small amounts of liquid water close to the surface, even under current martian conditions, fulfils one of the main requirements necessary to explain the formation of the extensive gypsum deposits around the NPRC. It also changes our understanding of the degree of current geological activity on Mars and has important implications for estimating the astrobiological potential of Mars.

  15. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  16. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  17. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  18. Dissolved organic matter dynamics in surface waters affected by oil spill pollution: Results from the Serious Game exercise

    Science.gov (United States)

    Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.

    2016-11-01

    Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.

  19. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  20. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  1. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.

    Science.gov (United States)

    Bannwarth, M A; Grovermann, C; Schreinemachers, P; Ingwersen, J; Lamers, M; Berger, T; Streck, T

    2016-01-01

    Pesticide application rates are high and increasing in upland agricultural systems in Thailand producing vegetables, fruits and ornamental crops, leading to the pollution of stream water with pesticide residues. The objective of this study was to determine the maximum per hectare application rates of two widely used pesticides that would achieve non-hazardous pesticide concentrations in the stream water and to evaluate how farm household incomes would be affected if farmers complied with these restricted application rates. For this purpose we perform an integrated modeling approach of a hydrological solute transport model (the Soil and Water Assessment Tool, SWAT) and an agent-based farm decision model (Mathematical Programming-based Multi-Agent Systems, MPMAS). SWAT was used to simulate the pesticide fate and behavior. The model was calibrated to a 77 km(2) watershed in northern Thailand. The results show that to stay under a pre-defined eco-toxicological threshold, the current average application of chlorothalonil (0.80 kg/ha) and cypermethrin (0.53 kg/ha) would have to be reduced by 80% and 99%, respectively. The income effect of such reductions was simulated using MPMAS. The results suggest that if farm households complied with the application thresholds then their income would reduce by 17.3% in the case of chlorothalonil and by 38.3% in the case of cypermethrin. Less drastic income effects can be expected if methods of integrated pest management were more widely available. The novelty of this study is to combine two models from distinctive disciplines to evaluate pesticide reduction scenarios based on real-world data from a single study site.

  2. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  3. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  4. Magic simulation of surface water acidification at, and first year results from the Bear Brook Watershed Manipulation, Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Norton, S.A.; Wright, R.F.; Kahl, J.S.

    1992-01-01

    The catchments of East and West Bear Brooks, Maine, USA, with similar stream chemistries and hydrographs, have been hydrologically and chemically monitored for 3.5 years. These clear water streams are low in ANC (0-70 microeg/litre), with variations caused by changing concentrations of base cations, SO4, NO3, and Cl. After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Episodes of high discharge in the treated catchment are not characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeg/litre during the dormant season, presumably due to additional nitrification of N and NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.

  5. The MAGIC simulation of surface water acidification at, and first year results from, the Bear Brook Watershed Manipulation, Maine, USA.

    Science.gov (United States)

    Norton, S A; Wright, R F; Kahl, J S; Scofield, J P

    1992-01-01

    The catchments of East and West Bear Brooks, Maine, USA, have been hydrologically and chemically monitored for 3.5 years. Stream chemistries and hydrographs are similar. These clear water streams are low in ANC (0-70 microeq litre(-1)), with variations caused by changing concentrations of base cations, SO4, NO3 and Cl. The latter range between 90-120, 0-40 and 65-75 microeq litre(-1), respectively. The West Bear catchment is being treated with six applications per year of dry (NH4)2SO4 at 1800 eq ha(-1) year(-1). After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Retentions of NH4 and SO4 are nearly 100% and greater than 80%, respectively. The additional flux of SO4 is compensated principally by an increased Ca concentration. Episodes of high discharge in the treated catchment are now characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeq litre(-1) during the dormant season, presumably due to additional nitrification of N from NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.

  6. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  7. Sustaining dry surfaces under water

    Science.gov (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  8. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  9. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically

  10. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface

    Directory of Open Access Journals (Sweden)

    S.A. Margulis

    2001-01-01

    Full Text Available Global estimates of precipitation can now be made using data from a combination of geosynchronous and low earth-orbit satellites. However, revisit patterns of polar-orbiting satellites and the need to sample mixed-clouds scenes from geosynchronous satellites leads to the coarsening of the temporal resolution to the monthly scale. There are prohibitive limitations to the applicability of monthly-scale aggregated precipitation estimates in many hydrological applications. The nonlinear and threshold dependencies of surface hydrological processes on precipitation may cause the hydrological response of the surface to vary considerably based on the intermittent temporal structure of the forcing. Therefore, to make the monthly satellite data useful for hydrological applications (i.e. water balance studies, rainfall-runoff modelling, etc., it is necessary to disaggregate the monthly precipitation estimates into shorter time intervals so that they may be used in surface hydrology models. In this study, two simple statistical disaggregation schemes are developed for use with monthly precipitation estimates provided by satellites. The two techniques are shown to perform relatively well in introducing a reasonable temporal structure into the disaggregated time series. An ensemble of disaggregated realisations was routed through two land surface models of varying complexity so that the error propagation that takes place over the course of the month could be characterised. Results suggest that one of the proposed disaggregation schemes can be used in hydrological applications without introducing significant error. Keywords: precipitation, temporal disaggregation, hydrological modelling, error propagation

  11. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. (Scripps Institution of Oceanography, La Jolla, CA (United States)); Sepanski, R.J. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  12. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  13. Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: Methods and preliminary results including toxicity studies with Vibrio fischeri

    Science.gov (United States)

    Farre, M.; Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L.; Tirapu, L.; Vilanova, M.; Barcelo, D.

    2001-01-01

    In the present work a combined analytical method involving toxicity and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) was developed for the determination of pharmaceutical compounds in water samples. The drugs investigated were the analgesics: ibuprofen, ketoprofen, naproxen, and diclofenac, the decomposition product of the acetyl salicylic acid: salicylic acid and one lipid lowering agent, gemfibrozil. The selected compounds are acidic substances, very polar and all of them are analgesic compounds that can be purchased without medical prescription. The developed protocol consisted, first of all, on the use Microtox?? and ToxAlert??100 toxicity tests with Vibrio fischeri for the different pharmaceutical drugs. The 50% effective concentration (EC50) values and the toxicity units (TU) were determined for every compound using both systems. Sample enrichment of water samples was achieved by solid-phase extraction procedure (SPE), using the Merck LiChrolut?? EN cartridges followed by LC-ESI-MS. Average recoveries loading 1 l of samples with pH=2 varied from 69 to 91% and the detection limits in the range of 15-56 ng/l. The developed method was applied to real samples from wastewater and surface-river waters of Catalonia (north-east of Spain). One batch of samples was analyzed in parallel also by High Resolution Gas Chromatography coupled with Mass Spectrometry (HRGC-MS) and the results have been compared with the LC-ESI-MS method developed in this work. ?? 2001 Elsevier Science B.V. All rights reserved.

  14. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  15. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  16. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  17. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  18. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  19. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  20. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  1. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  2. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; results of investigations through April 1992

    Science.gov (United States)

    Schmidt, Arthur R.; Blanchard, Stephen F.

    1997-01-01

    A water-quality assessment of the upper Illinois River Basin (10,949 square miles) was conducted during water years 1987-91. This assessment involved interpretation of available data; 4 years of intensive data collection, including monthly sample collection at eight fixed-monitoring stations in the basin; and synoptic studies of selected water-quality constituents at many sites. The number of exceedances of water-quality criteria for chromium, copper, lead, mercury, silver, and zinc in water was essentially the same at similar stations between 1978-86 and 1987-90. For water and sediment, a large signature for many trace inorganic constituents was observed from the Chicago metropolitan area, mainly from the Des Plaines River Basin and continuing down the Illinois River. Loads of trace inorganic constituents in water were 2-13 times greater from the Chicago metropolitan area than from rural areas in the upper Illinois River Basin. Concentrations of cadmium, mercury, nickel, selenium, and zinc appeared to be relatively enriched in biota in the upper Illinois River Basin compared to other river basins. Biota from some urban sites were enriched with respect to several elements. For example, relatively large concentrations of cadmium, chromium, copper, lead, and nickel were observed in biota from sites in the Chicago River in the metropolitan area and the Calumet River. Results of pesticide sampling in 1988 and 1989 identified the pesticides bromacil, diazinon, malathion, prometon, and simazine as urban related and alachlor, atrazine, cyanazine, metolachlor, and metribuzin as agricultural related. Phenol concentrations never exceeded general-use and secondary-contact water-quality standards of 100 and 300 micrograms per liter, respectively. Pentachlorophenol concentrations observed at the Illinois River at Marseilles, Ill., between 1981 and 1992 decreased beginning in 1987. A breakdown product of the organochlorine pesticide dichloro-diphenyl-trichloroethane (DDT), p

  3. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  4. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  5. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  6. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  7. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  8. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  9. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    Science.gov (United States)

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-22

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  10. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  11. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  12. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  13. Surface water discharges from onshore stripper wells.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  14. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  15. Analysis of ONKALO water leakage mapping results

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, H.; Nummela, J; Turku, J. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    As part of the programme for the final disposal of spent nuclear fuel, an analysis has been compiled of water leakage mapping performed in ONKALO. Leakage mapping is part of the Olkiluoto Monitoring Programme (OMO) and the field work has been carried out by Posiva Oy. The main objective of the study is to analyse differences detected between mapping campaigns carried out typically twice a year in 2005-2012. Differences were estimated to be caused by the differences in groundwater conditions caused by seasonal effects or by differences between the years. The effect of technical changes like shotcreting, postgrouting, ventilation etc. on the results was also studied. The development of the visualisation of mapping results was also an objective of this work. Leakage mapping results have been reported yearly in the monitoring reports of Hydrology with some brief comments on the detected differences. In this study, the development of the total area and the number of different leakages as well as the correlation of changes with shotcreting and grouting operations were studied. In addition, traces of fractures on tunnel surfaces, and the location of rock bolts and drain pipes were illustrated together with leakage mapping. In water leakage mapping, the tunnel surfaces are visually mapped to five categories: dry, damp, wet, dripping and flowing. Major changes were detected in the total area of damp leakages. It is likely that the increase has been caused by the condensation of warm ventilation air on the tunnel surfaces and the corresponding decrease by the evaporation of moisture into the dry ventilation air. Shotcreting deep in ONKALO may also have decreased the total area of damp leakages. Changes in the total area and number of wet leakages correlate at least near the surface with differences in yearly precipitation. It is possible that strong rains have also caused a temporary increase in wet leakages. Dripping and wet leakages have been observed on average more

  16. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  17. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  18. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  19. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  20. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  1. Uncertainty in surface water flood risk modelling

    Science.gov (United States)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  2. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  3. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail: flaviano@ita.br; Simonetti, E.A.N.; Thim, G.P.

    2016-01-30

    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  4. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.W.

    2014-01-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center – the Hydrologic

  5. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.W.

    2014-01-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center – the Hydrologic Modell

  6. Controlling Mercury Release from Source Zones to Surface Water: Initial Results of Pilot Tests at the Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, George R [ORNL; Brooks, Scott C [ORNL; Peterson, Mark J [ORNL; Bogle, Mary Anna [ORNL; Miller, Carrie L [ORNL; Liang, Liyuan [ORNL; Elliott, Mike [Y-12 National Security Complex

    2009-01-01

    This report presents initial results obtained during year 2008 and satisfies a deliverable listed in the work breakdown structure (WBS) element OR081301. Broad objectives of the multi-year project are: (1) evaluation of remediation technologies for waterborne mercury, (2) development of treatment methods for soil mercury, and (3) source identification, characterization and analyses to improve mass balance on mercury estimates. This report presents the results of pilot tests, conducted in summer and fall 2008, which focused on remediation of waterborne mercury. The goal of this task is to develop strategies and treatment technologies that reduce the concentration and loading of waterborne mercury discharges to the UEFPC, thus minimizing mercury uptake by fish. The two specific studies are: (1) reducing flow augmentation in UEFPC to lessen mercury mobilization from contaminated stream sediments, and (2) treatment of contaminated source waters with a chemical reductant to convert dissolved mercury to a volatile form that can be removed by air stripping or natural evasion. Diversion of 50% of the flow currently added to UEFPC by the flow management system appeared to reduce mercury inputs from a localized, highly contaminated streambed by 0.6-1.5 grams per day (g/d). A reduction of 0.6 g/d represents {approx} 7-10% decrease in mercury input to UEFPC. Mercury concentrations within UEFPC did not rise proportionately with the loss of dilution, in part because of the reduction in input from the streambed source and in part because of reduced flow from the Y-12 NSC storm drain system. A longer-term test that includes seasonal variability will be the next step to validate these initial field observations of the flow diversion experiment. Preliminary laboratory experiments show that a large fraction ({approx} 90%) of the mercury can be chemically reduced to Hg(0) by addition of low concentrations of tin, Sn(II). Conversion of mercury to volatile Hg(0) in UEFPC was also

  7. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  8. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  9. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  10. Results of Analyses of the Fungicide Chlorothalonil, Its Degradation Products, and Other Selected Pesticides at 22 Surface-Water Sites in Five Southern States, 2003-04

    Science.gov (United States)

    2006-01-01

    tetrachlorobenzene) is a broad spectrum, non-systemic fungicide used as a preven- tative treatment to control foliar diseases of vegetable, field, and...surface soil following foliar application to peanuts: Environmental Science & Technology, v. 35, p. 2634–2639. Rouchaud, Jean, Roucourt, Pascal...tetrachloroisophthalonitrile (TPN) in soil: Biology Fertilizer Soils, v. 3, p. 205–209. Scott, G.I., Fulton, M.H., Wirth, E.F., Chandler, G.T., Key, P.B

  11. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  12. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  13. Adsorption mechanism of water molecule on goethite (010) surface

    Science.gov (United States)

    Xiu, Fangyuan; Zhou, Long; Xia, Shuwei; Yu, Liangmin

    2016-12-01

    Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projector- augment wave (PAW) method. The mechanism of the interaction between goethite surface and H2O was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between H2O and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.

  14. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  15. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  16. The glass-liquid transition of water on hydrophobic surfaces.

    Science.gov (United States)

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  17. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  18. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  19. Colloidal Iron, Aluminum, and DOC/DON in Surface Waters of the Northwest Pacific: Results from the 2002 NSF/IOC Cruise

    Science.gov (United States)

    Sonke, J.; Landing, W. M.

    2002-12-01

    Over 70 surface seawater samples were collected on the 2002 NSF/IOC cruise between Japan and Hawaii using a towed "fish" peristaltic pump trace-metals clean sampling system. Samples for total dissolved Fe and AL were filtered using 0.2 um cartridge filters. Colloidal Fe and Al were isolated using a Millipore PrepScale 1 kDa regenerated cellulose tangential flow ultrafiltration device. Concentration factors were 8-10. Aluminum concentrations were measured using the lumogallion fluorometric technique; Fe concentrations were measured by Fe-57 isotope dilution with a Finnegan Element high-resolution magnetic sector ICPMS. Total dissolved Fe concentrations ranged from 0.2 to 0.6 nM and were weakly correlated with atmospheric Fe deposition (calculated from aerosol Fe concentrations). Colloidal Fe ranged from 10-60 percent of the total dissolved Fe and appeared to be related to atmospheric input and biological activity. We will discuss the relationships between the concentrations of particulate, dissolved and colloidal Fe, Al, and DOC/DON and the intertwined effects of atmospheric input, complexation by natural ligands, and physical dilution into the mixed layer.

  20. Surface Curvature-Induced Directional Movement of Water Droplets

    CERN Document Server

    Lv, Cunjing; Yin, Yajun; Zheng, Quanshui

    2010-01-01

    Here we report a surface curvature-induced directional movement phenomenon, based on molecular dynamics simulations, that a nanoscale water droplet at the outer surface of a graphene cone always spontaneously moves toward the larger end of the cone, and at the inner surface toward the smaller end. The analysis on the van der Waals interaction potential between a single water molecule and a curved graphene surface reveals that the curvature with its gradient does generate the driving force resulting in the above directional motion. Furthermore, we found that the direction of the above movement is independent of the wettability, namely is regardless of either hydrophobic or hydrophilic of the surface. However, the latter surface is in general leading to higher motion speed than the former. The above results provide a basis for a better understanding of many reported observations, and helping design of curved surfaces with desired directional surface water transportation.

  1. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  2. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  3. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  4. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  5. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  6. CRUMP 2003 Selected Water Sample Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point locations and water sampling results performed in 2003 by the Church Rock Uranium Monitoring Project (CRUMP) a consortium of organizations (Navajo Nation...

