WorldWideScience

Sample records for surface water lake

  1. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  2. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  3. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  4. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  5. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  6. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  7. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  8. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  9. Arsenic, Fluoride and Vanadium in surface water (Chasicó Lake, Argentina

    Directory of Open Access Journals (Sweden)

    Maria laura ePuntoriero

    2014-06-01

    Full Text Available Chasicó Lake is the main water body in the southwest of the Chaco-Pampean plain. It shows some differences from the typical Pampean shallow lakes, such as high salinity and high arsenic and fluoride levels. The aim of this paper is to analyze the trace elements [arsenic (As, fluoride (F- and vanadium (V] present in Chasicó Lake. Surface and groundwater were sampled in dry and wet periods, during 2010 and 2011. Fluoride was determined with a selective electrode. As and V were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES. Significant correlation in surface water was only found for As and F- (r=0.978, p<0.01. The As, F- and V concentration values were higher and more widely dispersed in surface water than in groundwater, as a consequence of evaporation. The fact that these elements do not correlate in surface water may also indicates that groundwater would not be the main source of origin of As, F- and V in surface water. The origin of these trace elements is from volcanic glass from Pampean loess. As, F- and V concentration were higher than in national and international guideline levels for the protection of aquatic biota. Hence, this issue is relevant since the silverside (Odontesthes bonariensis is the most important commercial species in Chasicó Lake. This fish is both consumed locally and exported to other South-American countries through commercial and sport fishing.

  10. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    Science.gov (United States)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745" target="_blank">https://doi.org/10.5281/zenodo.1193745.

  11. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    Science.gov (United States)

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of 20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Assimilation of lake water surface temperature observations using an extended Kalman filter

    Directory of Open Access Journals (Sweden)

    Ekaterina Kourzeneva

    2014-10-01

    Full Text Available A new extended Kalman filter (EKF-based algorithm to assimilate lake water surface temperature (LWST observations into the lake model/parameterisation scheme Freshwater Lake (FLake has been developed. The data assimilation algorithm has been implemented into the stand-alone offline version of FLake. The mixed and non-mixed regimes in lakes are treated separately by the EKF algorithm. The timing of the ice period is indicated implicitly: no ice if water surface temperature is measured. Numerical experiments are performed using operational in-situ observations for 27 lakes and merged observations (in-situ plus satellite for 4 lakes in Finland. Experiments are analysed, potential problems are discussed, and the role of early spring observations is studied. In general, results of experiments are promising: (1 the impact of observations (calculated as the normalised reduction of the LWST root mean square error comparing to the free model run is more than 90% and (2 in cross-validation (when observations are partly assimilated, partly used for validation the normalised reduction of the LWST error standard deviation is more than 65%. The new data assimilation algorithm will allow prognostic variables in the lake parameterisation scheme to be initialised in operational numerical weather prediction models and the effects of model errors to be corrected by using LWST observations.

  13. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  14. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  15. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  16. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  17. Total mercury concentrations in surface water and sediments from Danube Delta lakes

    Directory of Open Access Journals (Sweden)

    TEODOROF Liliana

    2007-10-01

    Full Text Available The samples were collected from surface water and sediments of Danube Delta lakes, during april and may 2006. The sediments were digested with nitric acid, and the surface water with real aqua, at Microwave Oven Anton Paar and analised at FIMS 400 Perkin Elmer. The results show that the total mercury is compared with the maximum allowed limits according with Normative 161/2006.

  18. 129I/127I ratios in surface waters of the English Lake District

    International Nuclear Information System (INIS)

    Atarashi-Andoh, M.; Schnabel, C.; Cook, G.; MacKenzie, A.B.; Dougans, A.; Ellam, R.M.; Freeman, S.; Maden, C.; Olive, V.; Synal, H.-A.; Xu, S.

    2007-01-01

    Accelerator Mass Spectrometry (AMS) was used to measure 129 I/ 127 I ratios in surface sea, lake, and river water samples collected in 2004 and 2005 from the English Lake District and from SW Scotland, areas which are in relatively close proximity to the Sellafield nuclear fuel reprocessing plant in NW England. The 129 I/ 127 I ratios in surface water collected from the shore of the Irish Sea were in the range 2.8 x 10 -6 to 8.2 x 10 -6 . These ratios are one order of magnitude higher than that of seawater collected from the Irish Sea in 1992, correlating with the increase in 129 I content of the Sellafield liquid effluent discharge over the last decade. The 129 I/ 127 I ratios in lakes in the Lake District were in the range 0.7 x 10 -6 to 6.4 x 10 -6 and decreased exponentially as a function of distance from Sellafield. Consideration of the relative variation of stable I concentrations and 129 I/ 127 I ratios suggests that Sellafield gaseous discharges may be the dominant source of 129 I to the lakes

  19. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  20. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  1. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    Science.gov (United States)

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  2. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  3. Distribution of fallout plutonium in the waters of the lower Great Lakes

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Nelson, D.M.

    1976-01-01

    The concentrations of fallout 239 240 Pu in the surface waters from all the Great Lakes were slightly lower in 1976 samples than in those from 1973. The same trend of higher concentrations in the surface waters of the upper lakes as in the surface waters of the lower lakes was observed for both years. In addition, the 239 240 Pu concentration in samples of deep water collected during the summer of 1976 was higher than in the surface waters but was similar to the surface water values of the 1973 spring samples. This observation is significant in that it suggests that the surface waters of all the Great Lakes undergo a seasonal decrease in plutonium concentration similar to that already observed in Lake Michigan

  4. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  5. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  6. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  7. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  8. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    Science.gov (United States)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  9. Impacts of lake water environmental condition on bioavailable-phosphorus of surface sediments in Lixia River basin, China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-05-01

    Full Text Available Bioavailable-phosphorus (BAP fractions of the lake surface sediments (the upper 0−5cm depth and environmental indicators of the related lake water column were investigated in five lakes in Lixia River basin during three seasons in order to evaluate the impacts of environmental indicators of the water column on the BAP fractions of surface sediments. The concentration of BAP varied significantly in different seasons. Factor analysis was used to identify the factors which influence sedimentary BAP significantly in the different seasons. The results showed that AAP and Olsen-P were significantly affected by the chemical oxygen demand through the bacterial activity in summer. The high intensity of bacterial activity and density of algae, and low concentrations of NO3-N and dissolved oxygen under high temperature enhanced the BAP released from anaerobic sediment and significantly contributed to the eutrophication of the lake, especially in summer. In addition, macrophyte roots were beneficial to absorption of AAP and Olsen-P.

  10. A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland

    Science.gov (United States)

    Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.

    2015-12-01

    An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency

  11. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015.

    Science.gov (United States)

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-07-25

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.

  12. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk.

    Science.gov (United States)

    Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu

    2017-10-01

    Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t  < 1.0, and EEQ t  < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  14. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    Science.gov (United States)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  15. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  16. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  17. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia)

    Science.gov (United States)

    Yazidi, Amira; Saidi, Salwa; Ben Mbarek, Nabiha; Darragi, Fadila

    2017-10-01

    The concentrations of nutrients and heavy elements in the surface water of the lake Ichkeul, main wadis which feed directly and thermal springs that flow into the lake, are measured to evaluate these chemical elements. There are used to highlight the interactions between these different aquatic compartments of Ichkeul. All metal concentrations in lake water, except Cu, were lower than the maximum permitted concentration for the protection of aquatic life. The results show that the highest concentrations are located in the eastern and south-eastern part of the lake where the polluted water comes from the lagoon of Bizerte through the wadi Tinja as well as from the city of Mateur through the wadi Joumine. The pollution indices and especially the heavy metal evaluation index (HEI) show high pollution specially located at the mouths of wadis and an increase of heavy metal concentrations, as a result of uncontrolled releases of domestic and industrial wastewater.

  18. Variations in pCO2 during summer in the surface water of an unproductive lake in northern Sweden

    International Nuclear Information System (INIS)

    Jonsson, A.; Aaberg, J.; Jansson, M.

    2007-01-01

    Unproductive lakes are generally supersaturated with carbon dioxide (CO 2 ) and emit CO 2 to the atmosphere continuously during ice-free periods. However, temporal variation of the partial pressure of CO 2 (pCO 2 ) and thus of CO 2 evasion to atmosphere is poorly documented. We therefore carried out temporally high-resolution (every 6 h) measurements of the pCO 2 using an automated logger system in the surface water of a subarctic, unproductive, lake in the birch forest belt. The study period was June-September 2004. We found that the pCO 2 showed large seasonal variation, but low daily variation. The seasonal variation was likely mainly caused by variations in input and mineralization of allochthonous organic matter. Stratification depth probably also influenced pCO 2 of the surface water by controlling the volume in which mineralization of dissolved organic carbon (DOC) occurred. In lakes, with large variations in pCO 2 , as in our study lake a high (weekly) sampling intensity is recommended for obtaining accurate estimates of the evasion of CO 2

  19. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  20. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  1. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  2. Using integrated multivariate statistics to assess the hydrochemistry of surface water quality, Lake Taihu basin, China

    Directory of Open Access Journals (Sweden)

    Xiangyu Mu

    2014-09-01

    Full Text Available Natural factors and anthropogenic activities both contribute dissolved chemical loads to  lakes and streams.  Mineral solubility,  geomorphology of the drainage basin, source strengths and climate all contribute to concentrations and their variability. Urbanization and agriculture waste-water particularly lead to aquatic environmental degradation. Major contaminant sources and controls on water quality can be asssessed by analyzing the variability in proportions of major and minor solutes in water coupled to mutivariate statistical methods.   The demand for freshwater needed for increasing crop production puulation and industrialization occurs almost everywhere in in China and these conflicting needs have led to widespread water contamination. Because of heavy nutrient loadings from all of these sources, Lake Taihu (eastern China notably suffers periodic hyper-eutrophication and drinking water deterioration, which has led to shortages of freshwater for the City of Wuxi and other nearby cities. This lake, the third largest freshwater body in China, has historically beeen considered a cultural treasure of China, and has supported long-term fisheries. The is increasing pressure to remediate the present contamination which compromises both aquiculture and the prior economic base centered on tourism.  However, remediation cannot be effectively done without first characterizing the broad nature of the non-point source pollution. To this end, we investigated the hydrochemical setting of Lake Taihu to determine how different land use types influence the variability of surface water chemistry in different water sources to the lake. We found that waters broadly show wide variability ranging from  calcium-magnesium-bicarbonate hydrochemical facies type to mixed sodium-sulfate-chloride type. Principal components analysis produced three principal components that explained 78% of the variance in the water quality and reflect three major types of water

  3. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  4. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  5. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  6. THE WATER QUALITY FROM SAINT ANA LAKE

    Directory of Open Access Journals (Sweden)

    M.VIGH

    2013-03-01

    Full Text Available Inside the Ciomad Massive appears a unique lake in Romania, with an exclusive precipitations alimentation regime. The lake’s origin and the morphometric elements, together with the touristic activity, determine the water’s quality and characteristics. Water status evaluation was realized using random samples taken between the years 2005 and 2010. Qualitative parameters indicate the existence of a clear water lake, belonging to ultra-oligotrophic faze. This is because the crater is covered with forest and the surface erosion is very poor. Also the aquatic vegetation is rare. From all analyzed indicators, only ammonium and total mineral nitrogen have higher values during last years. In the future, the lake needs a higher protection against water quality degradation.

  7. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  8. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  9. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  10. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  11. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    Science.gov (United States)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  12. Variations in pCO{sub 2} during summer in the surface water of an unproductive lake in northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, A.; Aaberg, J.; Jansson, M. [Dept. of Ecology and Environmental Sci ence, Umeaa Univ., 901 87 Umeaa (Sweden)]. e-mail: anders.jonsson@emg.umu.se

    2007-11-15

    Unproductive lakes are generally supersaturated with carbon dioxide (CO{sub 2}) and emit CO{sub 2} to the atmosphere continuously during ice-free periods. However, temporal variation of the partial pressure of CO{sub 2} (pCO{sub 2}) and thus of CO{sub 2} evasion to atmosphere is poorly documented. We therefore carried out temporally high-resolution (every 6 h) measurements of the pCO{sub 2} using an automated logger system in the surface water of a subarctic, unproductive, lake in the birch forest belt. The study period was June-September 2004. We found that the pCO{sub 2} showed large seasonal variation, but low daily variation. The seasonal variation was likely mainly caused by variations in input and mineralization of allochthonous organic matter. Stratification depth probably also influenced pCO{sub 2} of the surface water by controlling the volume in which mineralization of dissolved organic carbon (DOC) occurred. In lakes, with large variations in pCO{sub 2}, as in our study lake a high (weekly) sampling intensity is recommended for obtaining accurate estimates of the evasion of CO{sub 2}.

  13. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    Science.gov (United States)

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  14. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  15. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    Science.gov (United States)

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  16. Seasonal influence on water quality status of Temenggor Lake, Perak

    International Nuclear Information System (INIS)

    Wan Mohd Afiq Wan Abdul Khalik; Mohd Pauzi Abdullah; Mohd Pauzi Abdullah

    2012-01-01

    A study of the water quality in Temenggor Lake was conducted within two different seasons, namely wet season (November - January 2009) and dry season (March - July 2010). Thirteen sampling stations were selected representing open water body of the lake particularly surrounding Banding Island. Three depths layered sampling (surface, middle and bottom of lake) was performed at each sampling stations except in zone B. An average WQI for Temenggor Lake in wet season (90.49) is slightly higher than the average for dry season (88.87). This study indicates quite significant seasonal influence of rainfalls on environmental lake ecosystems by improving the quality through dilution effect on several parameters. Statistical analysis of two-way ANOVA test indicates that all measured parameters are affected by seasonal changes except for pH, turbidity, DO, BOD, oil and grease. Biochemical Oxygen Demand (BOD) and water hardness showed significant relationship with local community activities. Considering future development as eco tourism destination, the water quality of Temenggor Lake should be maintained thus some sort of integrated lake management system model on the integrated water resource management concept should be implemented. (author)

  17. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    Science.gov (United States)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  18. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  19. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    International Nuclear Information System (INIS)

    Kameda, Yutaka; Kimura, Kumiko; Miyazaki, Motonobu

    2011-01-01

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 μg/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: → Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. → The maximum concentration of total sun-blocking agents was 3422 μg/kg dry wt. in sediment. → Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. → Most of sun-blocking agents in sediment were significantly correlated with HHCB. → UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  20. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    Science.gov (United States)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal

  1. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  2. Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover

    Directory of Open Access Journals (Sweden)

    Homa Kheyrollah Pour

    2014-09-01

    Full Text Available This paper presents results from a study on the impact of remote-sensing Lake Surface Water Temperature (LSWT observations in the analysis of lake surface state of a numerical weather prediction (NWP model. Data assimilation experiments were performed with the High Resolution Limited Area Model (HIRLAM, a three-dimensional operational NWP model. Selected thermal remote-sensing LSWT observations provided by the Moderate Resolution Imaging Spectroradiometer (MODIS and Advanced Along-Track Scanning Radiometer (AATSR sensors onboard the Terra/Aqua and ENVISAT satellites, respectively, were included into the assimilation. The domain of our experiments, which focussed on two winters (2010–2011 and 2011–2012, covered northern Europe. Validation of the resulting objective analyses against independent observations demonstrated that the description of the lake surface state can be improved by the introduction of space-borne LSWT observations, compared to the result of pure prognostic parameterisations or assimilation of the available limited number of in-situ lake temperature observations. Further development of the data assimilation methods and solving of several practical issues are necessary in order to fully benefit from the space-borne observations of lake surface state for the improvement of the operational weather forecast. This paper is the second part of a series of two papers aimed at improving the objective analysis of lake temperature and ice conditions in HIRLAM.

  3. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2016-10-01

    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  4. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage

    International Nuclear Information System (INIS)

    Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.

    2006-01-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, originates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO 4 is in the lower portion of the water column, with concentrations up to 8500 mg L -1 Fe, 20,000 mg L -1 SO 4 , 30 mg L -1 Zn, 100 mg L -1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes

  5. Treating cooling pond water for Wabamun Lake level mitigation project in Alberta

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Dealing with the challenge of recharging Wabamun Lake by treating nearby cooling pond water, fed by the North Saskatchewan River, and returning it to the lake, is discussed. To deal with the problem, TransAlta Utilities constructed a treatment plant in 1997 next to the 2,029 MW Sundance power plant to mitigate the effect the power plant's ongoing and historical effect on the lake's water level. The objective of the treatment plant is to treat cooling pond water and return it to the lake to raise water levels there, which have been significantly reduced over the last 25 years mostly by power plant intake, but also by lack of rainfall, surface runoff, and natural evaporation. At the Treatment Facility the water to be treated is first chlorinated to kill zooplankton, algae and bacteria, followed by adjusting the pH using sulfuric acid. Alum coagulant is used to destabilize colour, particles and colloids. The next step is feeding the water to the Actiflo clarifiers which use microsand to provide increased surface area for floc attachment, and to act as ballast. Clarified water from the Actiflo system is then fed to to the Dusenflo filters to remove the largest particles of suspended solids, and through a finer sand media to remove the remaining turbidity, colour and bacteria. Thiosulfate is used in the ozonation system to inactivate any remaining bacteria and zooplankton in the filtered water, before discharging it to the lake. The cooling towers, which are part of the system, ensure that the treated water returned to the lake is kept at a constant temperature, varying no more than three degrees C from the lake water temperature. 3 figs

  6. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    Science.gov (United States)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  7. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska

    Science.gov (United States)

    Baughman, Carson; Jones, Benjamin M.; Bartz, Krista K.; Young, Daniel B.; Zimmerman, Christian E.

