WorldWideScience

Sample records for surface water management

  1. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  2. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  3. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  4. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales....... The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB...

  5. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how

  6. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  7. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  8. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  9. Technical assistance contractor management plan: Surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC's mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel

  10. Technical assistance contractor management plan: Surface and ground water

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC`s mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel.

  11. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  12. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  13. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  14. Water management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Manitoba Hydro's efforts to maximize production efficiency while meeting safety and environmental concerns regarding water management were discussed. The four-step dam safety program was outlined, consisting of inspection, repairs and improvements, flooding studies, and emergency preparedness plans. An oil spill which occurred in 1995 on the Nelson River after a transformer at the Kettle Generating Station failed, was described. A boom was used to contain the oil, and a skimmer unit was used to remove oil and soot from the surface of the water. Manitoba Hydro is also conducting studies to find ways to protect the generating stations from zebra mussels, and precautions are being taken to prevent old lead-based paint from reaching the Winnipeg River. It was noted that the drought which hit northern Manitoba during the spring and summer of 1995 reduced the water supplies to the lowest levels ever recorded at the Churchill River Diversion. 2 figs

  15. Water management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Manitoba Hydro`s efforts to maximize production efficiency while meeting safety and environmental concerns regarding water management were discussed. The four-step dam safety program was outlined, consisting of inspection, repairs and improvements, flooding studies, and emergency preparedness plans. An oil spill which occurred in 1995 on the Nelson River after a transformer at the Kettle Generating Station failed, was described. A boom was used to contain the oil, and a skimmer unit was used to remove oil and soot from the surface of the water. Manitoba Hydro is also conducting studies to find ways to protect the generating stations from zebra mussels, and precautions are being taken to prevent old lead-based paint from reaching the Winnipeg River. It was noted that the drought which hit northern Manitoba during the spring and summer of 1995 reduced the water supplies to the lowest levels ever recorded at the Churchill River Diversion. 2 figs.

  16. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  17. Water management

    International Nuclear Information System (INIS)

    Barrada, Y.

    1981-01-01

    The Joint FAO/IAEA Division has been technically responsible for technical assistance projects aimed at improving water management practices in the following developing Member States: Argentina, Bulgaria, Chile, Costa Rica, Egypt, Greece, India, Ivory Coast, Kenya, Lebanon, Morocco, Niger, Nigeria, Pakistan, Peru, Republic of Korea, Romania, Senegal, Sri Lanka, Sudan, Syria, Tanzania, Turkey, Uganda and Zambia. The Division has also contributed to the improvement of the efficiency of water use through the implementation of three 5-year co-ordinated research programmes. Participants from eight to 15 countries have conducted research towards a common goal of improving nuclear techniques in water-use efficiency studies and developing practices to increase the food produced from a unit of irrigation water or rainfall. In many cases this was the first time such techniques have been used in the above countries. It was thus necessary to provide expert assistance to train local counterparts in the safe and efficient use of the equipment. Training courses have also been held in more advanced countries to familiarize young scientists from developing countries with the most modern techniques in soil/water research. Results obtained through the nuclear techniques aided research programmes will, when applied in farmers' fields on irrigated land, lead to increased yields, to reduced losses of nutrients through leaching below the rooting zone, and to conserving soil through avoiding the accumulation of salts close to the soil surface. Under rainfed agriculture, research results would help controlling erosion, conserving water, and ensuring sustained production at acceptable yield levels

  18. Surface water management: a user's guide to calculate a water balance using the CREAMS model

    International Nuclear Information System (INIS)

    Lane, L.J.

    1984-11-01

    The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos

  19. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    Science.gov (United States)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  20. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Science.gov (United States)

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Water management challenges and perspective for surface oil sands operations in North Eastern Alberta

    International Nuclear Information System (INIS)

    MacKinnon, M.

    2009-01-01

    Oil sands waters has many sources, such as raw water inputs (import water and hydrologic waters); oil sands ore water such as formation water; and oil sands process-affected water (OSPW) such as produced water and released water from tailings. This presentation demonstrated the importance of water to oil sands operations and indicated how oil sands processing affects water quality. Water imports to meet oil sands needs is a topic of particular interest. Other topics that were presented included water properties changing during oil sands operations; tailings management and the effects on water quality; oil sands tailings and water management and the impact on water quality of the region; how oil sands processing affected water quality; and current tailings approach and proposed new tailings methods and the effects on water composition. Post extraction changes in OSPW and the potential impacts of engineered tailings were also discussed. It was concluded that water treatment options must meet water management objectives. figs.

  2. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  3. The surface water submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1992-12-01

    A requirement in assessing the safety of Canada's nuclear fuel waste management concept is the prediction of radiological doses to humans and other biota, which may occur far in the future as a result of releases of nuclides to the biosphere. A biosphere model has been developed, consisting of four integrated submodels describing surface water, soil, atmosphere, and food-dose components. This report documents the surface water submodel, which is a simple, generic mass balance model of a Canadian Shield lake. Nuclide input to the lake is the time-dependent mass output from the geosphere model. Nuclides enter the lake from compacted sediments. The surface water submodel calculates nuclide concentrations in lake water and sediment. These concentrations are used in the other biosphere submodels to predict the radiological dose to biota. Selection of parameter values for the model is based on the literature, our own data, and conservative assumptions to ensure that doses are not underestimated. MOst parameters are represented by log normal. This probabilistic approach of using distributed parameter values accounts for variability and uncertainty in parameter values, and short-term environmental fluctuations. Long-term environmental changes, such as glaciation, are not considered in the model. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing, with lake catchment area being the most important parameter. When catchment area is held constant, as would occur at a specific site, lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. Sediment accumulation rate also strongly influences sediment nuclide concentrations. Validation of model predictions using published studies and other data demonstrates that our model is realistic and suitable for assessing Canada's disposal concept. (Author)

  4. Surface runoff water quality in a managed three zone riparian buffer.

    Science.gov (United States)

    Lowrance, Richard; Sheridan, Joseph M

    2005-01-01

    Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.

  5. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  6. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  7. SuDS for managing surface water in Diepsloot informal settlement ...

    African Journals Online (AJOL)

    Sustainable drainage systems (SuDS) imitate natural water management processes in catchments that have been degraded due to urbanisation. The aim is to reduce the quantity of stormwater runoff and improve water quality. Management of rainwater in the informal settlement of Diepsloot in Johannesburg is ...

  8. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  9. SuDS for managing surface water in Diepsloot informal settlement ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... ... of intervention. Keywords: SuDS, action research, water quality, informal settlements, Diepsloot ..... principles, solutions were explored that were a fusion of these ... was thought that the leachates from the landfill and surface.

  10. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  11. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Assessing of landscape potential for water management regarding its surface water (using the example of the micro-region Minčol

    Directory of Open Access Journals (Sweden)

    Kunáková Lucia

    2016-06-01

    Full Text Available The presence of water is one of the decisive factors of landscape’s natural potential. Water affects landscape’s predisposition for agricultural production, water supply available to the wide population and industry (the most important is the yield of water resources. Ponds, lakes and other water areas are zones of recreation and relaxation. Near sources mineral water, several world-famous spas were build. Waterways are also used to generate electricity. Geothermal underground water represents a very significant landscape potential. Determining hydrological potential of the area is important for the regional development. This paper assesses the landscape potential for water management regarding its surface waters in the micro-region Minčol. The micro-region was divided by a square grid, and for each square, we determined the appropriateness of this potential based on score points. The determining evaluation criteria were static reserves of surface water, waterway ranking and annual average discharge. First, we determined the significance (value of individual criteria (classification characteristics, and then we calculated the values of individual classifiers, which were then multiplied by the value of the individual classifier intervals. The summary of points in each square belongs to a particular degree of suitability for water management based on surface waters. The potential was divided into five degrees (intervals: very unfavourable potential, unfavourable potential, moderately favourable potential, favourable potential and very favourable potential.

  13. Water resources management in the Ganges Basin: a comparison of three strategies for conjunctive use of groundwater and surface water

    Science.gov (United States)

    Khan, Mahfuzur R.; Voss, Clifford I.; Yu, Winston; Michael, Holly A.

    2014-01-01

    The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin.

  14. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  19. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  20. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  1. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  2. Integrating Surface Water Management in Urban and Regional Planning, Case Study of Wuhan in China

    NARCIS (Netherlands)

    Du, N.

    2010-01-01

    The main goal of the study is to examine and develop a spatial planning methodology that would enhance the sustainability of urban development by integrating the surface water system in the urban and regional planning process. Theoretically, this study proposes that proactive-integrated policy and

  3. Priorities to improve the ecological risk assessment and management for pesticides in surface water

    NARCIS (Netherlands)

    Brock, T.C.M.

    2013-01-01

    This article deals with prospective and retrospective ecological risk assessment (ERA) procedures for pesticides in surface waters as carried out under European legislation (Regulation 1107/2009/EC; Directive 2009/128/EC; Directive 2000/60/EC). Priorities to improve the aquatic risk assessment and

  4. Rice rhizosphere soil and root surface bacterial community response to water management changes

    Science.gov (United States)

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  5. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  6. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available

  8. Environmental protection management by monitoring the surface water quality in Semenic area

    Directory of Open Access Journals (Sweden)

    Dana SÂMBOTIN

    2011-08-01

    Full Text Available Environment seems to have been the war against all. In fact recently most people polluted the environment and those few are cared for his cleaning. Today, the relationship evolvedas societies have changed in favour of ensuring environmental protection. With modern technology, performance, monitoring the environment becomes part of human activity ever more necessary, more possible and more efficient. The quality of the environment, its components: air, water, soil, plants, vegetable and animal products, is a condition "sine qua non" for the life of the modern man. The consequences of environmental pollution areso dangerous that modern man cannot afford considering them. Through this paper I will study the environmental quality by monitoring the surfaces waters from the Semenic- Gărâna area.

  9. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  10. Cryptosporidium and Giardia in Surface Water: A Case Study from Michigan, USA to Inform Management of Rural Water Systems

    Directory of Open Access Journals (Sweden)

    Erin A. Dreelin

    2014-10-01

    Full Text Available Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1 explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2 examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3 synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001 with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies.

  11. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam.

    Science.gov (United States)

    Toan, Pham Van; Sebesvari, Zita; Bläsing, Melanie; Rosendahl, Ingrid; Renaud, Fabrice G

    2013-05-01

    Public concern in Vietnam is increasing with respect to pesticide pollution of the environment and of drinking water resources. While established monitoring programs in the Mekong Delta (MD) focus on the analysis of organochlorines and some organophosphates, the environmental concentrations of more recently used pesticides such as carbamates, pyrethroides, and triazoles are not monitored. In the present study, household level pesticide use and management was therefore surveyed and combined with a one year environmental monitoring program of thirteen relevant pesticides (buprofezin, butachlor, cypermethrin, α-endosulfan, β-endosulfan, endosulfan-sulfate, fenobucarb, fipronil, isoprothiolane, pretilachlor, profenofos, propanil, and propiconazole) in surface water, soil, and sediment samples. The surveys showed that household level pesticide management remains suboptimal in the Mekong Delta. As a consequence, a wide range of pesticide residues were present in water, soil, and sediments throughout the monitoring period. Maximum concentrations recorded were up to 11.24 μg l(-1) in water for isoprothiolane and up to 521 μg kg(-1) dm in sediment for buprofezin. Annual average concentrations ranged up to 3.34 μg l(-1) in water and up to 135 μg kg(-1) dm in sediment, both for isoprothiolane. Occurrence of pesticides in the environment throughout the year and co-occurrence of several pesticides in the samples indicate a considerable chronic exposure of biota and humans to pesticides. This has a high relevance in the delta as water for drinking is often extracted from canals and rivers by rural households (GSO, 2005, and own surveys). The treatment used by the households for preparing surface water prior to consumption (flocculation followed by boiling) is insufficient for the removal of the studied pesticides and boiling can actually increase the concentration of non-volatile pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  13. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  14. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  15. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    Science.gov (United States)

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with

  16. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Analysis of Surface Water Pollution Accidents in China: Characteristics and Lessons for Risk Management

    Science.gov (United States)

    Yao, Hong; Zhang, Tongzhu; Liu, Bo; Lu, Feng; Fang, Shurong; You, Zhen

    2016-04-01

    Understanding historical accidents is important for accident prevention and risk mitigation; however, there are no public databases of pollution accidents in China, and no detailed information regarding such incidents is readily available. Thus, 653 representative cases of surface water pollution accidents in China were identified and described as a function of time, location, materials involved, origin, and causes. The severity and other features of the accidents, frequency and quantities of chemicals involved, frequency and number of people poisoned, frequency and number of people affected, frequency and time for which pollution lasted, and frequency and length of pollution zone were effectively used to value and estimate the accumulated probabilities. The probabilities of occurrences of various types based on origin and causes were also summarized based on these observations. The following conclusions can be drawn from these analyses: (1) There was a high proportion of accidents involving multi-district boundary regions and drinking water crises, indicating that more attention should be paid to environmental risk prevention and the mitigation of such incidents. (2) A high proportion of accidents originated from small-sized chemical plants, indicating that these types of enterprises should be considered during policy making. (3) The most common cause (49.8 % of the total) was intentional acts (illegal discharge); accordingly, efforts to increase environmental consciousness in China should be enhanced.

  18. Analysis of Surface Water Pollution Accidents in China: Characteristics and Lessons for Risk Management.

    Science.gov (United States)

    Yao, Hong; Zhang, Tongzhu; Liu, Bo; Lu, Feng; Fang, Shurong; You, Zhen

    2016-04-01

    Understanding historical accidents is important for accident prevention and risk mitigation; however, there are no public databases of pollution accidents in China, and no detailed information regarding such incidents is readily available. Thus, 653 representative cases of surface water pollution accidents in China were identified and described as a function of time, location, materials involved, origin, and causes. The severity and other features of the accidents, frequency and quantities of chemicals involved, frequency and number of people poisoned, frequency and number of people affected, frequency and time for which pollution lasted, and frequency and length of pollution zone were effectively used to value and estimate the accumulated probabilities. The probabilities of occurrences of various types based on origin and causes were also summarized based on these observations. The following conclusions can be drawn from these analyses: (1) There was a high proportion of accidents involving multi-district boundary regions and drinking water crises, indicating that more attention should be paid to environmental risk prevention and the mitigation of such incidents. (2) A high proportion of accidents originated from small-sized chemical plants, indicating that these types of enterprises should be considered during policy making. (3) The most common cause (49.8% of the total) was intentional acts (illegal discharge); accordingly, efforts to increase environmental consciousness in China should be enhanced.

  19. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  20. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  1. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  2. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  3. Numerical modeling and remote sensing of global water management systems: Applications for land surface modeling, satellite missions, and sustainable water resources

    Science.gov (United States)

    Solander, Kurt C.