  7. [Water Sample Results : Rocky Mountain Arsenal : 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A memorandum, from sample collector (organization unknown) Cathy H. to Rocky Mountain Arsenal staff, prefaces tabular water sample results collected from various...

  8. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  9. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  10. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  11. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  12. Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén

    2017-06-26

    A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen

  13. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  14. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  15. Cassini-Huygens results on Titan's surface

    Institute of Scientific and Technical Information of China (English)

    Athena Coustenis; Mathieu Hirtzig

    2009-01-01

    Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.

  16. Recovery from acidification in European surface waters

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2001-01-01

    Full Text Available Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56 showed significant (p ≤0.05 decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites, indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53. Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

  17. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  18. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  19. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  20. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  2. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  3. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  4. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  5. AES Water Architecture Study Interim Results

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  6. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    Science.gov (United States)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  7. Augmented dry cooling surface test program: analysis and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Parry, H.L.; MacGowan, L.J.; Kreid, D.K.; Wiles, L.E.; Faletti, D.W.; Johnson, B.M.

    1979-09-01

    Experiments were performed to assess the operating characteristics and potential performance of water-augmented dry cooling systems. The work was aimed at evaluating a deluged air-cooled HOETERV plate fin heat exchanger surface proposed for integrated dry/wet cooling systems and using test results to guide the development of a predictive analytical model. In the process, all-dry performance data were obtained for the HOETERV surface as well as for two Curtiss-Wright chipped fin surfaces. The dry heat transfer data indicate that a slotted Curtiss-Wright surface slightly outperforms the HOETERV and nonslotted Curtiss-Wright surfaces based on heat rejection rate per unit of fan power. However, all three surfaces are so close in performance that other factors, such as surface cost and piping and mounting costs, will probably determine which surface is preferred at a given installation. Comparisons of deluged HOETERV performance with dry HOETERV and Curtiss-Wright performance under prototypic conditions have established that deluging can provide considerable heat rejection enhancement, particularly at low ITD and low air humidity. A deluged HOETERV core operating at a 115/sup 0/F primary fluid temperature in 105/sup 0/F air at 10% relative humidity can reject over 7 times as much heat as a dry HOETERV core operating under the same conditions at the same air-side pressure drop. Deluged tests were performed to evaluate the effect of airflow rate, deluge flow rate and core tilt angle on performance. Both increased airflow and increased deluge flow increase both heat rejection rate and required fan power. Optimal airflow rate will thus be determined for a given location by the competing costs of heat exchanger surface area versus fan operation. Changes in core tilt angle from vertical to 16/sup 0/ from vertical have a negligible effect on performance.

  8. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  9. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  10. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  11. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  12. Role of water in polymer surface modification using organosilanes

    Science.gov (United States)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  13. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  14. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  15. Water-clay surface interaction: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O., E-mail: sobolev38@gmail.com [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France); Favre Buivin, F. [HES-SO Fribourg, Bd de Perolles 80-CP 32, CH-1705 Fribourg (Switzerland); Kemner, E.; Russina, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Glienicker Strasse 100, D-14109 Berlin (Germany); Beuneu, B. [Laboratoire Leon Brillouin, C.E. Saclay, 91191 Gif sur Yvette (France); Cuello, G.J. [Institut Laue Langevin and Ikerbasque, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France); Charlet, L. [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France)

    2010-08-23

    Graphical abstract: Interaction between water molecules and internal clay surfaces was studied by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} was used to reduce hydration of interlayer cations. - Abstract: The aim of this study was to investigate interaction between water molecules and internal clay surfaces by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} (NC{sub 4}H{sub 12}), was used to saturate the interlayer space of nontronite NAu-1 in order to reduce hydration of interlayer cations that could hinder the effects related to the clay-water interactions. The water content was low in order to reduce hydrogen bonding between water molecules. It was found that water molecules form strong hydrogen bonds with surface oxygen atoms of nontronite. The diffusion activation energy value E{sub a} = 29 {+-} 3 kJ/mol was obtained for water molecules hydrating the clay surface. These results confirm the assumption that surfaces of smectite clays with tetrahedral substitutions are hydrophilic.

  16. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  17. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    Science.gov (United States)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  19. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  20. Surface water quality assessment by environmetric methods.

    Science.gov (United States)

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  1. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  2. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  3. Free energies of (Co, Fe, Ni, Zn)Fe₂O₄ spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe₂O₄ surfaces.

    Science.gov (United States)

    O'Brien, C J; Rák, Z; Brenner, D W

    2013-11-06

    A set of effective chemical potentials (ECPs) are derived that connect energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides calculated at 0 K from density functional theory (DFT) to free energies in high temperature and pressure water. The ECPs are derived and validated by solving a system of linear equations that combine DFT and experimental free energies for NiO, ZnO, Fe2O3, Fe3O4, FeO(OH), CoFe2O4, ZnFe2O4, NiFe2O4 and H2O. To connect to solution phase chemistry, a set of ECPs are also derived for solvated Ni(2+), Zn(2+), Fe(2+) and Fe(3+) ions using an analogous set of linear equations and the solid ECPs. The ECPs are used to calculate free energies of low index stoichiometric surfaces of nickel oxide (NiO) and nickel ferrite (NiFe2O4) in water as a function of temperature from 300 to 600 K at a pressure of 155 bar. Surface denuding at high temperatures is predicted, the implications of which for the formation of oxide corrosion products on heat transfer surfaces in light-water nuclear reactors are discussed.

  4. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  5. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    Science.gov (United States)

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  6. Studying surface water balance in Kurdistan province using GIS

    Directory of Open Access Journals (Sweden)

    Nader Fallah

    2016-06-01

    Full Text Available The study of water exchange in a region or area, which emphasizes the principle of conservation of matter in the water cycle, is called balance. Investigating their balance is the basis for managing the rivers’ water management, the results of which refer to the change rate in surface water supply and can efficiently be used in decision making and optimal use of water resources. The present study was carried out in order to investigate the surface water balance in Kurdistan province using GIS. In so doing, digital topographic maps, soil map of the area, and meteorological data retrieved from the regional stations were used to prepare layers of precipitation, evaporation and infiltration of rainwater into the soil. Discharge-arearegion comparative method was employed to measure the amount of runoff and base flow for each sub-basin in raster form saved per unit area which was subsequently overlapped based on balance equation, and the balance of the region was displayed in a graphical mode. The results indicated that more surface water is wasted in the southeast and central area of the province.

  7. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  8. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J. K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  9. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  10. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  11. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.

    Science.gov (United States)

    Huang, Liangliang; Gubbins, Keith E; Li, Licheng; Lu, Xiaohua

    2014-12-16

    The behavior of surface water, especially the adsorption and dissociation characteristics, is a key to understanding and promoting photocatalytic and biomedical applications of titanium dioxide materials. Using molecular dynamics simulations with the ReaxFF force field, we study the interactions between water and five different TiO2 surfaces that are of interest to both experiments and theoretical calculations. The results show that TiO2 surfaces demonstrate different reactivities for water dissociation [rutile (011) > TiO2-B (100) > anatase (001) > rutile (110)], and there is no water dissociation observed on the TiO2-B (001) surface. The simulations also reveal that the water dissociation and the TiO2 surface chemistry change, and the new surface Ti-OH and O-H functional groups affect the orientation of other near-surface water molecules. On the reactive surface, such as the rutile (110) surface, water dissociated and formed new Ti-OH and O-H bonds on the surface. Those functional groups enhanced the hydrogen bond networking with the near-surface water molecules and their configurations. On the nonreactive TiO2-B (001) surface where no molecular or dissociative water adsorption is observed, near-surface water can also form hydrogen bonds with surface oxygen atoms of TiO2, but their distance to the surface is longer than that on the rutile (011) surface.

  12. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  13. Influence of building resolution on surface water inundation outputs

    Science.gov (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  14. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence...

  15. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  16. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  17. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  18. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results sh

  19. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  20. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  1. Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces.

    Science.gov (United States)

    Kumar, Santosh; Schelling, Patrick K

    2006-11-28

    We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.

  2. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  3. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  4. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    time, long-lived three-dimensional coherent structures which present strong similarities with the so-called Langmuir circulations start to grow. The main features of the wind-induced water surface flow observed at these different stages of development will be compared with previous observations and the results of numerical simulations as described by Tsai et al. (2005, 2009).

  5. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  6. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    Science.gov (United States)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  7. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  8. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  9. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  10. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  11. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  12. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and q

  13. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  14. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  15. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  16. Influence of surface polarity on water dynamics at the water/rutile TiO₂(110) interface.

    Science.gov (United States)

    Ohto, Tatsuhiko; Mishra, Ankur; Yoshimune, Seiji; Nakamura, Hisao; Bonn, Mischa; Nagata, Yuki

    2014-06-18

    We report molecular dynamics (MD) simulations of the water/clean rutile TiO2 (110) interface using polarizable and non-surface polarity force field models. The effect of surface polarity on the water dynamics near the TiO2(110) surface is addressed, specifically by calculating the water hydrogen bond and reorientational dynamics. The hydrogen bond lifetime of interfacial water molecules is several times longer than that of bulk water due to the strong water-TiO2 interactions. A comparison of the dynamics simulated with the polarizable and non-surface polarity models shows that, while the hydrogen bond lifetime between the interfacial water and TiO2 surface is insensitive to the surface polarity, the reorientational dynamics around this hydrogen bond axis is significantly influenced by the surface polarity; the surface polarity of the TiO2 increases the water-TiO2 interactions, stabilizing the local structure of the interfacial water molecules and restricting their rotational motion. This reorientation occurs predominantly by rotation around the O-H group hydrogen bonded to the TiO2 surface. Furthermore, we correlate the dynamics of the induced charge on the TiO2 surface with the interfacial water dynamics. Our results show that the timescale of correlations of the atom charges induced by the local electric field in bulk water is influenced by the rotational motion, hydrogen bond rearrangement and translational motion, while the induced charge dynamics of the TiO2 surface is governed primarily by the rotational dynamics of the interfacial water molecules. This study demonstrates that the solid surface polarity has a significant impact on the dynamics of water molecules near TiO2 surfaces.

  17. Thin Water and Ice Films at Mineral Surfaces

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  18. Towards Physarum robots: computing and manipulating on water surface

    CERN Document Server

    Adamatzky, Andrew

    2008-01-01

    Plasmodium of Physarym polycephalum is an ideal biological substrate for implementing concurrent and parallel computation, including combinatorial geometry and optimization on graphs. We report results of scoping experiments on Physarum computing in conditions of minimal friction, on the water surface. We show that plasmodium of Physarum is capable for computing a basic spanning trees and manipulating of light-weight objects. We speculate that our results pave the pathways towards design and implementation of amorphous biological robots.

  19. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  20. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  1. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Reporting source water monitoring... Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results. (a) Systems must report results from the source water monitoring required under § 141.701 no later than 10...

  2. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  3. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2012-09-30

    compare the results with experiment. This work will be used to help interpret field data of bistatic scattering from sea ice cover and calibrate...approximate analytical and numerical acoustic models used to compute bistatic scattering. The clouds of bubbles entrained at the sea surface by breaking...ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified

  4. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    input) were calculated for each treatment. The outcomes show that the water application efficiencies of all treatments were higher in 2013 than in 2012 (by 23%, 25% and 4% for FLD, 3L-FLD, and IRR respectively). These results could be ascribed to the higher groundwater level observed in 2013 (about 10-15 cm closer to the soil surface), likely due to the conversion of the field beyond the monitored plots from soybean to flooded rice. Moreover, a small increase of the water application efficiency of 3L-FLD was found if compared to FLD (3% on average), while the water application efficiency of IRR was, on average, higher by 67% compared to FLD. The good performance of IRR is related to lower percolation rates and a relevant contribution of capillary rise due to the shallow groundwater table maintained by the continuous submergence of the surrounding paddy fields. The performed experiment highlighted that significant improvement in the water use efficiency at the field scale can be achieved. However, a widespread adoption of water regimes different from continuous flooding should be carefully evaluated by a larger-scale approach since a consequent drop in the groundwater table depth could have repercussions on the potential gains themselves.

  5. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  6. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  7. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  8. Floating Vegetated Mats For Improving Surface Water Quality

    Science.gov (United States)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  9. Surface water risk assessment of pesticides in Ethiopia.

    Science.gov (United States)

    Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J

    2015-03-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia.

  10. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  11. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  12. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels;

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2......) of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect....

  13. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  14. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  15. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  16. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  17. Nonlinear Acoustics at the Air-Water Free Surface

    Science.gov (United States)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  18. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  19. Section 11: Surface Water Pathway - Likelihood of Release

    Science.gov (United States)

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  20. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Bhosle, N.B.

    environments. However, little is known about biofilm bacteria developed on metal surfaces, especially immersed in tropical marine waters. Similarly, not much is known about the nature of organic matter deposited on the surfaces over the period of immersion...

  2. Theoretical investigation of water formation on Rh and Pt Surfaces

    Science.gov (United States)

    Wilke, Steffen; Natoli, Vincent; Cohen, Morrel H.

    2000-06-01

    Catalytic water formation from adsorbed H and O adatoms is a fundamental reaction step in a variety of technologically important reactions involving organic molecules. In particular, the water-formation rate determines the selectivity of the catalytic partial oxidation of methane to syngas. In this report we present a theoretical investigation of the potential-energy diagram for water formation from adsorbed O and H species on Rh(111) and Pt(111) surfaces. The study is based on accurate first-principles calculations applying density-functional theory. Our results are compared to the potential-energy diagram for this reaction inferred from experimental data by Hickman and Schmidt [AIChE. J. 39, 1164 (1993)]. The calculations essentially reproduce the scheme of Hickman and Schmidt for water formation on Rh(111) with the important difference that the OH molecule is significantly more stable than assumed by Hickman and Schmidt. On Pt(111) surfaces, however, the calculations predict a barrier to OH formation very similar to that found on Rh(111). In particular, the calculated barrier to OH formation of about 20 kcal/mol seems to contradict the small 2.5 kcal/mol barrier assumed in the Hickman-Schmidt scheme and the observed large rate of water formation on Pt. A possible explanation for the apparent discrepancy between the large calculated barrier for OH formation on Pt and the experimentally observed rapid formation of water even at low temperatures is that the active sites for water formation on Pt are at "defect" sites and not on the ideally flat terraces. A similar conclusion has been reached by Verheij and co-workers [Surf. Sci. 371, 100 (1997); Chem. Phys. Lett. 174, 449 (1990); Surf. Sci. 272, 276 (1991)], who did detailed experimental work on water formation on Pt surfaces. Analyzing our results, we develop an explicit picture of the interaction processes governing the formation of OH groups. This picture rationalizes the calculated weak dependence of OH

  3. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  4. Region 9 Surface Water Intakes (SDWIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  5. Modelling of water potential and water uptake rate of tomato plants in the greenhouse: preliminary results.

    NARCIS (Netherlands)

    Bruggink, G.T.; Schouwink, H.E.; Gieling, Th.H.

    1988-01-01

    A dynamic model is presented which predicts water potential and water uptake rate of greenhouse tomato plants using transpiration rate as input. The model assumes that water uptake is the resultant of water potential and hydraulic resistance, and that water potential is linearly related to water con

  6. COMMUNITY PARTICIPATION IN SURFACE WATER HARVESTING ...

    African Journals Online (AJOL)

    USER

    2014-11-25

    Nov 25, 2014 ... There is seasonal water scarcity in Marigat Division and the water demand has been ... with improved storage and rainwater harvesting methods. Such water can be ..... in the planning process and decision making and this ... The organizations support the community ... systems for domestic uses in urban.

  7. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R(2), RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  8. Integrating remotely sensed surface water extent into continental scale hydrology

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  9. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  10. Calibration of Results of Water Meter Test Facility

    OpenAIRE

    Andrius Bončkus; Gediminas Gediminas

    2011-01-01

    The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in t...

  11. Dynamic corona characteristics of water droplets on charged conductor surface

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  12. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  13. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  14. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures......The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...

  15. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    each water source in each time step (i.e., reservoir diversion and groundwater pumping). The results provide valuable information for analysing the impacts of the conjunctive use of surface water and groundwater. For example, considering a drought scenario, the results show how the same level of total water supplied can be achieved by different management alternatives with different impact on the water quality, costs, and the state of the water sources at the end of the time horizon. The results allow also the clear understanding of the potential benefits from the conjunctive use of surface water and groundwater thorough the mitigation of the variation in the availability of surface water, improving the water quantity and/or water quality delivered to the users, or the better adaptation of such systems to a changing world.