    2015-01-01

    Lake Clark is an important nursery lake for sockeye salmon (Oncorhynchus nerka) in the headwaters of Bristol Bay, Alaska, the most productive wild salmon fishery in the world. Reductions in water clarity within Alaska lake systems as a result of increased glacial runoff have been shown to reduce salmon production via reduced abundance of zooplankton and macroinvertebrates. In this study, we reconstruct long-term, lake-wide water clarity for Lake Clark using the Landsat TM and ETM+ surface reflectance products (1985–2014) and in situwater clarity data collected between 2009 and 2013. Analysis of a Landsat scene acquired in 2009, coincident with in situ measurements in the lake, and uncertainty analysis with four scenes acquired within two weeks of field data collection showed that Band 3 surface reflectance was the best indicator of turbidity (r2 = 0.55,RMSE turbidity for Lake Clark between 1991 and 2014. We did, however, detect interannual variation that exhibited a non-significant (r2 = 0.20) but positive correlation (r = 0.20) with regional mean summer air temperature and found the month of May exhibited a significant positive trend (r2 = 0.68, p = 0.02) in turbidity between 2000 and 2014. This study demonstrates the utility of hindcasting turbidity in a glacially influenced lake using the Landsat surface reflectance products. It may also help land and resource managers reconstruct turbidity records for lakes that lack in situ monitoring, and may be useful in predicting future water clarity conditions based on projected climate scenarios.

  8. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  9. Effects of surface-water and groundwater inflows and outflows on the hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida

    Science.gov (United States)

    Sepúlveda, Nicasio; Fulkerson, Mark; Basso, Ron; Ryan, Patrick J.

    2018-05-21

    The U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, initiated a study to quantify the inflows and outflows in the Floral City, Inverness, and Hernando pools of the Tsala Apopka Lake Basin in Citrus County, Florida. This study assesses hydrologic changes in pool stages, groundwater levels, spring flows, and streamflows caused by the diversion of streamflow from the Withlacoochee River to the Tsala Apopka Lake Basin through water-control structures. A surface-water/groundwater flow model was developed using hydraulic parameters for lakes, streams, the unsaturated zone, and the underlying surficial and Upper Floridan aquifers estimated using an inverse modeling calibration technique. After calibration, the model was used to assess the relation between inflows and outflows in the Tsala Apopka Lake Basin and changes in pool stages.Simulation results using the calibrated surface-water/groundwater flow model showed that leakage rates from the pools to the Upper Floridan aquifer were largest at the deep lake cells and that these leakage rates to the Upper Floridan aquifer were the highest in the model area. Downward leakage to the Upper Floridan aquifer occurred beneath most of the extent of the Floral City, Inverness, and Hernando pools. These leakage rates depended on the lakebed leakance and the difference between lake stages and heads in the Upper Floridan aquifer. Leakage rates were higher for the Floral City pool than for the Inverness pool, and higher for the Inverness pool than for the Hernando pool. Lakebed leakance was higher for the Floral City pool than for the Hernando pool, and higher for the Hernando pool than for the Inverness pool.Simulation results showed that the average recharge rate to the surficial aquifer was 10.3 inches per year for the 2004 to 2012 simulation period. Areas that recharge the surficial aquifer covered about 86 percent of the model area. Simulations identified areas along segments of the

  10. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  11. The importance of lake-specific characteristics for water quality across the continental United States.

    Science.gov (United States)

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using

  12. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  13. Application of environmental isotopes to determine the cause of rising water levels in Lake Beseka, Ethiopia

    International Nuclear Information System (INIS)

    Zemedagegnehu, E.; Travi, Y.; Aggarwal, P.

    1999-01-01

    Water level in Lake Beskea, located in the Ethiopian Rift Valley, has been rising continuously for the last about 30 years. The surface area of the lake has increased from about 6 Km 2 to the present 40 Km 2 and has posed serious problems for environmental management, including inundation of grazing and cultivated lands and, potentially, railway tracks. Historically, the lake received recharge from precipitation, surface runoff in the catchment, groundwater discharge, surface runoff from nearby thermal springs. As the lake levels have risen, the thermal springs are now submerged. An increase in the discharge form these thermal springs may be the original cause of lake water rise, or they may have been submerged as a result of the rising water level. An initial study conducted in the 1970s attributed the rising lake levels to increased runoff from adjoining irrigated areas. However, stricter controls on irrigation runoff failed to check the rising lake levels. A multi-disciplinary study, including geophysical, hydrological, geochemical, isotopic, and modeling techniques was then initiated to determine the cause(s) of lake level rise. Results of piezometric and geophysical surveys indicate that the principal cause of rising water levels may be the increased inflow from submerged springs in the southwestern portion of the lake

  14. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy

    Directory of Open Access Journals (Sweden)

    Claire Archer

    2016-12-01

    Full Text Available Lake Lungo and Lake Ripasottile are two shallow (4-5 m lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate composition.  Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition (δ34S=15.2 ‰ and δ18O=10‰. Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰ and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively, attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that

  15. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Sebastiano Piccolroaz

    2016-04-01

    Full Text Available Water temperature plays a primary role in controlling a wide range of physical, geochemical and ecological processes in lakes, with considerable influences on lake water quality and ecosystem functioning. Being able to reliably predict water temperature is therefore a desired goal, which stimulated the development of models of different type and complexity, ranging from simple regression-based models to more sophisticated process-based numerical models. However, both types of models suffer of some limitations: the first are not able to address some fundamental physical processes as e.g., thermal stratification, while the latter generally require a large amount of data in input, which are not always available. In this work, lake surface temperature is simulated by means of air2water, a hybrid physically-based/statistical model, which is able to provide a robust, predictive understanding of LST dynamics knowing air temperature only. This model showed performances that are comparable with those obtained by using process based models (a root mean square error on the order of 1°C, at daily scale, while retaining the simplicity and parsimony of regression-based models, thus making it a good candidate for long-term applications.The aim of the present work is to provide the reader with useful and practical guidelines for proper use of the air2water model and for critical analysis of results. Two case studies have been selected for the analysis: Lake Superior and Lake Erie. These are clear and emblematic examples of a deep and a shallow temperate lake characterized by markedly different thermal responses to external forcing, thus are ideal for making the results of the analysis the most general and comprehensive. Particular attention is paid to assessing the influence of missing data on model performance, and to evaluating when an observed time series is sufficiently informative for proper model calibration or, conversely, data are too scarce thus

  16. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate

  17. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  18. Demonstration of isotope-mass balance approach for water budget analyses of El-burulus Lake, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Sadek, M.A.

    2006-01-01

    The major elements of El-Burulus lake water system are rainfall, agricultural drainage discharge, groundwater, human activities, evaporation and water interaction between the lake and the Mediterranean sea. The principal input sources are agricultural drainage (8 drains at the southern borders of the lake), sea water as well as some contribution of precipitation, groundwater and human activities. Water is lost from the lake through evaporation and surface outflow. The present study has been conducted using isotopic / mass balance approach to investigate the water balance of El-Burulus lake and to emphasize the relative contribution of different input / output components which affect the environmental and hydrological terms of the system. An isotopic evaporation pan experiment was performed to estimate the parameters of relevance to water balance (isotopic composition of free air moisture and evaporating flux) and to simulate the isotopic enrichment of evaporation under atmospheric and hydraulic control. The isotopic mass balance approach employed herein facilitated the estimation of groundwater inflow to the lake, evaporated fraction of total lake inflow (E/I) and its fraction to outflow (E/O), ratio of surface inflow to surface outflow (I/O) as well as residence time of lake water. The isotopic mass balance approach has been validated by comparing the values of estimated parameters with the previous hydrological investigations; a quite good match has been indicated, the relevance of this approach is related to its integrative scale and the more simply implementation

  19. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    International Nuclear Information System (INIS)

    Kumar, A Anand; Prabakaran, K; Nagarajan, R; Jaison, J; Chan, Y S

    2016-01-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed. (paper)

  20. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  1. Water Quality Investigations at Lake Merritt in Oakland, California

    Science.gov (United States)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that

  2. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings

    Directory of Open Access Journals (Sweden)

    René P. Mbanguka

    2016-12-01

    Full Text Available We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5 output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa.

  3. Neutralization of acidic pit lakes with biological methods complement the flooding with neutral surface water: strategies and sustainability; Neutralisation saurer Tagebauseen durch biologische Methoden als Ergaenzung zur Fremdflutung: Strategien und Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, B.; Deneke, R. [Brandenburgische Technische Universitaet Cottbus (Germany). Institut fuer Boden, Wasser, Luft; Buettcher, H.; Uhlmann, W. [Institut fuer Wasser und Boden Dr. Uhlmann, Dresden (Germany)

    2004-07-01

    The aim of this project is to investigate the mechanisms of biogenic alkalinity production in highly acidic surface waters in the post-mining landscape and to develop alternative or additional strategies to overcome acidity by the use of basic biological processes. Current approaches such as flooding with neutral surface water, extensive liming and technical treatments are not suitable for many lakes because of limited water supply and special water chemistry in mining lakes. Therefore, basic research is needed in order to develop ecotechnological measures for the multitude of small and medium sized highly acidic mining lakes. Future treatments are designed to combine water supply and biological measures with the management of water quality by use of in-lake microbial processes (bacteria, phytoplankton). Research focuses on alkalinity response of aquatic ecosystems on nutrient enrichment, their catchment areas and the use of 'Constructed Wetlands' and will be generalized by application of hydrogeochemical models for alkalinity production. (orig.)

  4. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  5. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Simulation of Lake Surface Heat Fluxes by the Canadian Small Lake Model: Offline Performance Assessment for Future Coupling with a Regional Climate Model

    Science.gov (United States)

    Pernica, P.; Guerrero, J. L.; MacKay, M.; Wheater, H. S.

    2014-12-01

    Lakes strongly influence local and regional climate especially in regions where they are abundant. Development of a lake model for the purpose of integration within a regional climate model is therefore a subject of scientific interest. Of particular importance are the heat flux predictions provided by the lake model since they function as key forcings in a fully coupled atmosphere-land-lake system. The first step towards a coupled model is to validate and characterize the accuracy of the lake model over a range of conditions and to identify limitations. In this work, validation results from offline tests of the Canadian Small Lake Model; a deterministic, computationally efficient, 1D integral model, are presented. Heat fluxes (sensible and latent) and surface water temperatures simulated by the model are compared with in situ observations from two lakes; Landing Lake (NWT, Canada) and L239 (ELA, Canada) for the 2007-2009 period. Sensitivity analysis is performed to identify key parameters important for heat flux predictions. The results demonstrate the ability of the 1-D lake model to reproduce both diurnal and seasonal variations in heat fluxes and surface temperatures for the open water period. These results, in context of regional climate modelling are also discussed.

  7. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  8. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Science.gov (United States)

    2010-07-01

    ... most cost effective pollution prevention and treatment techniques available, and minimizes the... shall adopt an antidegradation standard applicable to all waters of the Great Lakes System and identify... result in an increased loading of BCCs to surface waters of the Great Lakes System and for which...

  9. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  11. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  12. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  13. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  14. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    Science.gov (United States)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  15. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  16. A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia

    Directory of Open Access Journals (Sweden)

    Tiiu Alliksaar

    2012-11-01

    Full Text Available The Water Framework Directive (WFD of the European Union requires the quality of all European water bodies to be examined, and aims to achieve good status by 2015. This study was initiated to assess whether a potential reference lake for identifying lake-type specific reference conditions meets the WFD requirements, of being minimally impacted by human activity during the last centuries. The sediments of Lake Kooraste Kõverjärv were analysed for diatom assemblages and sediment composition; past changes in the lake-water pH and total phosphorus were reconstructed, using quantitative models on sedimentary diatoms. The chronology of sediments was established, using spheroidal fly-ash particles stratigraphy. Palaeolimnological investigations, supported by information from historical maps, revealed that man-made changes around the lake have severely influenced its ecological conditions. The lake, which had been oligotrophic with soft and clear water before the mid-17th century, has been trans­formed into a hard-water lake by modifications to the inflow and outflow. The lake water quality has also been altered by the infiltration of nutrients from a nearby hypertrophic lake that was used for flax retting since the 19th century. Although the ecological status of the lake has remained good despite all these changes, it is still questionable whether to nominate it as a reference lake for stratified hard-water lake types.

  17. Geophysical characterization of the role of fault and fracture systems for recharging groundwater aquifers from surface water of Lake Nasser

    Directory of Open Access Journals (Sweden)

    Khamis Mansour

    2018-06-01

    Full Text Available The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES’s were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area. Keywords: Fracture system, Seismicity, Groundwater reservoir, Gravity, VES

  18. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  19. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  20. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  1. Water-quality characteristics of Michigan's inland lakes, 2001-10

    Science.gov (United States)

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  2. Summary of Surface-Water Quality, Ground-Water Quality, and Water Withdrawals for the Spirit Lake Reservation, North Dakota

    National Research Council Canada - National Science Library

    Vinning, Kevin C; Cates, Steven W

    2006-01-01

    .... The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies...

  3. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    Science.gov (United States)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while

  4. Water circulation and recharge pathways of coastal lakes along the southern Baltic Sea in northern Poland

    Directory of Open Access Journals (Sweden)

    Cieśliński Roman

    2016-12-01

    Full Text Available The purpose of this paper is to describe water circulation patterns for selected lakes found along the Baltic coast in northern Poland and to determine primary recharge mechanisms or pathways that produce an influx or loss of lake water. A secondary purpose of the paper is to determine the magnitude of recharge for each studied source of water – river water influx, surface runoff from direct catchments, forced influx from polders surrounding lakes, and periodic marine water intrusions from the nearby Baltic Sea. It is also important to determine the magnitude of water outflow from lakes to the sea via existing linkages as well as to compare horizontal influx and outflow data. The study area consisted of five lakes located along the Baltic Sea in northern Poland: Łebsko, Gardno, Bukowo, Kopań, Resko Przymorskie. The main driving force of the studied lakes are large rivers that drain lake catchment areas and periodic brackish water intrusions by the Baltic Sea.

  5. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  6. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    Science.gov (United States)

    Riffler, M.; Wunderle, S.

    2014-05-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS) lists LWT as an Essential Climate Variable (ECV). Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs were

  7. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  8. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    Science.gov (United States)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  9. Changing climate in the Lake Superior region: a case study of the June 2012 flood and its effects on the western-lake water column

    Science.gov (United States)

    Minor, E. C.; Forsman, B.; Guildford, S. J.

    2013-12-01

    In Lake Superior, the world's largest freshwater lake by area, we are seeing annual surface-water temperature increases outpacing those of the overlying atmosphere. We are also seeing ever earlier onsets of water-column stratification (in data sets from the mid-1980s to the present). In Minnesota, including the Lake Superior watershed, precipitation patterns are also shifting toward fewer and more extreme storm events, such as the June 2012 solstice flood, which impacted the western Lake Superior basin. We are interested in how such climatological changes will affect nutrient and carbon biogeochemistry in Lake Superior. The lake is currently an oligotrophic system exhibiting light limitation of primary production in winter and spring, with summer primary production generally limited by phosphorus and sometimes co-limited by iron. Analyses in the western arm of Lake Superior showed that the June 2012 flood brought large amounts of sediment and colored dissolved organic matter (CDOM) from the watershed into the lake. There was initially a ~50-fold spike in the total phosphorus concentrations (and a 5 fold spike in soluble reactive phosphorus) in flood-impacted waters. This disappeared rapidly, in large part due to sediment settling and did not lead to an increase in chlorophyll concentrations at monitored sampling sites. Instead, lake phytoplankton appeared light limited by a surface lens of warm water enriched in CDOM that persisted for over a month after the flood event itself. Our observations highlight the need for continuing research on these complex in-lake processes in order to make accurate predictions about longer term impacts of these large episodic inputs in CDOM, sediment, and nutrient loading.

  10. Do zooplankton contribute to an ultraviolet clear-water phase in lakes?

    NARCIS (Netherlands)

    Williamson, C.E.; Lange, de H.J.; Leech, D.M.