    The ability to accurately quantify water storages and fluxes in water management systems through observations or models is of increasing importance due to the expected impacts from climate change and population growth worldwide. Here, I describe three innovative techniques developed to better understand this problem. First, a model was created to represent reservoir storage and outflow with the objective of integration into a Land Surface Model (LSM) to simulate the impacts of reservoir management on the climate system. Given this goal, storage capacity represented the lone model input required that is not already available to an LSM user. Model parameterization was linked to air temperature to allow future simulations to adapt to a changing climate, making it the first such model to mimic the potential response of a reservoir operator to climate change. Second, spatial and temporal error properties of future NASA Surface Water and Ocean Topography (SWOT) satellite reservoir operations were quantified. This work invoked the use of the SWOTsim instrument simulator, which was run over a number of synthetic and actual reservoirs so the resulting error properties could be extrapolated to the global scale. The results provide eventual users of SWOT data with a blueprint of expected reservoir error properties so such characteristics can be determined a priori for a reservoir given knowledge about its topology and anticipated repeat orbit pass over its location. Finally, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission was used in conjunction with in-situ water use records to evaluate sustainable water use at the two-digit HUC basin scale over the contiguous United States. Results indicate that the least sustainable water management region is centered in the southwest, where consumptive water use exceeded water availability by over 100% on average for some of these basins. This work represents the first attempt at evaluating sustainable

  4. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    NARCIS (Netherlands)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M.; Cousins, Ian; Escher, Beate I.; Hernández, Félix J.; Hewitt, L.M.; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B.; Sengl, Manfred; Smedes, Foppe; Meent, van de Dik; Brink, van den Paul J.; Gils, van Jos; Wezel, van Annemarie P.; Vethaak, A.D.; Vermeirssen, Etienne; Ohe, von der Peter C.; Vrana, Branislav

    2017-01-01

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for

  5. Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds

    NARCIS (Netherlands)

    Azab, A.M.

    2012-01-01

    The intensive uses of limited water resources, the growing population rates and the various increasing human activities put high and continuous stresses on these resources. Major problems affecting the water quality of rivers, streams and lakes may arise from inadequately treated sewage, poor land

  6. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  7. Water Management in Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available This paper presents the current situation in Polish water resources management. Discussed here are measures taken by the Ministry of Environment to introduce a new water law, as well as reforms of water management in Poland. The state of water resources in Poland are described, and the actions needed to improve this situation, taking into account possible climate changes and their impact on the use of water resources. Critically referred to is the introduction by the Ministry of Environment of charges for water abstraction by hydro power plants, and adverse effects for the energy and water management sectors are discussed.

  8. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources.

    Science.gov (United States)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M; Cousins, Ian; Escher, Beate I; Hernández, Félix J; Hewitt, L Mark; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B; Sengl, Manfred; Smedes, Foppe; van de Meent, Dik; van den Brink, Paul J; van Gils, Jos; van Wezel, Annemarie P; Vethaak, A Dick; Vermeirssen, Etienne; von der Ohe, Peter C; Vrana, Branislav

    2017-01-15

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment. Copyright © 2016. Published by Elsevier B.V.

  9. Total Water Management - Report

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current operations put different stresses on the environment and urban infrastructure. Total Water Management (TWM) is an approac...

  10. Characterization of organic precursors in DBP formation and AOC in urban surface water and their fate during managed aquifer recharge.

    Science.gov (United States)

    Kim, Hyun-Chul; Lee, Won Mo; Lee, Seunghak; Choi, Jaewon; Maeng, Sung Kyu

    2017-10-15

    In this study, the organic components were identified that are mainly responsible for the formation of disinfection byproducts (DBPs) and for the biostability of urban surface water. The compositional distribution of dissolved organic matter (DOM) was strongly associated with the potential for both DBP formation and bacterial growth. Further evaluation was carried out (1) to compare the potential for DBP formation upon chlorination of treated water, (2) to determine the biostability that might result from minimizing assimilable organic carbon (AOC), and (3) to use laboratory-scale soil-column experiments to compare the effects of removal of trace organic chemicals (TOrCs) between managed aquifer recharge (MAR) hybrid systems (such as bank filtration followed by artificial recharge and recovery: ARR), and ozonation followed by ARR. Our fractionation and removal methods provided useful insights into the removal of problematic organic components using MAR hybrid systems. Pretreatment with a small amount of ozone (∼0.7 mg-O 3 mg-C -1 ) resulted in improved ARR performance, especially from removing organic acids from DOM, which substantially decreased the potential for DBP formation, while the robust removal of AOC was attributed to a significant decrease in non-acidic and more hydrophilic fractions during soil passage. Both pretreatments used in this study were effective in the removal of selected TOrCs, but carbamazepine was persistent during soil passage. The pretreatment, which used ozonation before ARR, significantly enhanced the removal of carbamazepine; therefore, ozonation followed by ARR is considered an effective way to enhance removal of persistent compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  12. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  13. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  14. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  15. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  16. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  17. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  18. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    , changes in error due to GCMs primarily account for the unexplained changes in mean and variability of seasonal streamflow. On the other hand, the changes in error due to temporal disaggregation and hydrologic model account for the inability to explain the observed changes in mean and variability of seasonal extremes. Thus, the proposed metrics provide insights on how the error in explaining the observed changes being propagated through the model under different hydroclimatic regimes. To understand interaction between surface water and groundwater resources, transient pumping impacts on streamflow and groundwater level were analyzed by imposing shortterm pumping scenarios under historic drought conditions. Since surface water and groundwater systems are fully coupled and integrated systems, increased groundwater withdrawal during drought may reduce baseflow into the stream and prolong both systems' recovery from drought. Towards this, we proposed an uncertainty framework to understand the resiliency of groundwater and surface water systems using a fully-coupled hydrologic model under transient pumping. Using this framework, we quantified the restoration time of surface water and groundwater systems and also estimated the changes in the state variables after pumping. Groundwater pumping impacts over the watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to changes in pumping volumes as opposed to changes in climate. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater. Pumping impacts on other state variables are also discussed. Given that surface water and groundwater are inter-connected, optimal management of the both resources should be considered to improve the watershed resiliency under drought. Subsequently, conjunctive use of surface water and groundwater has been considered as an effective approach to mitigate

  19. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  20. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  1. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  2. Development of sub-surface drainage data base system for use in water logging and salinity managements issues

    International Nuclear Information System (INIS)

    Azhar, A.H.; Alam, M.M; Rafiq, M.

    2005-01-01

    A simple user-friendly menu-driven database management system pertinent to the Impact of Subsurface Drainage Systems on land and Water Conditions (ISLaW) has been developed for use in water logging and salinity management issues of drainage areas. This database has been developed by integrating four software viz; Microsoft Excel, MS Word, Acrobat and MS Access. The information in the form of tables and figures with respect to various drainage projects has been presented in MS Word files. The major data sets of various subsurface drainage projects included in the ISLaW database are: i) technical aspects, ii) groundwater and soil salinity aspects, iii) socio-technical aspects, iv) agro-economic aspects, and v) operation and maintenance aspects. The various ISLaW files can be accessed just by clicking at the Menu buttons of the database system. This database not only gives feedback on the functioning of different subsurface drainage projects with respect to above mentioned various aspects, but also serves as a resource document for these data for future studies at other drainage projects. The developed database system is useful for planners, designers and Farmers' Organizations for improved operation of existing as well as development of future drainage projects. (author)

  3. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  4. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  5. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  6. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  7. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  8. Economic resilience through "One-Water" management

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang

    2013-01-01

    Disruption of water availability leads to food scarcity and loss of economic opportunity. Development of effective water-resource policies and management strategies could provide resiliance to local economies in the face of water disruptions such as drought, flood, and climate change. To accomplish this, a detailed understanding of human water use and natural water resource availability is needed. A hydrologic model is a computer software system that simulates the movement and use of water in a geographic area. It takes into account all components of the water cycle--“One Water”--and helps estimate water budgets for groundwater, surface water, and landscape features. The U.S. Geological Survey MODFLOW One-Water Integrated Hydrologic Model (MODFLOWOWHM) software and scientific methods can provide water managers and political leaders with hydrologic information they need to help ensure water security and economic resilience.

  9. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  10. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  11. Mulch and groundcover effects on soil temperature and moisture, surface reflectance, grapevine water potential, and vineyard weed management

    Directory of Open Access Journals (Sweden)

    Christina M. Bavougian

    2018-06-01

    Full Text Available The objectives of this research were to identify alternatives to glyphosate for intra-row (under-trellis vineyard floor management and to evaluate the potential for intra-row and inter-row (alleyway groundcovers to reduce vegetative vigor of ‘Marquette’ grapevines (Vitis spp. in a southeast Nebraska vineyard. The experiment was a randomized factorial design with five intra-row treatments (crushed glass mulch [CG], distillers’ grain mulch [DG], creeping red fescue [CRF], non-sprayed control [NSC], and glyphosate [GLY] and three inter-row treatments (creeping red fescue [CRF], Kentucky bluegrass [KB], and resident vegetation [RV]. Treatments were established in 2010–2011 and measurements were conducted during 2012 and 2013 on 5- and 6-year-old vines. Soil temperatures were mostly higher under mulches and lower under intra-row groundcovers, compared to GLY. Weed cover in CG, DG, and CRF treatments was the same or less than GLY. At most sampling dates, inter-row soil moisture was lowest under KB. Intra-row soil moisture was highest under DG mulch and lowest under CRF and NSC; CG had the same or lower soil moisture than GLY. Surprisingly, we did not detect differences in mid-day photosynthetically active radiation (PAR reflectance, despite visual differences among the intra-row treatments. Mid-day vine water potential did not differ among treatments. We concluded it is not necessary to maintain a bare soil strip under established vines in this region, where soil fertility and moisture are non-limiting.

  12. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  13. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  14. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  15. Humans reclaimed lands in NorthEastern Italy and artificial drainage networks: effects of 30 years of Agricultural Surface Water Management

    Science.gov (United States)

    Sofia, Giulia; Pizzulli, Federica; Tarolli, Paolo

    2017-04-01

    Agriculture and land-use management has changed drastically in Italy since the end of the Second World War, driven by local but also European agricultural policies. As a result of these changes in farming practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This study focuses on two main points: which kind of land use and farming changes have been observed in the most recent years ( 30 years)? How do these changes interact with climate and soil conditions? An open challenge to understand how these changes influence the watershed response, is, in fact, to understand if rainfall characteristics and climate have a synergistic effect, if their interaction matters, or to understand what element has the greatest influence on the watershed response connected to agricultural changes. The work is based on a simple model of water infiltration due to soil properties, and a connected evaluation of the distributed surface water storage offered by artificial drainage networks in a study area in Veneto (north-eastern Italy). The analysis shows that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. However, these changes deeply interact with antecedent soil conditions and climate characteristics. Intense and irregular rainfall events and events with a high recurrence should be expected to be the most critical. The presented outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making. References Sofia G, Tarolli P. 2017. Hydrological Response to 30 years of Agricultural Surface Water Management. Land 6 (1): 3 DOI

  16. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  17. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  18. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  19. Iodine content in running surface waters in areas with more intensive landscape management in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Šeda, M.; Konečný, R.; Fiala, K.; Hladký, J.; Švehla, Jaroslav; Trávníček, J.

    2017-01-01

    Roč. 22, č. 1 (2017), s. 295-304 ISSN 1644-2296 Institutional support: RVO:61388980 Keywords : iodine * water * protected landscape areas * ICP-MS Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 0.641, year: 2016

  20. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  1. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  2. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    NARCIS (Netherlands)

    Brack, W.; Dulio, V.; Agerstrand, M.; Allan, I.; Altenburger, R.; Brinkmann, M.; Bunke, D.; Burgess, R.M.; Cousins, I.; Escher, B.I.; Hernandez, F.J.; Hewitt, L.M.; Hilscherova, K.; Hollender, J.; Hollert, H.; Kase, R.; Klauer, B.; Lindim, C.; Herraez, D.L.; Miege, C.; Munthe, J.; O'Toole, S.; Posthuma, L.; Rudel, H.; Schafer, R.B.; Sengl, M.; Smedes, F.; van de Meent, D.; van den Brink, P.J.; van Gils, J.; van Wezel, A.P.; Vethaak, A.D.; Vermeirssen, E.; von der Ohe, P.C.; Vrana, B.

    2017-01-01

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for

  3. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  4. Management of surface water bodies according to the new German Federal Water Act. Management objectives, minimum water-bearing, transmissibility and hydropower utilization; Die Bewirtschaftung der oberirdischen Gewaesser nach dem neuen Wasserrecht. Bewirtschaftungsziele, Mindestwasserfuehrung, Durchgaengigkeit, Wasserkraftnutzung

    Energy Technology Data Exchange (ETDEWEB)

    Kibele, Karlheinz

    2010-07-01

    The new German Federal Water Act came into effect on March 1, 2010. Since the federalism reform in the year 2006, the German Federation has got the opportunity to issue nationwide ordinances for overall water rights. Now, the Federation made use of this opportunity. However, on closer inspection the federal law turns out to be incomplete. The federal states are requested to complete the water rights so that they are ready to be enforced. In this contribution, several scopes will be exemplified. (orig.)

  5. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  6. Managing water use

    International Nuclear Information System (INIS)

    Unterberger, G.L.

    1991-01-01

    This article addresses meeting and maintaining water pollution controls while keeping up with the new regulations. The topics discussed in the article include discharge regulations, stormwater discharges, wetlands regulation, water use, water-related programs, and keeping an inventory of water pollution regulations, especially those involving pre-approvals, permits or registrations

  7. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  8. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Brown, Terry; Frost, Carol; Hayes, Thomas; Heath, Leo; Johnson, Drew; Lopez, David; Saffer, Demian; Urynowicz, Michael; Wheaton, John; Zoback, Mark

    2007-01-01

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  9. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  10. Adaptive and integrated water management

    NARCIS (Netherlands)

    Pahl-Wostl, C.; Kabat, P.; Möltgen, J.

    2007-01-01

    Sustainable water management is a key environmental challenge of the 21st century. Developing and implementing innovative management approaches and how to cope with the increasing complexity and uncertainties was the theme of the first International Conference on Adaptive and Integrated Water

  11. Soil water storage, yield, water productivity and transpiration efficiency of soybeans (Glyxine max L.Merr as affected by soil surface management in Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    Omotayo B. Adeboye

    2017-06-01

    Full Text Available Rainfed agriculture has a high yield potential if rainfall and land resources are effectively used. In this study, conventional (NC and six in-situ water conservation practices were used to cultivate Soybean in 2011 and 2012 in Ile-Ife, Nigeria. The conservation practices are: Tied ridge (TR, Soil bund (BD, Mulch (ML, Mulch plus Soil bund (MLBD, Tied ridge plus Mulch (TRML, Tied ridge plus Soil bund (TRBD. The practices were arranged in Randomised Complete Block Design with four replicates. Seasonal rainfall was 539 and 761 mm in 2011 and 2012, respectively. Seasonal soil water storage (SWS ranged from 485 mm for NC to 517 mm for TRML in the two seasons. ML increased the SWS in the upper 30 cm of the soil by 17% while TR increased the soil water content in the lower 30–60 cm by 22% compared with NC. ML reduced soil temperature in the upper 30 cm between 2.2 and 2.9 oC compared with NC, TR and TRML. Seasonal crop evapotranspiration ranged between 432 mm for NC and 481 mm for BD in the seasons. Grain yield increased by 41.7% and 44.3% for BD and MLBD, respectively compared with NC. Water conservation practices increased water productivity for grain yield by 14.0–41.8% compared with NC. Similarly, it increased average seasonal transpiration efficiency by 15.3–32.5% compared with NC. These findings demonstrate that when there are fluctuations in rainfall, in-situ water conservation practices improve SWS, land, and water productivity and transpiration efficiency of Soybeans.