  16. Simulation of water cluster assembly on a graphite surface.

    Science.gov (United States)

    Lin, C S; Zhang, R Q; Lee, S T; Elstner, M; Frauenheim, Th; Wan, L J

    2005-07-28

    The assembly of small water clusters (H2O)n, n = 1-6, on a graphite surface is studied using a density functional tight-binding method complemented with an empirical van der Waals force correction, with confirmation using second-order Møller-Plesset perturbation theory. It is shown that the optimized geometry of the water hexamer may change its original structure to an isoenergy one when interacting with a graphite surface in some specific orientation, while the smaller water cluster will maintain its cyclic or linear configurations (for the water dimer). The binding energy of water clusters interacting with graphite is dependent on the number of water molecules that form hydrogen bonds, but is independent of the water cluster size. These physically adsorbed water clusters show little change in their IR peak position and leave an almost perfect graphite surface.

  17. Molecular dynamics simulation study of water adsorption on hydroxylated graphite surfaces.

    Science.gov (United States)

    Picaud, Sylvain; Collignon, B; Hoang, Paul N M; Rayez, J C

    2006-04-27

    In this paper, we present results from molecular dynamic simulations devoted to the characterization of the interaction between water molecules and hydroxylated graphite surfaces considered as models for surfaces of soot emitted by aircraft. The hydroxylated graphite surfaces are modeled by anchoring several OH groups on an infinite graphite plane. The molecular dynamics simulations are based on a classical potential issued from quantum chemical calculations. They are performed at three temperatures (100, 200, and 250 K) to provide a view of the structure and dynamics of water clusters on the model soot surface. These simulations show that the water-OH sites interaction is quite weak compared to the water-water interaction. This leads to the clustering of the water molecules above the surface, and the corresponding water aggregate can only be trapped by the OH sites when the temperature is sufficiently low, or when the density of OH sites is sufficiently high.

  18. Anomalous water drop bouncing on a nanotextured surface by the Leidenfrost levitation

    Science.gov (United States)

    Lee, Doo Jin; Song, Young Seok

    2016-05-01

    We report an anomalous liquid drop bouncing phenomenon that is generated by the Leidenfrost levitation due to a vapor layer reducing energy dissipation during the collision. The Leidenfrost levitation of water drops on both a hydrophobic surface and nanotextured Cassie surface is investigated. When the water drop is positioned onto the hydrophobic surface, a superhydrophobic feature is observed by the levitation effect due to the vapor film, which results in a slow evaporation of the drop due to the low thermal conductivity of the vapor layer that inhibits heat transfer between the heated surface and the water drop. In contrast, for the nanotextured surface, the water drop can bounce off after impact on the surface when it overcomes gravitational and adhesion forces. The spontaneous water drop bouncing on the nanotextured surface is powered by the combination effect of the Leidenfrost levitation and the non-wetting Cassie state.

  19. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  20. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  1. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  2. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  3. Theoretical and experimental study on surface tension and dynamic surface tension of aqueous lithium bromide and water with additive

    Institute of Scientific and Technical Information of China (English)

    程文龙; 陈则韶; 秋泽淳; 胡芃; 柏木孝夫

    2003-01-01

    The surface tensions of water and aqueous lithium bromide (LiBr) with 2-ethyl-1-hexa- nol (2EH) and 1-octanol were measured using Wilhelmy plate method, and the oscillation of surface tension under the open condition for LiBr solution was observed. The dynamic surface tensions of water and LiBr solution in the presence of the 2EH and 1-octanol vapor were measured in this paper. The results showed that the additives vapor could obviously affect surface tension. For water, the dynamic surface tension was also affected by the mass of the tested liquid; however, for LiBr solution, the dynamic surface tension was not related to the mass of the tested solution. According to the experimental results, the hypothesis that surface tension varies linearly with the surface excess concentration is advanced, which could overcome the limit of Gibbs equation. The equations of surface absorption and desorption are modified, the units of the adsorption coefficient and desorption coefficient are unified; the effects of the liquid and vapor of additive on the surface tension are unified; the theoretical relations of the static surface tension and dynamic surface tension with the relative contents of the liquid and vapor of additive are obtained under the combined actions of them; the theoretical equations are validated by the experiments results.

  4. Towards Physarum Robots: Computing and Manipulating on Water Surface

    Institute of Scientific and Technical Information of China (English)

    Andrew Adamatzky; Jeff Jones

    2008-01-01

    Plasmodium of Physarum polycephalum is an ideal biological substrate for implementing concurrent and parallel com-putation, including combinatorial geometry and optimization on graphs. The scoping experiments on Physarum computing in conditions of minimal friction, on the water surface were performed. The laboratory and computer experimental results show that plasmodium of Physarum is capable of computing a basic spanning tree and manipulating of light-weight objects. We speculate that our results pave the pathways towards the design and implementation of amorphous biological robots.

  5. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2014-07-29

    term goals were to 1. exploit measurements of breaking wave noise and photographic images of whitecaps to infer bubble cloud populations at the sea ...surface reverberation in wind-driven seas , an additional objective has been to study the role of sub-surface bubbles on the attenuation and scattering of...acoustic signals, including determining methods for quantifying bubble populations with video footage of the sea surface and developing models of

  6. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  7. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  8. Agricultural insecticides threaten surface waters at the global scale

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  9. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  10. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  11. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2013-02-01

    Full Text Available To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  12. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  13. X-Ray Spectroscopy of the Liquid Water Surface

    Science.gov (United States)

    Saykally, Richard

    2004-03-01

    We have developed a new experiment for probing molecular details of liquid-vapor interfaces of volatile substances and their solutions under equilibrium conditions. Electronic and geometric structures of interfacial molecules are probed by EXAFS and NEXAFS methods in the soft X-ray region, using the Advanced Light Source, Berkeley, CA. Liquids are introduced into a high vacuum environment through the use of liquid microjets, which have been characterized independently by Raman spectroscopy. Detection of ions and electrons produced by the Auger avalanche probe the bulk and surface regions of the microjet, respectively, as a result of their different escape depths. Our first efforts involved a comparative study of the interfaces of water and methanol, wherein we detailed the first observation of surface relaxation for a liquid. Analysis of EXAFS data yielded a 6distance at the water interface, whereas a 5was found for methanol. NEXAFS measurements, interpreted in terms of density functional theory simulations, indicate a large population of interfacial water molecules having two free OH bonds ("acceptor only molecules"). This complements the "single donor" species identified in sum frequency generation experiments. These results are supported by recent theoretical calculations. For methanol and other simple alcohols, the data indicate that free alkyl groups extend into the vapor part of the interface. Preliminary results for aqueous solutions, as well as for other pure liquids, have been obtained and are presently under analysis. REFERENCES 1. K.R. Wilson, R.D. Schaller, B.S. Rude, T. Catalano, D.T. Co, J.D. Bozek, and R.J. Saykally, "Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy," J. Chem. Phys 117,7738(2002). 2. K.R. Wilson, M. Cavalleri, B.S. Rude, R.D. Schaller, A. Nilsson, L.G.M. Pettersson, N. Goldman, T. Catalano, J.D. Bozek, and R.J. Saykally, "Characterization of hydrogen bond acceptor molecules at the water surface

  14. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  15. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  16. Results of Chilean water markets: Empirical research since 1990

    Science.gov (United States)

    Bauer, Carl J.

    2004-09-01

    Chile's free-market Water Code turned 20 years old in October 2001. This anniversary was an important milestone for both Chilean and international debates about water policy because Chile has become the world's leading example of the free-market approach to water law and water resources management, the textbook case of treating water rights not merely as private property but also as a fully marketable commodity. The predominant view outside of Chile is that Chilean water markets and the Chilean model of water management have been a success, and this perception has encouraged other countries to follow Chile's lead in water law reform. Much of the debate about Chilean water markets, however, has been based more on theoretical or political beliefs than on empirical study. This paper reverses that emphasis by reviewing the evolution of empirical research about these markets since 1990, when Chile returned to democratic government after 16 years of military rule. During the period since 1990, understanding of how Chilean water markets have worked in practice has gradually improved. There have been two major trends in this research: first, a gradual shift from exaggerated claims of the markets' success toward more balanced assessments of mixed results and, second, a heavy emphasis on the economics of water rights trading with very little attention given to the Water Code's impacts on social equity, river basin management, environmental protection, or resolution of water conflicts. The analysis in this study is qualitative and interdisciplinary, combining law, economics, and institutions.

  17. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    Science.gov (United States)

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  18. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  19. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  20. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  1. SURFACE WATER QUALITY IN ADDIS ABABA, ETHIOPIA

    African Journals Online (AJOL)

    environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants ... Oxygen Demand (COD), Biological Oxygen Demand (BOD) and Dissolved ... appropriate waste water purifying plants. ..... University of Turku, Finland. 2.

  2. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.

    Science.gov (United States)

    Zhang, Xinbin; Zhao, Jie; Zhu, Qing; Chen, Ning; Zhang, Mingwen; Pan, Qinmin

    2011-07-01

    Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on.

  3. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  4. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.;

    2013-01-01

    At low coverage of water on Cu(110), substrate-mediated electrostatics lead to zigzagging chains along [001] as observed with STM [T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, “Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy” Phys. Rev. Lett. 96, 036105...... (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  5. Study on water loss of the surface stream affected by longwall mining

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-bing; Syd S.Peng

    2007-01-01

    In order to study the effect of longwalI mining on suface stream water,monitoring stations of water flow rate was established.A lot of water flowing data were collected before,during and after longwall mining.Based on monitoring data,the effects of longwall mining on surface stream water were analyzed.The results demonstrate that longwall mining has effects on the surface stream water:and the stream water would be lost and decrease due to longwall mining but never go into underground through fractured zone.Also.the mechanism of water loss due to longwall mining was presented.The stream water can go into the surface cracks in the intersection of stream and surface cracks.longwall mining subsidence can change the surface stream slope and the downstream water flowing status.The results also show the effects of longwall mining on stream water are temporary and about one or two years later,surface stream water can be recovered.

  6. Measurements of water surface snow lines in classical protoplanetary disks

    CERN Document Server

    Blevins, Sandra M; Banzatti, Andrea; Zhang, Ke; Najita, Joan R; Carr, John S; Salyk, Colette; Blake, Geoffrey A

    2015-01-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1-100 AU using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model comprising of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of $\\sim 3-11$ AU, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abu...

  7. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficient layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  8. Surface Towed CSEM Systems for Shallow Water Mapping

    Science.gov (United States)

    Sherman, J.; Constable, S.; Kannberg, P. K.

    2015-12-01

    We have developed a low-power, surface towed electric dipole-dipole system suitable for mapping seafloor geology in shallow water and deployable from small boats. The transmitter is capable of up to 50 amps output using 12 VDC from a 110/240 VAC power supply, and can generate an arbitrary GPS stabilized ternary waveform. Transmitter antennas are typically 50 to 100 m long. Receivers are built around the standard Scripps seafloor electrode, amplifier, and logging systems but housed in floating PVC cases and equipped with GPS timing and positioning, pitch/roll/heading sensors, and accelerometers. Receiver dipoles are 1.5 m long rigid booms held 1 m below the surface. As with the Scripps deep-towed Vulcan system, rigid antennas are used to avoid noise associated with flexible antennas moving across Earth's magnetic field. The tow cable is a simple floating rope up to 1000 m long. Water depth and conductivity are sampled continuously in order to provide constraints for apparent resistivity calculations and inversion, and moored seafloor recorders can be used to extend transmitter/receiver offsets. The entire system can be air freighted and transported in one utility vehicle. We will present results from a study to map permafrost in shallow water off Prudhoe Bay, Alaska.

  9. Survival of Phytophthora infestans in Surface Water.

    Science.gov (United States)

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials.

  10. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  11. A Novel Energy efficient Surface water Wireless Sensor Network Algorithm

    Directory of Open Access Journals (Sweden)

    B.Meenakshi

    2012-07-01

    Full Text Available Maintaining the energy of sensors in Wireless Sensor Network (WSN is important in critical applications. It has been a challenge to design wireless sensor networks to enable applications for oceanographicdata collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. WSN consists of sensor nodes which sense the physical parameters such as temperature, humidity, pressure and light etc and send them to a fusion center namely Base Station (BS from where one can get the value of physical parameters at any time. Requirement of monitoring the environment might be anywhere, like middle of the sea or under the earth where man cannot go often to recharge the batterieswhich supplies the sensing device, transceiver and memory unit in the sensor node. So the usage of the battery power must be judicious in WSN. Earlier attempts have been made to prolong the network lifetime, but still it is a challenging task. In this paper we propose a Novel Energy efficient Surface water Wireless Sensor Network Algorithm (NES-WSN to optimize the energy consumption by WSN. The present work concentrates on energy saving of sensor nodes when they are deployed in the surface of the sea water. Whenever the sea surface temperature increases there will be a power loss which is reduced by clustering the nodes and by transferring data through multihop routing. Experimental results show that due to increase in temperature there is a definite power loss and it can be minimized by using NES-WSN algorithm definitely.

  12. Surface complexation at calcium mineral-water interfaces

    OpenAIRE

    Wu, Liuming

    1994-01-01

    Surface reactions occurring at solid-water interfaces in calcium mineral-ligands systems have been studied. Both hydrous apatite and fluorite surfaces show clear amphoteric properties. An ion exchange process between lattice ions of F- on fluorite and OH- ions in bulk solution is discovered. The surface adsorption of Alizarin Red S and sodium oleate are determined. Surface chemical reaction models are established based on acidbase potentiometric titrations, solubility, adsorption and zeta-pot...

  13. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  14. Tractor beam on the water surface

    CERN Document Server

    Punzmann, Horst; Xia, Hua; Falkovich, Gregory; Shats, Michael

    2014-01-01

    Can one send a wave to bring an object from a distance? The general idea is inspired by the recent success in moving micro particles using light and the development of a tractor beam concept. For fluid surfaces, however, the only known paradigm is the Stokes drift model, where linear planar waves push particles in the direction of the wave propagation. Here we show how to fetch a macroscopic floater from a large distance by sending a surface wave towards it. We develop a new method of remote manipulation of floaters by forming inward and outward surface jets, stationary vortices, and other complex surface flows using nonlinear waves generated by a vertically oscillating plunger. The flows can be engineered by changing the geometry and the power of a wave maker, and the flow dissipation. The new method is robust and works both for long gravity and for short capillary waves. We use a novel method of visualising 3D particle trajectories on the surface. This letter introduces a new conceptual framework for unders...

  15. Thermodynamics of surface defects at the aspirin/water interface

    Science.gov (United States)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  16. Experimental Observation of Dark Solitons on Water Surface

    Science.gov (United States)

    2016-06-13

    vertical walls are made of transparent sections of glass supported by the metal frame. The water level of the free surface is measured with seven resistive...Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation

  17. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea

    Directory of Open Access Journals (Sweden)

    Hakkwan Kim

    2016-03-01

    Full Text Available The change in the impervious-pervious balance has significantly altered the stream water quality, and thus the threshold of the impervious surface area in the watershed has been an active research topic for many years. The objective of this study is to verify the correlation between impervious surfaces and water quality and to determine the threshold of the percentage of the impervious surface area (PISA for diagnosing the severity of future stream water quality problems in the watershed as well as regulating the PISA in Korea. Statistical results indicated that the PISA is a suitable indicator of water quality at the watershed scale and can illustrate the water quality problems caused by the impervious surface. In addition, the results from this study suggest that controlling the PISA within about 10% in watersheds is a fundamental strategy to mitigate the degradation of water quality.