    2007-01-01

    Seasonal increases in the ultraviolet (UV) transparency of the surface waters of an oligotrophic lake in Pennsylvania suggest that clear-water phase (CWP) events similar to those previously observed for visible light also exist for the potentially damaging UV wavelengths. Seasonal increases in

  11. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  12. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    Science.gov (United States)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  13. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003-2011

    Science.gov (United States)

    Moore, P.; Williams, S. D. P.

    2014-12-01

    Terrestrial water storage (TWS) change for 2003-2011 is estimated over Africa from GRACE gravimetric data. The signatures from change in water of the major lakes are removed by utilizing kernel functions with lake heights recovered from retracked ENVISAT satellite altimetry. In addition, the contribution of gravimetric change due to soil moisture and biomass is removed from the total GRACE signal by utilizing the GLDAS land surface model. The residual TWS time series, namely groundwater and the surface waters in rivers, wetlands, and small lakes, are investigated for trends and the seasonal cycle using linear regression. Typically, such analyses assume that the data are temporally uncorrelated but this has been shown to lead to erroneous inferences in related studies concerning the linear rate and acceleration. In this study, we utilize autocorrelation and investigate the appropriate stochastic model. The results show the proper distribution of TWS change and identify the spatial distribution of significant rates and accelerations. The effect of surface water in the major lakes is shown to contribute significantly to the trend and seasonal variation in TWS in the lake basin. Lake Volta, a managed reservoir in Ghana, is seen to have a contribution to the linear trend that is a factor of three greater than that of Lake Victoria despite having a surface area one-eighth of that of Lake Victoria. Analysis also shows the confidence levels of the deterministic trend and acceleration identifying areas where the signatures are most likely due to a physical deterministic cause and not simply stochastic variations.

  14. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  15. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    Science.gov (United States)

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-04

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  16. Near-Surface Geophysical Character of a Holocene Fault Carrying Geothermal Flow Near Pyramid Lake, Nevada

    Science.gov (United States)

    Dudley, C.; Dorsey, A.; Louie, J. N.; Schwering, P. C.; Pullammanappallil, S.

    2012-12-01

    Lines of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources, providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass shows a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location to a depth of at least 60 m at 11 ka. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey comprises near-surface seismic reflection and refraction, nine near-surface refraction microtremor (SeisOpt® ReMi™) arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys at and near the tufa columns. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results show no indication of any fast (> 500 m/s) tufa below the surface at or near the tufa columns. Vs30 averages were 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results also show no indication of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and

  17. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    Science.gov (United States)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    Mediterranean wet-dry events during this period. There are robust indications for a link between lake level and the North Atlantic Oscillation, which is known to strongly influence Mediterranean winter precipitation. Hydro-climatic records show a complicated picture, but tentatively support the conclusion that the unprecedented lake level fall is principally related to climate change. The available fluvial discharge record and most existing snowfall records show statistically significant decreases in annual averages. Annual rainfall only shows a statistically significant decrease of the 25th percentile; 7-month rainfall (Oct-Apr) additionally shows a statistically significant but non-robust decrease of the mean. The modest amount of water extraction (annually: ~14*103m3, ~0.004% of total lake volume) exerts a progressive and significant impact on lake level over the longer term, accounting for ~25% of the observed fall. Lake level lowering ends when lake-surface area shrinkage has led to a decrease in lake-surface evaporation that is equivalent to the amount of water extracted. The adjustment of lake level to stable extraction rates requires two to three decades. This work aims to steer adaptation and mitigation strategies by informing on lake response under different climate change and extraction scenarios. Lake protection is a cost effective solution for supporting global biodiversity and for providing sustainable water resources.

  18. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  19. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    Science.gov (United States)

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  20. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  1. Wind-driven Water Bodies : a new paradigm for lake geology

    Science.gov (United States)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  2. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  3. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  4. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Science.gov (United States)

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  5. Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S., the Governing Board of the South Florida Water Management District (SFWMD authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000 of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms. Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the

  6. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  7. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    Science.gov (United States)

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  8. Physical, chemical and microbiological analysis of the water quality of Rawal Lake, Pakistan

    Directory of Open Access Journals (Sweden)

    Mehreen Hassan

    2014-06-01

    Full Text Available What better gift of nature would be than good quality water? In order to assess the quality of water of Rawal Lake, following research was carried out. Rawal lake is a source of drinking water supplied to many areas of Rawalpindi and Islamabad’ the capital city of Pakistan. Water of this lake is being highly polluted by the local communities alongside the lake through solid waste dumping. Samples of surface water were collected, tested and analyzed in the laboratory on the basis of physical, chemical and microbiological parameters. The results showed uncertainties in many of the selected parameters. Microbiological analysis revealed high contamination of E. coli, fecal coliform and total coliform in the samples proving it unfit for drinking. It was found that the concentration of all physical parameters such as nitrates, chloride, pH and conductivity were within the normal limits. The level of heavy metals like lead, iron, chromium etc. was also found low. Turbidity at some points exceeded the maximum acceptable limit as per WHO statement.

  9. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  10. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei; Qin, Ning; Kong, Xiangzhen; Liu, Wenxiu; He, Qishuang; Ouyang, Huiling; Yang, Chen; Jiang, Yujiao; Wang, Qingmei; Yang, Bin; Xu, Fuliu, E-mail: xufl@urban.pku.edu.cn

    2013-09-01

    The spatio-temporal distributions and the ecological and health risks of PAEs in surface water of Lake Chaohu, the fifth largest lake in China, were studied based on the monthly monitoring of six PAE congeners from May 2010 to April 2011. The annual total concentration of the six PAE congeners (Σ{sub 6}PAE) in the surface water ranged from 0.467 to 17.953 μg L{sup −1}, with the average value of 4.042 ± 3.929 μg L{sup −1}. The di-n-butyl phthalate (DnBP) that dominated the Σ{sub 6}PAE at 65.8% was found at its highest and lowest levels in the western lake (TX) and eastern drinking water source area (JC), respectively. The temporal distributions of Σ{sub 6}PAE showed that the highest and lowest levels were observed in September 2010 and June 2010, respectively. The different relationships between the runoff and the PAEs with low and high levels of carbon might suggest their different sources. The DnBP had much greater ecological risks than the other studied PAE congeners as indicated by its potential affected fractions (PAFs) and the margin of safety (MOS10). The PAE congeners studied posed little health risk to the nearby male and female citizens. - Highlights: • Monthly variation in PAEs was first investigated in a large Chinese shallow lake. • Ecological and health risks with uncertainty were determined. • PAEs with low and high level of carbon would be from different sources. • DnBP predominated within PAE congeners and posed a much greater ecological risks. • The studied PAE congeners posed little health risks to the nearby citizens.

  11. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    Science.gov (United States)

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline

  12. Linking Land Use Changes to Surface Water Quality Variability in Lake Victoria: Some Insights From Remote Sensing (GC41B-1101)

    Science.gov (United States)

    Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan

    2016-01-01

    Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.

  13. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  14. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels

    International Nuclear Information System (INIS)

    Konstantinou, Ioannis K.; Hela, Dimitra G.; Albanis, Triantafyllos A.

    2006-01-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far. - Information on pesticide pollution of surface waters in Greece is reviewed

  15. Modern processes of sediment formation in Lake Towuti, Indonesia, as derived from the composition of lake surface sediments

    Science.gov (United States)

    Hasberg, Ascelina; Melles, Martin; Morlock, Marina; Vogel, Hendrik; Russel, James M.; Bijaksana, Satria

    2016-04-01

    In summer 2015, a drilling operation funded by the International Continental Scientific Drilling Program (ICDP) was conducted at Lake Towuti (2.75°S, 121.5°E), the largest tectonically formed lake (surface area: 561 km²) of the Republic Indonesia. The Towuti Drilling Project (TDP) recovered more than 1000 meters of sediment core from three sites. At all three sites replicate cores down to 133, 154, and 174 m below lake floor have penetrated the entire lake sediment record, which is expected to comprise the past ca. 650.000 years continuously. Lake Towutís sediment record thus can provide unique information for instance concerning the climatic and environmental history in the Indo-Pacific-Warm-Pool (IPWP) and concerning the evolutionary biology in SE Asia. For a better understanding of the palaeoenvironmental proxies to be analyzed on the drill cores, the modern processes of sediment formation in the lake and in its catchment - under known environmental conditions - were investigated on a set of 84 lake sediment surface samples. Sampling was conducted by grab sampler (UWITEC Corp., Austria) in a grid of 1 to 4 km resolution that covers the entire lake. The samples were analyzed for inorganic geochemical composition (XRF powder scans and ICP-MS), magnetic susceptibility (Kappabridge), grain-size distribution (laser scanner), biogenic components (smear-slide analyses), biogenic silica contents (leaching), and carbonate, total organic carbon (TOC), nitrogen (TN), and sulfur (TS) concentrations (elemental analyzer). The sediments close to the lake shores and in front of the major river inlets are characterized by mean grain sizes coarser than average and high magnetic susceptibilities presented by high ratios of Cr, Ni, Co, and Zr. This reflects higher energies due to wave action and fluvial sediment supply, as well as the occurrence of magnetic minerals particularly in the sand and gravel fractions of the sediments. In regions of deeper waters and more distal to

  16. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    Science.gov (United States)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinitywater pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  17. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  18. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  19. [Spatial Distribution Characteristics of Different Species Mercury in Water Body of Changshou Lake in Three Gorges Reservoir Region].

    Science.gov (United States)

    Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong

    2015-08-01

    An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.

  20. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  1. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  2. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  3. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  4. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  5. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  6. Water resources of the Lake Erie shore region in Pennsylvania

    Science.gov (United States)

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  7. Perchlorate in Lake Water from an Operating Diamond Mine.

    Science.gov (United States)

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  8. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  9. The surface water model for assessing Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1993-01-01

    Canada's Nuclear Fuel Waste Management Program (NFWMP) is investigating the concept of disposal of nuclear fuel waste in a vault excavated deep in crystalline rock on the Canadian Shield. Probabilistic vault, geosphere, and biosphere models are implemented using Monte Carlo simulation techniques to trace nuclides transported in groundwater to the surface environment and humans far into the future. This paper describes the surface water submodel and its parameter values, sensitivity analysis, and validation. The surface water model is a simple, time-dependent, mass balance model of a lake that calculates radioactive and stable isotope contaminant concentrations in lake water and sediment. These concentrations are input to the other submodels and used to predict the radiological dose to humans and other biota. Parameter values in the model are based on the literature and the author's own data, and are generic to Canadian Shield lakes. Most parameters are represented by log normally distributed probability density functions. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing with catchment area being the most important parameter. When catchment area is held constant lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. For volatile nuclides, gaseous evasion also has a marked influence on concentrations in both water and sediment, whereas sedimentation rate strongly influences sediment nuclide concentrations. Validation tests demonstrate that the models predictions for 60 Co, 134 Cs, 3 H, P, Cd and Ca are consistent with empirical data when uncertainties are taken into account

  10. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  11. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    Science.gov (United States)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  12. NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    Dorsey, Alison; Dudley, Colton; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish [Optim

    2013-06-30

    Linear deposits of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources by providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass reveals a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location 11 ka to a depth of at least 60 m. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey at and near the tufa columns comprises near-surface Pwave seismic reflection and refraction, electrical resistivity tomography, nearsurface refraction microtremor arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results indicate that no seismically fast (> 500 m/s) tufa deposits are present below the surface at or near the tufa columns. Vs30 averages were for example 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results similarly indicate a lack of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that

  13. Isotope techniques in lake water studies

    International Nuclear Information System (INIS)

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  14. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  15. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  16. Lake Tahoe Water Quality Improvement Programs

    Science.gov (United States)

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, and list of partner agencies.

  17. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake.

    Science.gov (United States)

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi

    2017-09-04

    Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10 -5 to 10 -4 ). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.

  18. Eutrophication of Lake Waters in China: Cost, Causes, and Control

    Science.gov (United States)

    Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B.

    2010-04-01

    Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.

  19. Surface Water Quality Trends from EPA's LTM Network

    Science.gov (United States)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  20. Environmental changes and microbiological health risks. Satellite-derived turbidity: an indicator of "health hazard" for surface water in West Africa (Bagre lake, Burkina Faso).

    Science.gov (United States)

    Robert, E.; Grippa, M.; Kergoat, L.; Martinez, J.; Pinet, S.; Gal, L.; Soumaguel, N.

    2015-12-01

    A significant correlation exists between the concentration of parasites, bacteria and some water quality parameters including surface suspended solids (SSS) and turbidity. Suspended particles can carry viruses and pathogenic bacteria affecting human health and foster their development. High SSS, associated with high turbidity, can therefore be considered as a vector of microbiological contaminants, causing diarrheal diseases. Few studies have focused on the turbidity parameter in rural Africa, while many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, lakes, and rivers. Monitoring turbidity may therefore contribute to health hazard monitoring. Turbidity refers to the optical properties of water and is known to impact water reflectance in the visible and near-infrared domain. Ideally, its spatial and temporal variability requires the use of high temporal resolution (MODIS) and spatial resolution (Landsat, SPOT, Sentinel-2). Here we investigate turbidity in West-Africa. Various algorithms and indices proposed in the literature for inland waters are applied to MODIS series and to Landsat 7 and 8 CDR images, and SPOT5 images. The data and algorithms are evaluated with field measurements: turbidity, SSS, and hyperspectral ground radiometry. We show that turbidity of the Bagre Lake displays a strong increase over 2000-2015, associated with the corresponding increase of the red and NIR reflectances, as well as a reduction of the seasonal variations. Water level derived from the Jason 2 altimeter does not explain such variations. The most probable hypothesis is a change in land use (increase in bare and degraded soils), that leads to an increase in the particles transported by surface runoff to the lake. Such an increase in turbidity reinforces the health risk. We will discuss the link between turbidity and health in view of data from health centers on diarrheal diseases as well as data on practices and uses of populations.

  1. Hydrology and water quality of Park Lake, south-central Wisconsin

    Science.gov (United States)

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  2. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  3. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.

    Science.gov (United States)

    Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne

    2015-10-06

    The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake.

  4. Influence of the Three Gorges Project on the Water Resource Components of Poyang Lake Watershed: Observations from TRMM and GRACE

    Directory of Open Access Journals (Sweden)

    Xiaobin Cai

    2015-01-01

    Full Text Available The Three Gorges Project (TGP has received many criticisms about its potential effects on the changes in the downstream ecosystems. Poyang Lake is the largest body of water downstream of the TGP, and it is not immune to these changes. TRMM and GRACE data were introduced in this study to estimate river-lake water exchange, from which the hydrological responses of Poyang Lake could be identified. A significant decreasing trend of the runoff coefficient has been observed since 2003, resulting in 6.02 km3 more water discharge from the lake into the Yangtze River than under normal conditions. No significant interannual changes occurred in the water level or local precipitation, and GRACE observations revealed that groundwater discharge appeared to be the most likely compensation for the water loss. A novel approach, namely, the groundwater abnormality index (GAI, was developed to depict the water exchange using GRACE and surface water observations. Lower than normal GAIs were found between 2003 and 2005, reaching a minimum of −29.26 in October 2003, corresponding to ten times of the mean GAI during 2006–2012, clearly indicating a significant water exchange in Poyang Lake Basin from groundwater to surface water after the TGP impoundment.

  5. Microplastic pollution in the surface waters of the Laurentian Great Lakes.

    Science.gov (United States)

    Eriksen, Marcus; Mason, Sherri; Wilson, Stiv; Box, Carolyn; Zellers, Ann; Edwards, William; Farley, Hannah; Amato, Stephen

    2013-12-15

    Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash. Many microplastic particles were multi-colored spheres, which were compared to, and are suspected to be, microbeads from consumer products containing microplastic particles of similar size, shape, texture and composition. The presence of microplastics and coal ash in these surface samples, which were most abundant where lake currents converge, are likely from nearby urban effluent and coal burning power plants.