  12. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  13. Managing Water Demand

    International Development Research Centre (IDRC) Digital Library (Canada)

    The International Development Research Centre (IDRC) is a public ... Initiated in June 2004, WaDImena promotes effective water governance by enhancing ..... In agriculture, the source of water and the costs of abstraction are key to valuation.

  14. Water Management in Islam

    International Development Research Centre (IDRC) Digital Library (Canada)

    In 1995, the World Bank helped sponsor a conference on "Ethics and Spiritual ..... "that the strategy of water conservation communication must be global and interactive, and ...... 16 All environmental media have rights, including a right to water.

  15. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    This monograph is intended to inform interested and capable pesons, who happen not to be specialists in water resources planning, of the issues and alternative strategies related to metropolitan water supply...

  16. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  17. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  18. Principles and practices of sustainable water management

    Institute of Scientific and Technical Information of China (English)

    Bixia Xu

    2010-01-01

    Literature related to sustainable water management is reviewed to illustrate the relationship among water management, sustainability (sustainable development), and sustainable water management. This review begins with the explanation on the definition of sustainable water management, followed by a discussion of sustainable water management principles and practices.

  19. Economics of Water Management

    NARCIS (Netherlands)

    Zhu, X.

    2015-01-01

    Water is a scarce natural resource. It is not only used as an input to economic activity such as irrigation, household and industrial water use, and hydropower generation, but also provides ecosystem services such as the maintenance of wetlands, wildlife support, and river flows for aquatic

  20. Water management in Germany

    International Nuclear Information System (INIS)

    Teuber, W.; Bosenius, U.; Henke, J.

    1994-03-01

    The report was drawn up for the US day on water pollution prevention on 22 March 1994, as a follow-up to the 1992 Rio de Janairo conference on the environment and development, and presented to the International Water Conference in Noordwijk, the Netherlands. It gives a current overview of the foundations and structure, the development, position and points of emphasis for the german water industry. The report illustrates the extent of the success of german measures towards resolving it's water pollution problems, in particular the reduction of contamination. It clarifies the great challenges facing the german water industry in the Nineties, and hence illustrates more long-term goals - which will only be achieved through greater international cooperation. (orig./HP) [de

  1. Security management of water supply

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2017-03-01

    Full Text Available The main aim of this work is to present operational problems concerning the safety of the water supply and the procedures for risk management systems functioning public water supply (CWSS and including methods of hazard identification and risk assessment. Developed a problem analysis and risk assessment, including procedures called. WSP, which is recommended by the World Health Organization (WHO as a tool for comprehensive security management of water supply from source to consumer. Water safety plan is a key element of the strategy for prevention of adverse events in CWSS.

  2. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    .... This also requires an awareness of the complex economic, environmental, and social issues that increasingly compound what once was considered a purely technological problem, to be left to water...

  3. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    .... This involves learning something about the alternative strategies--some ancient and others not yet operational--for increasing water supplies and/or modifying demand so a supply/demand balance is maintained...

  4. Impact of surface water recharge on the design of a groundwater monitoring system for the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wood, T.R.

    1990-01-01

    Recent hydrogeologic studies have been initiated to characterize the hydrogeologic conditions at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Measured water levels in wells penetrating the Snake River Plain aquifer near the RWMC and the corresponding direction of flow show change over time. This change is related to water table mounding caused by recharge from excess water diverted from the Big Lost River for flood protection during high flows. Water levels in most wells near the RWMC rise on the order of 10 ft (3 m) in response to recharge, with water in one well rising over 60 ft (18 m). Recharge changes the normal south-southwest direction of flow to the east. Design of the proposed groundwater monitoring network for the RWMC must account for the variable directions of groundwater flow. 11 refs., 9 figs., 2 tabs

  5. Climate changes Dutch water management

    NARCIS (Netherlands)

    Schaik, van H.

    2007-01-01

    This booklet starts out describing how our water management strategy has evolved over the centuries from increasingly defensive measures to an adaptive approach. The second part presents smart, areaspecific examples in planning and zoning of water, land and ecosystems for our coast, rivers, cities

  6. Water management of HWP - Hazira

    International Nuclear Information System (INIS)

    Nagar, A.K.

    2008-01-01

    Water is a precious gift of nature to the mankind and it is vital for living beings and industries. It may become a scarce resource, if proper measures are not adopted timely to conserve the same. Water Management with measures taken for water, energy conservation and effluent reduction at HWP - Hazira are described in the present paper. System details of pre-treatment, cooling water, steam, boiler, effluent etc. pertaining to HWP-Hazira are described. Cooling water treatment adopted in HWP-HAZIRA is operating at 3-4 concentration cycles. Treatment is found to be satisfactory as revealed by the absence of scaling or corrosion induced by microbial fouling in coolers, heat exchangers etc. due to observations made during the last ATR. The cooling water treatment adopted and followed by KRIBHCO is also described. KRIBHCO is operating their cooling water system at a cycle of concentration of 7-8 to conserve water and chemicals. (author)

  7. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    OpenAIRE

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-01-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second...

  8. FUTURE WATER MANAGEMENT PROBLEMS IN ASIAN MEGACITIES

    Directory of Open Access Journals (Sweden)

    Dieter Prinz

    2015-10-01

    Full Text Available Today, about half of the world population lives in urban areas and in the coming 20 years, urbanization is expected to increase steadily, especially in the Developing World. Based on UN data and projections, about 4 out of the 5 billion world urban population will live in developing countries by 2030. Large cities in the Developing World face the problem of unplanned growth, coupled with the financial and operational inability to offer the public services needed to sustain a decent life in urban environments. Water is one of those essential commodities which is often short in supply and/or of low quality. Additionally, flood poses a threat to urban dwellers during rainy season. The water management challenges in tropical urban areas today and in the decades to come can be characterized by (1 fighting physical shortcomings in water resources, (2 coping with contamination of groundwater, rivers, lakes, and reservoirs by domestic, agricultural or industrial waste and waste water, (3 mitigating environmental impacts of water extraction (such as loss of wetlands, subsidence and seawater intrusion , (4 preventing / mastering flood situations and (5 overcoming administrative and financial strains and operational incapacities. Solutions to the problems of urban water in 20 years time are to be found in supply side and demand side measures. The first group includes (1 optimal use of surface water and groundwater resources, (2 pollution protection, (3 watershed management and (4 more water storage. The second group includes (1 educational training, (2 technological innovation, (3 water conservation and (4 water pricing.

  9. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  10. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  11. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Common Perception. A surface can be classified as. > Wetting. > Non-wetting. Depending on the spreading characteristics of a droplet of water that splashes on the surface. The behavior of fluid on a solid surface under static and dynamic ..... color of the number density profile. Ions at the interface tend to form pinning zones ...

  12. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  13. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  14. Water brief — Wastewater Reuse for Water Demand Management ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Water Demand Management (WDM) is a water management approach that aims to ... WDM is simply defined as 'getting the most of the water that we have', while taking into ... Villages in Nepal prepare for weather extremes.

  15. Improving Water Demand Management by Addressing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    Efforts to conserve water by improving water demand management policies .... First, ensure fair access to sustainable water supply, as well as, responsible water use. ... Water policy can also mandate reducing the loss of quantity or quality of ...

  16. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  17. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  18. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  19. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  20. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  1. Water sustainable management for buildings Water sustainable management for buildings

    Directory of Open Access Journals (Sweden)

    Juan Arturo Ocaña Ponce

    2013-01-01

    Full Text Available This paper presents a literature review article that deals with how to manage water in build­ings, specifically in facility projects, in ways to save water during the use, maintenance and operation of the building. This work is aimed at architects, builders and developers, and may be helpful for decision-making in the planning and management of efficient water use in buildings.Este trabajo es un artículo de revisión relacionado con el manejo y gestión del recurso agua, particularmente en proyectos de edificaciones, con el fin de propiciar ahorro de agua durante el uso, mantenimiento y operación del inmueble. Este documento está dirigido a arquitectos, constructores y desarrolladores inmobiliarios y puede ser de gran utilidad para la toma de decisiones en la fase de planeación y de gestión del uso eficiente del agua en los edificios.

  2. Water Management in Islam | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2001-01-01

    Jan 1, 2001 ... In the Middle East and North Africa, water is rapidly becoming the key ... including water demand management, wastewater reuse, and fair pricing. ... the most promising water management policies, adds to our knowledge of ...

  3. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  4. Adaptation portfolios in water management

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.J.W.; Werners, S.

    2015-01-01

    This study explores how Modern Portfolio Theory (MPT) can guide investment decisions in integrated water resources management (IWRM) and climate change adaptation under uncertainty. The objectives of the paper are to: (i) explain the concept of diversification to reduce risk, as formulated in MPT;

  5. Women and rural water management

    NARCIS (Netherlands)

    Mandara, Christina Geoffrey; Niehof, Anke; Horst, van der Hilje

    2017-01-01

    This paper discusses how informal structures intersect with women's participation in formally created decision-making spaces for managing domestic water at the village level in Tanzania. The results reveal the influence of the informal context on women's access to and performance in the formal

  6. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  7. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  8. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  9. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach

    Science.gov (United States)

    Johnes, P. J.

    1996-09-01

    A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley.

  10. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  11. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  12. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  13. Water demand management in Mediterranean regions

    OpenAIRE

    Giulio Querini; Salvo Creaco

    2005-01-01

    Water sustainability needs a balance between demand and availability: 1) Water demand management: demand may be managed by suppliers and regulations responsible persons, using measures like invoicing, consumptions measurement and users education in water conservation measures; 2) Augmentation of water supply: availibility may be augmented by infrastructural measures, waste water reuse, non-conventional resources and losses reduction. Water Demand Management is about achieving a reduction in t...

  14. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... the system and allowed overdraft in dry years in return for increased recharge in wet years. Further, cost-effective recovery of an overdrafted groundwater aquifer was demonstrated. The third implementation assessed interactions of water resources and water quality management. Biochemical oxygen demand (BOD...... problem with a single surface water reservoir state variable. A comparison of different management scenarios was used to evaluate how the South-to-North Water Transfer Project will impact optimal water resources management. Scenarios with unregulated groundwater pumping at realistic pumping costs verified...

  15. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  16. The application of water poverty mapping in water management

    OpenAIRE

    Jordaan, Dawid Benjamin; Van Der Vyver, Charles

    2012-01-01

    Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance) and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply wat...

  17. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... techniques are investigated and the production of patterned micro structured surfaces following two different manufacturing techniques is reported. The first is a combination of laser manufacturing and hot embossing on polystyrene. To compare geometry and functionality a non-silicon based lithography...

  18. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  19. The Rieti Land Reclamation Authority relevance in the management of surface waters for the irrigation purposes of the Rieti Plain (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Martarelli

    2016-09-01

    Full Text Available The Rieti Plain is crowned by calcareous-marly reliefs (Rieti and Sabini Mountains and represents an intra-Apennine Plio- Quaternary alluvial and fluvial-lacustrine basin formed after multistage extensional tectonic processes. This territory presents huge amounts of water resources (Velino and Turano rivers; several springs; Lungo and Ripasottile lakes, relics of ancient Lacus Velinus. The aquifers occurring in the reliefs often have hydraulic continuity with the Rieti plain groundwater (detected at about 1-4 m below ground surface, which has general flow directions converging from the reliefs to the lake sector. Hydraulic exchanges between groundwater and surface waters are variable in space and time and play a relevant role for groundwater resource distribution. The Rieti Land Reclamation Authority was instituted in 1929 by Royal Decree N. 34171-3835, and integrates eight former authorities, dating the end of 1800s. It contributes to maintain the reclamation actions in the Rieti Plain, which started with the realization of the Salto and Turano artificial reservoirs, along two left tributaries of Velino River. The hydroelectric energy production purposes struggle with the reclamation and flood mitigation activities in the plain. The Land Reclamation Authority actuated the Integrated Reclamation General Project through the realization of pumping stations, connection and drainage canals, forestry-hydraulic works, rural roads, movable dams along Velino River and irrigation ditches. The irrigation activities, granted by the derivation of 5 m3/s from the Velino River, are carried out through 194,000 hectares within the territory of 42 municipalities of the Rieti Province. The Rieti Land Reclamation Authority contributes to the irrigation needs and to the environmental and hydrogeological protection and monitoring.

  20. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  1. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  2. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  3. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  4. Determining water management training needs through stakeholder ...

    African Journals Online (AJOL)

    South Africa is a water-stressed country and the efficient management of the demand for and frugal use of water is a topic that can no longer be avoided. Community-based natural resource management is an alternative approach to government stewardship of natural resources, and in the instance of water management it is ...

  5. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  6. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  7. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  8. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib; Ghaffour, NorEddine; Naceur, Mohamed Wahib; Lounici, Hakim; Drouiche, Madani

    2012-01-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing

  9. Pump Management Committees and sustainable community water ...

    African Journals Online (AJOL)

    PMCs), technically known as Water and Sanitation Committees (WATSAN) in the water sector, are institutionalized organs for community water management. A survey of twenty-seven (27) of these institutions in six districts across the Upper ...

  10. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Fair share: Water Demand Management can help provide fair access to water for the poor. Water Policy. Brief no.2 ... management (WDM) can help spread water more equitably, providing a measure of opportunity, security and ... improving health and quality of life for families. WDM measures can improve the efficiency of.

  11. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    NARCIS (Netherlands)

    Li, Linlin; Vrieling, A.; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data,

  12. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  13. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  14. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  15. CALCULATION: PRECIPITATION CHARACTERISITICS FOR STORM WATER MANAGEMENT

    International Nuclear Information System (INIS)

    D. Ambos

    2000-01-01

    This Calculation is intended to satisfy engineering requirements for maximum 60-minute precipitation amounts for 50 and 100-year return periods at and near Yucca Mountain. This data requirement is documented in the ''Interface Control Document for Support Operations to Surface Facilities Operations Functional and Organizational Interfaces'' (CRWMS M and O 1998a). These developed data will supplement the information on 0.1 hour to 6-hour (in 0.1-hour increments) probable maximum precipitation (PMP) presented in the report, ''Precipitation Design Criteria for Storm Water Management'' (CRWMS M and O 1998b). The Reference Information Base (RIB) item, Precipitation ''Characteristics for Storm Water Management'' (M09902RIB00045 .OOO), was developed based on CRWMS M and O (1998b) and will be supplemented (via revision) with the information developed in this Calculation. The ''Development Plan for the Calculation: Precipitation Characteristics for Storm Water Management'' (CRWMS M and O 2000) was prepared in accordance with AP-2.l3Q, ''Technical Product Development Planning''. This calculation was developed in accordance with AP-3.12Q, Rev. O/ICN 2

  16. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  17. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  18. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    harvesting measures like construction of big, small and mini dams, roof top rain, flood water harvesting and application of water conservation measures like propagation of high-efficiency irrigation systems, changes of cropping patterns, lining of distributaries, minor sand water courses in saline groundwater areas, identification of feasible surface and underground water storage sites and dams, and activation of water-user organizations. Other measures can be Installation of tube-wells in technically groundwater potential feasible areas, to improve flood and drought-forecasting methods, and a much wider application of conjunctive water-use approach, institutional reforms for better co-ordination and a wider formulation of a national water-policy are other priority areas. Formulation of a regulatory frame work on groundwater abstraction. It is recommended that an experts panel, be created to steer the formulation of the strategies and ensure the implementation of the water resources strategies proposed. This paper discusses water resources management measures in Pakistan and the efforts to establish efficient and sustainable management of irrigation water system. (author)

  19. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  20. Nuclear explosives in water-resource management

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Arthur M [United States Department of the Interior, Geological Survey (United States)

    1970-05-15

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished.