  18. Calibration of Results of Water Meter Test Facility

    Directory of Open Access Journals (Sweden)

    Andrius Bončkus

    2011-04-01

    Full Text Available The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in the ILC. The deviations from reference values were described by the normalized deviation En.Article in Lithuanian

  19. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  20. Quality of surface water in Missouri, water year 2012

    Science.gov (United States)

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  1. Quality of surface water in Missouri, water year 2013

    Science.gov (United States)

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  2. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    . In the second, we examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem that are important for the fish habitat. The Silver Creek ecosystem is controlled by large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA......Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  3. ASSESSMENT OF SURFACE WATER QUALITY IN AN ARSENIC CONTAMINATED VILLAGE

    Directory of Open Access Journals (Sweden)

    Kumud C. Saikia

    2012-01-01

    Full Text Available Arsenic contamination of ground water has occurred in various parts of the world, becoming a menace in the Ganga-Meghna-Brahmaputra basin (West Bengal and Assam in India and Bangladesh. Recently arsenic has been detected in Cachar and Karimganj districts of barak valley, Assam, bordering Bangladesh. In this area coli form contamination comprises the major constraint towards utilization of its otherwise ample surface water resources. The local water management exploited ground water sources using a centralized piped water delivery scheme without taking into account the geologically arsenic-prone nature of the sediments and aquifers in this area. Thus surface water was the suggestive alternative for drinking water in this area. The present study investigated surface water quality and availability in a village of Karimganj district, Assam, India contaminated with arsenic for identifying the potential problems of surface water quality maintenance so that with effective management safe drinking water could be provided. The study revealed that the area was rich in freshwater ecosystems which had all physico-chemical variables such as water temperature, pH, DO, total alkalinity, free CO2, heavy metals like lead, chromium and cadmium within WHO standards. In contrast, coli form bacteria count was found far beyond permissible limit in all the sources. Around 60% people of the village preferred ground water for drinking and only 6% were aware of arsenic related problems. The problem of bacterial contamination could be controlled by implementing some ameliorative measures so that people can safely use surface water. Inhabitants of the two districts should be given proper education regarding arsenic contamination and associated health risk. Effluents should be treated to acceptable levels and standards before discharging them into natural streams.

  4. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun

    2006-01-01

    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  5. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Barberoglou, M.; Zorba, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Technological Educational Institute of Crete, Heraklion 71004 (Greece)], E-mail: stratak@iesl.forth.gr; Spanakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Technological Educational Institute of Crete, Heraklion 71004 (Greece); Tzanetakis, P. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Anastasiadis, S.H. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki (Greece); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece)

    2009-03-01

    We report here an efficient method for preparing stable superhydrophobic and highly water repellent surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with chloroalkylsilane monolayers. By varying the laser pulse fluence on the surface one can successfully control its wetting properties via a systematic and reproducible variation of roughness at micro- and nano-scale, which mimics the topology of natural superhydrophobic surfaces. The self-cleaning and water repellent properties of these artificial surfaces are investigated. It is found that the processed surfaces are among the most water repellent surfaces ever reported. These results may pave the way for the implementation of laser surface microstructuring techniques for the fabrication of superhydrophobic and self-cleaning surfaces in different kinds of materials as well.

  7. Quality of surface water in Missouri, water year 2014

    Science.gov (United States)

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  8. Quality of surface water in Missouri, water year 2010

    Science.gov (United States)

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  9. Quality of surface water in Missouri, water year 2009

    Science.gov (United States)

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  10. Quality of surface water in Missouri, water year 2011

    Science.gov (United States)

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  11. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  12. Geochemical characterization of surface water and spring water in SE Kashmir Valley, western Himalaya: Implications to water–rock interaction

    Indian Academy of Sciences (India)

    Gh Jeelani; Nadeem A Bhat; K Shivanna; M Y Bhat

    2011-10-01

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed to the replenishment of the CO2 by recharging waters during most of the seasons.

  13. SWFSC FED Mid Water Trawl Juvenile Rockfish Survey, Surface Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC FED Mid Water Trawl Juvenile Rockfish Survey: Station Information and Surface Data. Surveys have been conducted along the central California coast in May/June...

  14. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    2013-06-05

    Jun 5, 2013 ... The majority of South African inland surface water sources are compromised due to a ... minimising residual coagulant, minimising sludge production .... included as being indicative of the worst effects of indirect reuse.

  15. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  16. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  17. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  18. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  19. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  20. Morphology and functions of astrocytes cultured on water-repellent fractal tripalmitin surfaces.

    Science.gov (United States)

    Hu, Wei-wei; Wang, Zhe; Zhang, Shan-shan; Jiang, Lei; Zhang, Jing; Zhang, Xiangnan; Lei, Qun-fang; Park, Hyun-Joo; Fang, Wen-jun; Chen, Zhong

    2014-08-01

    In the brain, astrocytes play an essential role with their multiple functions and sophisticated structure, as surrounded by a fractal environment which has not been available in our traditional cell culture. Water-repellent fractal tripalmitin (PPP) surfaces can imitate the fractal environment in vivo, so the morphology and biochemical characterization of astrocytes on these surfaces are examined. Water-repellent fractal PPP surface can induce astrocytes to display sophisticated morphology with smaller size of cell area, longer and finer filopodium-like processes, and higher morphological complexity. The super water-repellent fractal PPP surface with water contact angle of 150°∼160° produces the maximal effects compared with other surfaces at lower water contact angles. The trends of characteristic protein expression, including that of nestin, vimentin, GFAP and glutamine synthetase, for astrocytes cultured on super water-repellent fractal PPP surfaces approximate more to in vivo pattern. The super water-repellent PPP surface also render astrocytes to perform more pronounced promotion of neurogenesis by increasing the release of nerve growth factor in a co-culture system. Altogether, our results suggest that the super water-repellent fractal PPP surface facilitates the astrocytes to mimic their in vivo performance, thus provides a closer-to-natural culture environment for experimental assessment of glial structure and functions.

  1. Simulation method for determining biodegradation in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Schoeberl, P.; Guhl, W. [Henkel KGaA, Duesseldorf (Germany). Hauptabteilung Oekologie; Scholz, N. [OXENO GmbH, Marl (Germany); Taeger, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-07-01

    OECD guidelines and EU directives on the biological testing of chemicals contain no methods able to simulate biodegradation in surface waters. The surface water simulation method presented in this paper is suitable for closing this gap. The species in the autochthonous biocoenosis used in the method form part of the food web in natural surface waters. The microbial degradation activity measured by the half-life is comparable with that in surface waters. The degrees of degradation measured in this surface water simulation method can be applied to natural surface waters. (orig.) [Deutsch] Die OECD- und EU-Richtlinien zur biologischen Pruefung von Chemikalien enthalten kein Verfahren, mit dem der biologische Abbau in Fliessgewaessern simuliert werden kann. Das in dieser Arbeit vorgestellte Fliessgewaesser-Simulationsmodell ist geeignet, diese Luecke zu schliessen. Die Arten der autochthonen Biocoenose des Modells sind Glieder im Nahrungsnetz natuerlicher Fliessgewaesser. Die an der Halbwertszeit gemessene mikrobielle Abbauaktivitaet ist mit derjenigen in Fliessgewaessern vergleichbar. Die im Fliessgewaesser-Simulationsmodell gemessenen Abbaugrade sind auf natuerliche Fliessgewaesser uebertragbar. (orig.)

  2. Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-09-07

    In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.

  3. Exact results for Casimir forces using Surface Impedance: Nonlocal Media

    CERN Document Server

    Esquivel-Sirvent, R; Mochán, W L

    2003-01-01

    We show that exact results are obtained for the calculation of Casimir forces between arbitrary materials using the concept of surface impedances, obtaining in a trivial way the force in the limit of perfect conductors and also Lifshitz formula in the limit of semi-infinite media. As an example we present a full and rigorous calculation of the Casimir force between two metallic half-spaces described by a hydrodynamic nonlocal dielectric response.

  4. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies

    Science.gov (United States)

    Ucar, Ikrime O.; Erbil, H. Yildirim

    2012-10-01

    This study investigates the effect of surface roughness, wettability, water contact angle hysteresis (CAH) and wetting hysteresis (WH) of polymeric substrates to the water drop condensation rate. We used five polyolefin coatings whose surface free energies were in a close range of 30-37 mJ/m2 but having different surface roughness and CAH. The formation of water breath figures was monitored at a temperature just below the dew point. The initial number of the condensed droplets per unit area (N0) and droplet surface coverage were determined during the early stage of drop condensation where the droplet coalescence was negligible. It was found that the mean drop diameter of condensed droplets on these polymer surfaces grow according to a power law with exponent 1/3 of time, similar to the previous reports given in the literature. It was determined that surface roughness and corresponding CAH and WH properties of polymers have important effects on the number of nucleation sites and growth rate of the condensed water droplets. N0 values and the surface coverage increased with the increase in surface roughness, CAH and WH of the polymer surfaces. The total condensed water drop volume also increased with the increase in surface roughness in accordance with the increase of the number of nucleated droplets.

  5. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  6. Test results of a shower water recovery system

    Science.gov (United States)

    Verostko, Charles E.; Price, Donald F.; Garcia, Rafael; Pierson, Duane L.; Sauer, Richard L.

    1987-01-01

    A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.

  7. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expe

  8. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    Science.gov (United States)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  9. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  10. Assessment of heavy metal river Ingulets surface water pollution

    OpenAIRE

    Trokhymenko, Ganna G.; Tsyhanyuk, Nina V.

    2017-01-01

    The low efficiency of implemented targeted programs to reduce the anthropogenic impact on hydroecosystem and overcoming its negative consequences demand a search for the optimal evidence reasonable decisions to improve the quality of Ingul river water basin for different economic sectors of water resources and the required number and suitable quality. Methodical bases of such research must be based on a detailed and comprehensive study of the hydrochemical regime and surface water quality. Th...

  11. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    Science.gov (United States)

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  13. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  14. Water drop impact onto oil covered solid surfaces

    Science.gov (United States)

    Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad

    2016-11-01

    Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.

  15. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  16. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  17. Hydraulic "fracking": are surface water impacts an ecological concern?

    Science.gov (United States)

    Burton, G Allen; Basu, Niladri; Ellis, Brian R; Kapo, Katherine E; Entrekin, Sally; Nadelhoffer, Knute

    2014-08-01

    Use of high-volume hydraulic fracturing (HVHF) in unconventional reservoirs to recover previously inaccessible oil and natural gas is rapidly expanding in North America and elsewhere. Although hydraulic fracturing has been practiced for decades, the advent of more technologically advanced horizontal drilling coupled with improved slickwater chemical formulations has allowed extensive natural gas and oil deposits to be recovered from shale formations. Millions of liters of local groundwaters are utilized to generate extensive fracture networks within these low-permeability reservoirs, allowing extraction of the trapped hydrocarbons. Although the technology is relatively standardized, the geographies and related policies and regulations guiding these operations vary markedly. Some ecosystems are more at risk from these operations than others because of either their sensitivities or the manner in which the HVHF operations are conducted. Generally, the closer geographical proximity of the susceptible ecosystem to a drilling site or a location of related industrial processes, the higher the risk of that ecosystem being impacted by the operation. The associated construction of roads, power grids, pipelines, well pads, and water-extraction systems along with increased truck traffic are common to virtually all HVHF operations. These operations may result in increased erosion and sedimentation, increased risk to aquatic ecosystems from chemical spills or runoff, habitat fragmentation, loss of stream riparian zones, altered biogeochemical cycling, and reduction of available surface and hyporheic water volumes because of withdrawal-induced lowering of local groundwater levels. The potential risks to surface waters from HVHF operations are similar in many ways to those resulting from agriculture, silviculture, mining, and urban development. Indeed, groundwater extraction associated with agriculture is perhaps a larger concern in the long term in some regions. Understanding the

  18. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  19. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    Science.gov (United States)

    1976-01-01

    the river as surface supply. This second area lies mostly north of the Spokane River extending up the val- ley known as Rathdrum Prairie and includes...4 10. 2-29 I .~ -A- IvA -4 -4 IS I rp4r 1-4 - 4NCs 4~ 10. 2- 3o * r~tar gg~wr 4 . fAPPENDIX I en00 -4 - r., 0 CM- WMC q ~~0 0r0 4. .44 . VFog 4102A3

  20. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    Science.gov (United States)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  1. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  2. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  3. Modelling the response of surface water quality to the urbanization in Xi'an, China.

    Science.gov (United States)

    He, Hongming; Zhou, Jie; Wu, Yongjao; Zhang, Wanchang; Xie, Xiuping

    2008-03-01

    The study investigated the response of surface water quality to urbanization in Xi'an, China. We qualitatively described the change in urban land use from 1996 to 2003, analyzed the status of the surface water environment, and constructed a model of urban expansion to simulate the water environment's response to urbanization. Our results revealed that patterns of land use changed dramatically, the rate of economic growth exceeded that of urbanization during the study period, and increasing urban land use was correlated with fluctuations in water quality. The simulated results suggested that urbanization had reached the environmental carrying capacity based on the average land utility and the marginal costs of pollution.

  4. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    Science.gov (United States)

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and

  5. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  6. Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2014-11-01

    Full Text Available This study investigates chemical grafting with fatty acid chlorides as a method for the surface modification of hydrophilic web materials. The resulting changes in the water repellence and barrier properties were studied. For this purpose, different grades of polyvinyl alcohol (PVOH were coated on regenerated cellulose films (“cellophane” and paper and then grafted with fatty acid chlorides. The PVOH grades varied in their degree of hydrolysis and average molecular weight. The surface was esterified with two fatty acid chlorides, palmitoyl (C16 and stearoyl chloride (C18, by chemical grafting. The chemical grafting resulted in water-repellent surfaces and reduced water vapor transmission rates by a factor of almost 19. The impact of the surface modification was greater for a higher degree of hydrolysis of the polyvinyl alcohol and for shorter fatty acid chains. Although the water vapor barrier for palmitoyl-grafted PVOH was higher than for stearoyl-grafted PVOH, the contact angle with water was lower. Additionally, it was shown that a higher degree of hydrolysis led to higher water vapor barrier improvement factors after grafting. Furthermore, the oxygen permeability decreased after grafting significantly, due to the fact that the grafting protects the PVOH against humidity when the humidity is applied on the grafted side. It can be concluded that the carbon chain length of the fatty acid chlorides is the limiting factor for water vapor adsorption, but the grafting density is the bottleneck for water diffusing in the polymer.

  7. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  8. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Science.gov (United States)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/gsilica. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 102 and 104 cfu/mL.

  9. Influence of LaFeO 3 Surface Termination on Water Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Comes, Ryan; Spurgeon, Steven R.; Thevuthasan, Suntharampillai; Ihm, Kyuwook; Crumlin, Ethan J.; Chambers, Scott A.

    2017-02-17

    The polarity of oxide surfaces can dramatically impact their surface reactivity, in particular with polar molecules such as water. The surface species that result from this interaction change the oxide electronic structure and chemical reactivity in applications such as photoelectrochemistry, but are challenging to probe experimentally with atomic-scale understanding. Here we report a detailed study of the surface chemistry and electronic structure of the perovskite LaFeO3 in humid conditions using ambient pressure X-ray photoelectron spectroscopy. Comparing the two possible terminations of the polar (001)-oriented surface, we find that the LaO surface is more reactive toward water, forming hydroxyl species and adsorbing molecular water at lower relative humidity than its FeO2-terminated counterpart. Our results demonstrate how the termination of a complex oxide can dramatically impact its reactivity, providing insight into the design of catalyst materials.

  10. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  11. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; WANG Li-juan; ZHANG Jin; LI Ji-yuan

    2006-01-01

    A super-hydrophilic functional ceramic was prepared by adjusting the chemical components of ceramic glaze. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water were studied. The results show that water can spread on ceramic surface with high surface free energy,and oil droplet can aggregate rapidly and separate from the ceramic surface in water. For the ceramic with lower surface free energy,the polar shares are dependant on its easy-cleaning property. The higher the polar shares,the better the easy-cleaning property,and the easier the droplet separates from the ceramic surface in water.

  12. Hydrological Response to ~30 years of Agricultural Surface Water Management

    Directory of Open Access Journals (Sweden)

    Giulia Sofia

    2017-01-01

    Full Text Available Amongst human practices, agricultural surface-water management systems represent some of the largest integrated engineering works that shaped floodplains during history, directly or indirectly affecting the landscape. As a result of changes in agricultural practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This research focuses on three main questions: which kind of land use changes related to the agricultural practices have been observed in the most recent years (~30 years? How does the influence on the watershed response to land use and land cover changes depend on the rainfall event characteristics and soil conditions, and what is their related significance? The investigation presented in this work includes modelling the water infiltration due to the soil properties and analysing the distributed water storage offered by the agricultural drainage system in a study area in Veneto (north-eastern Italy. The results show that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. Key elements that can enhance or reduce differences are the antecedent soil conditions and the climate characteristics. Criticalities should be expected for intense and irregular rainfall events, and for events that recurrently happen. Agricultural areas might be perceived to be of low priority when it comes to public funding of flood protection, compared to the priority given to urban ones. These outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making.

  13. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  14. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  15. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  16. [First results on the use of chloramines to reduce disinfection byproducts in drinking water].