  6. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  7. Gases (CH4, CO2 and N2 and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling

    Directory of Open Access Journals (Sweden)

    Donald D. ADAMS

    2001-02-01

    Full Text Available Lake Orta, a subalpine, warm monomictic lake in northwestern Italy was heavily polluted from rayon factory discharges of ammonium and copper since 1926. In the 1950s accumulations of contaminants resulted in whole lake pHs of 3.8-4.0 from ammonium oxidation. Partial remediation started in the 1950s, but by 1985-89 the water remained acidified at pHs of 4.0. Artificial liming (14,500 t in 1989-90 resulted in improved water quality and substantial recovery of the biological community. Sediment gases, sampled in 1989 before liming, from the lake's four basins showed severe inhibition of methanogenesis (CH4 = 0.0-0.15 mM in the surface sediments (0.5-5 cm of the southern basin, location of the plant effluent, as compared to the deep central and northern basins (0.9-1.4 mM. Four years after liming, cores collected in 1994 near the 1989 southern basin sites showed a slight change in surface sediment methane (0.07-0.82 mM, yet suggested continual sediment toxicity, at least to carbon cycling through methanogenesis. Calculations of diffuse flux of CH4 at the sediment-water interface (SWI in 1989 were 6.6-7.4 mM m-2 day-1 for the central and northern basins and 0.13 for the southern basin. CH4 fluxes increased 16x to 2 mM m-2 day-1 in 1994 in the southern basin, possibly from remediation of near surface sediments. The impact of pollution on denitrification (formation of sediment N2 gas was not so obvious since two processes could counteract each other (high NO3 - stimulating denitrification versus possible negative effects from acidity and metals. The calculated flux of N2 from the southern basin sediments increased 5x four years after liming compared to the period of acidification, suggesting possible toxicity towards denitrifiers during the earlier period. Core overlying water (0.68 mM exhibited N2 concentrations close to saturation, while most surface sediments were twice as much (1.5 mM. Surface (0-6 cm sediment N2 was similar at most sites, with the

  8. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    Science.gov (United States)

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  9. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    Science.gov (United States)

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  10. The surface water submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1992-12-01

    A requirement in assessing the safety of Canada's nuclear fuel waste management concept is the prediction of radiological doses to humans and other biota, which may occur far in the future as a result of releases of nuclides to the biosphere. A biosphere model has been developed, consisting of four integrated submodels describing surface water, soil, atmosphere, and food-dose components. This report documents the surface water submodel, which is a simple, generic mass balance model of a Canadian Shield lake. Nuclide input to the lake is the time-dependent mass output from the geosphere model. Nuclides enter the lake from compacted sediments. The surface water submodel calculates nuclide concentrations in lake water and sediment. These concentrations are used in the other biosphere submodels to predict the radiological dose to biota. Selection of parameter values for the model is based on the literature, our own data, and conservative assumptions to ensure that doses are not underestimated. MOst parameters are represented by log normal. This probabilistic approach of using distributed parameter values accounts for variability and uncertainty in parameter values, and short-term environmental fluctuations. Long-term environmental changes, such as glaciation, are not considered in the model. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing, with lake catchment area being the most important parameter. When catchment area is held constant, as would occur at a specific site, lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. Sediment accumulation rate also strongly influences sediment nuclide concentrations. Validation of model predictions using published studies and other data demonstrates that our model is realistic and suitable for assessing Canada's disposal concept. (Author)

  11. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  12. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210....... Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a “delivery” mechanism for excess nutrients...

  13. Microplastic pollution in the surface waters of Italian Subalpine Lakes.

    Science.gov (United States)

    Sighicelli, Maria; Pietrelli, Loris; Lecce, Francesca; Iannilli, Valentina; Falconieri, Mauro; Coscia, Lucia; Di Vito, Stefania; Nuglio, Simone; Zampetti, Giorgio

    2018-05-01

    Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (plastic particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    Science.gov (United States)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  15. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  16. Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake Ma Vallée), Kinshasa Democratic Republic of Congo.

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Atibu, Emmanuel K; Tshibanda, Joseph B; Ngelinkoto, Patience; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-10-01

    This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65 × 10(3), 6.35 × 10(3), 3.27 × 10(3) and 3.60 × 10(8) CFU g(-1) of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.

  17. Analysis of black water aggregation in Taihu Lake

    Directory of Open Access Journals (Sweden)

    Gui-hua Lu

    2011-12-01

    Full Text Available Black water aggregation (BWA in Taihu Lake is a disaster for the lake environment. It is a phenomenon resulting from water environmental deterioration and eutrophication caused by accumulation of pollutants in the lake, according to research on the water quality, pollutants of BWA, and occurrence mechanisms of BWA. Dead algae are the material base of BWA, the polluted sediment is an important factor for the formation of BWA, and hydrological and meteorological conditions such as sun light, air temperature, wind speed, and water flow are the other factors that may lead to the formation of BWA. Thioether substances such as dimethyl trisulfide are the representative pollutants of BWA. Parameters such as chlorophyll-a, DO, pH, and water temperature are sensitive indicators of BWA. Measures such as algae collection, ecological dredging, pollution control, and water diversion from the Yangtze River to the lake, are effective, and strengthening aeration is an emergency measure to control BWA.

  18. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  19. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  20. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models.

    Science.gov (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas

    2013-04-01

    Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of

  1. Environmental Monitoring, Water Quality - Lakes Assessments - Non Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only non attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water...

  2. Hydrologic Monitoring and Water Balance Modeling in West and Seven Palm Lake Drainages in the Florida Everglades

    Science.gov (United States)

    Allen, J.; Whitman, D.; Price, R.

    2016-02-01

    In the Florida Everglades, sea level rise and reduced freshwater inputs have altered the hydrologic and chemical conditions in coastal estuaries. Brackish coastal groundwater discharge, an inland intrusion of submarine groundwater discharge, has been shown to occur seasonally along the coastal wetlands of the Everglades. This brackish groundwater is enriched in total phosphorus, the limiting nutrient in the Everglades. A major component of the Comprehensive Everglades Restoration Plan is to increase freshwater delivery to the southern coastal Everglades and adjacent bays, in an effort to restore a salinity and nutrient regime conducive for the development of submerged aquatic vegetation. This study is being conducted in the estuarine lakes of the Everglades that are connected to Florida Bay. Water quality in these lakes has diminished over time, potentially due to increased nutrient deliveries from coastal groundwater discharge. Current hydrologic and chemical conditions are being established within the lakes in order to gain a better understanding of the effects of restoration efforts through time. Water budgets are being constructed on daily, monthly and annual time steps to estimate the groundwater-surface water interaction term. In addition, hydrologic and topographic data from the Everglades Depth Estimation Network is being utilized in order to calculate water budgets for the lakes region spanning ten years prior to the study period. Water chemistry in the lakes and groundwater is also being monitored to determine the influence of groundwater-surface water exchange on salinity and nutrient conditions in the lakes. The results of this study can be used to assess the influence of restoration efforts on the hydrochemical conditions of downstream coastal areas affected by coastal groundwater discharge and sea level rise.

  3. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    Science.gov (United States)

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  4. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment.

    Science.gov (United States)

    Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Kotopoulou, Athina; Kintzikoglou, Katerina; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-12-01

    A study was undertaken for the evaluation of the pesticide pollution caused by the agricultural activities in the basin of Lake Vistonis, Greece during the years 2010-2012. Water samples were collected from Lake Vistonis, four major rivers and various small streams and agriculture drainage canals. The concentration of 302 compounds was determined after solid-phase extraction of the water samples and subsequent LC-MS/MS and GC-MS/MS analysis of the extracts. Overall, herbicides were the most frequently detected pesticides (57%), followed by insecticides (28%) and fungicides (14%). In Lake Vistonis 11 pesticides were detected. Specifically, fluometuron was detected in the 75% of the samples (maximum concentration 0.088 μg/L) whereas lambda-cyhalothrin was detected in all the samples of spring 2011 and alphamethrin in all the samples of spring 2012 (maximum concentration 0.041 and 0.168 μg/L, respectively). In the rivers and drainage canals 68 pesticides were detected. Specifically, fluometuron was detected in the 53% of the samples (maximum concentration 317.6 μg/L) followed by chlorpyrifos and prometryn (16 and 13% of the samples respectively). An environmental risk assessment was performed by employing the Risk Quotient (RQ) method. The risk assessment revealed that at least one pesticide concentration led to a RQ>1 in 20% of the samples. In Lake Vistonis, alphamethrin and lambda-cyhalothrin concentrations resulted in RQ>1, whereas in the other water bodies this was mainly the result of chlorpyrifos-methyl and alphamethrin exposure. In contrast, herbicide and fungicide concentrations contributed substantially less to environmental risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples

    Science.gov (United States)

    John L. Korfmacher; Robert C. Musselman

    2007-01-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  6. Water hyacinth hotspots in the Ugandan waters of Lake Victoria in ...

    African Journals Online (AJOL)

    Water hyacinth invaded Lake Victoria in the 1980s and, by 1998, had attained peak coverage of approximately 2 000 ha in the Ugandan waters of the lake. Control interventions, especially via biological means, significantly reduced the weed's coverage to non-nuisance levels (<10 ha) by 1999. Although resurgence was ...

  7. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  8. The influence of vegetation on the transport pathways and residence time of surface water on the deltaic islands of Wax Lake Delta, LA

    Science.gov (United States)

    Olliver, E. A.; Edmonds, D. A.; Shaw, J.

    2017-12-01

    The coastal deltas of the world are vital ecosystems that disproportionately support the world's population and biological productivity. Recent studies indicate vegetation may have significant influence on the development and structure of the deltaic islands composing these deltas. However, there is little convincing data drawn from natural systems. Here we present a 2D numerical modeling study of the interaction of surface water flow and vegetation on Wax lake Delta, LA, USA. We use a seamless digital elevation model (DEM) of the Wax Lake Delta (WLD) as the initial topographic condition. The deltaic island elevation data for the DEM is derived from LiDAR data, while the channel and delta front bathymetry is derived from single and multi-beam data. The upstream boundary conditions are set by discharge data from the USGS gauge located in the Wax Lake Outlet at Calumet, LA and the downstream water level boundary condition comes from tidal data from the NOAA gauge located in the Atchafalaya Delta at Amerada Pass, LA. The deltaic islands in our seamless DEM are populated by two general vegetation communities of different canopy density and height: a subaerial-intermediate community and a subaqueous community. In our study we explore how variations in discharge coming into the delta and extent of the general vegetation communities at different times of the year influence the transport pathways and residence time of surface water on the levees and within the interdistributary wetlands of the deltaic islands. A better understanding of vegetation's influence on these elements of deltaic island development and organization could prove valuable for informing design of wetland restoration projects.

  9. Title: Water Quality Monitoring to Restore and Enhance Lake Herrick

    Science.gov (United States)

    Kannan, A.; Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.

    2017-12-01

    Lake Allyn M. Herrick is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee forest, residential and commercial land use. Lake Herrick, a 15-acre water body established in 1982 at the University of Georgia's campus was closed in 2002 for recreation due to fecal contamination, color change, and heavy sedimentation. Subsequent monitoring confirmed cyanobacterium blooms on the surface of lake and nutrient concentration especially phosphorus was one of the primary reasons. However, no studies have been done on lake inflows and outflows after 2005 in terms of nutrients and fecal Indicator bacteria. Two inflow tributaries and the outlet stream were monitored for discharge, E. coli, total coliform, forms of nitrogen and phosphorus and other water quality parameters during base flow and storm conditions. External environmental factors like precipitation, land-use/location, discharge, and internal factors within the water like temperature, DO, pH, conductivity, and turbidity influencing fecal indicator bacteria and nutrients will be discussed with data collected from the inflows/outflow between February 2016 to October 2017. Following this, microbial source tracking methods were also used to detect the bacterial source in the samples specific to a ruminant or human host. The source tracking data will be presented during the timeframe of January 2017 to September 2017, to draw a conclusion on the potential source of fecal contamination. The future aim of the project will include modeling flow and bacteria at the watershed scale in order to make management decisions to restore the lake for recreational uses where green infrastructure could play a key role.

  10. Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique

    International Nuclear Information System (INIS)

    Dove, A.; Hill, B.; Klawunn, P.; Waltho, J.; Backus, S.; McCrea, R.C.

    2012-01-01

    Environment Canada recently developed a clean method suitable for sampling trace levels of metals in surface waters. The results of sampling for total mercury in the Laurentian Great Lakes between 2003 and 2009 give a unique basin-wide perspective of concentrations of this important contaminant and represent improved knowledge of mercury in the region. Results indicate that concentrations of total mercury in the offshore regions of the lakes were within a relatively narrow range from about 0.3 to 0.8 ng/L. The highest concentrations were observed in the western basin of Lake Erie and concentrations then declined towards the east. Compared to the offshore, higher levels were observed at some nearshore locations, particularly in lakes Erie and Ontario. The longer-term temporal record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease in equivalent water concentrations since 1986. - Highlights: ► Basin-wide concentrations of total mercury in Great Lakes surface waters are provided for the first time. ► A clean sampling method is described, stressing isolation of the sample from extraneous sources of contamination. ► Sub-ng/L concentrations of total mercury are observed in most Great Lakes offshore areas. ► Concentrations in the western basin of Lake Erie are consistently the highest observed in the basin. ► The longer-term record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease since 1986. - A new, clean sampling method for metals is described and basin-wide measurements of total mercury are provided for Great Lakes surface waters for the first time.

  11. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  12. Geochemistry of highly acidic mine water following disposal into a natural lake with carbonate bedrock

    International Nuclear Information System (INIS)

    Wisskirchen, Christian; Dold, Bernhard; Friese, Kurt; Spangenberg, Jorge E.; Morgenstern, Peter; Glaesser, Walter

    2010-01-01

    Research highlights: → Mean lake water element composition did not differ greatly from discharged AMD. → Most elements showed increasing concentrations from the surface to lake bottom. → Jarosite formed in the upper part, settled, and dissolved in the deeper part of the lake. → Elements migrated into the underlying carbonates in the sequence As 3 , 4330 mg/L Fe and 29,250 mg/L SO 4 . Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO 4 ). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ∼ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe

  13. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  14. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  15. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  16. Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China.

    Science.gov (United States)

    Wang, Xiaodi; Zang, Shuying

    2014-05-01

    It is necessary to estimate heavy metal concentrations and risk in surface water for understanding the heavy metal contaminations and for sustainable protection of ecosystems and human health. To investigate the anthropogenic contribution of heavy metal accumulation surrounding an industrial city in China, the concentrations of six heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), and cadmium (Cd) were examined; from four different regions of Daqing in autumn 2011 and winter 2012. The results showed heavy metals distributed in the industrial area at concentrations relatively higher than those in other three areas, while concentrations in the farming area and the protected area were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and As, Cu, Pb and Cr were lower than the cutoff values for the Class I water quality that was set as the highest standard to protect the national nature reserves. While Hg and As of lakes in industry region had a higher level than those in the agriculture and landscape water, the lowest allowed. The concentrations of all the heavy metals in winter were higher than in the autumn. Cu had a higher ecological risks level to freshwater organisms. The discharge of urban sewage and industrial wastewater might be a major pollutant source, thus these sources should identified before remediation efforts. Efforts are needed to protect the lakes from pollution and also to reduce environmental health risks. This study and the valuable data will pave the way for future research on these Lakes in Daqing.

  17. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  18. Monitoring Recent Fluctuations of the Southern Pool of Lake Chad Using Multiple Remote Sensing Data: Implications for Water Balance Analysis

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2017-10-01

    Full Text Available The drought episodes in the second half of the 20th century have profoundly modified the state of Lake Chad and investigation of its variations is necessary under the new circumstances. Multiple remote sensing observations were used in this paper to study its variation in the recent 25 years. Unlike previous studies, only the southern pool of Lake Chad (SPLC was selected as our study area, because it is the only permanent open water area after the serious lake recession in 1973–1975. Four satellite altimetry products were used for water level retrieval and 904 Landsat TM/ETM+ images were used for lake surface area extraction. Based on the water level (L and surface area (A retrieved (with coinciding dates, linear regression method was used to retrieve the SPLC’s L-A curve, which was then integrated to estimate water volume variations ( Δ V . The results show that the SPLC has been in a relatively stable phase, with a slight increasing trend from 1992 to 2016. On annual average scale, the increase rate of water level, surface area and water volume is 0.5 cm year−1, 0.14 km2 year−1 and 0.007 km3 year−1, respectively. As for the intra-annual variations of the SPLC, the seasonal variation amplitude of water level, lake area and water volume is 1.38 m, 38.08 km2 and 2.00 km3, respectively. The scatterplots between precipitation and Δ V indicate that there is a time lag of about one to two months in the response of water volume variations to precipitation, which makes it possible for us to predict Δ V . The water balance of the SPLC is significantly different from that of the entire Lake Chad. While evaporation accounts for 96% of the lake’s total water losses, only 16% of the SPLC’s losses are consumed by evaporation, with the other 84% offset by outflow.