  1. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  2. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  3. Russia in the World Water Management

    Science.gov (United States)

    Bibikova, Tatiana; Koronkevich, Nikolay; Barabanova, Elena; Zaytseva, Irina

    2014-05-01

    resources, including surface and ground waters, for the territory and the population; precipitation; indicators of anthropogenic impact, such as population, water withdrawals, sewage waters, irrevocable consumption of water, data on flow regulation by reservoirs; the state of natural waters was estimated by comparison of the average long-term values of water resources with characteristics of anthropogenic impact, and economic efficiency of water use - by water and gross domestic product comparison. The objective of this paper was to give a general idea of the position of Russia in the world water management in the period of time. Further work on this subject is aimed at clarifying the indicators of water resources, human impact on them and the effectiveness of their use. Particular attention will be paid to the assessment of the impact of economic activity in the catchment on rivers and reservoirs. Such kind of assessment is necessary for achieving sustainable water supply in the near and distant future, raising living standards and preserving the environment. References: Koronkevich N.I., Zaytseva I.S., 2003. Anthropogenic Influences on Water Resources of Russia and Neighboring Countries at the end of XXth Century. Moscow, Nauka. Bibikova T., 2011 Comparative Analysis of Anthropogenic Impact on Water Resources in Russia, Belarus, and Ukraine in the Post-Soviet Period. Water Res. Vol. 38 No. 5, 549-556.

  4. Remote sensing as a surface water quality monitoring support in the semiarid region of Brazil

    OpenAIRE

    Fernando Bezerra Lopes

    2013-01-01

    The contamination of surface water bodies due to antropic action has made water ever more scarce. Knowledge of the water quality is essential to determine instruments for it's management . Monitoring water quality in huge areas requires a high number of saimples for water quality control. This fact, allied to the high costs of water analysis, limits the evaluation that can be made of continental waters. Even though in later years geoprocessing and remote sensin...

  5. Evaluating Water Management Practice for Sustainable Mining

    OpenAIRE

    Xiangfeng Zhang; Lei Gao; Damian Barrett; Yun Chen

    2014-01-01

    To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has pr...

  6. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  7. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  8. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  9. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  10. Embedding economic drivers in participative water management

    OpenAIRE

    Ast, Jacko; Bouma, Jan Jaap

    2008-01-01

    textabstractAbstract Country location influences the institutional surroundings of the infrastructures related to water systems. In the Netherlands, water management has its own particularities. Temporarily inflow of affluent water from the rivers or the sea resulted in a highly developed institutional setting based on flood risk prevention. From an economic perspective, managing water is about allocating and using water in an effective and efficient way. This article deals with the coordinat...

  11. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  12. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    Science.gov (United States)

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  13. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  14. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  15. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  16. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  17. Improving Water Demand Management Addressing Socioeconomic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Efforts to conserve water by improving water demand management policies in the Middle East and North Africa are often slowed or even thwarted by a lack of political consensus and support for water demand management from key powerful stakeholders with vested interest in the status quo. This policy brief based on ...

  18. Improving Water Demand Management Addressing Socioeconomic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-20

    Jan 20, 2012 ... Efforts to conserve water by improving water demand management policies in the Middle East and North Africa are often slowed or even thwarted by a lack of political consensus and support for water demand management from key powerful stakeholders with vested interest in the status quo. This policy ...

  19. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  20. Armenia : Towards Integrated Water Resources Management

    OpenAIRE

    World Bank

    2001-01-01

    The objective of this paper is to examine the challenges in the water sector faced by Armenia today, and outline options for management and allocation of its water resources in the future, considering the need for a stable, transparent apublic sector management framework and sustainable resource use for long-term private investment and job creation, and for appropriate balances among water...

  1. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  2. The Vistula River and water management in agriculture

    Directory of Open Access Journals (Sweden)

    Janusz Szablowski

    2013-06-01

    Full Text Available This article attempts to show how much in agriculture depends on appropriate water resources. The Kujawsko-Pomorskie Voivodeship is exposed to a significant deficiency of water resources. In addition, it experiences severe droughts, repeating in the period 1951–2006 on average every two years. The Vistula River flowing across the Voivodeship creates great chances for improved management conditions. These opportunities have been discussed on the example of investments, developed concepts of surface water management, agricultural irrigation programme and the opportunity of using the water resources of a planned second reservoir on the Vistula River below Włocławek.

  3. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  4. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  5. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  7. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  8. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  9. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  10. The application of water poverty mapping in water management

    Directory of Open Access Journals (Sweden)

    Charles van der Vyver

    2012-07-01

    Full Text Available Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply water to people (Sullivan et al., 2005. Water resources will steadily decline because of population growth, pollution and expected climate change (Hemson et al., 2008. It has been estimated that the global demand for water doubles approximately every two decades (Meyer, 2007 and that water will even become as expensive as oil in the future (Holland, 2005. “In the year 2000, global water use was twice as high as it was in 1960” (Clarke and King, 2004:19. Unfortunately this trend is expected to continue. The aim of this paper is to describe how water poverty mapping as a process can be used to assist the management of our already scarce water resources. It constructs a water poverty map after which it describes its application at various management levels. The research indicates that the mapping process can be used to obtain more accurate predictions, as well as to form part of the master plan and integrated development plan documents. Keywords: Water management, water poverty mapping Disciplines: Water management, geographical information systems (GIS, poverty studies, decision support

  11. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  12. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  13. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  14. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  15. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  16. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  17. Institutions for Effective Water Demand Management

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-14

    Dec 14, 2010 ... The paper also describes the state of South African WDM to highlight ... Download the PDF: Working Paper 4: Institutions for Effective Water Demand Management ​ ... Managing flood risk through collaborative governance.

  18. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  19. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  20. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  1. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  2. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  3. Frameworks for amending reservoir water management

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  4. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  5. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  6. Water Availability and Management of Water Resources

    Science.gov (United States)

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  7. Water Resources Assessment and Management in Drylands

    Directory of Open Access Journals (Sweden)

    Magaly Koch

    2016-06-01

    Full Text Available Drylands regions of the world face difficult issues in maintaining water resources to meet current demands which will intensify in the future with population increases, infrastructure development, increased agricultural water demands, and climate change impacts on the hydrologic system. New water resources evaluation and management methods will be needed to assure that water resources in drylands are optimally managed in a sustainable manner. Development of water management and conservation methods is a multi-disciplinary endeavor. Scientists and engineers must collaborate and cooperate with water managers, planners, and politicians to successfully adopt new strategies to manage water not only for humans, but to maintain all aspects of the environment. This particularly applies to drylands regions where resources are already limited and conflicts over water are occurring. Every aspect of the hydrologic cycle needs to be assessed to be able to quantify the available water resources, to monitor natural and anthropogenic changes, and to develop flexible policies and management strategies that can change as conditions dictate. Optimal, sustainable water management is achieved by cooperation and not conflict, thereby necessitating the need for high quality scientific research and input into the process.

  8. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  9. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Brown, Christopher; Orozco, Nicole

    2014-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.

  10. Promoting the management and protection of private water wells.

    Science.gov (United States)

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  11. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib

    2012-12-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing to improve its water sector performance. The water strategy focuses on desalination for the coastal cities, medium-sized dams to irrigate the inland mountains and high plateau, and ambitious water transfer projects interconnecting Algeria\\'s 65 dams to bring water to water scarce parts of the country. Waste water treatment and water reclamation technologies are also highly sought after. The main objective of the country\\'s water policy consists on providing sufficient potable water for the population supply. This objective is undertaken by increasing the water resources and availability. © 2012 Desalination Publications. All rights reserved.

  12. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  13. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  14. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  15. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  16. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  17. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  18. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our demands for good quality fresh water. It is less a matter of piping and pumps and more a tool ...

  19. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  20. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  1. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  2. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  3. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  4. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  5. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  6. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  7. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  8. Water Demand Management for Social Justice

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    with men, in the design and management of water projects enhances the intended results of projects and contributes to ... the area of domestic water supply and sanitation. There is .... mandate reducing the loss of quantity or quality of water as ...

  9. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  10. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... the rational use of water resources poses a great problem and challenge to the nation. ... Suggestions were made on ways of planning sustainable water supply systems for Nigeria ... South Africa (96); South Sudan (1); Sudan (3); Swaziland (3); Tanzania (19) ...

  11. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  12. Managing California’s Water: Insights from Interviews with Water Policy Experts

    Directory of Open Access Journals (Sweden)

    Sarah E. Null

    2012-12-01

    Full Text Available This paper presents insights from interviews with over 100 California water policy experts, who answered open-ended questions regarding California’s long-term water policy challenges and potential solutions. Interviews were conducted in the spring and summer of 2010, and interviewees were selected from a range of sectors and regions within California. Top long-term policy problems cited include management of the Sacramento–San Joaquin Delta, dysfunctional institutions and water governance, unsustainable water supplies and flood management, poor environmental protection, and problems with water rights and valuing water. In addition to a range of specific management solutions, respondents emphasized the importance of public education, incentivized cooperation, more holistic water management, local innovation, and removal of regulatory obstacles as primary solutions to California’s long-term water challenges. There was little emphasis on new surface storage projects, except from politicians. Other respondents preferred local and regional approaches to improve water supply, such as conservation, groundwater banking, recycling, or stormwater management. Despite differences in opinion on the problems with implementation of the Endangered Species Act, there was broad agreement that environmental management approaches need to shift away from single-species, piecemeal approaches toward ecosystem-based, multi-species approaches. 

  13. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  14. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  15. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong; Zhang, Lianbin; Wang, Peng

    2017-01-01

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH

  16. Staggering successes amid controversy in California water management

    Science.gov (United States)

    Lund, J. R.

    2012-12-01

    Water in California has always been important and controversial, and it probably always will be. California has a large, growing economy and population in a semi-arid climate. But California's aridity, hydrologic variability, and water controversies have not precluded considerable economic successes. The successes of California's water system have stemmed from the decentralization of water management with historically punctuated periods of more centralized strategic decision-making. Decentralized management has allowed California's water users to efficiently explore incremental solutions to water problems, ranging from early local development of water systems (such as Hetch Hetchy, Owens Valley, and numerous local irrigation projects) to more contemporary efforts at water conservation, water markets, wastewater reuse, and conjunctive use of surface and groundwater. In the cacophony of local and stakeholder interests, strategic decisions have been more difficult, and consequently occur less frequently. California state water projects and Sacramento Valley flood control are examples where decades of effort, crises, floods and droughts were needed to mobilize local interests to agree to major strategic decisions. Currently, the state is faced with making strategic environmental and water management decisions regarding its deteriorating Sacramento-San Joaquin Delta. Not surprisingly, human uncertainties and physical and fiscal non-stationarities dominate this process.

  17. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery

    Science.gov (United States)

    Wang, Xiaobiao; Xie, Shunping; Zhang, Xueliang; Chen, Cheng; Guo, Hao; Du, Jinkang; Duan, Zheng

    2018-06-01

    Surface water is vital resources for terrestrial life, while the rapid development of urbanization results in diverse changes in sizes, amounts, and quality of surface water. To accurately extract surface water from remote sensing imagery is very important for water environment conservations and water resource management. In this study, a new Multi-Band Water Index (MBWI) for Landsat 8 Operational Land Imager (OLI) images is proposed by maximizing the spectral difference between water and non-water surfaces using pure pixels. Based on the MBWI map, the K-means cluster method is applied to automatically extract surface water. The performance of MBWI is validated and compared with six widely used water indices in 29 sites of China. Results show that our proposed MBWI performs best with the highest accuracy in 26 out of the 29 test sites. Compared with other water indices, the MBWI results in lower mean water total errors by a range of 9.31%-25.99%, and higher mean overall accuracies and kappa coefficients by 0.87%-3.73% and 0.06-0.18, respectively. It is also demonstrated for MBWI in terms of robustly discriminating surface water from confused backgrounds that are usually sources of surface water extraction errors, e.g., mountainous shadows and dark built-up areas. In addition, the new index is validated to be able to mitigate the seasonal and daily influences resulting from the variations of the solar condition. MBWI holds the potential to be a useful surface water extraction technology for water resource studies and applications.

  18. FREEWAT: FREE and open source software tools for WATer resource management

    OpenAIRE

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-01-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU wa...

  19. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  20. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  1. Water management of humid area shallow land burial sites

    International Nuclear Information System (INIS)

    Schulz, R.K.

    1984-01-01

    During the seasonal year 1983-1984, the first year of a lysimeter based water balance study was carried out at the Maxey Flats low level waste disposal site. The water input to the system, rainfall, and the fate of that water: runoff, deep percolation, and evapotranspiration was measured. About 20% of the water input (rainfall) was disposed of as surface runoff. About one-half of the input water was removed by evapotranspiration. Approximately 30% of the rainfall ended up as deep percolation water. Varying management procedures of the fescue crop and substitution of an alfalfa crop had little effect on deep water percolation. In about one-half of the months (winter-spring), excess water was present in the profile so that deep percolation occurred. As a result, a technique of bio-engineering management was formulated to increase run-off while maintaining evapo-transpiration so as to minimize (or eliminate) deep percolation. Demonstration of that technique is now underway. In other investigations at the Maxey Flats site, the 3 H concentration in the transpiration stream of fescue grass grown on trench caps has been measured monthly for the past year and one-half. 3 H concentrations in the transpiration stream were up to 1000 times higher in the dry periods compared to winter, although the trench water remained fairly constant at about 15 feet below the surface, indicating plant water uptake from that depth

  2. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  3. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  4. Water supply and management concepts

    Science.gov (United States)

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  5. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  6. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Sensing (DTS), a fibre optical method for temperature determination over long distances (Selker et al., 2006). Thermal signatures were determined in a small urban stream before and after restoration and compared to streams in natural and near-natural settings. BWG BUNDESAMT FÜR WASSER UND GEOLOGIE, 2003. Die Geschichte des Hochwasserschutzes in der Schweiz. Bericht des BWG, Serie Wasser. Biel. 208 p. EA ENVIRONMENT AGENCY (UK), 2009. The Hyporheic Handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Bristol. 280 p. ANDREA, F., GSCHÖPF, C., BLASCHKE, A.P., WEIGELHOFER, G., AND RECKENDORFER, W., 2012. Ecological niche models for the evaluation of management options in urban floodplain - conservation vs. restoration purposes. Environ. Sci. Policy, http://dx.doi.org/10.1016/j.envsci.2012.08.011. PALMER, M.A., BERNHARDT, E.S., ALLAN, J.D., LAKE, P.S., ALEXANDER, G., BROOKS, S., CARR, J., CLAYTON, S., DAHM, C.N., FOLLSTAD SHAH, J., GALAT, D.L., LOSS, S.G., GOODWIN, P., HART, D.D., HASSETT, B., JENKINSON, R., KONDOLF, G.M., LAVE, R., MEYER, J.L., O`DONNELL, T.K., PAGANO, L. AND SUDDUTH, E., 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology, 42, pp. 208 - 217. DOI 10.1111/j.1365-2664.2005.01004.x. WORTLEY, L., HERO, J-M., HOWES, M., 2013. Evaluating Ecological Restoration Success: A Review of the Literature. Restoration Ecology, 21 (5), pp. 537 - 543. DOI 10.1111/rec.12028. SELKER, J.S., THEVENAZ, L., HUWALD, H., MALLET, A., LUXEMBURG, W., VAN DE GIESEN, N., STEJSKAL, M., ZEMAN, J., WESTHOFF, M., AND PARLANGE, M.B., 2006. Distributed fibre-optic temperature sensing for hydrologic systems. Water Resources Research, 42(12), W12202.