    Science.gov (United States)

    Azara, Antonio; Muresu, Elena; Dettori, Marco; Ciappeddu, Pierluigi; Deidda, Antonio; Maida, Alessandro

    2010-01-01

    The presence of disinfection byproducts (DBP) in drinking water raises concerns about the safety of chlorination and is one of the problems inherent the use of surface water as a source of drinking water. In order to reduce the presence of DBP (in particular of chlorites), we evaluated the combined use of chlorine dioxide for primary disinfection and monochloramine for residual disinfection in a water purification plant and distribution system in Sardinia (Italy). The results are very encouraging. Disinfection byproducts were reduced and other parameters were found to be within the recommended standards, indicating further improvements of the purification process.

  17. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  18. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Wallace William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; Loh, Leslie J.; Gazda, Daniel B.

    2017-01-01

    This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.

  19. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  20. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces.

    Science.gov (United States)

    Wagner, P; Fürstner, R; Barthlott, W; Neinhuis, C

    2003-04-01

    Many plant surfaces are water-repellent because of a complex 3-dimensional microstructure of the epidermal cells (papillae) and a superimposed layer of hydrophobic wax crystals. Due to its surface tension, water does not spread on such surfaces but forms spherical droplets that lie only on the tips of the microstructures. Studying six species with heavily microstructured surfaces by a new type of confocal light microscopy, the number, height, and average distance of papillae per unit area were measured. These measurements were combined with those of an atomic force microscope which was used to measure the exposed area of the fine-structure on individual papillae. According to calculations based upon these measurements, roughening results in a reduction of the contact area of more than 95% compared with the projected area of a water droplet. By applying water/methanol solutions of decreasing surface tension to a selection of 33 water-repellent species showing different types of surface structures, the critical value at which wetting occurs was determined. The results impressively demonstrated the importance of roughening on different length scales for water-repellency, since extremely papillose surfaces, having an additional wax layer, are able to resist up to 70% methanol. Surfaces that lack papillae or similar structures on the same length scale are much more easily wetted.

  1. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  2. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    , the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  3. Field experiment on coalmine heat disaster governance using cold source from surface water

    Institute of Scientific and Technical Information of China (English)

    Guo Pingye; Zhu Guolong; Liu Yuqing; Duan Mengmeng; Wu Junyin

    2014-01-01

    Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ?C after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection.

  4. A Mechanism for Near-Surface Water Ice on Mars

    Science.gov (United States)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  5. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Science.gov (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  6. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  7. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  8. Communication: Interaction of BrO radical with the surface of water

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Zhong, Jie; Huang, Yingying; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-12-01

    Solvation of a BrO radical in a slab of water is investigated using adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. The simulation results show that the BrO radical exhibits preference towards the water surface with respect to the interior region of the water slab, despite BrO's high affinity to water. Another important finding is the weakening of (BrO)Br⋯O(water) interaction at the water surface due to competitive interactions between (BrO)Br⋯O(water) and (water)H⋯O(water). As such, the BrO-water slab interaction is dominated by (BrO)O⋯H(water) interaction, contrary to that in the gas phase, suggesting that the reactive site for the BrO radical at the air/water surface is more likely the Br site. The conclusion from this study can offer deeper insight into the reactivity of the BrO radical at the air/water interface, with regard to atmospheric implications.

  9. Climate Variability and Water-Regulation Effects on Surface Water and Groundwater Interactions in California's Central Valley

    Science.gov (United States)

    Munoz-Arriola, F.; Dettinger, M. D.; Hanson, R. T.; Faunt, C.; Cayan, D. R.

    2011-12-01

    California's Central Valley is one of the most important agricultural areas in the world and is highly dependent on the availability and management of surface water and groundwater. As such, it is a valuable large-scale system for investigating the interaction of climate variability and water-resource management on surface-water and groundwater interactions. In the Central Valley, multiple tools are available to allow scientists to understand these interactions. However, the full effect of human activities on the interactions occurring along the Aquifer-Soil-Plant-Atmosphere continuum remains uncertain. Two models were linked to investigate how non-regulated (natural conditions) and regulated (releases from dams) surface-water inflows from the surrounding contributing drainage areas to the alluvial plains of the Central Valley affects the valley's surface-water supply and groundwater pumpage under different climate conditions. The Variable Infiltration Capacity (VIC) macroscale (surface) hydrologic model was used to estimate the non-regulated streamflow. The U.S. Geological Survey's recently developed Central Valley Hydrologic Model (CVHM) was used to route both the regulated and non-regulated streamflow to the Central Valley and simulate the resulting hydrologic system. The CVHM was developed using MODFLOW's Farm Process (MF-FMP) in order to simulate agricultural water demand, surface-water deliveries, groundwater pumpage, and return flows in 21 water-balance subregions. As such, the CVHM simulates conjunctive use of water, providing a broad perspective on changes in the water systems of the Valley. Inflows from the contributing mountain watersheds are simulated in CVHM using the streamflow-routing package for the 1961-2003 time period. In order to analyze the affect of climate variability, dry and wet years were identified from below the 10th and above the 90th percentiles, respectively, in a multi-decadal time series (1961-2003) of surface-water inflows. The

  10. Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray versus water surface film

    Science.gov (United States)

    Freiberg, Robert J.; Cozean, Colette D.

    2002-06-01

    It has been established that the ability of erbium lasers to ablate hard dental tissue is due primarily to the laser- initiated subsurface expansion of the interstitial water trapped within the enamel and that by maintaining a thin film of water on the surface of the tooth, the efficiency of the laser ablation is enhanced. It has recently been suggested that a more aggressive ablative mechanism, designated as a hydrokinetic effect, occurs when atomized water droplets, introduced between the erbium laser and the surface of the tooth, are accelerated in the laser's field and impact the tooth's surface. It is the objective of this study to determine if the proposed hydrokinetic effect exists and to establish its contribution to the dental hard tissue ablation process. Two commercially available dental laser systems were employed in the hard tissue ablation studies. One system employed a water irrigation system in which the water was applied directly to the tooth, forming a thin film of water on the tooth's surface. The other system employed pressurized air and water to create an atomized mist of water droplets between the laser hand piece and the tooth. The ablative properties of the two lasers were studied upon hard inorganic materials, which were void of any water content, as well as dental enamel, which contained interstitial water within its crystalline structure. In each case the erbium laser beam was moved across the surface of the target material at a constant velocity. When exposing material void of any water content, no ablation of the surfaces was observed with either laser system. In contrast, when the irrigated dental enamel was exposed to the laser radiation, a linear groove was formed in the enamel surface. The volume of ablated dental tissue associated with each irrigation method was measured and plotted as a function of the energy within the laser pulse. Both dental laser systems exhibited similar enamel ablation rates and comparable ablated surface

  11. Results of otoplasty by scoring anterior surface of auricular cartilage

    Directory of Open Access Journals (Sweden)

    Gašić Jugoslav

    2014-01-01

    Full Text Available A prominent ear, so called a protruding or 'lop' ear, is the most common congenital deformity of the external ear. This deformity persists when the mastoid-helix angle (MHA is higher than 30 degrees. It is relatively common among the population with the incidence of about 5%. The aim of this study is to present surgical procedure and our results using otoplasty with scoring anterior surface of the auricular cartilage. To analyze objective and subjective surgical procedure effects. Between 2011 and 2014 we treated 28 patients. We found statistically high significance p<0.01 in value mastoid-helix angle (MHA preoperative and postoperative. In patients with bilateral otoplasty the difference between left and right MHAs after surgical procedure is less than 4 degrees. The difference of head-helix distance (HHD preoperative and postoperative is statistically important with high significance p<0.05. Preoperative satisfaction by personal appearance was better after surgical procedure p<0.05. Complications occurred in 9 cases (32.4%. Otoplasty by scoring anterior surface of auricular cartilage is safe procedure for correction of prominent ear with excellent results on patient satisfaction by personal appearance. Effect of reducing the MHA and HHD is long lasting.

  12. [Distribution of perfluorinated compounds in surface water of Shenzhen reservoir groups].

    Science.gov (United States)

    Wang, Xin-Xuan; Zhang, Hong; He, Long; Shen, Jin-Can; Chai, Zhi-Fang; Yang, Bo; Wang, Yan-Ping

    2014-06-01

    In order to study the concentrations of 14 perfluorinated compounds (PFCs) in 25 surface water samples collected from 12 Shenzhen reservoirs in November of 2012 and January of 2013, high performance liquid chromatography-tandem mass spectrometry was combined with solid phase extraction enrichment in this research. The results indicated that perfluorohexane sulfonate and long-chain (C > or = 11) PFCs were below the detection limit in all samples and perfluorooctane acid was the primary species. No significant difference in concentration was found between samples from the center of the reservoir and the outlet. Heavy precipitations diluted PFCs concentrations in surface water, but also led to PFOA input. PFCs concentrations in surface water of the reservoir were mainly affected by water inlet, source environment and geography. Although the water temperature had positive correlations with sigma PFCs concentration, the influence of heavy precipitations was stronger than that of water temperature.

  13. Stability of shear shallow water flows with free surface

    CERN Document Server

    Chesnokov, Alexander; Gavrilyuk, Sergey; Pavlov, Maxim

    2016-01-01

    Stability of inviscid shear shallow water flows with free surface is studied in the framework of the Benney equations. This is done by investigating the generalized hyperbolicity of the integrodifferential Benney system of equations. It is shown that all shear flows having monotonic convex velocity profiles are stable. The hydrodynamic approximations of the model corresponding to the classes of flows with piecewise linear continuous and discontinuous velocity profiles are derived and studied. It is shown that these approximations possess Hamiltonian structure and a complete system of Riemann invariants, which are found in an explicit form. Sufficient conditions for hyperbolicity of the governing equations for such multilayer flows are formulated. The generalization of the above results to the case of stratified fluid is less obvious, however, it is established that vorticity has a stabilizing effect.

  14. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing...

  15. Interaction of ethanol and water with the {1014} surface of calcite

    DEFF Research Database (Denmark)

    Cooke, David; Gray, R J; Sand, K K;

    2010-01-01

    Molecular dynamics simulations have been used to model the interaction between ethanol, water, and the {1014} surface of calcite. Our results demonstrate that a single ethanol molecule is able to form two interactions with the mineral surface (both Ca-O and O-H), resulting in a highly ordered......, stable adsorption layer. In contrast, a single water molecule can only form one or other of these interactions and is thus less well bound, resulting in a more unstable adsorption layer. Consequently, when competitive adsorption is considered, ethanol dominates the adsorption layer that forms even when...... the starting configuration consists of a complete monolayer of water at the surface. The computational results are in good agreement with the results from atomic force microscopy experiments where it is observed that a layer of ethanol remains attached to the calcite surface, decreasing its ability to interact...

  16. Estimating cultural benefits from surface water status improvements in freshwater wetland ecosystems.

    Science.gov (United States)

    Roebeling, Peter; Abrantes, Nelson; Ribeiro, Sofia; Almeida, Pedro

    2016-03-01

    Freshwater wetlands provide crucial ecosystem services, though are subject to anthropogenic/natural stressors that provoke negative impacts on these ecosystems, services and values. The European Union Water Framework Directive aims to achieve good status of surface waters by 2015, through implementation of Catchment Management Plans. Implementation of Catchment Management Plans is costly, though associated benefits from improvements in surface water status are less well known. This paper establishes a functional relationship between surface water status and cultural ecosystem service values of freshwater systems. Hence, we develop a bio-economic valuation approach in which we relate ecological status and chemical status of surface waters (based on local physio-chemical and benthic macro-invertebrates survey data) to willingness-to-pay (using benefit-function transfer). Results for the Pateira de Fermentelos freshwater wetland (Portugal) show that the current status of surface waters is good from a chemical though only moderate from an ecological perspective. The current cultural ecosystem service value of the wetland is estimated at 1.54 m€/yr- increasing to 2.02 m€/yr in case good status of surface waters is obtained. Taking into account ecosystem services and values in decision making is essential to avoid costs from externalities and capture benefits from spill-overs--leading to more equitable, effective and efficient water resources management. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Return of naturally sourced Pb to Atlantic surface waters

    Science.gov (United States)

    Bridgestock, Luke; van de Flierdt, Tina; Rehkämper, Mark; Paul, Maxence; Middag, Rob; Milne, Angela; Lohan, Maeve C.; Baker, Alex R.; Chance, Rosie; Khondoker, Roulin; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.

    2016-09-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

  18. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  19. Occurrence of illicit drugs in surface waters in China.

    Science.gov (United States)

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China.

  20. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  1. Influence of urban surface properties and rainfall characteristics on surface water flood outputs - insights from a physical modelling environment

    Science.gov (United States)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2017-04-01

    Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope

  2. Protocol for quantitative tracing of surface water with synthetic DNA

    Science.gov (United States)

    Foppen, J. W.; Bogaard, T. A.

    2012-04-01

    , the field tests were performed with salt and deuterium as tracer. To study possible decay by sunlight and/or microbial activity for synthetic DNA, immediately in the field and for the duration of the entire experiment, we carried out batch experiments. All samples were stored in a 1.5 ml Eppendorf vial in a cool-box in dry ice (-80°C). Quantitative PCR on a Mini Opticon (Bio Rad, Hercules, CA, USA) was carried out to determine DNA concentrations in the samples. Results showed the importance of a strict protocol for working with ssDNA as a tracer for quantitative tracing, since ssDNA interacts with surface areas of glass and plastic, depending on water quality and ionic strength. Interaction with the sediment and decay due to sunlight and/or microbial activity was negligible in most cases. The ssDNA protocol was then tested in natural streams. Promising results were obtained using ssDNA as quantitative tracer. The breakthrough curves using ssDNA were similar to the ones of salt or deuterium. We will present the revised protocol to use ssDNA for multi-tracing experiments in natural streams and discuss the opportunities and limitations.

  3. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  4. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  5. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China

    Indian Academy of Sciences (India)

    Bing Zhang; Xianfang Song; Yinghua Zhang; Ying Ma; Changyuan Tang; Lihu Yang; Zhong-Liang Wang

    2016-10-01

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes ($\\delta$D, $\\delta^{18}$O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.

  6. Theoretical study of water adsorption and dissociation on Ta3N5(100) surfaces.

    Science.gov (United States)

    Wang, Jiajia; Luo, Wenjun; Feng, Jianyong; Zhang, Li; Li, Zhaosheng; Zou, Zhigang

    2013-10-14

    Water adsorption and dissociation on the perfect, oxygen containing and nitrogen vacancy containing Ta3N5(100) surfaces are systematically studied by density functional theory calculations. The results show that the perfect Ta3N5(100) surface is very active for water dissociation because of the dangling bonds formed on the perfect Ta3N5(100) surface. The presence of oxygen on the surface is able to stabilize the Ta3N5(100) surface but not to facilitate water dissociation, which may be ascribed to the saturation of surface dangling bonds by oxygen. The presence of a nitrogen vacancy on the surface is able to facilitate water dissociation, but Ta3N5(100) surfaces with nitrogen vacancies are not stable. We found that keeping the impurity oxygen as less as possible is one effective approach to enhance the water splitting ability of Ta3N5. We propose that doping with foreign elements is one potential method to obtain a clean Ta3N5(100) surface, since the oxygen concentration may be adjusted by competition between oxygen and foreign elements.

  7. Some results from 50 years' research on surface forces

    Science.gov (United States)

    Derjaguin, B. V.

    1992-05-01

    A review is presented about research on surface forces and surface interactions conducted over the past half-century, with some emphasis on the pioneering contributions of the Department of Surface Phenomena at the Institute of Physical Chemistry of the USSR Academy of Sciences.

  8. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  9. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more......Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface...

  10. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  11. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    OpenAIRE

    W.Wilopo; R.Resili; D.P.E. Putra

    2013-01-01

    There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our dat...

  12. Monitoring of endocrine disrupting chemicals in surface water

    CSIR Research Space (South Africa)

    Govender, S

    2008-06-01

    Full Text Available the surface. The chelated Pluronic-DMDDO ligand can be used for affinity purification of histidine tagged proteins. A regeneration formulation based on anionic SDS detergent desorbed pluronic modified polymeric membranes and the possibility of re... ingredients, household products and industrial chemicals. Surface waters are the main sink of said EDCs. Accurate EDC detection is usually via time consuming and costly ex situ LC-MS and GC-MS analysis. An important class of biosensors include those...

  13. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    Science.gov (United States)

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  14. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    Science.gov (United States)

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  15. Equations for the calculation of N- and P-load on surface waters

    NARCIS (Netherlands)

    Steenvoorden, J.H.A.M.

    1983-01-01

    Nutrient loadson surface and ground waters is the result of inputs from various sources. For the development of a plan for water management information is needed about the consequences of alternative scenarios. Therefore mathematica! approaches have been developed for the contributions by the

  16. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  17. Evaluation of acute copper toxicity to larval fathead minnows (Pimephales promelas) in soft surface waters.