  19. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    Science.gov (United States)

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron

  20. Remote sensing of the surface layer dynamics of a stratified lake

    Science.gov (United States)

    Steissberg, Todd Eugene

    Physical processes, such as upwelling, circulation, and small-scale eddies, affect aquatic ecosystem functioning, controlling nutrient and light availability and pollutant transport in inland and coastal waters. These processes can be characterized and tracked across time and space using a combination of thermal infrared and reflective-solar (visible light) satellite measurements. Thermal gradients, created and altered by physical processes, facilitate daytime and nighttime detection and tracking of upwelling fronts, surface jets, basin-scale gyres, and small-scale eddies. Similarly, sunglint patterns in reflective-solar satellite measurements are altered by internal waves, current shear, and rotation, improving delineation of fronts, jets, and eddies, and determination of transport direction or rotational characteristics. This study applied thermal infrared and reflective-solar satellite images and field measurements, collected across multiple spatial and temporal scales, to characterize upwelling, circulation, and eddies at Lake Tahoe, California-Nevada. This included developing a novel technique to improve the quality of moderate-resolution satellite temperature data, creating filtered, calibrated Water Skin Temperature (WST) maps that clearly delineate thermal features, while preserving nearshore data and temperature accuracy. Time series of filtered WST maps acquired by two moderate-resolution satellite sensors were used to track up-welling fronts and jets, which can recur at moderate wind speeds when wind forcing is in phase with internal wave motion. High-resolution temperature and sunglint maps were used to characterize several, small-scale "spiral eddies" at Lake Tahoe. These features, although common in the ocean, have not been documented before in lakes. Satellite measurements showed spiral eddies form along thermal fronts and shear zones at Lake Tahoe, rotating predominantly cyclonically, as in the ocean, with sub-inertial periods longer than 21 hours

  1. Acidic deposition: State of science and technology. Report 10. Watershed and lake processes affecting surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Turner, R.S.; Cook, R.B.; Miegroet, H.V.; Johnson, D.W.; Elwood, J.W.

    1990-09-01

    The acid-base chemistry of surface waters is governed by the amount and chemistry of deposition and by the biogeochemical reactions that generate acidity or acid neutralizing capacity (ANC) along the hydrologic pathways that water follows through watersheds to streams and lakes. The amount of precipitation and it chemical loading depend on the area's climate and physiography, on it proximity to natural or industrial gaseous or particulate sources, and on local or regional air movements. Vegetation interacts with the atmosphere to enhance both wet and dry deposition of chemicals to a greater or lesser extent, depending on vegetation type. Vegetation naturally acidifies the environment in humid regions through processes of excess base cation uptake and generation of organic acids associated with many biological processes. Natural acid production and atmospheric deposition of acidic materials drive the acidification process. The lake or stream NAC represents a balance between the acidity-and ANC-generating processes that occur along different flow paths in the watershed and the relative importance of each flow path

  2. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    Science.gov (United States)

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  3. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  4. Land use impacts on lake water quality in Alytus region (Lithuania)

    Science.gov (United States)

    Pereira, Paulo; Laukonis, Rymvidas

    2016-04-01

    Land use has important impacts on soils, surface and ground water quality. Urban agricultural areas are an important source of pollutants, which can reach lakes through surface runoff and underground circulation. Human intervention in the landscape is one of the major causes pollution and land degradation, thus it is very important to understand the impacts of and use on environment and if they have some spatial pattern (Pereira et al., 2013, 2015; Brevik et al., 2016). The identification of the spatial pattern of lakes pollution is in Alytus area (Lithuania) is fundamental, since they provide an important range of ecosystem services to local communities, including food and recreational activities. Thus, the degradation of these environments can induce important economic losses. In this context, it is import to identify the areas with high pollutant accumulation and the environmental and human factors responsible for it. The objective of this work is to study identify the amount of some important nutrients resultant from human activities in lake water quality in Alytus region (Lithuania). Alytus region is located in southern part of Lithuania and has an approximate area of 40 km2. Inside this region we analyzed several water quality parameters of 55 lakes, including, pH, electrical conductivity (EC), suspended materials (SM), water clarity (WC) biochemical oxygen demand (BDO), total phosphorous (TP), total Nitrogen (TN), dissolved organic carbon (DOC), as other environmental variables as altitude, lake maximum deep (MD), lake area and land use according Corine land cover classification (CLC2006). Previous to data analysis, data normality and homogeneity of the variances, was assessed with the Shapiro-wilk and Leven's test, respectively. The majority of the data did not respect the Gaussian distribution and the heteroscedasticity, even after a logarithmic, and box-cox transformation. Thus, in this work we used the logarithmic transformed data to do a principal

  5. Preliminary estimation of Lake El'gygytgyn water balance and sediment income

    Directory of Open Access Journals (Sweden)

    G. Fedorov

    2013-07-01

    Full Text Available Modern process studies of the hydrologic balance of Lake El'gygytgyn, central Chukotka, and the sediment income from the catchment were carried out during a field campaign in spring and summer 2003. Despite high uncertainties due to the limited data, the results provide important first estimates for better understanding the modern and past sedimentation processes in this basin. Formed ca. 3.6 million years ago as a result of a meteorite impact, the basin contains one of the longest paleoclimate records in the terrestrial Arctic. Fluvial activity is concentrated over the short snowmelt period (about 20 days in second part of June. Underground outflow plays a very important role in the water balance and predominates over surface outflow. The residence time of the lake water is estimated to be about 100 yr.

  6. Evaluation of ERTS data for certain oceanographic uses. [sunglint, algal bloom, water temperature, upwelling, and turbidity of Great Lakes waters

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. (1) Sunglint effects over water can be expected in ERTS-1 images whenever solar elevations exceed 55 deg. (2) Upwellings were viewed coincidently by ERTS-1 and NOAA-2 in Lake Michigan on two occasions during August 1973. (3) A large oil slick was identified 100 km off the Maryland coast in the Atlantic Ocean. Volume of the oil was estimated to be least 200,000 liters (50,000 gallons). (4) ERTS-1 observations of turbidity patterns in Lake St. Clair provide circulation information that correlates well with physical model studies made 10 years ago. (5) Good correlation has been established between ERTS-1 water color densities and NOAA-2 thermal infrared surface temperature measurements. Initial comparisons have been made in Lake Erie during March 1973.

  7. Water pollution in Rawal lake Islamabad (part-1)

    International Nuclear Information System (INIS)

    Ahmad, I.; Ali, S.; Tariq, M.; Ikram, M.

    2001-01-01

    Water pollution of Rawal Lake, one of the three major drinking water sources (21 MG) to Rawalpindi and Islamabad, by anionic pollutants is reported. Physicochemical analysis of water samples collected during September 1996 - January 1997, was carried out using ASTM and AOAC methods. Water samples from Rawal Lake and its tributaries were collected periodically and analyzed for pH, conductivity, turbidity, alkalinity, TDS, TSS, anions (chlorides, phosphates, nitrates, sulfates) and trace metals. (author)

  8. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Science.gov (United States)

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  9. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  10. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Yuan, E-mail: zhangyuan@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhou, Changbo [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Wang, Dingming [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Du, Ping [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Luo, Yi [College of Environmental Sciences and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Wan, Jun; Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2014-11-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water.

  11. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    International Nuclear Information System (INIS)

    Xu, Jian; Zhang, Yuan; Zhou, Changbo; Guo, Changsheng; Wang, Dingming; Du, Ping; Luo, Yi; Wan, Jun; Meng, Wei

    2014-01-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water

  12. Calibration of a PHREEQC-based geochemical model to predict surface water discharge from an operating uranium mill in the Athabasca Basin

    International Nuclear Information System (INIS)

    Mahoney, J.; Ryan, F.

    2014-01-01

    A PHREEQC based geochemical model has been developed to predict impacts from the McClean Lake Mill discharges through three lakes in the Athabasca Basin, Saskatchewan, Canada. The model is primarily a mixing calculation that uses site specific water balances and water compositions from five sources: 1) two water treatment plants, 2) waters from pit dewatering wells, 3) run-off into the lakes from surface waters, 4) ambient lake compositions, and 5) precipitation (rain and snow) onto the pit lake surface. The model allows for the discharge of these waters into the first lake, which then flows into another nearby lake and finally into a third larger lake. Water losses through evaporation and the impact of subsequent evapoconcentration processes are included in the model. PHREEQC has numerous mass transfer options including mixing, user specified reactions, equilibration with gas and solid phases, and surface complexation. Thus this program is ideally suited to this application. Preparation of such a complicated model is facilitated by an EXCEL Spreadsheet, which converts the water balance into appropriately formatted mixing proportions and to prepare portions of the PHREEQC input file in a format directly useable by PHREEQC. This allows for a high level of flexibility, while reducing transcription errors. For each scenario, the model path involves mixing of the waters in the first lake, followed by evapoconcentration, equilibration of the resulting solution with gas phases, including carbon dioxide and oxygen and with minerals and surfaces. The resultant composition is mixed in the second lake with more surface water, lake water and precipitation, and then re-equilibrated. This water represents the flow into the final lake; further mixing/dilution is accommodated; chemical equilibration may also occur. Because of the numerous steps and processes that define the pathway, each annual step requires approximately 200 lines of input in PHREEQC. Models used in the initial

  13. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  14. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  15. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    International Nuclear Information System (INIS)

    Tedesco, Marco; Alexander, Patrick; Willis, Ian C; Banwell, Alison F; Arnold, Neil S; Hoffman, Matthew J

    2013-01-01

    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (∼2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics. (letter)

  16. Chemical speciation of 239240Pu and 137Cs in Lake Michigan waters

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Jehn, P.J.; Nelson, D.M.; Orlandini, K.A.

    1974-01-01

    Studies of the submicron size distribution and charge characteristics of naturally occurring levels of 239 Pu, 240 Pu, and 137 Cs were conducted to help define the physico-chemical state of these fallout derived nuclides in Lake Michigan waters and in precipitation samples taken in the Argonne Laboratory area. Procedures are described for sample collection, size distribution determination, analysis of ion exchange resins, and plutonium determination by evaporation. Results indicated that the radioisotopes exist in several different fractions within the water column and that the total charge of these fractions is different from what would be predicted by simple solution chemistry. The distribution of the isotopes in snow appears to be different from that in the water column, indicating that considerable chemical or physical transformations must take place after the atomospheric input has reached the lake surface

  17. Modelling lake-water photochemistry: three-decade assessment of the steady-state concentration of photoreactive transients (·OH, CO3(-·) and (3)CDOM(∗)) in the surface water of polymictic Lake Peipsi (Estonia/Russia).

    Science.gov (United States)

    Minella, Marco; De Laurentiis, Elisa; Buhvestova, Olga; Haldna, Marina; Kangur, Külli; Maurino, Valter; Minero, Claudio; Vione, Davide

    2013-03-01

    Over the last 3-4 decades, Lake Peipsi water (sampling site A, middle part of the lake, and site B, northern part) has experienced a statistically significant increase of bicarbonate, pH, chemical oxygen demand, nitrate (and nitrite in site B), due to combination of climate change and eutrophication. By photochemical modelling, we predicted a statistically significant decrease of radicals ·OH and CO3(-·) (site A, by 45% and 35%, respectively) and an increase of triplet states of chromophoric dissolved organic matter ((3)CDOM(∗); site B, by ∼25%). These species are involved in pollutant degradation, but formation of harmful by-products is more likely with (3)CDOM(∗) than with ·OH. Therefore, the photochemical self-cleansing ability of Lake Peipsi probably decreased with time, due to combined effects of climate change and eutrophication. In different environments (e.g. Lake Maggiore, NW Italy), ecosystem restoration policies had the additional advantage of enhancing sunlight-driven detoxification, suggesting that photochemical self-cleansing would be positively correlated with lake water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data

    Directory of Open Access Journals (Sweden)

    N. M. Velpuri

    2012-01-01

    Full Text Available Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of inter- and intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellite-driven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE of 0.80 during the validation period (2004–2009. Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1–2 m. The lake level fluctuated in the range up to 4 m between the years 1998–2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated

  19. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  20. Protecting water resources from pollution in the Lake Badovc

    Energy Technology Data Exchange (ETDEWEB)

    Avdullahi, Sabri; Fejza, Islam; Tmava, Ahmet [Faculty of Geosciences and Technology, University of Prishtina, Str. Parku Industrial, 40000 Mitrovic, Republic of Kosova

    2012-07-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling system used, is HEC-HMS developed by the Hydrologic Engineering Centre of the US Corps of Engineers. The model is designed to simulate the rainfall-runoff processes of catchments areas and is applicable to a wide range of geographic areas.Water samples are taken from two streams reach Lake Badovc and from the lake in three different depths (5m, 10m and 15m) at different locations. Concerning the environment impact more than 140 interviews were conducted and questionnaires filled in the period October-November for Mramor area, concentrating on the most important issues: building, water supply, wastewater disposal and west disposal.

  1. The major and trace element chemistry of fish and lake water within ...

    African Journals Online (AJOL)

    Chemical elements in lake water are incorporated into fish tissues through bioconcentration and biomagnification. Lake water and fish tissue samples from 23 lakes, located within 4 major South African catchments, were analysed to investigate the link between element concentrations in lake water and otolith, fin spine, ...

  2. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    DEFF Research Database (Denmark)

    Tang, Kam W.; McGinnis, Daniel F.; Frindte, Katharina

    2014-01-01

    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane...... peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope...... analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water...

  3. The Brine Shrimp Artemia Survives in Diluted Water of Lake Bunyampaka, an Inland Saline Lake in Uganda

    Directory of Open Access Journals (Sweden)

    Martin Sserwadda

    2018-02-01

    Full Text Available Ugandan aquaculture is in the process of development; however, it requires access to an affordable live food source, such as brine shrimp Artemia. This study fits within a broader feasibility study of domestic Artemia production in salt lakes. Since Uganda is a landlocked country, the only opportunity for live water food sources lies in the salt lakes in the west of the country. This study used saline water from one of these lakes, Lake Bunyampaka (salinity 72 mg L−1. Two Artemia strains, i.e., the Great Salt Lake strain, which is the dominant strain on the market, and the Vinh Chau strain, which is by far the most inoculated strain in the world, were assayed for their survival, growth, and reproduction in diluted Lake Bunyampaka water, using natural seawater as control. The organisms were fed live freshly cultured microalgae Tetraselmis suecica ad libitum. Our study revealed that the Vinh Chau strain performed especially well in Lake Bunyampaka water diluted to 50 g L−1. The data presented in this study generate the first useful information for the future inoculation of Artemia in Lake Bunyampaka in Uganda, and hence domestic Artemia production in the country; however, further larger-scale laboratory work, followed by field trials, is still needed.

  4. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  5. Physico-chemical, morphological and pasting properties of starches extracted from water Chestnuts (Trapa natans from three Lakes of Kashmir, India

    Directory of Open Access Journals (Sweden)

    Adil Gani

    2010-06-01

    Full Text Available Studies on physicochemical, morphology and pasting properties of starches extracted from water chestnuts of three Lakes of Kashmir valley (Wular, Anchar and Dal Lakes were conducted to determine their application in different food products. The water chestnut starch from Dal Lake had more oval shaped granules than water chestnut starches from the Wular and the Anchar Lakes.The unique feature of the water chestnut starches were shape of starch granules which looked like horn(s protruding from the surface which did not appear in other starches already studied. Proximate analysis of water chestnut starches showed that average protein content were 0.4%, amylose 29.5 % and ash 0.007 on dry weight basis. Increase in water binding capacity, swelling power and solubility was found over a temperature range of 50-90ºC. Water chestnut starches showed an increase in syneresis during freeze thaw cycles and decline in paste clarity upon storage. Starch extracted from the water chestnuts of the Dal Lake showed higher water binding capacity, swelling, solubility, past clarity, freeze thaw stability, peak viscosity, final viscosity and lower protein content, amylose content, pasting temperature and gel firmness than starches extracted from water chestnuts of the Wular and the Anchar Lakes.

  6. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  7. Terrestrial hydro-climatic change, lake shrinkage and water resource deterioration: Analysis of current to future drivers across Asia

    Science.gov (United States)

    Jarsjo, J.; Beygi, H.; Thorslund, J.

    2016-12-01

    Due to overlapping effects of different anthropogenic pressures and natural variability, main drivers behind on-going changes in the water cycle have in many cases not been identified, which complicates management of water resources. For instance, in many parts of the world, and not least in semi-arid and arid parts of Asia, lowered groundwater levels and shrinkage of surface water bodies with associated salinization and water quality deterioration constitute great challenges. With the aim to identify main drivers and mechanisms behind such changes, we here combine (i) historical observations of long-term, large scale change, (ii) ensemble projections of expected future change from the climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP 5) and (iii) output from water balance modelling. Our particular focus is on regions near shrinking lakes. For the principal Lake Urmia in Iran, results show that agricultural intensification including irrigation expansion has clearly contributed to the surprisingly rapid water quality deterioration and lake shrinkage, from 10% lake area reduction in 2002 to the current value of about 75% (leaving billion of tons of salt exposed in its basin). Nevertheless, runoff decrease due to climate change has had an even larger effect. For the Aral Sea in Central Asia, where problems accelerated much earlier (in the 1990's), land-use change and irrigation expansion can fully explain the disastrous surface water deficits and water quality problems in the extensive low-lying parts of the basin. However, projections show that climate-driven runoff decrease in the headwaters of the Aral Sea basin may become a dominant driver of continued change in the near-future. More generally, present results illustrate that mitigation measures that compensate only for land-use driven effects may not reverse current trends of decreasing water availability, due to increasingly strong impacts of climate-driven runoff decrease. This has

  8. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    Science.gov (United States)

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  9. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    Science.gov (United States)

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    Science.gov (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  11. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  12. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  13. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    Science.gov (United States)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  14. Quality of drinking water from ponds in villages of Kolleru Lake region.