  7. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  8. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  9. Crop modeling applications in agricultural water management

    Science.gov (United States)

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  10. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  11. Water management of Republic of Macedonia

    International Nuclear Information System (INIS)

    1999-01-01

    The Republic of Macedonia is one of the countries that do not have sufficient water resources, and their shortage has been already felt during certain periods. The problem already mentioned as global: uneven distribution in time, space and quality are the main characteristics of the water resources. The water management a branch of the economy dealing with management, utilization, protection and planning of the water resources is considered a key implementation of all strategic plans for development of one country. The basic goal of the water management is to fully utilize the water resources in order to reach the most effective and most economic resolution of problems related to the water resources. The problem of pollution and wastage of water, which is more acute at times of intensive technological development of the society, is rapidly depleting supplies water and makes us seriously thinking no just our own survival, but also that of future generations. The concept of sustainable development means future planning for utilizing and protecting water resources bearing in mind not only the generations to come. In the book available water resources in Republic of Macedonia, current condition of the existing water management facilities - dams and reservoirs, as well as irrigation systems are presented. Also, the book deals with the water quality condition and activities for ecological water protection, including relevant measures for protection of catchment areas and the soil from erosion. In addition projects under construction are given. Namely, in the Republic of Macedonia two high dams and a small hydro system are under construction, as well as rehabilitation of three large irrigation schemes

  12. Aquatic landscapes - 9. Magdeburg seminar on surface water protection

    International Nuclear Information System (INIS)

    2000-01-01

    The conference was attended by scientists and practical experts in ecology and water management. Results of BMBF research projects on ecology and pollutant freight of the Elbe and other big European rivers were presented. IKSE experts and Elbe water management experts presented their findings. Trends are presented since 1990. Subjects: Catchment area management; Monitoring concepts and modelling; Land use and water quality; High-water protection; Pollution and biodiversity in polder areas; Immigration of exotic species; Pollution from industry, mining and landfills [de

  13. The challenge of water management

    Science.gov (United States)

    Leopold, Luna Bergere

    1960-01-01

    In a sandy, riverside location in Wisconsin my family has a farm, once abandoned by a previous owner because it would not produce much corn. By the time we bought it for a pittance, only a few remnants of white pine remained from the magnificent stands made famous by Paul Bunyan. The variability of the glacial topography had resulted in an interesting mixture of prairie marsh, swamp woodlot, and sandhill.We did not acquire this farm because it had a great potential for growing crops. Rather we were interested in the variety of ecologic and topographic types which, even within the confines of our property, represented a condensed version of many different types of land in the Wisconsin countryside. It has also a very peculiar esthetic and historical interest. Marquette's canoes slipped quietly past our favorite fishing hole on the river. Passenger pigeons had once roosted in our great oaks. The few remaining white pines silhouetted against the sky-glow of evening made one think of the Round River and the Blue Ox.All right, we had acquired this place. What were we to do with it. Its resources were narrowly limited and peculiar. They had little economic value. All the more reason that they should be appraised in order that they be fully utilized and appreciated. So, while we were hammering and sawing the old stable into a useable homestead, we walked, sat, dug, and pruned in every coulee and covert, in every thicket and thatch. By compass and pace we mapped the boundaries, the vegetation, and sketched in the topography with notes on the distribution of soil and the occurrence of water. We counted the various kinds of birds and found there was a reasonable population of woods species, mostly transients. There were no pheasant, no quail, practically no grouse, and in spring only an occasional woodcock.In conjunction with the analysis of what we had to work with we started immediately on the task of development. The techniques were chosen with an eye to specific goals

  14. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    Song Miaofa

    1990-01-01

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147 Pm contaminated waste water are reported

  15. Asset Management for Water and Wastewater Utilities

    Science.gov (United States)

    Renewing and replacing the nation's public water infrastructure is an ongoing task. Asset management can help a utility maximize the value of its capital as well as its operations and maintenance dollars.

  16. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  17. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  18. Water Management Strategies against Water Shortage in the Alps (Invited)

    Science.gov (United States)

    de Jong, C.

    2009-12-01

    In the European Alps water has been perceived as ubiquitous and not the subject of management. Climate change and anthropogenic pressures have changed demand and supply relations rapidly and over the last 10 years, water problems have increasingly become apparent over temporal and spatial hotspots. Stakeholders in the Alpine Space have been confronted with water management problems in agriculture, tourism and hydropower to such an extent that they approached scientists to create solution strategies based on adaptation and mitigation. In this context, Alp-Water-Scarce, a European project on Water Management Strategies against Water Scarcity in the Alps was funded by the Alpine Space programme as part of the "European Territorial Cooperation" scheme. It has 17 project partners from Austria Switzerland, France, Italy and Slovenia from local governments, provinces, federal institutes and offices, universities, regional agencies, alpine societies, geological surveys, and chambers of agriculture and forestry. The Lead Partner is the Mountain Institute in Savoy, Rhone-Alpes, France. The main challenges of this project are to create local Early Warning Systems against Water Scarcity in the Alps. This system is based on strengthening existing long-term monitoring and modeling and creating new measuring networks in those countries where they do not yet exist. It is anchored strongly and actively within a Stakeholder Interaction Forum linked across comparative and contrasting regions across the Alps. The Early Warning System is based on the linkage and improvement of field monitoring and assemblage of qualitative and quantitative data derived both from natural water reservoirs as well as from anthropogenic water use in 28 selected pilot regions selected in France, Italy, Austria, Slovenia and Switzerland. The objectives are to improve water management at the short term (annual scale) and long term (using future scenarios) based on modelling and application of climate change

  19. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Probability of misclassifying biological elements in surface waters.

    Science.gov (United States)

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  1. Policy and Economics of Managed Aquifer Recharge and Water Banking

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2015-02-01

    Full Text Available Managed Aquifer Recharge (MAR and water banking are of increasing importance to water resources management. MAR can be used to buffer against drought and changing or variable climate, as well as provide water to meet demand growth, by making use of excess surface water supplies and recycled waters. Along with hydrologic and geologic considerations, economic and policy analyses are essential to a complete analysis of MAR and water banking opportunities. The papers included in this Special Issue fill a gap in the literature by revealing the range of economic and policy considerations relevant to the development and implementation of MAR programs. They illustrate novel techniques that can be used to select MAR locations and the importance and economic viability of MAR in semi-arid to arid environments. The studies explain how MAR can be utilized to meet municipal and agricultural water demands in water-scarce regions, as well as assist in the reuse of wastewater. Some papers demonstrate how stakeholder engagement, ranging from consideration of alternatives to monitoring, and multi-disciplinary analyses to support decision-making are of high value to development and implementation of MAR programs. The approaches discussed in this collection of papers, along with the complementary and necessary hydrologic and geologic analyses, provide important inputs to water resource managers.

  2. Water management at Roessing uranium mine, Namibia

    International Nuclear Information System (INIS)

    Smit, M.T.R.; Brent, C.P.

    1991-01-01

    Water Management at a large uranium mine and leaching plant located in a desert environment is described in respect of reducing water consumption and controlling and containing contaminants. The extent to which water consumption has been reduced by innovative measures to reduce water losses and increase water recycle is described. Although the recycling of untreated solutions generated in the process has had negative effects on plant throughput and recovery, the overall benefit has been significant. Measures employed to ensure that no contamination of local groundwater occurs are described. (author)

  3. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  4. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...... with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation...

  5. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  6. Challenges in global ballast water management

    International Nuclear Information System (INIS)

    Endresen, Oyvind; Lee Behrens, Hanna; Brynestad, Sigrid; Bjoern Andersen, Aage; Skjong, Rolf

    2004-01-01

    Ballast water management is a complex issue raising the challenge of merging international regulations, ship's specific configurations along with ecological conservation. This complexity is illustrated in this paper by considering ballast water volume, discharge frequency, ship safety and operational issues aligned with regional characteristics to address ecological risk for selected routes. A re-estimation of ballast water volumes gives a global annual level of 3500 Mton. Global ballast water volume discharged into open sea originating from ballast water exchange operations is estimated to approximately 2800 Mton. Risk based decision support systems coupled to databases for different ports and invasive species characteristics and distributions can allow for differentiated treatment levels while maintaining low risk levels. On certain routes, the risk is estimated to be unacceptable and some kind of ballast water treatment or management should be applied

  7. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  8. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  9. Water Management Policy in California

    DEFF Research Database (Denmark)

    Oh, Christina; Svendsen, Gert Tinggaard

    2015-01-01

    Using Olson’s 1965 logic of collective action and group theory, we argue that the “small group” of the “iron triangle” is able to collectively act to push for command-and-control regulations in Californian water policy. There are individual rent-seeking incentives in the small group because...... the politicians do not want to impose tax, and they would like to have short-term development and economic growth during their term in order to gain a positive reputation from the public or to get re-elected. The developers would like more work and prestige and the water bureaucrats have little incentive to limit...

  10. The implications of economic development, climate change and European Water Policy on surface water quality threats

    Directory of Open Access Journals (Sweden)

    Jolanta Dąbrowska

    2017-06-01

    Full Text Available The paper presents historical background, up-to-date situation and future perspectives for the development of nutrient pollution threats to European surface water quality, as well as the evolution of the approach to water pollution. Utilized agricultural area in European countries is slightly diminishing, however the consumption of mineral fertilisers is steadily increasing. The consumption in Europe in the years 2015–2030 is projected to increase by 10%, and in the world by 20%. Both climate changes leading to the increase of temperature even of ca. 6°C (in comparison to the pre-industrial period and accelerated soil erosion due to high intensity rainfall cause increased productivity of water ecosystems. Those aspects have to be taken into consideration in water management. Due to legal regulations introduced in the last twenty years, wastewater treatment has been made more effective and population connected to wastewater treatment systems has increased. The improvement has been seen mainly in eastern and southern parts of Europe. After the implementation of Water Framework Directive theories regarding modern water management have been developed, with the aim to increase the ecosystem’s capacity and its resilience to climate changes and anthropopressure.

  11. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  12. SMART MANAGEMENT OF THE WATER URBAN CYCLE

    OpenAIRE

    Sánchez Zaplana, Antonio

    2014-01-01

    Aguas Municipalizadas de Alicante, AMAEM, is the company in charge of managing the urban water cycle in Alicante and several neighbour towns: San Vicente, Sant Joan, Petrer, Monforte and El Campello. More specifically, AMAEM provides the water distribution service in all of them, and is responsible for the sewage service in Alicante, Sant Joan and Monforte. The population served amounts to 750,000 inhabitants, supplied by a 2,000 km water distribution network and 700 km of sewage drains. AMAE...

  13. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  14. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  15. Water: Local-Level Management

    International Development Research Centre (IDRC) Digital Library (Canada)

    Each publication distills IDRC's research experience with an eye to drawing out ..... in an arid area can drip as much water into the dry soil as might ever arrive ..... disintegrate without careful maintenance into smelly sources of disease and ...

  16. Water management. A core task of the Wismut remediation programme

    International Nuclear Information System (INIS)

    Paul, Michael; Meyer, Juergen; Jenk, Ulf; Kassahun, Andrea; Schramm, Andrea; Baacke, Delf; Forbrig, Norbert; Metschies, Thomas

    2015-01-01

    Water management and conventional technical water treatment are by far the most cost-intensive long-term tasks of the Wismut remediation programme. Over the medium term, there is no viable alternative to the operation of active systems to catch and treat contaminated mine waters at the Ronneburg, Schlema, Koenigstein, Poehla, Seelingstaedt and Heimsdorf sites. Based on the status quo this paper outlines the key issues of the Wismut GmbH water management strategy over the medium and long term. lt is focused primarily on achieving protection goals for potentially impacted water bodies in the surroundings of Wismut sites and on optimising associated remediation expenditure as well as on creating the prerequisites for achieving low post-remedial care and maintenance or walk-away system status over the long term. The topic of this paper is the presentation of priority tasks related to future water management at Wismut sites in Saxony and Thuringia. The reflections are based on experiences and lessons learned and take into account current statutory management requirements referring to ground and surface water bodies affected by Wismut. The paper is based on a presentation made at the International Mining Symposium WISSYM 2015 on 2nd September 2015 in Bad Schlema, Germany.

  17. Water management in 2020 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Asit K. [Third World Centre for Water Management, Atizapan, MEX (Mexico); Tortajada, Cecilia [Water Institute of Aragon, Zaragoza (ES). International Centre for Water and Environment (CIAMA); Izquierdo, Rafael (eds.) [Water Institute of Aragon, Zaragoza (Spain)

    2009-07-01

    Water is intertwined in the daily life of humans in countless ways. The importance of water as a driver for health, food security, and quality of life and as a pillar for economic development is unique. As water affects human lives, the mankind also effects the hydrological cycle, in all dimensions from the local to the global scale. Food production accounts for 90% of water use in developing countries. Hydropower production evokes emotions; yet sustainable energy production is among cornerstones of economic development. The damages caused by floods and droughts are escalating all over the world. The human impacts on ecosystems are increasing as well. Water is largely a political good since a bulk of the mankind lives in river basins shared by two or more nations. These complexities are approached in the book in depth. The analyses include consideration of how developments in seemingly unrelated processes and sectors such as globalisation, free trade, energy, security, information and communication revolutions, health-related issues such as HIV/AIDS, as well as emerging developments in sectors that are linked more conventionally to water, such as population growth, urbanisation, technological development, agriculture, infrastructure, energy, management of water quality and ecosystem health, are likely to affect water management in the future. For the first time, a pragmatic attempt is make to define a realistic framework for water management in 2020 with leading experts from different parts of the world as well as different disciplines. (orig.)

  18. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  19. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  20. 47. Essen conference on water and waste management. Is our water management fit for the future?

    International Nuclear Information System (INIS)

    Pinnekamp, J.