    Science.gov (United States)

    Van Genderen, Eric J; Ryan, Adam C; Tomasso, Joseph R; Klaine, Stephen J

    2005-02-01

    The hardness-based regulatory approach for Cu prescribes an extrapolation of the toxicity-versus-hardness relationship to low hardness (hardness surface waters. Seasonal water sampling was conducted at 24 sites throughout South Carolina, USA, to determine the site-specific influences of soft surface-water conditions on acute Cu toxicity. Concurrent toxicity tests in laboratory water, matched for hardness and alkalinity (modified method), also were conducted to allow calculation of water-effect ratios (WERs). In addition, tests were conducted at recommended hardness levels (recommended method) for comparison of WER methodology in soft water. Surface-water conditions (average+/-standard deviation, n = 53) were hardness of 16+/-8 mg/L as CaCO3, alkalinity of 18+/-11 mg/L as CaCO3, and dissolved organic carbon of 6+/-4 mg/L. Dissolved Cu 48-h median lethal concentration (LC50) values varied nearly 45-fold across the dataset and greater than four-fold at individual sites. Spatial (p hardness-based equation for Cu at 50 mg/L or less as CaCO3 would adequately protect fathead minnow populations in soft surface waters. The WER results presented here demonstrate the inconsistency between hardness-based criteria and the methodology for deriving site-specific water-quality criteria in low-hardness waters.

  18. A surface water flooding impact library for flood risk assessment

    Directory of Open Access Journals (Sweden)

    Aldridge Timothy

    2016-01-01

    Full Text Available The growing demand for improved risk-based Surface Water Flooding (SWF warning systems is evident in EU directives and in the UK Government’s Pitt Review of the 2007 summer floods. This paper presents a novel approach for collating receptor and vulnerability datasets via the concept of an Impact Library, developed by the Health and Safety Laboratory as a depository of pre-calculated impact information on SWF risk for use in a real-time SWF Hazard Impact Model (HIM. This has potential benefits for the Flood Forecasting Centre (FFC as the organisation responsible for the issuing of flood guidance information for England and Wales. The SWF HIM takes a pixel-based approach to link probabilistic surface water runoff forecasts produced by CEH’s Grid-to-Grid hydrological model with Impact Library information to generate impact assessments. These are combined to estimate flood risk as a combination of impact severity and forecast likelihood, at 1km pixel level, and summarised for counties and local authorities. The SWF HIM takes advantage of recent advances in operational ensemble forecasting of rainfall by the Met Office and of SWF by the Environment Agency and CEH working together through the FFC. Results are presented for a case study event which affected the North East of England during 2012. The work has been developed through the UK’s Natural Hazards Partnership (NHP, a group of organisations gathered to provide information, research and analysis on natural hazards for civil contingencies, government and responders across the UK.

  19. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  20. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  1. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    Science.gov (United States)

    Kibbey, Tohren C. G.

    2013-08-01

    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  2. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  3. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    1999-02-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane.

  4. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  5. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  6. Seasonal Spatial Patterns of Surface Water Temperature, Surface Heat Fluxes and Meteorological Forcing Over Lake Geneva

    Science.gov (United States)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2015-12-01

    In many lakes, surface heat flux (SHF) is the most important component controlling the lake's energy content. Accurate methods for the determination of SHF are valuable for water management, and for use in hydrological and meteorological models. Large lakes, not surprisingly, are subject to spatially and temporally varying meteorological conditions, and hence SHF. Here, we report on an investigation for estimating the SHF of a large European lake, Lake Geneva. We evaluated several bulk formulas to estimate Lake Geneva's SHF based on different data sources. A total of 64 different surface heat flux models were realized using existing representations for different heat flux components. Data sources to run the models included meteorological data (from an operational numerical weather prediction model, COSMO-2) and lake surface water temperature (LSWT, from satellite imagery). Models were calibrated at two points in the lake for which regular depth profiles of temperature are available, and which enabled computation of the total heat content variation. The latter, computed for 03.2008-12.2012, was the metric used to rank the different models. The best calibrated model was then selected to calculate the spatial distribution of SHF. Analysis of the model results shows that evaporative and convective heat fluxes are the dominant terms controlling the spatial pattern of SHF. The former is significant in all seasons while the latter plays a role only in fall and winter. Meteorological observations illustrate that wind-sheltering, and to some extent relative humidity variability, are the main reasons for the observed large-scale spatial variability. In addition, both modeling and satellite observations indicate that, on average, the eastern part of the lake is warmer than the western part, with a greater temperature contrast in spring and summer than in fall and winter whereas the SHF spatial splitting is stronger in fall and winter. This is mainly due to negative heat flux

  7. Mutagenic and toxicological results from Ukrainian surface waters

    Science.gov (United States)

    Ukraine is a country of 46 million people with increasingly modern industrial cities as well as productive, fertile agricultural areas. Historically, Ukraine served as a center for agriculture and industry during much of the Soviet Union dominance. Legacy compounds (DDT, PCBs, ...

  8. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Colleges and University Key Laboratory of Minerals Engineering, 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Adsorption of water molecules decreases the reactivity of surface Zn atom. • Copper impurities decrease the band gap of ZnS surface. • Copper impurities enhance the adsorption of xanthate on the ZnS surface. • Water molecules have little influence on the properties of Cu-substituted ZnS surface. • The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface. - Abstracts: The interaction of collector with the mineral surface plays a very important role in the froth flotation of sphalerite. The adsorptions occurred at the interface between the mineral surface and waters; however most of DFT simulations are performed in vacuum, without consideration of water effect. Semiconductor surface has an obvious proximity effect, which will greatly influence the surface reactivity. To understand the mechanism of xanthate interacting with sphalerite surface in the presence of water molecules, the ethyl xanthate molecule adsorption on un-activated and Cu-activated ZnS(110) surface in the absence and presence of water molecules were performed using the density functional theory (DFT) method. The calculated results show that the adsorption of water molecules dramatically changes the properties of ZnS surface, resulting in decreasing the reactivity of surface Zn atoms with xanthate. Copper activation of ZnS surface changes the surface properties, leading to the totally different adsorption behaviors of xanthate. The presence of waters has little influence on the properties of Cu-activated ZnS surface. The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface, which would result in the formation of dixanthogen.

  9. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    Science.gov (United States)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  10. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  11. Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam. (drumstick) tree.

    Science.gov (United States)

    Lea, Michael

    2010-02-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for simplified, point-of-use, low-risk water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  12. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  13. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  14. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  15. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  16. Observation of water condensate on hydrophobic micro textured surfaces

    Science.gov (United States)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  17. Zearalenone occurrence in surface waters in central Illinois, USA

    Science.gov (United States)

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

  18. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  19. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include t

  20. An Experimental Study of Planing Surfaces Operating in Shallow Water

    Science.gov (United States)

    1976-09-01

    D C APPROVED FOR PUBLIC RELEASE; (7 DISTRIBUTION UNLIMITED 22 1918 PT CLAIME Ar-Th -L’A THI S DOUETI 7E QUALITLY . AVAIILABIJaTECP FURNSR DTO DTIC...Aerodynamic tares were determined by towing the model just above the water surface at various trims and speeds. Only the drag was greatly affected by air

  1. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    Science.gov (United States)

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  2. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  3. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment

    Institute of Scientific and Technical Information of China (English)

    Jianjun Chen; Shaoyong Lu; Yikun Zhao; Wei Wang; Minsheng Huang

    2011-01-01

    Microbial activity may influence phosphorus (P) deposit and release at the water sediment interface.The properties of DO (dissolved oxygen), pH, P fractions (TP, Ca-P, Fe-P, OP, IP), and APA (alkaline phosphatase activity) at the water sediment interface were measured to investigate microbial activity variations in surface sediment under conditions of two-month intermittent aeration in overlying water.Results showed that DO and TP of overlying water increased rapidly in the first week and then decreased gradually after 15 day of intermittent aeration.Microorganism metabolism in surface sediment increased pH and decreased DO and TP in the overlying water.After two-month intermittent aeration, APA and OP from surface sediment (0-2 crm) were both significantly higher than those from bottom sediment (6-8 cm) (p < 0.05), and surface sediment Fe-P was transferred to OP during the course of microorganism reproduction on the surface sediment.These results suggest that microbial activity and microorganism biomass from the surface sediment were higher than those from bottom sediment afar two-month intermittent aeration in the overlying water.

  4. Index of surface-water stations in Texas, January 1988

    Science.gov (United States)

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1988-01-01

    As of January 1, 1988, the surface-water data-collection network in Texas included 368 continuous streamflow, 12 continuous or daily reservoir-content, 38 gage height, 15 crest-stage partia 1-record, 4 periodic discharge through range, 32 floodhydrocjraph partial-record, 9 flood-profile partial-record, 36 low-flow partial-record 45 daily chemical-quality, 19 continuous-recording water-quality, 83 periodic biological, 19 lake surveys, 160 periodic organic and (or) nutrient, 3 periodic insecticide, 33 periodic pesticide, 20 automatic sampler, 137 periodic minor elements, 125 periodic chemical-quality, 74 periodic physica1-organic, 24 continuous-recording three- or four-parameter water-quality, 34 periodic sediment, 21 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemicalquality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations.

  5. Fabrication of ZnO submicrorod films with water repellency by surface etching and hydrophobic modification

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xianming, E-mail: xmhou@tsu.edu.cn [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang Lixia [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China); Zhou Feng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Liqing [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China)

    2011-09-01

    Superhydrophobic ZnO submicrorod films have been fabricated on zinc sheets through an H{sub 2}O{sub 2}-assisted surface etching process and subsequent surface modification with a monolayer of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDS). The crystal structure, chemical compositions, morphologies, and wettability of the resultant ZnO films were analyzed by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurements. It is found that the surface of the as-prepared ZnO films on zinc substrate was hydrophobic with a water contact angle of 95 {+-} 2 deg., whereas after modification with FDS, the film exhibited superhydrophobicity and the water CA increased to 154 {+-} 2 deg. It is shown that both the higher surface roughness and the lower surface free energy play an important role in creating the superhydrophobic films.

  6. Enhanced load-carrying capacity of hairy surfaces floating on water.

    Science.gov (United States)

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  7. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  8. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  9. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  10. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  11. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  12. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  13. Development of aquatic biomonitoring models for surface waters used for drinking water supply

    NARCIS (Netherlands)

    Penders, E.J.M.

    2011-01-01

    Given the need for continued quality control of surface waters used for the production of drinking water by state-of-the-art bioassays and biological early warning systems, the objective of the present thesis was to validate and improve some of the bioassays and biological early warning systems used

  14. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  15. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  16. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    Science.gov (United States)

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  17. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  18. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.

    2017-07-01

    The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.

  19. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    Science.gov (United States)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  20. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  1. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  2. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers...... and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations...

  3. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.

  4. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unreali

  5. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  6. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

    Science.gov (United States)

    Borchardt, M. A.; Haas, N.L.; Hunt, R.J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  7. Surface water data at Los Alamos National Laboratory: 1995 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barks, R. [ed.; Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.

    1996-08-01

    The principle investigators collected and computed surface water discharge data from 15 stream-gaging stations that cover most of Los Alamos National Laboratory. The United States Department of Interior Geological Survey, Water Resources Division, operates two of the stations under a subcontract; these are identified in the station manuscripts. Included in this report are data from one seepage run conducted in Los Alamos Canyon during the 1995 water year.

  8. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  9. How water meets a hydrophobic surface: Reluctantly and with flucuations

    Science.gov (United States)

    Poynor Torigoe, Adele Nichole

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low density region forms near the surface. This depleted region would have implications in such diverse areas as colloidal self-assembly, and the boundary conditions of fluid flow. However, the literature still remains divided as to whether or not such a depleted region exists. To investigate the existence of this layer, we have employed three surface-sensitive techniques, time-resolved phase-modulated ellipsometry, surface plasmon resonance, and X-ray reflectivity. Both ellipsometry and X-ray reflectivity provide strong evidence for the low-density layer and illuminate unexpected temporal behavior. Using all three techniques, we found surprising fluctuations at the interface with a non-Gaussian distribution and a single characteristic time on the order of tenths of seconds. This information supports the idea that the boundary fluctuates with something akin to capillary waves. We have also investigated the dependence of the static and dynamic properties of the hydrophobic/water interface on variables such as temperature, contact angle, pH, dissolved gasses, and sample quality, among others, in a hope to discover the root of the controversy in the literature. We found that the depletion layer is highly dependent on temperature, contact angle and sample quality. This dependence might explain some of the discrepancies in the literature as different groups often use hydrophobic surfaces with different properties.

  10. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    Science.gov (United States)

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC.

  11. Emergence of a Food-Energy-Water Nexus in Northwest Mexico as a Result of Interbasin Water Transfers.

    Science.gov (United States)

    Munoz Hernandez, A.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Hallack-Alegria, M.; Salazar, A.

    2016-12-01

    Interbasin transfers (IBT) of water have been used as a technological solution to the disparities between water supply and demand centers for centuries. However, the impacts of IBTs on the nexus between water, energy, and food production and consumption in the regions receiving and providing the vital resource are rarely assessed. This study addresses this question through the lens of a new IBT between two important basins located in Northwest Mexico: the Rio Yaqui Basin (RYB) and the Rio Sonora Basin (RSB). The RYB is a 72,000 km2 semi-arid basin with a predominantly agricultural focus that utilizes water from three surface water reservoirs and groundwater. The RSB, with an area of 20,648 km2, is one of the most prominent industrial areas of the region and is home to the most populous city in the state. Traditionally, groundwater has been the main source of water in the RSB due to significant surface water shortages associated with drought conditions. Recently, a 75 Mm3/year capacity aqueduct was built to transfer water from the RYB to the RSB. The impacts of the IBT on agricultural production and water-related energy consumption (groundwater pumping vs. pumping through the aqueduct) and production (hydropower generation) remain unknown, especially under drought conditions. Historical data was collected from the National Commission of Water in Mexico to create a water balance model that mimics the water consumption in the RYB. The purpose of this model is to compare electricity consumption and production and agricultural production, generated before and after the IBT, assuming that historical climatic conditions will be repeated in the future. Linear models were developed to understand the relationship between water, food, and energy production. Twelve aquifers in the RSB were modeled and daily hydraulic heads were estimated for a period of ten years. Once the heads were adjusted to account for local in-well drawdown, an estimation of the total amount of energy

  12. Test results on re-use of reclaimed shower water: Summary. [space stations

    Science.gov (United States)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  13. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  14. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  15. Global water cycle and the coevolution of the Earth's interior and surface environment

    Science.gov (United States)

    Korenaga, Jun; Planavsky, Noah J.; Evans, David A. D.

    2017-04-01

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  16. Global water cycle and the coevolution of the Earth's interior and surface environment.

    Science.gov (United States)

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10(14) g yr(-1) on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  17. Surface-water quality assessment of the Clover Creek basin, Pierce County, Washington, 1991-1992

    Science.gov (United States)

    McCarthy, K.A.

    1996-01-01

    Increasing urbanization in the 67-square-mile Clover Creek Basin has generated interest in the effects of land-use changes on local water quality. To investigate these effects, water-quality and streamflow data were collected from 19 surface-water sites in the basin over a 16-month period from January 1991 through April 1992. These data were used to understand the effects of surficial geology, land-use practices, and wastewater disposal practices on surface-water quality within the basin. The basin was divided into four drainage subbasins with dissimilar hydrogeologic, land-use, and water-quality characteristics. In the Upper Clover Creek subbasin, the high permeability of surficial geologic materials promotes infiltration of precipitation to ground water and thus attenuates the response of streams to rainfall. Significant interaction occurs between surface and ground water in this subbasin, and nitrate concentrations and specific conductance values, similar to those found historically in local ground water, indicate that sources such as subsurface waste-disposal systems and fertilizers are affecting surface- water quality in this area. In the Spanaway subbasin, the presence of Spanaway and Tule Lakes affects water quality, primarily because of the reduced velocity and long residence time of water in the lakes. Reduced water velocity and long residence times (1) cause settling of suspended materials, thereby reducing concentrations of suspended sediment and constituents that are bound to the sediment; (2) promote biological activity, which tends to trap nutrients in the lakes; and (3) allow dispersion to attenuate peaks in discharge and water-quality constituent concentrations. In the North Fork subbasin, the low permeability of surficial geologic materials and areas of intensive land development inhibit infiltration of precipitation and thus promote surface runoff to streams. Surface pathways provide little attenuation of storm runoff and result in rapid increases

  18. Experimental investigation and numerical simulation on the effect of fissure water pressure in vertical sliding surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; LI; Shihai; LIAN; Zhenzhong; WANG; Yuannian

    2005-01-01

    This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists.Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

  19. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  20. Initial water quantification results using neutron computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.K. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States)], E-mail: axh174@psu.edu; Shi, L.; Brenizer, J.S.; Mench, M.M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States)

    2009-06-21

    Neutron computed tomography is an important imaging tool in the field of non-destructive testing and in fundamental research for many engineering applications. Contrary to X-rays, neutrons can be attenuated by some light materials, such as hydrogen, but can penetrate many heavy materials. Thus, neutron computed tomography is useful in obtaining important three-dimensional information about a sample's interior structure and material properties that other traditional methods cannot provide. The neutron computed tomography system at Pennsylvania State University's Radiation Science and Engineering Center is being utilized to develop a water quantification technique for investigation of water distribution in fuel cells under normal conditions. A hollow aluminum cylinder test sample filled with a known volume of water was constructed for purposes of testing the quantification technique. Transmission images of the test sample at different angles were easily acquired through the synthesis of a dedicated image acquisition computer driving a rotary table controller and an in-house developed synchronization software package. After data acquisition, Octopus (version 8.2) and VGStudio Max (version 1.2) were used to perform cross-sectional and three-dimensional reconstructions of the sample, respectively. The initial reconstructions and water quantification results are presented.