    Science.gov (United States)

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  15. The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right

    Science.gov (United States)

    Bi-peng, Yan; Chao, Liu; Fang-ping, Tang

    the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.

  16. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-01-01

    Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868

  17. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes.

    Science.gov (United States)

    Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-12-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.

  18. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai

    2017-01-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.

  19. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    Science.gov (United States)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is

  20. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  1. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  2. Early steroid sulfurisation in surface sediments of a permanebtly stratified lake (Ace Lake, Antarctica)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Robertson, L.; Volkman, J.K.

    2000-01-01

    Surface sediments (0 25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C27-C29 steroids.

  3. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  4. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  5. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  6. Study of the behaviour of transuranics and possible chemical homologues in Lake Michigan water and biota

    International Nuclear Information System (INIS)

    Wahlgren, M.A.; Alberts, J.J.; Nelson, D.M.; Orlandini, K.A.

    1976-01-01

    Concentration factors for Pu, Am and U in Lake Michigan biota are compared to those of a number of stable trace elements that have short residence times in Lake Michigan water. The relative order of uptake for these nuclides in Lake Michigan biota is Am>Pu much>U. Evidence is summarized which suggests that the predominant oxidation state of 239 , 240 Pu in Lake Michigan water is 4+. Concentrations of 239 , 240 Pu in net plankton, filterable particulate matter, sediment trap, and benthic floc samples indicate that sorption by biogenic detritus, and settling of this material, can account for the reduced concentration of 239 , 240 Pu observed in surface waters during summer stratification, but that deposition into the sediments is primarily non-biological. Concentrations of 7 Be, 144 Ce and 137 Cs in sediment trap samples show the effect of spring convective mixing and demonstrate the resuspension of mineral-rich surficial sediments during the summer months. The effect on the concentration of dissolved plutonium in the water column, of varying degrees of resuspension of sedimentary floc, is described using a simple mass-action model. A radiochemical method for the determination of americium and uranium in Lake Michigan environmental samples is also presented. (author)

  7. Determination of Water Quality Parameters in Sivas - Kurugöl Lake

    Directory of Open Access Journals (Sweden)

    Ekrem Mutlu

    2013-12-01

    Full Text Available Kurugöl Lake; Sivas province Hafik county Kurugöl village located within the boundaries of Sivas province, 54 km, Hafik the town 24 miles away, an area of 8.9 ha altitude of 1362 m, an average depth of 3.4 - 4 m with gypsum plateau on the bottom of the boiling water along with rainfall and snowmelt with the lake is fed naturally. Kurugöl (Hafik - Sivas waters of Lake of the physical and chemical properties during the year changes occurring determining water quality characteristics to reveal the pollution levels are determined, living life in terms of the availability of the detection, water pollution and control regulations by the lake water classification and fishing activities, compliance with were identified. The inland lake in Kurugöl (SKKY according to the classification of water resources in accordance with the parameters measured I-III water quality varies from class.

  8. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    Science.gov (United States)

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  9. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  10. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  11. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  12. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  13. Acidic pit lakes. The legacy of coal and metal surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Walter; Schultze, Martin [Helmholtz Centre for Environmental Research - UFZ, Magdeburg (Germany); Wolkersdorfer, Christian (eds.) [Cape Breton Univ., Sydney, NS (Canada). Industrial Research Chair in Mine Water Remediation and Management; International Mine Water Association, Wendelstein (Germany). General Secretary; Kleinmann, Robert

    2013-07-01

    This monograph provides an international perspective on pit lakes in post-mining landscapes, including the problem of geogenic acidification. Much has been learned during the last decade through research and practical experience on how to mitigate or remediate the environmental problems of acidic pit lakes. In the first part of the book, general scientific issues are presented in 21 contributions from the fields of geo-environmental science, water chemistry, lake physics, lake modeling, and on the peculiar biological features that occur in the extreme habitats of acidic pit lakes. Another chapter provides an overview of methods currently used to remediate acidic pit lakes and treat outflowing acidic water. The second part of the book is a collection of regional surveys of pit lake problems from three European countries and Australia, and case studies of various individual representative lakes. A final case study provides an innovative approach to assessing the economic value of new pit lakes and balancing the costs and benefits, a valuable tool for decision makers.

  14. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  15. Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin

    Science.gov (United States)

    Hughes, P.E.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Fowler Lake Management District, completed a hydrologic and water-quality study of Fowler Lake in southeastern Wisconsin during calendar year 1984. Data on temperature, pH, specific conductance, and concentrations of dissolved oxygen, total phosphorus, dissolved orthophosphate phosphorus, and various nitrogen species were collected from January through November 1984. The water-quality data indicate that Fowler Lake can be classified as a mildly fertile lake with excellent water clarity as indicated by Secchi depth readings generally greater than 12 feet. Although phosphorus concentrations are generally less than 0.01 milligram per liter, the lake does produce dense stands of macrophytes during the open-water period. The lake is thermally stratified during the summer months, resulting in oxygen depletion in the deepest parts of the lake.

  16. The bacterial community composition of the surface microlayer in a high mountain lake.

    Science.gov (United States)

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  17. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  18. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  19. Determination of pesticides in surface and ground water used for human consumption in Guatemala

    International Nuclear Information System (INIS)

    Knedel, W.; Chiquin, J.C.; Perez, J.; Rosales, S.

    1999-01-01

    A 15 month sampling and analysis programme was carried out to monitor concentrations of 37 targeted organochlorine, organophosphorus and organopyrethroid pesticides in surface and ground water in Guatemala. The 80 sampling points included 4 points in a lake, one point in each of the four lagoons, 10 municipal water systems of major towns, and 62 points along 52 rivers, most of which are located in the southern coast along borders with Mexico and El Salvador, and are one of the most productive areas in the country. The sampling used provided only preliminary information on the pattern of pesticide contamination of surface and ground water. It showed contamination of surface water in Los Esclavos watershed, Motagua river watershed as well as Villalobos, lake Amatitlan and Michatoya river watershed. Cypermethrin was the ubiquitous pesticides in some areas present in concentrations exceeding toxic levels for fish and other aquatic organisms. Several of the other targeted organophosphorus and ECD detectable pesticides were also detected in surface water. Some municipal water samples also had low levels of pesticides. (author)

  20. Fluctuations of Lake Orta water levels: preliminary analyses

    Directory of Open Access Journals (Sweden)

    Helmi Saidi

    2016-04-01

    Full Text Available While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.

  1. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  2. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  3. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for the Great Lakes and inland waters. 11... Endorsements for the Great Lakes and inland waters. Any license or MMC endorsement issued for service on the Great Lakes and inland waters is valid on all of the inland waters of the United States as defined in...

  4. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  5. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales....... The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB...

  6. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    Science.gov (United States)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  7. Key Lake mine water spill: further clean-up not required

    International Nuclear Information System (INIS)

    Potvin, R.

    1984-02-01

    The Atomic Energy Control Board (AECB) has concluded that no additional remedial measures are warranted with regard to the mine water spill which occurred in early January at the Key Lake Mining Corporation facility in northern Saskatchewan, and has advised the company to reconsider its proposal for clean-up of the adjoining Gerald Lake basin. On January 5, an estimated 87 million litres of mine water was accidentally released to the environment when a water storage reservoir at the mine site overflowed. The spilled water flowed into the adjoining Gerald Lake catchment area where it has remained adequately contained

  8. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  9. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  10. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  11. Uptake of Hg2+ by picocyanobacteria in natural water from four Andean lakes

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available In lake food webs, planktonic bacteria and algae represent the greatest bioconcentration step for Hg2+ and monomethyl-Hg (MeHg. As they are the most abundant organisms in planktonic trophic webs and also the main food resource for herbivorous plankton, they can mobilize large amounts of Hg to higher trophic levels. In Andean Patagonian lakes (Argentina, dissolved organic matter (DOM concentration and character, coupled with photo-reactions, play a central role in the complexation of Hg2+ in the water column and can even regulate the uptake of Hg2+ by planktonic algae. In this investigation we evaluated the DOM character of natural waters (NW from four Andean lakes and studied its influence on the uptake of 197Hg2+ in a strain of the picocyanobacteria Synechococcus by using Hg2+ labeled with 197Hg2+. The uptake of radiolabeled Hg2+ by Synechococcus showed different magnitude in NW of lakes Moreno, El Trébol, Morenito and Escondido. Increasing lake DOM concentration reduced the bioavailability of Hg2+ as indicated by the lower uptakes rates found in NW with higher complexity and concentration of the DOM pool. Uptakes of Hg2+ by this picocyanobacteria contrasted among NW from pelagic (surface and bottom and littoral compartments of Lake Escondido which suggest that the entry of this metal may be highly variable even in the same environment. The study of the uptake of radiolabeled Hg2+ in a set of dilutions of NW from Lake Escondido demonstrated that the bioavailability of Hg2+ decrease with increasing DOM concentration.

  12. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    Science.gov (United States)

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  13. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  14. Spatiotemporal Variations in the Water Storage of Closed Lakes on the Tibetan Plateau and Their Climatic Responses from 1976-2013

    Science.gov (United States)

    Zhu, L.; Yang, R.

    2016-12-01

    The water storage of lakes responds sensitively to variations in climate. At the same time, lakes have an important influence on climate by altering the energy exchange between the land surface and the atmosphere. In the present study, water storage changes in 114 closed lakes with areas greater than 50 km2 on the Tibetan Plateau (TP) were estimated by integrating SRTM DEM (Shuttle Radar Topography Mission, Digital Elevation Model) and LandSat images. The results reveal that the total water storage increased by 102.64 Gt from 1976-2013, a rate of 2.77Gt•yr-1. Specifically, the storage changes between 2000 and 2013 account for 97% of the changes during the entire study period, resulting in an overall positive water balance of 7.67 Gt•yr-1. However, the pattern of water balance changes of the studied lakes exhibit significant differences from 1976-2013, and four main patterns were distinguished by using k-mean clustering analysis: a slightly increasing followed by a rapid increase (the southeastern part of the endorheic region of the TP); an initially decreasing water balance, followed by an increase from 1990 (the center and west part of the endorheic region); an initially decreasing, but followed by an increase from 2000 (the northeast part of the endorheic region); and a mainly decreasing water balance (the southern outflow region of the TP). Precipitation was the dominant factor affecting changes in lake water balance; in particular, a large precipitation increase resulted in a dramatic increase of lake water storage from 2000-2013. The relative influence of temperature was opposite before and after 2000. In addition, water storage changes of lakes with and without glaciers melt water input were compared and the results show the influence of glaciers varied. Distinct regional patterns in water storage change indicate clear differences in the climatic sensitivity of lakes in time and space. The findings have important implications both for the interpretation

  15. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of two lakes of the Dongting Lake district in Hunan, China

    Science.gov (United States)

    He, Jiang; Yang, Yajing; Zhang, Lugang; Luo, Yushuang; Liu, Fei; Yang, Pinhong

    2018-04-01

    In this paper, 18 and 12 surface sediment samples were collected from Datong Lake and Shanpo Lake, respectively, and the 16 USEPA priority Polycyclic aromatic hydrocarbons (PAHs) in these samples were detected. The result indicated that the Σ16PAHs ranged from 206.56 to 1058.98 ng.g-1 with an average concentration of 667.22 ng.g-1 in sediments from Datong Lake, whereas it ranged from 90.62 to 900.70 ng.g-1 with an average concentration of 364.97 ng.g-1 in sediments from Shanpo Lake. The concentrations of individual PAHs in sediments ranged from 5.50 to 85.23 and from 4.39 to 52.74 ng.g-1 in Datong Lake and Shanpo Lake, respectively. According to the indexes such as HMW/LMW, Ant/(Ant+Phe), Flua/(Flua+Pyr), IcdP/(IcdP+BghiP), and BaA/(BaA+Chr), the PAHs in sediments from both lakes are mainly of pyrogenic origin. The total BaP equivalent in the surface sediment samples from Datong Lake and Shanpo Lake is 42.77 and 33.35 ng.g-1, respectively.

  16. Excess unsupported sup(210)Pb in lake sediment from Rocky Mountain lakes

    International Nuclear Information System (INIS)

    Norton, S.A.; Hess, C.T.; Blake, G.M.; Morrison, M.L.; Baron, J.

    1985-01-01

    Sediment cores from four high-altitude (approximately 3200 m) lakes in Rocky Mountain National Park, Colorado, were dated by sup(210)Pb chronology. Background (supported) sup(210)Pb activities for the four cores range from 0.26 to 0.93 Beq/g dry weight, high for typical oligotrophic lakes. Integrated unsupported sup(210)Pb ranges from 0.81 (a typical value for most lakes) to 11.0 Beq/cmsup(2). The sup(210)Pb activity in the surface sediments ranges from 1.48 to 22.2 Beq/g dry weight. Sedimentation from Lake Louise, the most unusual of the four, has 22.2 Beq/g dry weight at the sediment surface, an integrated unsupported sup(210)Pb=11.0 Beq/cmsup(2), and supported sup(210)Pb=0.74 Beq/g dry weight. sup(226)Ra content of the sediment is insufficient to explain either the high unsupported sup(210)Pb or the sup(222)Rn content of the water column of Lake Louise, which averaged 96.2 Beq/L. We concluded that sup(222)Rn-rich groundwater entering the lake is the source of the high sup(222)Rn in the water column. This, in turn, is capable of supporting the unusually high sup(210)Pb flux to the sediment surface. Groundwater with high sup(222)Rn may control the sup(210)Pb budget of lakes where sediment cores have integrated unsupported sup(210)Pb greater than 2 Beq/cmsup(2)

  17. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  19. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    He, Wei; Bai, Ze-Lin; Liu, Wen-Xiu

    2016-01-01

    Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake...... and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca–Na–Mg minerals......, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some fundamental solutions were proposed to protect the DWSA....

  20. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  1. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  2. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.

    Science.gov (United States)

    Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj

    2017-09-13

    A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).

  3. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    Science.gov (United States)

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  4. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    Science.gov (United States)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  5. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    period. Groundwater flows simulated using daily time steps over a 10-year period were used to describe the relationship between climate, the size of the groundwater catchment, and the relative importance of groundwater inflow to the lake water budget. Modeling approaches used in this study should be applicable to other surface-water bodies such as wetlands and playa lakes. Lake Starr watershed (depressions from sinkholes)

  6. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    Science.gov (United States)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  7. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  8. THE INFLUENCE OF THE CONTENT OF ALUMINIUM ON THE BIOCENOSIS OF THE WATERS OF LAKES WITH POORLY URBANIZED RECEPTION BASINS

    Directory of Open Access Journals (Sweden)

    Jacek Kubiak

    2014-10-01

    Full Text Available The article presents the research results of the content of aluminium in the waters of the largest lakes situated in the reception basin of the Tywa river. The general content of aluminium and its form: dissolved and non-dissolved was examined. The general content of aluminium in those waters varied from 5.3 to 98.9 μg/l, while the content of dissolved aluminium varied from 3.0 to 57.0 and its non-dissolved form from 1.0 to 54.0 μg/l. The average concentration of the content of aluminium in the waters of examined lakes was similar; Dłużec lake – 42.9, Strzeszowskie lake – 39.2, Dołgie lake 45.7, Swobnickie lake 41.4 μg/l. The prevailing form of aluminium in the examined bodies of water was the dissolved form. The greatest amounts of that metal in waters of the examined lakes were present in autumn and spring, and the smallest amounts in summer and winter, the tendency concerned the entire content of aluminium and its non-dissolved form. The dissolved form of aluminium in the waters of examined lakes was present in the largest amounts in winter (on average – 17.4 μg/l, in the smallest amounts in spring (14.0 μg/l, this seasonal diversity – was weakly marked. The existing concentration of aluminium is typical of non-polluted surface waters, and with the stated reaction and the content of sulfurs, carbonates and chlorides in the examined waters, they were not toxic to the biocenosis.

  9. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C

  10. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  11. Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes

    Directory of Open Access Journals (Sweden)

    Hugo eSarmento

    2015-05-01

    Full Text Available Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism’s abundance, activity and diversity. Aquatic surface microlayers (SML form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE, total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF were also more abundant in the SML. Bacteria in the SµL had lower leucine incorporation rates, lower percentages of live cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation.