    2014-01-01

    These congress proceedings cover the following larger topics: Challenges facing the German water economy; value retention and financing of water infrastructure; water quality; Sewage Sludge Ordinance / phosphorus recycling; urban mining; new technologies; wastewater disposal structures of the future; flood management; drinking water (quality issues, clarification methods, maintenance); trace substances; wastewater and energy; and fracking. One lecture has been abstracted individually for this database. [de

  1. Economic Requirements of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Nasser Khiabani

    2017-03-01

    Full Text Available Indicators of water resources status and water consumption in Iran reveal an imbalance between supply and demand. This is compounded by the current unrealistic water price that signals the inefficiency of the water market in Iran. In economics parlance, the most important factors responsible for the low efficiency of water market are inaccurate valuation and failure to define the ownership rights of water. Low prices, low sensitivity of water demand to prices, and the lack of proper inputs as substitutes for water resources have collectively contributed to excessive pressures on the available water resources for domestic, industrial, and agricultural uses. A brief glance reveals that water resources in Iran are merely priced based on cost accounting. This is while study has shown that developed countries adopt approaches to water pricing that not only consider the final cost of water but also take into account such other parameters that are affected by intrinsic value of water including its bequest and existence values. The present paper draws upon the concepts of value, expenses, and pricing of water in an attempt to explore the marketing and pricing of water resources as the two major tools economists employ in the management of these resources. It is the objective of the study to arrive at an accurate definition of ownership rights of water resources to improve upon the present water marketing. In doing so, the more important components of modern pricing strategies adopted by developed nations will also be investigated. Results indicate that the present cost accounting method used in pricing water in Iran will in the long-run lead to the wastage of water resources and that it should, therefore, be given up in favor modern and more realistic policies to avoid such waste of resources.

  2. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  3. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  4. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  5. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  6. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  7. Oil production and water management in Oman

    International Nuclear Information System (INIS)

    Parker, D.H.; Kuijvenhoven, C.A.T.; Waterland, R.D.; Smies, M.

    1991-01-01

    This paper describes the development of integrated (production) water management in Petroleum Development Oman. In its existing oil fields the water cut is rising rapidly and water production is expected to increase two to three times in the next 15 years. Re-injection of production water will continue to account for less than half of the volume of co-produced water. Current subsurface disposal of production water to shallow Tertiary formations is based on thorough knowledge of the local hydrogeology and does not affect potable water resources. However, in view of the expected increase in production water volume, utilization and disposal options have been re-evaluated. This review has been facilitated by recently acquired data on production water quality and by the results of research in dehydration and de-oiling technologies and of tests with production chemicals. The combined knowledge base is used to arrive at water management strategies for individual oil fields that are sound both in principle and in practice

  8. Ecological characterization of surface waters in the province of Overijssel, The Netherlands

    NARCIS (Netherlands)

    Verdonschot, P.F.M.

    1990-01-01

    Nowadays many surface waters in The Netherlands tend to become ecologically uniform with the same mediocre quality. A differentiated approach to water management is necessary to stop this process of impoverishment of aquatic ecosystems. In The Netherlands the provincial

  9. Surface water-quality activities of the U.S. Geological Survey in New England

    Science.gov (United States)

    Huntington, Thomas G.

    2016-03-23

    The U.S. Geological Survey (USGS) collaborates with a variety of Federal, State, local, and tribal partners on scientific projects to provide reliable and impartial water-quality data and interpretation to resource managers, planners, stakeholders, and the general public. The themes related to surface water quality include the following:

  10. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  11. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  12. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  13. Evaluation of Water Rights to Reveal Hidden Patterns and Trends in Water Resources Management

    Science.gov (United States)

    Grantham, T.; Viers, J. H.

    2013-12-01

    California's current water management challenges are strongly influenced by the legacy of 19th century legal doctrines, which aim to maximize the appropriation of available water for human uses and benefits. As a consequence and over time, most of the water flowing through the state's rivers and streams has been dedicated through water rights to human uses, limiting potential for sustainable water management and climate change adaptation. This history is recorded in a database of water rights, which contains approximately 50,000 records of diversion and storage projects dating from the early 19th century to the present day. Although water rights records are rarely considered in regional water budgeting, information on the location, age, purpose, and face values of water rights offer insight into the spatial and temporal dimensions of water-use pressures and can be used to identify opportunities for management interventions. Using the state water rights database, we calculated cumulative face-value rights at the HUC12-watershed scale and compared water appropriation volumes with modeled predictions of surface water availability. Total annual allocations of current water rights exceed 340 million-acre feet (4 x 1011 m3), approximately five times the state's mean annual runoff. The total volume of face-value water rights is 25 to 1,000% of annual water availability in major river basins (greater than 400 km2), with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and coastal streams in southern California. Trends in water rights appropriation since 1900 indicate periods of rapid demand growth between 1925-1940, 1950-1960, and 1975-1985, which mirror major dam building eras. We illustrate how information on the spatial distribution of water rights, appropriation volumes, and priority of use, can guide strategic planning for re-allocating water for environmental benefits and other management objectives. We also

  14. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  15. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  16. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  17. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  18. Challenges facing water management in China

    International Nuclear Information System (INIS)

    Varis, O.; Vakkilainen, P.

    2000-01-01

    The amount of water per person in northern China is less than half of that in Egypt, a country with very scarce water resources. Clearly, then, China is one of the regions on our planet that is going to have to face severe problems of water supply in the future. Rapid urbanisation and industrialisation growing agricultural output, environmental degradation, climatic instability, a large population density and worsening regional disparities are all factors that will challenge the management and utilisation of China's water resources in the years to come. (orig.)

  19. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    judevom

    chemical characteristics of the water,. (2) define the factors that control major ion chemistry, and (3) evaluate their suitability for drinking and irrigation. The data will provide a hydrochemical baseline data for water quality assessment, management, ...

  20. Development of nuclear power with respect to water management

    International Nuclear Information System (INIS)

    Plainer, J.

    1982-01-01

    Discussed are the siting of nuclear power plants, the cooling of nuclear power plants, the environmental impacts of radioactive wastes and the provision of drinking water for nuclear power plant personnel. A power plant with a maximum capacity of 4x1000 MW is envisaged for any selected site. The cooling concept is based on water recirculation and the use of cooling towers. The envisaged need of cooling water is 0.9 to 1.3 l/s per 1 MW of power; non-recoverable water consumption is estimated at 0.7 to 1.0 l/s per 1 MW of power. The discharge of tritiated water and sewage water into surface waters is regulated by laws and regulations issued by the government of the Czech Socialist Republic. However, value criteria have not been determined for assessing the toxicity of radioactive substances for aquatic organisms and for disturbing the self-cleaning ability of water courses. For solid radioactive waste disposal the water management authority may set conditions with regard to local water conditions. The drinking water supply must be designed with regard to local conditions. The drinking water need is planned within the range of 5 to 10 l/s, in peak hours at 10 to 30 l/s. (J.P.)

  1. Surface Management System Departure Event Data Analysis

    Science.gov (United States)

    Monroe, Gilena A.

    2010-01-01

    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  2. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  3. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  4. TURBIDITY REMOVAL FROM SURFACE WATER USING ...

    African Journals Online (AJOL)

    User

    2016-06-01

    Jun 1, 2016 ... Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. ... Conventional water treatment systems involve the use of synthetic ..... Thesis, Royal Institute of Technology (KTH),.

  5. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    The study found that water supply in Harshin district is 100% surface water ... Besides, 76% of the respondents were not satisfied with the quality of drinking water. ... Key words: Water resources, pastoralists, rainwater, water-harvesting, gender ...

  6. Adapting water allocation management to drought scenarios

    Directory of Open Access Journals (Sweden)

    P. Giacomelli

    2008-04-01

    Full Text Available Climate change dynamics have significant consequences on water resources on a watershed scale. With water becoming scarcer and susceptible to variation, the planning and reallocation decisions in watershed management need to be reviewed. This research focuses on an in-depth understanding of the current allocation balance of water resources among competitors, placed along the course of the Adda River. In particular, during the summer period, the demand for water dramatically increases. This is due to the increase in irrigation activities in the lower part of the basin and to the highest peaks of tourist inflow, in the Como Lake and Valtellina areas. Moreover, during these months, the hydroelectric reservoirs in the upper part of the Adda River basin (the Valtellina retain most of the volume of water coming from the snow and glacier melt. The existing allocation problem among these different competing users is exacerbated by the decreasing water supplies. The summer of 2003 testified the rise in a number of allocation problems and situations of water scarcity that brought about environmental and economical consequences. The RICLIC project is committed to the understanding of water dynamics on a regional scale, to quantify the volumes involved and offer local communities an instrument to improve a sustainable water management system, within uncertain climate change scenarios.

  7. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  8. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  9. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    OpenAIRE

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  10. Risk management for assuring safe drinking water.

    Science.gov (United States)

    Hrudey, Steve E; Hrudey, Elizabeth J; Pollard, Simon J T

    2006-12-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that disease outbreaks remain a risk that could be better managed and prevented even in affluent nations. A detailed retrospective analysis of more than 70 case studies of disease outbreaks in 15 affluent nations over the past 30 years provides the basis for much of our discussion [Hrudey, S.E. and Hrudey, E.J. Safe Drinking Water--Lessons from Recent Outbreaks in Affluent Nations. London, UK: IWA Publishing; 2004.]. The insights provided can assist in developing a better understanding within the water industry of the causes of drinking water disease outbreaks, so that more effective preventive measures can be adopted by water systems that are vulnerable. This preventive feature lies at the core of risk management for the provision of safe drinking water.

  11. Ten years of Brazilian ballast water management

    Science.gov (United States)

    Castro, Maria Cecilia Trindade; Hall-Spencer, Jason M.; Poggian, Cecília Fonseca; Fileman, Timothy W.

    2018-03-01

    In 2005, Brazil addressed the environmental challenges posed by ballast water through a unilateral regulation, called the Maritime Standard N° 20 (NORMAM-20), applied to all shipping in her waters. This world-leading decision was the culmination of a process that started during the 1990‧s. Here, we summarize how these ballast water regulations were brought in and adopted and present the findings of 10 years of enforcement (2005-2015) in 39 ports along the Brazilian coast. We show that compliance with the Brazilian standard has increased significantly since the regulations were implemented (p < 0.001). After five years of implementation, non-compliance decreased probably reflecting an increase in awareness of the Brazilian Standard and a shift in the shipping industry commitment to minimize and control the spread of invasive species through ballast water. The Brazilian experience shows that very high levels (97%) of compliance with ballast water management regulations can be made to work in a region of global importance to the maritime industry. In the last decade, the rules governing ballast water in Brazil have evolved to address the demands from the maritime community and to provide updates such as imminent requirements for the use of ballast water management systems on board ships. These regulations are rarely cited when ballast water regulations are discussed internationally, yet there is much to learn from the proactive approach taken by Brazil such as what is feasible and enforceable.

  12. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  13. Water Quality and Management Changes Over the History of Poland.

    Science.gov (United States)

    Szalinska, Ewa

    2018-01-01

    Poland is one of the countries distinguished by a long and colorful past. Undergoing numerous turbulent socio-economic changes forced by the course of history, Poland is now one of the member states of the European Union. Experiencing low water quantity and high contamination levels in surface waters, Poland is following other EU countries in the effort to reach a "good" water status. Herein are presented impacts of changes in Polish history on water legislation, management, and research, as well as explanations for the perceptible split between engineering and scientific approaches to the aquatic issues. Drawbacks caused by unsatisfactory state research funding for the sciences and division of the water related contemporary scientific interests are also discussed.

  14. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  15. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  16. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  17. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  19. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  20. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  1. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  2. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  3. Produced water volumes and management practices in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Veil, J. A. (Environmental Science Division)

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced

  4. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  5. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  6. Seeking a consensus: water management principles from the monotheistic scriptures

    KAUST Repository

    Lefers, Ryan; Maliva, Robert G.; Missimer, Thomas M.

    2015-01-01

    Religious and cultural values related to water use and management are important motivation for many people of the world. Although much has been written related to water management and use in Islam, fewer authors have attempted to evaluate water

  7. Perspective: The challenge of ecologically sustainable water management

    CSIR Research Space (South Africa)

    Bernhardt, E

    2006-10-01

    Full Text Available Sustainable water resource management is constrained by three pervasive myths; that societal and environmental water demands always compete with one another; that technological solutions can solve all water resource management problems...

  8. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  9. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. Managing new resources in Arctic marine waters

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Fernandez, Linda; Kaiser, Brooks

    and management of the resource which poses challenges due its nature as a ‘sedentary species’ colonizing the Barents Sea continental shelf shared by Norway and Russia and approaching the fishery protection zone around Svalbard. Conversely, little research has looked into the implications of the invasion partly...... fishery straddling Arctic waters which lends towards different productivity under different management and we delineate acceptable risk levels in order build up a bioeconomic framework that pinpoints the underlying trade-offs. We also address the difficulties of managing the resource under uncertainty...

  11. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  12. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  13. Biological control component [Management of water hyacinth

    International Nuclear Information System (INIS)

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  14. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  15. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  16. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  17. Water management and productivity in planted forests

    Directory of Open Access Journals (Sweden)

    J. E. Nettles

    2014-09-01

    Full Text Available As climate variability endangers water security in many parts of the world, maximizing the carbon balance of plantation forestry is of global importance. High plant water use efficiency is generally associated with lower plant productivity, so an explicit balance in resources is necessary to optimize water yield and tree growth. This balance requires predicting plant water use under different soil, climate, and planting conditions, as well as a mechanism to account for trade-offs in ecosystem services. Several strategies for reducing the water use of forests have been published but there is little research tying these to operational forestry. Using data from silvicultural and biofuel feedstock research in pine plantation ownership in the southeastern USA, proposed water management tools were evaluated against known treatment responses to estimate water yield, forest productivity, and economic outcomes. Ecosystem impacts were considered qualitatively and related to water use metrics. This work is an attempt to measure and compare important variables to make sound decisions about plantations and water use.

  18. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  19. Portfolios of adaptation investments in water management

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; Werners, Saskia E.

    2015-01-01

    This study explores how Modern Portfolio Theory (MPT) can guide investment decisions in integrated water resources management (IWRM) and climate change adaptation under uncertainty. The objectives of the paper are to: (i) explain the concept of diversification to reduce risk, as formulated in

  20. Lake Victoria water resources management challenges and ...

    African Journals Online (AJOL)

    ... governing management measures capable of meeting the needs of riparian states and ensuring sustainability within the basin is highlighted. Keywords: biodiversity loss; East Africa; eutrophication; heavy metal pollution; international treaties; Nile Basin; shared water resources. African Journal of Aquatic Science 2008, ...

  1. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  2. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Water demand management (WDM) programs have been widely implemented across the MENA region and elsewhere, with varying degrees of success. The criteria below are intended to help policymakers determine how best to develop institutions with the capacity and capability to design, implement and monitor WDM ...

  3. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  4. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  5. Water management as a key component of integrated weed management

    Directory of Open Access Journals (Sweden)

    Antonio Berti

    2010-09-01

    Full Text Available Water management within the cropping system is a key factor for an integrated weed management. Soil moisture affects seed persistence and seed dormancy, thus influencing their germination, the establishment of seedlings as well as the competition at adult stage and the number, vitality and dormancy of the new seeds produced by the weeds. The interactions among water availability and competition are very complex and still not fully understood. A research effort in this sector should the be very relevant for the development of new approaches of weed management, such as “Ecological weed management”, aiming to reduce weed density and competitiveness and, in the medium term, to prevent undesired modifications of the weed flora.