  1. Molecular dynamics study of oil detachment from an amorphous silica surface in water medium

    Science.gov (United States)

    Chen, Jiaxuan; Si, Hao; Chen, Wenyang

    2015-10-01

    In this paper, the mechanism of oil detachment from optical glass in water medium is studied by using molecular dynamics simulation. At the beginning, some undecane molecules are adsorbed on the amorphous silica surface to get contaminated glass. Upon addition of 6000 water molecules, most of the undecane molecules on the substrate surface can be detached from an amorphous silica surface through three stages. The formation of different directions of water channels is vital for oil detachment. The electrostatic interaction of water substrate contributes to disturbing the aggregates of undecane molecules and the H-bonding interaction between the water molecules is helpful for the oil puddle away from the substrate. However, there is still some oil molecules residue on the substrate surface after water cleaning. The simulation results showed that the specific ring potential well of amorphous silica surface will hinder the detachment of oil molecules. We also find that the formation of the specific ring potential well is related to the number of atoms and the average radius in silica atomic rings. Increasing the upward lift force, which acts on the hydrocarbon tail of oil molecules, will be benefit to clear the oil pollution residues from the glass surface.

  2. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    Science.gov (United States)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  3. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface

    Science.gov (United States)

    Li, Yufeng; Jin, Haiyun; Nie, Shichao; Zhang, Peng; Gao, Naikui

    2017-05-01

    In this paper, a superhydrophobic surface is used to increase the flashover voltage when water droplets are present on a silicone rubber surface. The dynamic behavior of a water droplet and the associated flashover characteristics are studied on common and superhydrophobic silicone rubber surfaces under a high DC voltage. On common silicone rubber, the droplet elongates and the flashover voltage decreases with increasing droplet volume and conductivity. In contrast, the droplet slides off the superhydrophobic surface, leading to an increased flashover voltage. This droplet sliding is due to the low adhesion of the superhydrophobic surface and a sufficiently high electrostatic force provided by the DC voltage. Experimental results show that a superhydrophobic surface is effective at inhibiting flashover.

  4. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  5. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  6. Water contact angles and hysteresis of polyamide surfaces.

    Science.gov (United States)

    Extrand, C W

    2002-04-01

    The wetting behavior of a series of aliphatic polyamides (PAs) has been examined. PAs with varying amide content and polyethylene (PE) were molded against glass to produce surfaces with similar roughness. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while hysteresis increased. Hysteresis arose primarily from molecular interactions between the contact liquid and the solid substrates, rather than moisture absorption, variations in crystallinity, surface deformation, roughness, reorientation of amide groups, or surface contamination. Free energies of hysteresis were calculated from contact angles. For PE, which is composed entirely of nonpolar methylene groups, free energies were equivalent to the strength of dispersive van der Waals bonds. For PAs, free energies corresponded to fractional contributions from the dispersive methylene groups and polar amide groups.

  7. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index

    Institute of Scientific and Technical Information of China (English)

    GHULAM; Abduwasit; LI; Zhao-Liang; QIN; QiMing; TONG; QingXi; WANG; JiHua; KASIMU; Alimujiang; ZHU; Lin

    2007-01-01

    In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces- shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Thematic Mapper Plus (ETM+) on the basis of spectral features and distribution of surface targets with different water conditions in NIR-SWIR spectral space. The developed method is further explored with radiative transfer simulations using PROSPECT, Lillesaeter, SailH and 6S. It is evident from the results of validation derived from satellite synchronous field measurements that SPSI is highly correlated with FMC, coefficient of determination (R squared) and root mean square error are 0.79 and 26.41%. The paper concludes that SPSI has a potential in vegetation water content estimation in terms of FMC.

  8. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  9. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  10. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  11. Equations of atrazine transfer from agricultural land to surface water

    Science.gov (United States)

    Cann, C.

    1995-08-01

    As atrazine, the most widely used herbicide in agriculture, makes problems for water supply, the Cemagref study its transfer from lands to surface water. On a small basin of central Brittany, soil and water contents of atrazine have been monitored from 1991 to 1994. Data show that atrazine content of the top layer of soil decreases slowly after spreading. Degradation works more than leaching for this decrease. There is always atrazine in the water of the stream at the outlet of the basin. The concentration of atrazine in water increase sharply in every flood and then decrease slowly. The maximum level of concentration in each flood is very well correlated with the ratio of maximum discharge to the base flow. It means that quick superficial flow of water is the most contaminated water. It brings most of the total flow of atrazine which can be measured in the stream. However, this flow represent only a very small part of the spread atrazine on the basin: less than 1%.

  12. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  13. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  14. Input dynamics of pesticide transformation products into surface water

    Science.gov (United States)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  15. Innovation results of IAM planning in urban water services.

    Science.gov (United States)

    Cardoso, M A; Poças, A; Silva, M S; Ribeiro, R; Almeida, M C; Brito, R S; Coelho, S T; Alegre, H

    2016-10-01

    The requirement to provide urban water services continuously while infrastructures are ageing, imposes the need for increasingly sustainable infrastructure asset management (IAM). To achieve and maintain adequate levels of service, the AWARE-P IAM methodology has been applied in collaborative projects launched by the National Civil Engineering Laboratory, in partnership with IST (Technical University of Lisbon), Addition (software company) and several water utilities. The objective of these projects is to support urban water utilities in the development, implementation and maintenance of IAM plans. To guarantee the success of IAM planning, following the AWARE-P IAM methodology, utilities are required to: consider that the infrastructure has system behaviour and lifespan is indefinite and guarantee the full-alignment of IAM planning with organisation objectives. By analysing the strategic and tactical plans of participating utilities, the proposed methodology principles are discussed and supported. The main innovation results from the implementation of IAM planning are also presented and discussed, including the challenges of setting up an IAM process, together with the major benefits and drawbacks that come up when developing IAM plans. The results were demonstrated by the effective implementation of 16 strategic and 14 tactical IAM plans by the participating utilities.

  16. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  17. Impact location of objects hitting the water surface

    Science.gov (United States)

    Kadri, Usama

    2017-04-01

    Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742

  18. The Whitham Equation as a Model for Surface Water Waves

    CERN Document Server

    Moldabayev, Daulet; Dutykh, Denys

    2014-01-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better tha...

  19. Realization of National Programme of Municipal Wastewater Treatment and the quality of surface water in Poland

    Directory of Open Access Journals (Sweden)

    Sylwia Myszograj

    2012-09-01

    Full Text Available One of the aims of improving water quality, resulting directly from the Water Framework Directive 2000/60/EC, is to achieve in 2015, at least good status for all waters in the country. Following the adoption by Poland of the Water Framework Directive assessment of the economic and general cleanliness of water was replaced by an assessment of ecological status. In this way, the analysis of water status shall be treated as not only economic resources, but primarily as part of the ecosystem. The most important from the standpoint of human health protection, is the quality of water intended for human consumption.In the document „The purity of rivers based on the results of tests carried out within the national environmental monitoring in 2007–2009” is given that: – only 10.6% of the surface of flowing water meets the requirements of collective waters used for water supply for drinking, – up 28.7% of the length of monitored water is too polluted for them mildest demands posed conditioned needs of the economy. The decrease in water quality was affected by the physico-chemical pollutants such as pH, total suspension, manganese, polycyclic aromatic hydrocarbons (PAHs, CODCr, BOD5 and TOC. Large impact on reducing water quality category also had microbial contamination, the number of fecal coliform bacteria, fecal streptococci and total coliforms.

  20. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  1. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  2. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  3. The Inner Boundary of the Habitable Zone: Loss Processes of Liquid Water from Terrestrial Planet Surfaces

    Science.gov (United States)

    Stracke, B.; Godolt, M.; Grenfell, J. L.; von Paris, P.; Patzer, B.; Rauer, H.

    2012-04-01

    The question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.

  4. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  5. Integrated modelling for assessing the risk of TCE groundwater contamination to human and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, Simon Goltermann; Finkel, Michael;

    2009-01-01

    management tools designed to work with sparse data sets from preliminary site assessments are needed which can explicitly link contaminant point sources with groundwater, surface water and ecological impacts. Here, a novel integrated modelling approach was employed for evaluating the impact of a TCE...... groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamics-based decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical volatilisation model for the stream...... of “effective” parameters in groundwater transport modelling. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk to either human or ecological receptors. The current work will be extended to additional...

  6. Multivariate statistical analysis for the surface water quality of the Luan River, China

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei ZHAO; Fu-yi CUI

    2009-01-01

    In order to analyze the characteristics of surface water resource quality for the reconstruction of old water treatment plant, multivariate statistical techniques such as cluster analysis and factor analysis were applied to the data of Yuqiao Reservoir--surface water resource of the Luan River, China. The results of cluster analysis demonstrate that the months of one year were divided into 3 groups and the characteristic of clusters was agreed with the seasonal characteristics in North China. Three factors were derived from the complicated set using factor analysis. Factor 1 included turbidity and chlorophyll, which seemed to be related to the anthropogenic activities; factor 2 included alkaline and hardness, which were related to the natural characteristic of surface water; and factor 3 included Cl and NO-N affected by mineral and agricultural activities. The sinusoidal shape of the score plots of the three factors shows that the temporal variations caused by natural and human factors are linked to seasouality.

  7. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  8. Dissolved gaseous Hg (DGM in the Mediterranean surface and deep waters

    Directory of Open Access Journals (Sweden)

    Kotnik J.

    2013-04-01

    Full Text Available Dissolved gaseous mercury (DGM was studied in surface and deep waters of the Mediterranean Sea for last 12 years during several oceanographic cruises on board the Italian research vessel Urania and covered both Western and Eastern Mediterranean Basins as well as Adriatic Sea. DGM was measured together with other mercury species (RHg - reactive Hg, THg - total Hg, MeHg - monomethyl Hg and DMeHg - dimethylmercury, and with some water quality parameters in coastal and open sea deep water profiles, however only DGM will be discussed here. DGM represents a considerable portion of THg (average of about 20 % in Mediterranean waters. Spatial and seasonal variations of measured DGM concentrations were observed in different indentified water masses as well as iwere observed. DGM was the highest in the northern Adriatic, most polluted part of the Mediterranean Sea as the consequence of Hg mining in Idrija and heavy industry of northern Italy.Generally, average DGM concentration was higher in W and E Mediteranean Deep Waters (WMDW and EMDW and Leavantine Intermediate Water (LIW than overlaying Modified Atlantic Water (MAW, however it was the highest in N Adriatic Surface waters and consequently in out flowing Adriatic Deep Waters (ADW. In deep water profiles the portion of DGM typically increased at depths with oxygen minimum and then towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea, indicating its bacterial and/or geotectonic origin. A comparison of the results obtained in this study to others performed in the Mediterranean shows no significant differences. Results were also compared to the results obtained in the Pacific and Atlantic Oceans. During last oceanographic cruise in 2011 covering area between Livorno and Lipari Islands a novel method for continuous DGM determination in surface waters (Wangberg and Gardfeldt, 2011 was applied and compared to standard method.

  9. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    Science.gov (United States)

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  10. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  11. Surface deformation resulting from subduction and slab detachment

    NARCIS (Netherlands)

    Buiter, S.J.H.

    2000-01-01

    Convergence of lithospheric plates is accommodated at active margins by one plate moving beneath the other into the Earth's mantle. Changes in this subduction process may cause variations in the topography of the Earth's surface near a convergent plate margin. The focus of this thesis lies on

  12. Groundwater-Surface Water Mixing Shifts Ecological Assembly Processes and Stimulates Organic Carbon Turnover

    Science.gov (United States)

    Stegen, J.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Danczak, B.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone simultaneously (i) stimulated heterotrophic respiration, (ii) altered organic carbon composition, (iii) caused ecological processes to shift from stochastic to deterministic, and (iv) selected for microbial taxa capable of degrading a broad suite of organic compounds.

  13. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  14. Meteorites at Meridiani Planum provide evidence for significant amounts of surface and near-surface water on early Mars

    Science.gov (United States)

    Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; Thompson, Shane D.; Mahaney, William C.; Herkenhoff, Kenneth E.; Rodriguez, J. Alexis P.; Davila, Alfonso F.; Schulze-Makuch, Dirk; El Maarry, M. Ramy; Uceda, Esther R.; Amils, Ricardo; Miyamoto, Hirdy; Kim, Kyeong J.; Anderson, Robert C.; McKay, Christopher P.

    2011-01-01

    Six large iron meteorites have been discovered in the Meridiani Planum region of Mars by the Mars Exploration Rover Opportunity in a nearly 25 km-long traverse. Herein, we review and synthesize the available data to propose that the discovery and characteristics of the six meteorites could be explained as the result of their impact into a soft and wet surface, sometime during the Noachian or the Hesperian, subsequently to be exposed at the Martian surface through differential erosion. As recorded by its sediments and chemical deposits, Meridiani has been interpreted to have undergone a watery past, including a shallow sea, a playa, an environment of fluctuating ground water, and/or an icy landscape. Meteorites could have been encased upon impact and/or subsequently buried, and kept underground for a long time, shielded from the atmosphere. The meteorites apparently underwent significant chemical weathering due to aqueous alteration, as indicated by cavernous features that suggest differential acidic corrosion removing less resistant material and softer inclusions. During the Amazonian, the almost complete disappearance of surface water and desiccation of the landscape, followed by induration of the sediments and subsequent differential erosion and degradation of Meridiani sediments, including at least 10–80 m of deflation in the last 3–3.5 Gy, would have exposed the buried meteorites. We conclude that the iron meteorites support the hypothesis that Mars once had a denser atmosphere and considerable amounts of water and/or water ice at and/or near the surface.

  15. Utilizing an Automated Home-Built Surface Plasmon Resonance Apparatus to Investigate How Water Interacts with a Hydrophobic Surface

    Science.gov (United States)

    Poynor, Adele

    2011-03-01

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low- density region forms near the surface. We have employed an automated home-built Surface Plasmon Resonance (SPR) apparatus to investigate this boundary.

  16. Assessing protozoan risks for surface drinking water supplies in Nova Scotia, Canada.

    Science.gov (United States)

    Krkosek, Wendy; Reed, Victoria; Gagnon, Graham A

    2016-02-01

    Protozoa, such as Cryptosporidium parvum and Giardia lamblia, pose a human health risk when present in drinking water. To minimize health risks, the Nova Scotia Treatment Standards for surface water and groundwater under the direct influence of surface water require a 3-log reduction for Giardia cysts and Cryptosporidium oocysts. This study determined the protozoan risk of municipal surface source waters in Nova Scotia, through the use of a pre-screening risk analysis of water supplies, followed by subsequent water quality analysis of the seven highest risk supplies. The water supplies were monitored monthly for 1 year to obtain baseline data that could be used for a quantitative microbial risk assessment (QMRA). The QMRA model outcomes were compared to the Health Canada health target of 10(-6) disability-adjusted life years/person/year. QMRA modeling shows that the treatment facilities meet the required log reductions and disability-adjusted life year target standards under current conditions. Furthermore, based on the results of this work, Nova Scotia should maintain the current 3-log reduction standard for Giardia cysts and Cryptosporidium oocysts. The results of this study show that a pre-screening step can help to inform water sources that are particularly vulnerable to protozoan contamination, which can lead to more focused, cost-effective sampling, and monitoring programs.