  12. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  13. Ecotechnological water quality control in acidic mining lakes. Part 2. Primary production and respiration; Oekotechnologische Steuerung der Gewaesserguete in sauren Tagebauseen. Teil 2. Primaerproduktion und Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, W. [Inst. fuer Wasser und Boden, Dresden (Germany); Nixdorf, B. [Brandenburgisch-Technische Univ., Fakultaet fuer Umweltwissenschaften, Lehrstuhl fuer Gewaesserschutz, Bad Saarow (Germany)

    2002-07-01

    The necessity of neutralizing acidic mining lakes is obvious if the water is to be used in reservoirs (Lohsa II) or for other purposes such as balancing the water budget, fishing or recreation or to be discharged into river systems. Flushing of mining lakes with alkaline surface water from rivers is the moist common method to stabilize the lake structures and to neutralize acidic water. This method is limited in lakes without river coupling or with a high re-acidification potential. The present contribution demonstrates the possibility of biogenic alkalinity production in acidic mining lakes focusing on the main biological processes of primary production and respiration. The influence of biogenic matter transformation on water chemistry in acidic mining lakes is analyzed. Calculation of the extent of aerobic and anaerobic decay of organic matter will be a necessary prerequisite for sustainable sulfate reduction. (orig.)

  14. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  15. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    Science.gov (United States)

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  16. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Science.gov (United States)

    2010-08-03

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice of Data...), proposing numeric nutrient water quality criteria to protect aquatic life in lakes and flowing waters within... will consider the comments received before finalizing the proposed rule, ``Water Quality Standards for...

  17. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  18. Sources of mercury in sediments, water, and fish of the lakes of Whatcom County, Washington

    Science.gov (United States)

    Paulson, Anthony J.

    2004-01-01

    Concerns about mercury (Hg) contamination in Lake Whatcom, Washington, were raised in the late 1990s after a watershed protection survey reported elevated concentrations of Hg in smallmouth bass. The U.S. Geological Survey, the Whatcom County Health Department, and the Washington State Department of Ecology (Ecology) cooperated to develop a study to review existing data and collect new data that would lead to a better understanding of Hg deposition to Lake Whatcom and other lakes in Whatcom County, Washington. A simple atmospheric deposition model was developed that allowed comparisons of the deposition of Hg to the surfaces of each lake. Estimates of Hg deposition derived from the model indicated that the most significant deposition of Hg would have occurred to the lakes north of the City of Bellingham. These lakes were in the primary wind pattern of two municipal waste incinerators. Of all the lakes examined, basin 1 of Lake Whatcom would have been most affected by the Hg emissions from the chlor-alkali plant and the municipal sewage-sludge incinerator in the City of Bellingham. The length-adjusted concentrations of Hg in largemouth and smallmouth bass were not related to estimated deposition rates of Hg to the lakes from local atmospheric sources. Total Hg concentrations in the surface sediments of Lake Whatcom are affected by the sedimentation of fine-grained particles, whereas organic carbon regulates the concentration of methyl-Hg in the surface sediments of the lake. Hg concentrations in dated sediment core samples indicate that increases in Hg sedimentation were largest during the first half of the 20th century. Increases in Hg sedimentation were smaller after the chlor-alkali plant and the incinerators began operating between 1964 and 1984. Analysis of sediments recently deposited in basin 1 of Lake Whatcom, Lake Terrell, and Lake Samish indicates a decrease in Hg sedimentation. Concentrations of Hg in Seattle precipitation and in tributary waters were

  19. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  1. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  2. Surface water acidification and critical loads: exploring the F-factor

    Directory of Open Access Journals (Sweden)

    K. Bishop

    2009-11-01

    Full Text Available As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions.

    In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca. 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised.

    Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. This happens when acid deposition has depleted the soil store of BC, and then acid deposition declines, reducing the leaching of base cations to levels below those in the pre-industrial era. An estimate of critical load from water chemistry during recovery and empirical F functions would therefore result in critical loads that are too low. Therefore, the empirical estimates of the F-factor are a significant source of

  3. Concentrations of arsenic in brackish lake water : Application of tristimulus colorimetric determination

    OpenAIRE

    Rahman, Md. Mustafizur; Seike, Yasushi; Okumura, Minoru

    2006-01-01

    The evaluation of a simple and rapid tristimulus colorimetric method for the determination of arsenic in brackish waters and its application to brackish water samples taken from brackish Lake Nakaumi are described. The determinations of arsenic in brackish water samples were made satisfactorily independent of sample salinity. By applying this method to lake water samples, the distributions and behaviors of arsenic in the lake and their controlling factors were clarified, such as seasonal vari...

  4. Response of cyanobacteria to the fountain-based water aeration system in Jeziorak Mały urban lake

    Directory of Open Access Journals (Sweden)

    Zębek Elżbieta

    2014-03-01

    Full Text Available This study of cyanobacteria phytoplankton was conducted from May to August in 2002, 2003 and 2005 during fountain-based water aeration in the pelagial of the Jeziorak Mały urban lake in Poland. Additional water mixing by this installation’s activity changed the cyanobacterial growth conditions. Although less of their proportion was noted in total phytoplankton abundance, higher mean abundance and biomass were recorded at the fountain than at the lake centre. Higher water temperature in the surface layer favoured cyanobacterial growth at the fountain, while higher iron concentration stimulated their development in the lake’s centre. This was supported by positive correlations between their abundance and these water parameters. Moreover, the fountain’s activity contributed to the cyanobacteria sinking in the water column. The higher abundance of cyanobacteria was found at 1m depth in May, July and August than in the fountain surface layer. Additional water mixing during fountain activity caused also a shift in their abundance maximum (C - June and F - August and contributed to intensive organic matter decomposition. These conditions promoted cyanobacterial nutrient uptake from the water at the fountain, and this is supported by the negative correlation between their abundance and orthophosphate and total nitrogen concentrations. Generally, water mixing during the fountain’s activity does not inhibit the growth of cyanobacteria. This phenomenon disturbed abundance dynamics of the cyanobacteria in summer months but didn’t contribute to their abundance decrease. It is important for these results to be considered in future management of shallow urban lakes.

  5. Characterization of water and lake sediments in Laguna de Bay

    International Nuclear Information System (INIS)

    San Diego, Cherry Ann; Francisco, Pattrice Armynne; Navoa, Joshua Antonio; Johnson, Bryan; Dave, Harshil; Cryer, Karl; Panemanglor, Rajeev; Rama, Mariecar; Sucgang, Raymond J.

    2011-01-01

    In this work we studied elemental distributions of trace elements, dissolved oxygen and microbiological allotment (total plate count, Coliform, and E. coli) in sediment and surface water from 3 sites in Laguna de Bay. The measured parameters were associated with the quality of the water and to anthropogenic and geogenic processes taking place in the lake. In all cases sediment samples were collected and analyzed for elemental composition using an X-ray fluorescence technique. Water samples were collected and analyzed for nitrate, chloride, and sulfate ions using selective electrodes. Bicarbonate ions in the lake water were determined by titration. The microbial load (total plate count, total coliform and E,. Coli) were determined using Simplate. Field parameters such as pH and conductivity were likewise measured. Preliminary assumptions suggest that proximity to anthropogenic sources has substantially contributed to the combined loads of major ions pollution in the lake. Laguna de Bay is classified as Class C (DENR Administrative Order No. 34). For all the sites, the conductivity of the water were considerably elevated, which ranged from 929 to 933 uS/cm; Site 1 water exceeded the permissible range for pH for Class C water which is 6.5 to 8.5 for the support and rearing of fish. None of the lake waters exceeded the limits for the ions, chloride (set at 350 mg/L) and nitrate (set at 10 mg/L), for Class C water criteria. All the sites meet the dissolved oxygen, DO, criterion for Class C waters which is set at 5 mg/L. In terms of microbiological load, Site 1 had the least most probable number per ml of water, MPN/ml: total plate count (6720), Coliform (less that detection limit) and E. coli (less than LLD); Site 3 was the most contaminated: total plate count (greater than 70,000), Coliform(48768) and E. Coli (23808). X-ray fluorescence analyses of sediments allowed the determination of elements Na, Mg, Al, P, Si, Cl, K. Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Br, Rb

  6. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  7. Physical and Chemical Characteristics of Lake Edku Water, Egypt

    Directory of Open Access Journals (Sweden)

    M.A. OKBAH

    2002-12-01

    Full Text Available The objective of this work is to evaluate the quality of Lake Edku water. Regional and seasonal variations of some physico-chemical parameters (nutrient salts, total nitrogen, total phosphorous and silicate, in addition to pH, total alkalinity, chlorosity, dissolved oxygen, biological oxygen demand and oxidizable organic matter that were determined during the period from January to December 2000. Important variations have occurred in the investigated area as a result of human activity and the discharge of wastewater to the lake. The relatively low pH values reflect the decreased productivity of the Lake as a result of the polluted water discharged into the lake. Total alkalinity varied between 2.25 ± 0.35 to 8.38 ± 0.9 meq/l. In comparison with previous decades chlorosity content (586-1562 mg/l showed the general decreasing trend. Dissolved oxygen varied (2.37 ± 0.72 - 4.47 ± 0.94 mg/l. The ratios of BOD/ OOM values indicate that the lake water has a biodegradable nature. There was a noticeable variation in ammonia levels; a lower ammonia content was recorded in summer and spring. Nitrite and nitrate concentrations in Lake Edku water showed values ranging from 3.7±1.4 to 7.8±1.9 ΜM and from 15.2±2.9 to 45.9±11.8 ΜM, respectively. The total nitrogen of the lake exhibited higher levels (53.1±12.2 – 164.2±30.7 ΜM. The ratio of NH4/TIN (0.09-0.45 seems to be highly representative of the microbial nitrification rate as well as of the varying agricultural inflows. It is interesting to note that increasing values of reactive phosphate (11.6±1.8 – 14.7±2.5 ΜM were determined in autumn and winter respectively. The higher concentrations of reactive silicate were directly proportional to drainage water discharged into the Lake. It is clear from the mean ratio of N/P (2.4-8.8 nitrogen is the limiting factor. The lower values of N/P ratio could be related to an allochthonous condition.

  8. Study on mutagenic and toxic compounds in lake water used as drinking water supply

    International Nuclear Information System (INIS)

    Monarca, S.; Zanardini, A.

    1996-01-01

    Trace amounts of mutagenic and toxic substances are frequently found in drinking water, causing a great concern for their potential health effects. Aim of this work is to develop a reliable and efficient screening method for detecting aquatic mutagens and toxins in surface water used for human consumption. For this purpose different methods of concentration of lake water have been experimented by using three different solid phase extraction systems at different pHs and studying the adsorbates by means of a mutagenicity test (Ames test), a toxicity test (LUMIStox) and chemical analysis (GC,MS). This integrated chemical/biological approach showed to be a suitable system for the preliminary choice of an efficient screening method for aquatic mutagens and toxins and to give useful data for the evaluation of potential health hazards

  9. Transformation of artificial detritus in lake water

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, G W

    1972-01-01

    It is generally believed that organic detritus constitutes a major fraction of the organic seston in natural waters. Limited data from a productive Michigan lake indicate that organic detritus ranges from 1.3 to 16.9 times the phytoplankton biomass and usually constitutes more than 50% of the seston (not including zooplankton biomass). Inorganic matter contributes a major portion of the remainder of the seston. Artificial radioactive detrius was generated in samples of surface lake water. The initial net rate of decomposition of this detritus was of the order of 10% per day varying by a factor of two among several experiments. Soluble radioactive carbon derived from aritificial detritus amounts to about 1% of the initial radioactivity after one day. This amount of organic carbon could be equal to or somewhat greater than that derived from extracellular release by phytoplankton. Radioactive detritus was also fed to natural communities of zooplankton. The results indicate that detritus might be as important as phytoplankton as a food source for Daphnia. The relative value of detritus as a food for Daphnia appears to shift with change in phytoplankton community structure. A model for carbon flow in the upperphotic zone is generated from field experiments. Manipulation of the model indicates that detritus is an energy store that is utilized at relatively slow rates and may function in a buffering capacity to energy flow in the subsystem examined.

  10. Transformation of artificial detritus in lake water

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, G W

    1972-01-01

    It is generally believed that organic detritus constitutes a major fraction of the organic seston in natural waters. Limited data from a productive Michigan Lake indicate that organic detritus ranges from 1.3 to 16.9 times the phytoplankton biomass and usually constitutes more than 50% of the seston (not including zooplankton biomass). Inorganic matter contributes a major portion of the remainer of the seston. Artificial radioactive detritus was generated in samples of surface lake water. The initial net rate of decomposition of this detritus was of the order of 10% per day varying by a factor of two among several experiments. Soluble radioactive carbon derived from artificial detritus amounts to about 1% of the initial radioactivity after one day. This amount of organic carbon could be equal or somewhat greater than that derived from extracellular release by phytoplankton. Radioactive detritus was also fed to natural communities of zooplankton. The results indicate that detritus might be as important as phytoplankton as a food source for daphnia. The relative value of detritus as a food for daphnia appears to shift with change in phytoplankton community structure. A model for carbon flow in the upper photic zone is generated from field experiments. Manipulation of the model indicates that detritus is an energy store that is utilized at relatively slow rates and may function in a buffering capacity to energy flow in the subsystem examined.

  11. Extreme Weather Years Drive Episodic Acidification and Brownification in Lakes in the Northeast US: Implications for Long-term Shifts in Dissolved Organic Carbon, Water Clarity, and Thermal Structure

    Science.gov (United States)

    Strock, K.; Saros, J. E.

    2017-12-01

    Interannual climate variability is expected to increase over the next century, but the extent to which hydroclimatic variability influences biogeochemical processes is unclear. To determine the effects of extreme weather on surface water chemistry, a 30-year record of surface water geochemistry for 84 lakes in the northeastern U.S. was combined with landscape data and watershed-specific weather data. With these data, responses in sulfate and dissolved organic carbon (DOC) concentrations were characterized during extreme wet and extreme dry conditions. Episodic acidification during drought and episodic brownification (increased DOC) during wet years were detected broadly across the northeastern U.S. Episodic chemical response was linearly related to wetland coverage in lake watersheds only during extreme wet years. The results of a redundancy analysis suggest that topographic features also need to be considered and that the interplay between wetlands and their degree of connectivity to surface waters could be driving episodic acidification in this region. A subset of lakes located in Acadia National Park, Maine U.S.A. were studied to better understand the implications of regional increases of DOC in lakes. Water transparency declined across six study sites since 1995 as DOC increased. As clarity declined, some lakes experienced reduced epilimnion thickness. The degree to which transparency changed across the lakes was dependent on DOC concentration, with a larger decline in transparency occurring in clear water lakes than brown water lakes. The results presented here help to clarify the variability observed in long-term recovery from acidification and regional increases in DOC. Specifically, an increased frequency of extreme wet years may be contributing to a recent acceleration in the recovery of lake ecosystems from acidification; however, increased frequency of wet years may also lead to reduced water clarity and altered physical lake habitat. Clarifying the

  12. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  13. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  14. The reproductive biology of an open-water spawning Lake Malawi ...

    African Journals Online (AJOL)

    The reproductive biology of an open-water spawning Lake Malawi cichlid, Copadichromis chrysonotus. Lance W. Smith. Abstract. Copadichromis chrysonotus is a zooplanktivorous cichlid member of the diverse fish community inhabiting Lake Malawi's rocky, littoral habitat. Like most Lake Malawi cichlids, this species' ...

  15. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  16. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  17. Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Robert D; Byars, Bruce W

    2009-11-24

    Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial

  18. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  19. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    Science.gov (United States)

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per

  20. Drainage of ice-dammed lakes and glacier retreat - a link

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjaer, K. H.; Rysgaard, Søren

    2011-01-01

    surface freshwater run-off is found in the top of the water column in the fjord while sub-glacial meltwater is entrained deeper in the water column. The latter is highly important as this colder buoyant freshwater is pushed to the water surface followed by a compensating deeper landward current bringing...... in the fjord. The large quantity of buoyant freshwater changed the osmotic pressure and pushed redfish to the water surface causing them to die from divers disease. Further investigation suggested that three ice-dammed lakes adjacent to the Narssap Sermia glacier had drained within the previous year. Analysis......-30 times the volume of an ice-dammed lake prior to drainage. The warm water influx in turn causes the glacier to retreat and to gradually become thinner which feeds back to an increase in drainage events of ice-dammed lakes over time. On a larger scale the feedback mechanism between the drainage of lakes...