  6. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  7. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  8. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  9. Integrating water quality responses to best management practices in Portugal.

    Science.gov (United States)

    Fonseca, André; Boaventura, Rui A R; Vilar, Vítor J P

    2018-01-01

    Nutrient nonpoint pollution has a significant impact on water resources worldwide. The main challenge of this work was to assess the application of best management practices in agricultural land to comply with water quality legislation for surface waters. The Hydrological Simulation Program-FORTRAN was used to evaluate water quality of Ave River in Portugal. Best management practices (infiltration basin) (BMP) were applied to agricultural land (for 3, 6, 9, 12, and 15% area) with removal efficiencies of 50% for fecal coliforms and 30% for nitrogen, phosphorus, and biochemical oxygen demand. The inflow of water quality constituents was reduced for all scenarios, with fecal coliforms achieving the highest reduction between 5.8 and 28.9% and nutrients and biochemical oxygen demand between 2 and 13%. Biochemical oxygen demand and orthophosphates concentrations achieved a good water quality status according to the European Legislation for scenarios of BMP applied to 3 and 12% agricultural area, respectively. Fecal coliform levels in Ave River basin require further treatment to fall below the established value in the abovementioned legislation. This study shows that agricultural watersheds such as Ave basins demand special attention in regard to nonpoint pollution sources effects on water quality and nutrient loads.

  10. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  11. Regional water footprint and water management: the case of Madrid region (Spain)

    OpenAIRE

    Soler Rovira, José; Arroyo Sanz, Juan Manuel; Conde Marcos, Hugo; Sanz Zudaire, Carlos; Mesa Moreno, Alfredo; Gil Pascual, Sergio

    2010-01-01

    Water resources and water footprint of the production and consumption in Madrid region were estimated, considering blue water (water resources), green water (soil moisture), grey water (polluted water) and virtual water (water trade in products imported and exported in the region). Water resources in Madrid relay mainly in surface waters and rainfall, so the periodic occurrence of meteorological droughts implies the scarcity of water supply. The main users of blue water are households, munici...

  12. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  13. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  14. Water management at Ranger Uranium Mine

    International Nuclear Information System (INIS)

    Carron, K.J.

    1989-01-01

    The water management system at the Ranger Uranium Mine is described. Any water that may have come into contact with material containing more than 0.02% uranium must be retained within the Restricted Release zone (RRZ) from which no water may be released except under specified conditions and with the written approval of the Northern Territory supervising authority. The RRS contains the tailings dam, the mine pit and retention ponds 2 and 3. Outside the RR2, retention ponds 1 and 4 act as silt traps, allowing sediment to settle out prior to water discharge. The Office of Supervising Scientist has developed receiving waters quality standards for Magela Creek which are given in a table. There have now been established sufficient regulatory criteria to allow the release of waste water directly to Magela Creek without compromising the environment. Consideration of releases has been confined to the comparatively good quality run-off waters in the RRZ and no release of the more contaminated process and tailings water stream is contemplated

  15. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  16. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  17. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  18. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  19. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  20. the impact of community participation in rural water management in

    African Journals Online (AJOL)

    USER

    2016-04-14

    Apr 14, 2016 ... underdeveloped areas with poor water resources. ... rural water management is purportedly a key element for community water pro ects to ..... inclusive and integrated approach to water ... Implementation: A regional response.

  1. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States)

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream

  3. Low-Cost Alternative for the Measurement of Water Levels in Surface Water Streams

    Directory of Open Access Journals (Sweden)

    Luis E. PEÑA

    2017-11-01

    Full Text Available Flood risk management and water resources planning involve a deep knowledge of surface streams so that mitigation strategies and climate change adaptations can be implemented. Commercially, there is a wide range of technologies for the measurement of hydroclimatic variables; however, many of these technologies may not be affordable for institutions with limited budgets. This paper has two main objectives: 1 Present the design of an ultrasound-based water level measurement system, and 2 Propose a methodological alternative for the development of instruments, according to the needs of institutions conducting monitoring of surface waterbodies. To that end, the proposed methodology is based on selection processes defined according to the specific needs of each waterbody. The prototype was tested in real-world scale, with the potential to obtain accurate measurements. Lastly, we present the design of the ultrasound-based water level measurement instrument, which can be built at a low cost. Low-cost instruments can potentially contribute to the sustainable instrumental autonomy of environmental entities and help define measurement and data transmission standards based on the specific requirements of the monitoring.

  4. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  5. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  6. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  7. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  8. Water Management in the Republic of Macedonia. Reports and announcements

    International Nuclear Information System (INIS)

    2001-01-01

    The book includes the following Topics: (1) Restructuring of the water management in Republic of Macedonia, with the subtitles: Organizational-legal aspects; Economics of the water management activities; Technical-technological aspects. (2) Water resources management, with the subtitles: Planning; Utilization; Water protection. (3) Experiences from other countries. Papers relevant to INIS are indexed separately

  9. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    921–932 c Indian Academy of Sciences. 921 ..... This project was financially supported by Board of. Research in ... Mediterranean karsts of France, Italy and the Dinaric region; Catena ... sustainable management and optimal monitoring net-.

  10. Ionization by a pulsed plasma surface water

    International Nuclear Information System (INIS)

    Bloyet, E.; Leprince, P.; Marec, J.; Llamas Blasco, M.

    1981-01-01

    The ionization mechanism is studied of a pulsed surface wave generating a microwave discharge. When the plasma is dominated by collisions, it is found that the velocity of the ionization front depends on the ponderomotive force due to the field gradient in the front. (orig.)

  11. Guidelines for surface water quality, vol. l

    International Nuclear Information System (INIS)

    1983-01-01

    A literature survey was carried out on the chemically toxic effects of uranium and uranium compounds on human health, aquatic life, plants and livestock. All the information collected is summarized in this document and, from it, maximum uranium concentrations in water at which toxic effects will not appear are recommended

  12. Acidic deposition: State of science and technology. Report 15. Liming acidic surface waters. Final report

    International Nuclear Information System (INIS)

    Olem, H.; Thornelof, E.; Sandoy, S.; Schreiber, R.K.

    1990-09-01

    The document describes the science and technology of aquatic liming--a method for improving the water quality of acidic surface waters to restore or enhance fisheries. The report is a comprehensive compilation of years of research in North America and Europe by dozens of scientists. Several mitigation technologies--including those that have only been proposed--are critically evaluated along with the effects of liming on water chemistry and aquatic biota. Through these evaluations, the state of the science and technology of aquatic liming is identified for the reader. Whole-lake liming is now recognized as a valuable management tool for acidic surface waters and their fisheries. However, some liming technologies are considered experimental and will need further evaluation. Distinctions between technologies are included--as is the distinction between liming acidic surface waters and reducing acidifying emissions

  13. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  14. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  15. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  16. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  17. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  18. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  19. Tapping Alternatives: The Benefits of Managing Urban Water Demands.

    Science.gov (United States)

    Dziegielewski, Benedykt; Baumann, Duane D.

    1992-01-01

    Presents the California plan for water demand management. Water conservation techniques are used to balance demand with supply. Discusses the implementation process: (1) water-use and service area analysis; (2) water-use forecasts; (3) benefit-cost analysis; (4) and development of a long-term water management plan. (17 references) (MCO)

  20. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  1. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    were investigated in this study: Nine samples from different surface water bodies, two samples from two effluent sources ... Ezeagu, Udi, Nkanu, Oji River and some parts of Awgu and Aninri ..... Study of Stream Output from Small Catchments.

  2. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  3. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  4. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  5. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  6. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  7. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  8. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  9. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  10. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.

    2013-01-01

    (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  11. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  12. CONTAMINATION OF URBAN SURFACE WATER BY VEHICLE EMISSIONS

    Science.gov (United States)

    2017-10-01

    Combined sewer overflows (CSOs) are a water management issue for Onondaga County and the city of Syracuse, NY. To reduce them, the County is investing in green infrastructure (GI). GI technologies such as green roofs, rain gardens, and bioswales are ...

  13. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  14. Managing the water crisis: A youth perspective

    Science.gov (United States)

    Simataa, Faith

    2017-04-01

    The youth are identified as a key group to include in effective engagement and decision-making for water security and sustainable development. An increase in severe droughts in Namibia has highlighted its destructive impacts and led to a growing concern about the societal exposure of communities. Acknowledging the benefit of access to safe drinking water to humanity, in reality a disproportionate burden of protecting environmental benefits such as clean water is borne by the poor and vulnerable sections of the society. As a result, a key consideration highlighted in the Hyogo and Sendai Frameworks is the inclusion of gender & age perspectives, and vulnerable groups in planning for disaster risk reduction. Therefore, the paper argues that empowering the youth with knowledge and skills capability in disaster risk issues becomes essential for a sustainable management approach, and a potential 'rescue' mechanism from the web of poverty. The paper also illustrates that there is indeed weak adherence to good governance and that the government needs to improve structures for youth coordination to ensure water stewardship. Realizing this gap in knowledge, innovation and education to build a culture of resilience at all levels of society, the paper offers a perspective on the role of youth in the development agenda of Namibia and how they can influence decision-making processes in addressing water insecurity in the country. Keywords: Empowerment, Namibia, Water insecurity, Youth

  15. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  16. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  17. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  18. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  19. Climate and transboundary water management issues

    International Nuclear Information System (INIS)

    Bjonback, D.

    1991-01-01

    The potential effects of climate change on transboundary river systems, major water uses, interjurisdictional arrangements, and water issues affecting water management in the Great Plains of Canada are discussed. Three atmospheric general circulation models (GCM) have been applied for a two times carbon dioxide concentration scenario for the Saskatchewan River system. The models were the Goddard Institute for Space Studies (GISS) model, the Geophysical Fluid Dynamics Laboratory (GFDL) model, and the Oregon State University (OSU) model. For all models, soil moisture on the plains was reduced. The GISS model predicted slightly higher runoff for plains-originating streams, and a substantial increase in runoff (32%) in the Rockies. The GFDL model predicted lower runoffs in the plains and Rockies, with some locations near the Alberta-Saskatchewan border indicating zero runoff. The OSU model results generally bracketed the GISS and GFDL results, with total runoff approximating 1951-1980 mean. The GISS model indicated an increase in net basin supply of 28%, while the GFDL model, due to lower runoff and high soil moisture defecits, showed a decrease of 38%. For policy making, monitoring, and research, the GFDL model results can provide important guidelines. Greater attention to demand management and conservation will have short-term benefits in stretching the limited water resource base to support a larger economy, while providing flexibility to cope with future climate as it evolves. 1 ref

  20. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  1. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  2. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  3. Recovery of acidified European surface waters

    Czech Academy of Sciences Publication Activity Database

    Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.

    2005-01-01

    Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005

  4. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  5. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  6. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  7. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  8. UMTRA Surface Project management action process document: Final. Revision 2

    International Nuclear Information System (INIS)

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites

  9. UMTRA Surface Project management action process document: Final. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  10. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun; Yang, Jieyi; Wan, Fang; Ge, Quan; Yang, Longlai; Ding, Zunliang; Yang, Dequan; Sacher, Edward R.; Isimjan, Tayirjan T.

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a

  11. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  12. Pesticides distribution in surface waters and sediments of lotic and ...

    African Journals Online (AJOL)

    An investigation on the availability and distribution of Lindane (HCHs) and Total organochlorine phosphate (TOCP) in the surface waters and sediments of selected water bodies in Agbede wetlands was carried out from December, 2012 to May, 2014 in order to cover seasonal trends in both matrixes. A Gas Chromatograph ...

  13. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  14. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    Science.gov (United States)

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...

  15. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  16. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  17. Managing Climate Risk to Agriculture and Water Resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Climate Risk to Agriculture and Water Resources in South Africa ... to better integrate information on climate change and climate variability into water resources policy, planning and management. ... University of the Free State.

  18. Water Management in Africa and the Middle East: Challenges and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Book cover Water Management in Africa and the Middle East: Challenges and ... key issues and trends, and map out strategies for further research and action. ... and adaptive water management: Innovative solutions from the Global South”.

  19. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... forest, agriculture and water management strategies play in both adaptation to and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  20. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  1. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  2. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  3. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  4. Influence of Road Surface Microtexture on Thin Water Film Traction

    OpenAIRE

    BEAUTRU , Yannick; Kane , Malal; Do , Minh Tan; Cerezo , Véronique

    2012-01-01

    This paper deals with the contribution of road surface microtexture to the relationship between tire/road friction and water depth. The main objectives are the estimation of local water depths trapped at the tire/road interface and the definition of a critical water depth which can be used for driver assistance and information systems. Tests are performed in laboratory. Specimens are slabs made of asphalt concrete and mosaics composed of coarse aggregates. The aggregate mosaics are sandblaste...

  5. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  6. Isotopic hydrology, nuclear tool for sustainable management of water resources

    International Nuclear Information System (INIS)

    Peralta Vita, Jose Luis; Gil Castillo, Reinaldo; Dapenna Dapenna, Cristina

    2015-01-01

    Management and protection of the ground water requires a planned use of the aquifer, considering the social and economic factors of the environment without causing damages in quality and quantity. The karstic aquifer of the sub-basin Artemisa-Quivican, which supports food production for Artemisa and Havana counties, has been characterised through the nuclear techniques application (isotopic hydrology). Three investigation stages were developed: the design and definition of the optimized network for the isotopic and physicochemical monitoring of ground and surface waters; the isotopic characterization (tritium, dissolved oxygen, deuterium) and physicochemical characterization (chemical macro-components, physical and quality parameters) of the sub-basin water and of registered precipitations in the region; and finally the identification of the possible contamination sources in the sub-basin

  7. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    Science.gov (United States)

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  8. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  9. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  10. Context of surveillance of underground and surface waters

    International Nuclear Information System (INIS)

    2010-01-01

    This document briefly describes the evolutions of regulations on site liquid effluents and of guideline values concerning radioactive wastes, briefly presents the surveillance of underground and surface waters of CEA sites, comments the guideline values of the radiological quality of waters aimed at human consumption, and gives an overview of information which are brought to public's attention. Then, for different CEA sites (Cadarache, Marcoule, Saclay, Grenoble, Fontenay-aux-Roses, Valduc, DIF), this document proposes a presentation of the hydrological context, regulatory context, the surface and underground water surveillance process and values, the storing zones of old wastes

  11. Groundwater and surface-water resources in the Bureau of Land Management Moab Master Leasing Plan area and adjacent areas, Grand and San Juan Counties, Utah, and Mesa and Montrose Counties, Colorado

    Science.gov (United States)

    Masbruch, Melissa D.; Shope, Christopher L.