  17. Modelling of a water plasma flow: I. Basic results

    Energy Technology Data Exchange (ETDEWEB)

    KotalIk, Pavel [INP Greifswald, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald (Germany)

    2006-06-21

    One-fluid MHD equations are numerically solved for an axisymmetric flow of thermal water plasma inside and outside a discharge chamber of a plasma torch with water vortex stabilization of electric arc. Comparisons with experimental data and previous calculations are given. For arc currents of 300-600 A, the respective temperatures and velocities in the range 16 700-26 400 K and 2300-6900 m s{sup -1} are obtained at the centre of the nozzle exit. The flow velocity on axis increases by 1-2 km s{sup -1} in the 5 mm long nozzle. Ohmic heating and radiative losses are two competitive processes influencing most the plasma temperature and velocity. The radiative losses represent 39% to 46% of the torch power of 69-174 kW when optical thickness of 3 mm is assumed for the plasma column. In front of the cathode, inside the discharge chamber, a recirculation zone is predicted and discussed. Effects of the temperature dependence of the plasma viscosity and sound velocity and of the optical thickness are examined. It is shown that the results such as waviness of the Mach number isolines are direct consequences of these dependences. Different lengths of 55 and 60 mm of the water vortex stabilized part of the electric arc do not substantially influence the plasma temperature and velocity at the nozzle exit.

  18. Titanium-Water Thermosyphon Gamma Radiation Effects and Results

    Science.gov (United States)

    Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  19. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    Science.gov (United States)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  20. 4D photogrammetric technique to study free surface water in open channels

    Science.gov (United States)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  1. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  2. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  3. Simulation strategy for surface water potabilizing plants. Estrategia de simulacion para plantas potabilizadoras de aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Llanes, L.A.; Alvarez Rosell, S. (Facultad de Ingenieria Quimica ISPJAE, La Habana (Cuba))

    1994-01-01

    A general strategy to make better operation of drinking water treatment plants for surfaced waters is exposed. It includes the mathematical modelling of the principal parts of the process and it uses an Expert System for the determination of coagulant dosage too. This strategy will be a powerfully mean for plant operators. It will allow to rise the technical-economic effectivity of the plant and to predict its performance when changes in water or in operational conditions occur. The strategy can be used for training new technical personnel and operators in the field of drinking water treatment. The first results obtained with the application of this strategy are presented. (Author)

  4. What Happened when a Superhydrophobic Surface was Immersed in Water? A Study by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    , the wetting transitions had a stochastic nature, which may result from the diffusion of dissolved gas molecules in the water between neighboring cavities. Further, we compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the different water...... repellent properties of the two materials to a difference in the wetting of their nanostructures. The experimental observations indicate that both the diffusion of gas molecules in water, and the geometry of nanostructures influence the sustainability of superhydrophobicity of surfaces under water...

  5. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Science.gov (United States)

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-01-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety. PMID:22690170

  6. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Directory of Open Access Journals (Sweden)

    Joe LoBuglio

    2012-03-01

    Full Text Available Monitoring of progress towards the Millennium Development Goal (MDG drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11% use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18% use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  7. Wavefront modulation of water surface wave by a metasurface

    Science.gov (United States)

    Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun

    2015-10-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  8. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.

    Science.gov (United States)

    Li, Zhiting; Kozbial, Andrew; Nioradze, Nikoloz; Parobek, David; Shenoy, Ganesh Jagadeesh; Salim, Muhammad; Amemiya, Shigeru; Li, Lei; Liu, Haitao

    2016-01-26

    The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day.

  9. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  10. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  11. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment.

  12. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  13. Dynamics of surface tension driven mixing of an alcohol droplet with water

    Science.gov (United States)

    Dandekar, Raj; Pant, Anurag; Puthenveettil, Baburaj

    2016-11-01

    We study the flow induced by the surface tension driven spreading of an ethanol droplet of radius rd on the surface of a 5mm water layer, visualizing the flow using aluminium flakes on the surface of the water layer with backlighting and high speed imaging. The concentration of tracer aluminium particles was found to have no effect on the scaling law for spreading.The drop,when brought in contact with the water surface causes a local depression in surface tension ,resulting in a thin circular region to expand radially outwards.We observe that the dimensionless radius of the expanding front (r* =r/rd) scales with the dimensionless time (t* = μ rd/ Δγ) , as r* t*1/4,where μ is the viscosity of water and Δγ is the surface tension difference between water and the ethanol droplet.A scaling analysis taking the viscous and the marangoni forces into account explains the observed scaling law.Our observations differ from that in the case of continuous alcohol supply where the observed scaling law is r* t*1/2. The expanding front radius reaches a maximum value and then decreases with time.

  14. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    Science.gov (United States)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  15. Preliminary results from a shallow water benthic grazing study

    Science.gov (United States)

    Jones, N.L.; Monismith, Stephen G.; Thompson, Janet K.

    2005-01-01

    The nutrient-rich, shallow waters of San Francisco Bay support high rates of primary production, limited not by nutrients but by light availability and benthic grazing (Alpine and others 1992; Cloern 1982). Phytoplankton blooms are an important food source for upper trophic levels. Consequently animal populations, such as fish, may suffer under conditions of high benthic bivalve grazing. It has been hypothesized that several species of fish are suffering as a result of severe decreases in available phytoplankton since the introduction of Potamocorbula amurensis into San Francisco Bay (Feyrer 2003).

  16. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  17. Evaporating behaviors of water droplet on superhydrophobic surface

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  18. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  19. Index of surface-water stations in Texas, January 1987

    Science.gov (United States)

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1987-01-01

    As of January 1, 1987, the surface-water data-collection network in Texas included 376 continuous streamflow, 76 continuous or daily reservoir-content, 34 gage height, 16 crest-stage partial-record, 8 periodic discharge through range, 33 floodhydrograph partial-record, 9 flood-profile partial-record, 36 low-flow partial-record, 46 daily chemical-quality, 19 continuous-recording water-quality, 84 periodic biological, 17 lake surveys, 162 periodic organic and (or) nutrient, 3 periodic insecticide, 42 periodic pesticide, 19 automatic sampler, 141 periodic minor elements, 130 periodic chemical-quality, 78 periodic physical-organic, 22 continuous-recording three- or four-parameter water-quality, 34 periodic sediment, 22 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemical-quality or sediment'stations in Texas. Plate 2 shows the location of partial-record surfacewater stations.

  20. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  1. Moisture variability resulting from water repellency in Dutch soils.

    NARCIS (Netherlands)

    Dekker, L.W.

    1998-01-01

    The present study suggests that many soils in the Netherlands, in natural as well as in agricultural areas, may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water in

  2. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2016-12-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  3. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  4. The effect of surface wettability on water vapor condensation in nanoscale

    Science.gov (United States)

    Niu, D.; Tang, G. H.

    2016-01-01

    The effect of surface wettability on condensation heat transfer in a nanochannel is studied with the molecular dynamics simulations. Different from the conventional size, the results show that the filmwise mode leads to more efficient heat transfer than the dropwise mode, which is attributed to a lower interfacial thermal resistance between the hydrophilic surface and the condensed water compared with the hydrophobic case. The observed temperature jump at the solid-liquid surface confirms that the hydrophilic properties of the solid surface can suppress the interfacial thermal resistance and improve the condensation heat transfer performance effectively.

  5. Surface waters of Illinois River basin in Arkansas and Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1959-01-01

    flow during the 19-year base period, an impoundment at that site would have required a usable storage of 185,000 acre-ft to satisfy this demand during the drought years 1954-1956. The surface waters of the Illinois River basin are excellent quality being suitable for municipal, agriculture and most industrial uses. The average concentration of the dissolved mineral content is about 105 ppm (parts per million) and the hardness about 85 ppm. The water is slightly alkaline, having a range of pH values from 7.2 to 8.0. This report gives the estimated average discharge at gaging stations and approximations of average discharge at the State line for 3 sub-basins during the 19-year period October 1937 to September 1956, used as a base period in this report. Duration-of-flow data for various percentages of the time are shown for the period of observed record at the gaging stations; similar data are estimated for the selected base period. Storage requirements to sustain flow during the recent drought years are given for 3 stations. The streamflow records in the basin are presented on a monthly and annual basis through September 1957; provisional records for 3 stations are included through July 1958 for correlation purposes. Results of discharge measurements are given for miscellaneous sites where low-flow observations have been made. (available as photostat copy only)

  6. Moisture variability resulting from water repellency in Dutch soils

    OpenAIRE

    Dekker, L.W.

    1998-01-01

    The present study suggests that many soils in the Netherlands, in natural as well as in agricultural areas, may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water infiltration into the soil matrix. Soil water repellency can lead to the development of unstable wetting and preferential flow paths. Preferential flow has wide-ranging significance for rapi...

  7. On alpha stable distribution of wind driven water surface wave slope

    CERN Document Server

    Joelson, Maminirina

    2008-01-01

    We propose a new formulation of the probability distribution function of wind driven water surface slope with an $\\alpha$-stable distribution probability. The mathematical formulation of the probability distribution function is given under an integral formulation. Application to represent the probability of time slope data from laboratory experiments is carried out with satisfactory results. We compare also the $\\alpha$-stable model of the water surface slopes with the Gram-Charlier development and the non-Gaussian model of Liu et al\\cite{Liu}. Discussions and conclusions are conducted on the basis of the data fit results and the model analysis comparison.

  8. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Kyung [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Sangjin [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jon, Sangyong [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, Insung S [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of)

    2007-10-03

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer'' (registered) bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of {approx}163 deg., which is indicative of superhydrophobic surfaces.

  9. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Science.gov (United States)

    Cho, Woo Kyung; Park, Sangjin; Jon, Sangyong; Choi, Insung S.

    2007-10-01

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer® bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of ~163°, which is indicative of superhydrophobic surfaces.

  10. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in s

  11. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  12. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  13. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    Science.gov (United States)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  14. Characterizing the Interaction between Groundwater and Surface Water in the Boise River for Water Sustainability

    Science.gov (United States)

    Hernandez, J.; Tan, K.; Portugais, B.

    2014-12-01

    Management of water resources has increasingly become aware of the importance of considering groundwater and surface water as an interconnected, single resource. Surface water is commonly hydraulically connected to groundwater, but the interactions are difficult to observe and measure. Such a conjunctive approach has often been left out of water-management considerations because of a lack of understanding of the processes occurring. The goal of this research is to increase the better understanding of the interaction between the surface water and groundwater using the study case of the Treasure Valley Aquifer and the Boise River in Idaho, framed on water sustainability. Water-budgets for the Treasure Valley for the calendar years 1996 and 2000 suggest that the Boise River lost to the shallow aquifer almost 20 Hm3 and 95 Hm3, respectively, along the Lucky Peak to Capitol Bridge reach. Groundwater discharge occurred into the Boise River, along the Capitol Bridge to Parma reach, at about 645 Hm3 and 653 Hm3for the calendar years 1996 and 2000, respectively (USBR). These figures highlight the importance of better understanding of the water flow because of disparity, which would impact groundwater management practices. There is a need of better understanding of the groundwater-surface water interface for predicting responses to natural and human-induced stresses. A groundwater flow model was developed to compute the rates and directions of groundwater movement through aquifer and confining units in the subsurface. The model also provides a representation of the interaction that occurs between the Boise River and the shallow aquifer in the Treasure Valley. Work in progress on the general flow pattern allows assessing of the connectivity between shallow aquifer and river for helping understanding the impacts of groundwater extraction. Quantifying the interaction between the two freshwater sources would be beneficial in proper water management decisions in order to optimize

  15. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  16. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment.

  17. Surface-water dynamics and land use influence landscape connectivity across a major dryland region.

    Science.gov (United States)

    Bishop-Taylor, Robbi; Tulbure, Mirela G; Broich, Mark

    2017-01-24

    Landscape connectivity is important for the long-term persistence of species inhabiting dryland freshwater ecosystems, with spatiotemporal surface-water dynamics (e.g., flooding) maintaining connectivity by both creating temporary habitats and providing transient opportunities for dispersal. Improving our understanding of how landscape connectivity varies with respect to surface-water dynamics and land use is an important step to maintaining biodiversity in dynamic dryland environments. Using a newly available validated Landsat TM and ETM+ surface-water time series, we modelled landscape connectivity between dynamic surface-water habitats within Australia's 1 million km2 semi-arid Murray Darling Basin across a 25-year period (1987 to 2011). We identified key habitats that serve as well-connected 'hubs', or 'stepping-stones' that allow long-distance movements through surface-water habitat networks. We compared distributions of these habitats for short- and long-distance dispersal species during dry, average and wet seasons, and across land-use types. The distribution of stepping-stones and hubs varied both spatially and temporally, with temporal changes driven by drought and flooding dynamics. Conservation areas and natural environments contained higher than expected proportions of both stepping-stones and hubs throughout the time series; however, highly modified agricultural landscapes increased in importance during wet seasons. Irrigated landscapes contained particularly high proportions of well-connected hubs for long-distance dispersers, but remained relatively disconnected for less vagile organisms. The habitats identified by our study may serve as ideal high-priority targets for land-use specific management aimed at maintaining or improving dispersal between surface-water habitats, potentially providing benefits to biodiversity beyond the immediate site scale. Our results also highlight the importance of accounting for the influence of spatial and temporal

  18. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater.

  19. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    Science.gov (United States)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  20. Spectroscopic measurements of the surface waters for evaluating the fresh-water transport to marine environments in the Southern Baltic

    Science.gov (United States)

    Drozdowska, Violetta; Markuszewski, Piotr; Kowalczyk, Jakub; Makuch, Przemysław; Pakszyc, Paulina; Strzałkowska, Agata; Piskozub, Jacek; Petelski, Tomasz; Zieliński, Tymon; Gutowska, Dorota

    2014-05-01

    To asses concentration and spatial distribution of surface-active molecules (surfactants) the spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth 0.5 m were carried out during three cruises of r/v Oceania in Springs' 2010-2011 and Autumn' 2012. Measurements were conducted along the transects from the river outlets to the open waters of the Southern Baltic Sea. Surfactants consist of polar molecules of marine dissolved organic matter and are chemically not entirely classified. However, fractions of dissolved organic matter having chromophores or fluorophores (CDOM or FDOM) are recognized through their specific absorption and fluorescence spectra. The sea surface is a layer of transition between the atmosphere and the sea, where there is a variety of biological, physical and chemical processes which contribute to the accumulation and exchange of surfactants, the chemical species concentrated in the surface layer (surface active agents). The main source of marine surfactants are remains of phytoplankton and its degradation products, created by bacterial activity, and as a result of condensation of molecules of low molecular weight to form of surface-active macromolecules. The presence of surfactants in the surface layers can significantly affect the access of solar energy into the sea as well as the air-sea interaction processes. The main objective of the research was to investigate the luminescent properties of surfactants, sampled in different regions of the Southern Baltic, and to find the differences between a surface film and a subsurface layer (of 50 cm). The next aim was to combine the differences in optical properties with the different dynamics for various river outlets. The results of spectrophotometric studies show the differences in the intensity of spectral bands, particularly between coastal (estuaries) and the open sea zones. Also, analysis of the spectra shows differences between areas of the

  1. Water Yield and Sediment Yield Simulations for Teba Catchment in Spain Using SWRRB Model: Ⅱ.Simulation Results

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Simulated results of water yield, sediment yield, surface runoff, subsurface runoff, peak flow, evapotranspiration, etc., in the Teba catchment, Spain, using SWRRB (Simulator for Water Resources in Rural Basins) model are presented and the related problems are discussed. The results showed that water yield and sediment yield could be satisfactorily simulated using SWRRB model The accuracy of the annual water yield simulation in the Teba catchment was up to 83.68%, which implied that this method could be effectively used to predict the annual or inter-annual water yield and to realize the quantification of geographic elements and processes of a river basin.``

  2. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    OpenAIRE

    Mompelat, S.; Thomas, Olivier; Le Bot, Barbara

    2011-01-01

    International audience; The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit o...

  3. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References

  4. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    Indian Academy of Sciences (India)

    Fathy A Abdalla; Traugott Scheytt

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  5. Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge

    Science.gov (United States)

    Shang, Kefeng; Li, Jie; Wang, Xiaojing; Yao, Dan; Lu, Na; Jiang, Nan; Wu, Yan

    2016-01-01

    Pulsed electric discharge over water surface/in water has been used to generate reactive species for decomposing the organic compounds in water, and hydrogen peroxi