    2014-01-01

    The Bureau of Land Management (BLM) Canyon Country District Office is preparing a leasing plan known as the Moab Master Leasing Plan (Moab MLP) for oil, gas, and potash mineral rights in an area encompassing 946,469 acres in southeastern Utah. The BLM has identified water resources as being potentially affected by oil, gas, and potash development and has requested that the U.S. Geological Survey prepare a summary of existing water-resources information for the Moab MLP area. This report includes a summary and synthesis of previous and ongoing investigations conducted in the Moab MLP and adjacent areas in Utah and Colorado from the early 1930s through the late 2000s.Eight principal aquifers and six confining units were identified within the study area. Permeability is a function of both the primary permeability from interstitial pore connectivity and secondary permeability created by karst features or faults and fractures. Vertical hydraulic connection generally is restricted to strongly folded and fractured zones, which are concentrated along steeply dipping monoclines and in narrow regions encompassing igneous and salt intrusive masses. Several studies have identified both an upper and lower aquifer system separated by the Pennsylvanian age Paradox Member of the Hermosa Formation evaporite, which is considered a confining unit and is present throughout large parts of the study area.Surface-water resources of the study area are dominated by the Colorado River. Several perennial and ephemeral or intermittent tributaries join the Colorado River as it flows from northeast to southwest across the study area. An annual spring snowmelt and runoff event dominates the hydrology of streams draining mountainous parts of the study area, and most perennial streams in the study area are snowmelt-dominated. A bimodal distribution is observed in hydrographs from some sites with a late-spring snowmelt-runoff peak followed by smaller peaks of shorter duration during the late summer

  12. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  13. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  14. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  15. Evaluation of the Purge Water Management System (PWMS) monitor well sampling technology at SRS

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Cardoso-Neto, J.E.; Williams, D.W.

    1997-01-01

    Due to the complex issues surrounding Investigation Derived Waste (IDW) at SRS, the Environmental Restoration Division has been exploring new technologies to deal with the purge water generated during monitoring well sampling. Standard procedures for sampling generates copious amounts of purge water that must be managed as hazardous waste, when containing hazardous and/or radiological contaminants exceeding certain threshold levels. SRS has obtained Regulator approval to field test an innovative surface release prevention mechanism to manage purge water. This mechanism is referred to as the Purge Water Management System (PWMS) and consists of a collapsible bladder situated within a rigid metal tank

  16. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    Science.gov (United States)

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  17. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  18. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  19. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  20. Uncertainty Categorization, Modeling, and Management for Regional Water Supply Planning

    Science.gov (United States)

    Fletcher, S.; Strzepek, K. M.; AlSaati, A.; Alhassan, A.

    2016-12-01

    Many water planners face increased pressure on water supply systems from growing demands, variability in supply and a changing climate. Short-term variation in water availability and demand; long-term uncertainty in climate, groundwater storage, and sectoral competition for water; and varying stakeholder perspectives on the impacts of water shortages make it difficult to assess the necessity of expensive infrastructure investments. We categorize these uncertainties on two dimensions: whether they are the result of stochastic variation or epistemic uncertainty, and whether the uncertainties can be described probabilistically or are deep uncertainties whose likelihood is unknown. We develop a decision framework that combines simulation for probabilistic uncertainty, sensitivity analysis for deep uncertainty and Bayesian decision analysis for uncertainties that are reduced over time with additional information. We apply this framework to two contrasting case studies - drought preparedness in Melbourne, Australia and fossil groundwater depletion in Riyadh, Saudi Arabia - to assess the impacts of different types of uncertainty on infrastructure decisions. Melbourne's water supply system relies on surface water, which is impacted by natural variation in rainfall, and a market-based system for managing water rights. Our results show that small, flexible investment increases can mitigate shortage risk considerably at reduced cost. Riyadh, by contrast, relies primarily on desalination for municipal use and fossil groundwater for agriculture, and a centralized planner makes allocation decisions. Poor regional groundwater measurement makes it difficult to know when groundwater pumping will become uneconomical, resulting in epistemic uncertainty. However, collecting more data can reduce the uncertainty, suggesting the need for different uncertainty modeling and management strategies in Riyadh than in Melbourne. We will categorize the two systems and propose appropriate

  1. A perspective on nonstationarity and water management

    Science.gov (United States)

    Hirsch, R.M.

    2011-01-01

    This essay offers some perspectives on climate-related nonstationarity and water resources. Hydrologists must not lose sight of the many sources of nonstationarity, recognizing that many of them may be of much greater magnitude than those that may arise from climate change. It is paradoxical that statistical and deterministic approaches give us better insights about changes in mean conditions than about the tails of probability distributions, and yet the tails are very important to water management. Another paradox is that it is difficult to distinguish between long-term hydrologic persistence and trend. Using very long hydrologic records is helpful in mitigating this problem, but does not guarantee success. Empirical approaches, using long-term hydrologic records, should be an important part of the portfolio of research being applied to understand the hydrologic response to climate change. An example presented here shows very mixed results for trends in the size of the annual floods, with some strong clusters of positive trends and a strong cluster of negative trends. The potential for nonstationarity highlights the importance of the continuity of hydrologic records, the need for repeated analysis of the data as the time series grow, and the need for a well-trained cadre of scientists and engineers, ready to interpret the data and use those analyses to help adjust the management of our water resources.

  2. Real-Time System for Water Modeling and Management

    Science.gov (United States)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The

  3. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  4. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  5. Water Demand Management for Social Justice — Women, like men ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... ... and management of water projects enhances the intended results of projects and contributes to the sustainability of water resources as well as to social justice. ... Women's rights and access to water and sanitation in Delhi.

  6. Coupling Radar Rainfall to Hydrological Models for Water Abstraction Management

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; MacDonald, Ken

    2015-04-01

    The impacts of climate change and growing water use are likely to put considerable pressure on water resources and the environment. In the UK, a reform to surface water abstraction policy has recently been proposed which aims to increase the efficiency of using available water resources whilst minimising impacts on the aquatic environment. Key aspects to this reform include the consideration of dynamic rather than static abstraction licensing as well as introducing water trading concepts. Dynamic licensing will permit varying levels of abstraction dependent on environmental conditions (i.e. river flow and quality). The practical implementation of an effective dynamic abstraction strategy requires suitable flow forecasting techniques to inform abstraction asset management. Potentially the predicted availability of water resources within a catchment can be coupled to predicted demand and current storage to inform a cost effective water resource management strategy which minimises environmental impacts. The aim of this work is to use a historical analysis of UK case study catchment to compare potential water resource availability using modelled dynamic abstraction scenario informed by a flow forecasting model, against observed abstraction under a conventional abstraction regime. The work also demonstrates the impacts of modelling uncertainties on the accuracy of predicted water availability over range of forecast lead times. The study utilised a conceptual rainfall-runoff model PDM - Probability-Distributed Model developed by Centre for Ecology & Hydrology - set up in the Dove River catchment (UK) using 1km2 resolution radar rainfall as inputs and 15 min resolution gauged flow data for calibration and validation. Data assimilation procedures are implemented to improve flow predictions using observed flow data. Uncertainties in the radar rainfall data used in the model are quantified using artificial statistical error model described by Gaussian distribution and

  7. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  8. Water management in Ghana: between the idea and the implementation

    NARCIS (Netherlands)

    Agyenim, J.B.; Gupta, J.

    2013-01-01

    Four major paradigm shifts in water management include the shift from: government to governance, centralization to decentralization, water as a gift of God to water as an economic good, and sectoral to integrated water resource management. Are these paradigm shifts compatible with

  9. Water management at a malted barley brewery | Van der Merwe ...

    African Journals Online (AJOL)

    In order to manage and reduce water usage at brewery sites, it is essential that comprehensive water balances be available on which to base informed decisions. During 2001 a water management investigation was completed at a South African brewery to develop a suitable water balance for the plant. Literature studies ...

  10. Issues of the presence of parasitic protozoa in surface waters

    Science.gov (United States)

    Hawrylik, Eliza

    2018-02-01

    Parasitic protozoa are very numerous organisms in the environment that play an important role in the spread of water-borne diseases. Water-borne epidemics caused by parasitic protozoa are noted throughout the world. Within these organisms, intestinal protozoa of the genera Cryptosporidium and Giardia are ones of the most serious health hazards for humans. This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  11. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  12. Water Demand Management for Social Justice | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-18

    Jan 18, 2012 ... Water Demand Management for Social Justice ... Women play larger role in Latin America's commercial urban waste management ... the management of solid waste in Latin America, according to research supported by IDRC.

  13. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  14. Geoarchaeology of water management at Great Zimbabwe

    DEFF Research Database (Denmark)

    Sulas, Federica; Pikirayi, Innocent; Sagiya, Munyaradzi Elton

    In Africa, research on water management in urban contexts has often focussed rainfall, and the occurrence floods and droughts, whereas small-scale catchment systems and soil moisture regimes have received far less attention. This paper sets out to re-address the issue by examining the occurrence......, distribution and use of multiple water resources at the ancient urban landscape of Great Zimbabwe. Here, the rise and demise of the urban site have been linked to changing rainfall in the 1st mill. AD. Accordingly, rainfall shortages and consequent droughts eventually leading to the decline and abandonment...... of Great Zimbabwe at around 1550 AD. However, new research findings suggest a different scenario. Combining geoarchaeolological investigations, soil micromorphology and geochemistry with the study of historical sources and ethnographic records, new datasets indicate prolonged availability and diversified...

  15. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  16. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  17. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  18. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  19. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  20. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  1. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  2. The impact of changing climate on surface and ground water quality in southeast of Ireland

    Science.gov (United States)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk

  3. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2014-05-01

    Full Text Available Innovation born of necessity to secure water for the U.S. state of Arizona has yielded a model of water banking that serves as an international prototype for effective use of aquifers for drought and emergency supplies. If understood and adapted to local hydrogeological and water supply and demand conditions, this could provide a highly effective solution for water security elsewhere. Arizona is a semi-arid state in the southwestern United States that has growing water demands, significant groundwater overdraft, and surface water supplies with diminishing reliability. In response, Arizona has developed an institutional and regulatory framework that has allowed large-scale implementation of managed aquifer recharge in the state’s deep alluvial groundwater basins. The most ambitious recharge activities involve the storage of Colorado River water that is delivered through the Central Arizona Project (CAP. The CAP system delivers more than 1850 million cubic meters (MCM per year to Arizona’s two largest metropolitan areas, Phoenix and Tucson, along with agricultural users and sovereign Native American Nations, but the CAP supply has junior priority and is subject to reduction during declared shortages on the Colorado River. In the mid-1980s the State of Arizona established a framework for water storage and recovery; and in 1996 the Arizona Water Banking Authority was created to mitigate the impacts of Colorado River shortages; to create water management benefits; and to allow interstate storage. The Banking Authority has stored more than 4718 MCM of CAP water; including more than 740 MCM for the neighboring state of Nevada. The Nevada storage was made possible through a series of interrelated agreements involving regional water agencies and the federal government. The stored water will be recovered within Arizona; allowing Nevada to divert an equal amount of Colorado River water from Lake Mead; which is upstream of CAP’s point of diversion

  4. Climate change and managing water crisis: Pakistan's perspective.

    Science.gov (United States)

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  5. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  6. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    Science.gov (United States)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  7. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  8. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  9. Management optimization in Thermal complex through water reuse

    International Nuclear Information System (INIS)

    De Souza, S.; Manganelli, A.; Bertolotto, J.; Leys, P.; Garcia, B.

    2004-01-01

    Water reuse involves the concept of the exploitation of a previously used water, for a new, beneficial purpose. Actually, in Uruguay, thermal water is just utilised for balneological purposes, in this paper is proposed the water reuse taking the excess of used swimming pool water, and using it for heating and greenhouse irrigation, and australian lobster breeding. An important aspect of sustainable thermal water management is the protection of the exploted thermal water resources, so water reuse plays an important role in water resource, and ecosystem management, because it reduces the volume discharged and also reduces the risk of thermal pollution [es

  10. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  11. Green Remediation: Best Management Practices for Excavation and Surface Restoration

    Science.gov (United States)

    This fact sheet is one of a series describing best management practices (BMPs) for green remediation, which holistically addresses a cleanup project's energy requirements, air emissions, impacts on water, impacts on land and ecosystems, material consumpt..

  12. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  13. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  14. Wavefront modulation of water surface wave by a metasurface

    International Nuclear Information System (INIS)

    Sun Hai-Tao; Cheng Ying; Liu Xiao-Jun; Wang Jing-Shi

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. (paper)

  15. Water management planning guideline for waterpower

    International Nuclear Information System (INIS)

    2002-05-01

    Hydroelectric power has been used in Ontario for over 150 years, providing the impetus to economic development in the province. Currently, 83 hydroelectric utilities own the more than 200 hydro power facilities in Ontario, accounting for approximately 26 per cent of the total electrical generating capacity in the province. Flood control and the creation of recreational opportunities were added benefits derived from the construction of hydroelectric dams. The three ways of operating hydroelectric facilities are: run-of-the-river which involves minimal forebay storage, peaking which involves the operation of the dam for specific periods of high energy demand, and intermediate. The Ontario government plans to open the electricity market to competition, guided by four principles: (1) protecting consumers and offering more choice, (2) ensuring a strong business climate with a reliable supply of electricity, (3) protecting the environment, and (4) encouraging new ways of doing business and new sources of power. To address issues that arise from the operation of hydroelectric facilities, dam owners and hydroelectric facilities operators are required to develop Water Management Plans, outlining how the facility will be operated to balance environmental, social and economic objectives. The present document was developed to define goals and principles concerning planning, the scope of Water Management Plans, the criteria and the general planning process to be adopted for the preparation of the Plans. 1 tab., 4 figs

  16. Applications of NST in water resources management

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2006-01-01

    At first instance, Nuclear Science and Technology (NST) appears to have no relation to water resource management. Its dark side, the sole purpose of which is weaponry, has for a long time overshadowed its bright side, which has plenty of peaceful applications in the main socio-economic development sectors: power generation, agriculture, health and medicine, industry, manufacturing and environment. Historically, the medical sector is one of the early beneficiaries of the applications of NST. The same is true for Malaysia when the first x-ray machine was installed in 1897 at Taiping Hospital, Perak. In the environment sector, the use of little or no chemical in nuclear processes contributes to a cleaner environment. Nuclear power plants for example do not emit polluting gases and do not harm to the ozone layer. At the end of 2004, there are more than 440 nuclear power reactors operating in more than 30 countries fulfilling 17% of the world electricity demand, and it is growing. While nuclear power is yet to arrive in Malaysia the uses of NST in other areas are increasing. The application of radiotracer techniques in water resource management, in the environment, as well as in industry is an example. (Author)

  17. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  18. Rationale for an ecological risk approach for South African water resource management

    CSIR Research Space (South Africa)

    Jooste, S

    2001-07-01

    Full Text Available that an effect-likelihood approach has the potential to address the variability and uncertainty in management of a surface water body subject to multiple stressors. An in-stream receiving water risk objective approach might be considered....

  19. Analytical Frameworks for Addressing Physical, Social, and Institutional Changes in Water Resources Planning and Management

    Science.gov (United States)

    2015-06-01

    stability Presence of geologic hazards, e.g. landslides , site stability, distance to faults, and reservoir-induced seismicity BP9 Reservoir surface... Earth and Life Studies, National Research Council; National Academies Press. NRC–Panel on Adaptive Management for Resource Stewardship. 2004...Peer Review for Water Resources Project Planning, Water Science and Technology Board, Ocean Studies Board, Division on Earth and Life Studies

  20. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to