  1. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  2. Supplement to the UMTRA Project water sampling and analysis plan, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1995-08-01

    The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is in McKinley County, New Mexico. As part of UMTRA surface remediation, residual radioactive materials were consolidated on the site in a disposal cell that was completed July 1995. The need for ground water monitoring was evaluated and found not to be necessary beyond the completion of the remedial action because the ground water in the uppermost aquifer is classified as limited use

  3. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    The lake of Massaciuccoli (7 km2 wide and about 2 m deep) and its palustrine nearby areas (about 13 km2 wide) constitute a residual coastal lacustrine and marshy area largerly drained by 1930. In terms of hydrological boundaries, the lake watershed is bordered by carbonate to arenaceous reliefs on the east, by a sandy coastal shallow aquifer on the west (preventing groundwater salinisation), while south and north by the Serchio River and the Burlamacca-Gora di Stiava channels alignment respectively. Since reclamation of the peaty soils started, subsidence began (2 to 3 m in 70 years), leaving the lake perched and central respect the low drained area, now 0 to -3 m below m.s.l., and requiring 16 km embankment construction. During the dry summer season, the lake undergoes a severe water stress, that, along with nutrients input, causes the continuous ecosystem degradation resulting in water salinisation and eutrophication. Water stress results in a head decrease below m.s.l., causing seawater intrusion along the main outlet, and reaching its highest point at the end of the summer season (common head values between -0.40 and -0.5 a.m.s.l.). The water budget for an average dry season lasting about 100 days was computed, considering a 10% error, in order to understand and evaluate all the components leading to the above mentioned water stress by means of several multidisciplinary activities during the years 2008-2009. They started with a thoroughly literature review, continued with hydrological, hydrogeochemical monitoring and testing (both for surface water and the shallow aquifer) and agronomical investigations (to characterize cropping systems, evapotranspiration rates and irrigation schemes). All the collected data were then processed by means of statistical methods, time series analysis, numerical modelling of the shallow aquifer and hydrological modelling. The results demonstrate the presence of two interrelated hydrological sub-systems: the lake and the reclaimed

  4. Satellite-based estimates of surface water dynamics in the Congo River Basin

    Science.gov (United States)

    Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.

    2018-04-01

    In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.

  5. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the

  6. An approach to the coastal water circulation in the Piratuba Lake Biological Reservation, Northeast of Amapa State, Brazil

    Science.gov (United States)

    Takiyama, L. R.; Silveira, O. M.

    2007-05-01

    This study shows the pioneer results of the water quality characterization of a lake region, including the Piratuba lake (within the limits of the Piratuba Lake Biological Reservation) and the Sucuriju river, localized at the northeast portion of the Amapa State, Brazil, and left margin of the Amazon River mouth. Due to the influence of the Amazon river and another important river, the Araguari river, the northeast coast of Amapa State receive little impact of salty water from the Atlantic ocean. The highest salinity values detected on this coastal area is 20 psu. The Piratuba Lake region which can be described as an unique wetland system formed by recent geological processes (Quaternary), it constitutes a very fragile environment and possesses a number of shallow water lakes distributed into a mixed mangrove and "varzea" type of vegetation and it is considered very important looking at the biological point of view. The borderline between this lake system with the coastal waters is a narrow portion of mangrove containing species of Rizhophora and Avicennia parallel to the coast line. A preliminary water circulation could be accessed through the detection of variation in water quality parameters throughout three field studies conducted on March, 2004, June 2005 and November 2005. Surface water sampling points spatially distributed on the study area with distances less than 2 km were set, covering almost 800 square kilometers. Among the parameters studied (pH, electrical conductivity, turbidity, concentration of suspended solids, depth, temperature, chloride, dissolved oxygen, nitrate, nitrite and phosphate) the turbidity, electrical conductivity and pH were the most important for identifying the entering of coastal waters into the lake region. Mainly, three points of direct contact were identified; one of them is a manmade illegal entrance to the Biological Reservation. The seasonal variation was also very important factor and as expected, during the dry season

  7. Characterizing anthropogenic impacts on two mid-altitude Himalayan lakes in the Western Himalaya: A look at shifts in water chemistry and phytoplankton communities

    Science.gov (United States)

    Marcus, T. S.; Tiwari, S.; Bhatt, J. P.; Pandit, M. K.; Varner, R. K.

    2017-12-01

    The Himalayan region is globally regarded for its natural mountain ecosystems but increased agricultural expansion and urbanization have resulted in greater nutrient loading in Himalayan water bodies causing widespread fish kills and shrinking lakes. Despite concerns for environmental degradation, lack of empirical investigations and quantitative data are major constraints in understanding these events. To determine the impact of human development on Himalayan lakes, we investigated Rewalsar, a spring-fed lake and Kareri a glacial-fed lake in the state of Himachal Pradesh. Rewalsar is surrounded by a rapidly growing town and agricultural fields while Kareri Lake is situated in a relatively remote area. Measurements were made in the spring periods of 2013 and 2016. Water samples were collected 1m below the lake surface and analyzed for major ions, nitrates, phosphates, DO, pH, temperature, turbidity, and TDS. Alagal samples were collected from each lake and species counted and identified using standard taxonomic literature. Statistical analysis was performed using PC-ORD. Results showed a significant change in water chemistry and phytoplankton communities with Rewalsar Lake showing an increase in pollutant tolerant algae over the sample period. Principle component analysis showed that the 2016 data from Kareri Lake had phytoplankton communities and chemical data resembling the urban lake of Rewalsar. Kareri Lake had the highest DO (10 mg/ml) while Rewalsar showed the lowest DO at 3 mg/ml in 2016, a decrease from 8 mg/ml in 2013. With a total oxygen demand (TOD) of 6.5 mg/ml in Rewalsar, the decreasing DO value is likely the cause of the increasing annual fish kills as reported by local governments. TDS measurements were highest in Rewalsar Lake compared to the TDS levels of Kareri, indicating a higher amount of surface runoff from the surrounding area in Rewalsar. Nitrate and phosphate levels also increased over this time period. Our multi-year investigation also

  8. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  9. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  10. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    Science.gov (United States)

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  11. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water

    Directory of Open Access Journals (Sweden)

    Alina Mostovaya

    2017-12-01

    Full Text Available Lakes in the boreal region have been recognized as the biogeochemical hotspots, yet many questions regarding the regulators of organic matter processing in these systems remain open. Molecular composition can be an important determinant of dissolved organic matter (DOM fate in freshwater systems, but many aspects of this relationship remain unclear due to the complexity of DOM and its interactions in the natural environment. Here, we combine ultrahigh resolution mass spectrometry (FT-ICR-MS with kinetic modeling of decay of >1,300 individual DOM molecular formulae identified by mass spectrometry, to evaluate the role of specific molecular characteristics in decomposition of lake water DOM. Our data is derived from a 4 months microbial decomposition experiment, carried out on water from three Swedish lakes, with the set-up including natural lake water, as well as the lake water pretreated with UV light. The relative decay rate of every molecular formula was estimated by fitting a single exponential model to the change in FT-ICR-MS signal intensities over decomposition time. We found a continuous range of exponential decay coefficients (kexp within different groups of compounds and show that for highly unsaturated and phenolic compounds the distribution of kexp was shifted toward the lowest values. Contrary to this general trend, plant-derived polyphenols and polycondensed aromatics were on average more reactive than compounds with an intermediate aromaticity. The decay rate of aromatic compounds increased with increasing nominal oxidation state of carbon, and molecular mass in some cases showed an inverse relationship with kexp in the UV-manipulated treatment. Further, we observe an increase in formulae-specific kexp as a result of the UV pretreatment. General trends in reactivity identified among major compound groups emphasize the importance of the intrinsic controllers of lake water DOM decay. However, we additionally indicate that each

  12. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    Science.gov (United States)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  13. Atmospheric electrical field measurements near a fresh water reservoir and the formation of the lake breeze

    Directory of Open Access Journals (Sweden)

    Francisco Lopes

    2016-06-01

    Full Text Available In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively, in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1 The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2 the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect

  14. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA and on a medium selective for the genus Pseudomonas (KBC to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P = 0.027, suggesting an uneven distribution of Pseudomonas across the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P = 0.038, demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P = 0.707 and KBC (P = 0.641 across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720 of the colonies recovered across all four sampling missions were ice nucleation active (ice+ at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments.

  15. Geophysical problems of radiocesium removal from running shallow lakes

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Spirkauskaite, N.; Gvozdaite, R. and others

    2002-01-01

    Natural processes of radiocesium removal from three selected running shallow (mean depth -0.7-4.2 m) lakes (Zuvintas, Asavas-Asavelis, Juodis) in Lithuania during 1999-2001 are studied. Lake sediments are of a sapropelic and peat type, rich in organics (47-68 %). 137 Cs activity concentrations in surface sediments varied in the range 100-360 Bq kg -1 . A sum of exchangeable and potentially mobile fractions of 137 Cs activity concentrations in lake sediments is assessed to vary in the range 10-34 %. The 137 CS enrichment coefficient defined as a ratio of annual sums of seasonal values of water-soluble 137 Cs activity concentrations in rivers outflowing from and in flowing to lakes was assessed to be equal for selected lakes from 1.4 to 2.5. A course of seasonal data demonstrates the efficiency of lake self cleaning from radiocesium to be minimum in winter owing to the priority of lake surface flows and the temperature stratification, suppressing the water column vertical mixing. It is suggested that elevated radiocesium activity concentrations in the outflowing rivers during a winter-spring transitional period are due to the presence of lake bottom flows. Lake isothermal stratification, inducing the water column vertical mixing during warm seasons, reinforces lake self cleaning processes. Considerations on the seasonal variations of the depth of the anoxic level in sediments, as well as on the vertical mixing of the surface sediments owing to the methane production, are discussed. (author)

  16. Estimating the effects of land-use and catchment characteristics on lake water quality: Irish lakes 2004-2009

    OpenAIRE

    Curtis, John; Morgenroth, Edgar

    2013-01-01

    This paper attributes the variation in water quality across Irish lakes to a range of contributory factors such as human population, septic tanks, urban waste water treatment, phosphorous excreted by livestock, as well as catchment soil and geology. Both linear and non-linear quadratic models were estimated in the analysis, which attempts to account for point and non-point sources of pollution affecting water quality in 216 lake catchments. The models show a clear link between activities with...

  17. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  18. Water pollution with radionuclides of lakes Peipsi-Pihkva as a result of the accident of the Chernobyl nuclear power plant according to the samples taken on May 13-14, 1986

    International Nuclear Information System (INIS)

    Pihlak, A.

    1991-01-01

    As a result of the explosion of the Chernobyl reactor, a part of radionuclides emitted into atmosphere was carried by air currents above the territories of Lakes Peipsi-Pihkva and to the surrounding areas in North-east and South-Estonia as well as to the provinces of Leningrad and Pihkva (Fig.1). Resulting from this, radioactive precipitation occurred. According to our data, 12 528 Ci radionuclides fell to the water area of Lakes Peipsi-Pihkva, which caused a sharp rise in water radioactivity in the 30 cm - surface level of the lake as well as in the rivers flowing into the lake up to - A v =5.27-29.13 n Ci/dm 3 (Table 1). The rise in radioactivity was 1700-9600 times in comparison to the previous radioactivity fall-out in the lake, which was equal to - A v =3.04 p Ci/dm 3 (Table 2). Water activity in the samples taken from the same layer one month later was less than 0,3 n Ci/dm 3 thus having deceased more than 17.5 times. Fig.3 shows the spread of radioactive pollution on the water area of lakes Peipsi-Pihkva. Average (mean) density of radioactive pollution of the water of lakes Peipsi-Pihkva reduced to the water surface was equal to Red. - A s =3.52 Ci/km 2 . The surface area of the most-polluted region( Red. - A s >5.4 Ci/km 2 ) was 101.8 km 2 and the mean density of the pollution Red. - A s =6.32 Ci/km 2 . The radiation dose in this area exceeded that of the permissible maximum dose for the population, which is 0.5 μS v h -1 , up to 1.6 times (on the lake opposite up to the mouth of the river Rannapungerja). On the rest of the lake-water area, with the surface of 3456.2 km 2 , the mean density of water pollution amounted to Red. - A s =3.44 Ci/km 2 (Table 4). The amount of radionuclides carried into Lakes Peipsi-Pihkva through the Velikaya, Zeltsha and other bigger rivers flowing from the Estonian territory into the lake was approximately 600 Ci/day on May 13-14, 1986. the influence of radioactive pollution of lakes Peipsi-Pihkva on the ecosystem of the lakes

  19. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    Science.gov (United States)

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  20. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  1. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  2. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  3. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B Appendix B to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  4. Measurement of some water quality parameters related to natural radionuclides in aqueous environmental samples from former tin mining lake

    International Nuclear Information System (INIS)

    Zaini Hamzah; Masitah Alias; Ahmad Saat; Abdul Kadir Ishak

    2011-01-01

    The issue of water quality is a never ended issue and becoming more critical when considering the presence of natural radionuclides. Physical parameters and the levels of radionuclides may have some correlation and need further attention. In this study, the former tin mine lake in Kampong Gajah was chosen as a study area for its past historical background which might contribute to attenuation of the levels of natural radionuclides in water. The water samples were collected from different lakes using water sampler and some in-situ measurement were conducted to measure physical parameters as well as surface dose level. The water samples were analyzed for its gross alpha and gross beta activity concentrations using liquid scintillation counting and in-house cocktail method. Gross alpha and beta analyzed using in-house cocktail are in the range of 3.17 to 8.20 Bq/ L and 9.89 to 22.20 Bq/ L; 1.64 to 8.78 Bq/ L and 0.22 to 28.22 Bq/ L, respectively for preserved and un-preserved sample. The surface dose rate measured using survey meter is in the range of 0.07 to 0.21 μSv/ h and 0.07 to 0.2 μSv/ h for surface and 1 meter above the surface of the water, respectively. (Author)

  5. National Water-Quality Assessment Program, western Lake Michigan drainages: Summaries of liaison committee meeting, Green Bay, Wisconsin, March 28-29, 1995

    Science.gov (United States)

    Peters, Charles A.

    1995-01-01

    The Western Lake Michigan Drainages (WMIC) study unit, under investigation since 1991, drains 20,000 square miles (mi2) in eastern Wisconsin and Upper Michigan (fig. 1). The major water-quality issues in the WMIC study unit are: (1) nonpoint-source contamination of surface and ground water by agricultural chemicals, (2) contamination in bottom sediments of rivers and harbors by toxic substances, including polychlorinated biphenyls (PCB's), other synthetic organic compounds, and trace elements, (3) nutrient enrichment of rivers and lakes resulting from nonpoint- and point-source discharges, and (4) acidification and mercury contamination of lakes in poorly buffered watersheds in the northwestern part of the study unit.

  6. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  7. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  8. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  9. Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA

    International Nuclear Information System (INIS)

    Gammons, Christopher H.; Pape, Barbara L.; Parker, Stephen R.; Poulson, Simon R.; Blank, Carrine E.

    2013-01-01

    Highlights: • An abandoned open pit mine is now a 30 m deep lake with excellent water quality. • Concentrations of sulfate, nutrients, and most trace metals are extremely low. • Based on water isotopes, the lake is 30% evaporated with a 2.5 yr residence time. • Stable isotopes of DIC and DO track in-lake bio-geochemical processes. • Phytoplankton are active at depths as great as 20 m. - Abstract: The Calvert Mine is a small tungsten-rich (scheelite) skarn deposit in a remote, mountainous region of southwest Montana, USA. The open-pit mine closed in the 1970s and subsequently flooded to form a pit lake that is roughly conical in shape, 30 m deep and 120 m in diameter, with no surface inlet or outlet. The lake is holomictic with a groundwater flow-through hydrology and an estimated residence time of 2.5–5 y. Water isotopes show that the lake is at an approximate steady state with respect to water balance and has experienced 30% evaporation. The lake has a near-neutral pH, exceptional clarity, and extremely low concentrations of nutrients, sulfate, and most metals, including tungsten. Manganese concentrations are slightly elevated and increase with depth towards the sediment–water interface. Despite seasonally anoxic conditions in the deep water, dissolved Fe concentrations are orders of magnitude lower than Mn, suggesting that insufficient organic carbon is present in the sediment of this oligotrophic lake to drive bacterial Fe reduction. Based on stable isotope fingerprinting, diffuse seepage that enters a nearby headwater stream at the base of a large waste-rock pile can be directly linked to the partially evaporated pit lake. However, this seepage has neutral pH and low metal concentrations, and poses no threats to the environment. Stable isotopes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) are used to track the relative importance of photosynthesis and respiration with depth. In summer, a zone of high productivity exists near the

  10. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    Science.gov (United States)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  11. Mercury and water level fluctuations in lakes of northern Minnesota

    Science.gov (United States)

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  12. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  13. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  14. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions

    International Nuclear Information System (INIS)

    Binford, M.W.; Brenner, M.

    1986-01-01

    Lake sediments reflect conditions in the water column and can be used for rapid, integrative measurements of limnological variables. Examination of 210 Pb-dated cores from 12 Florida lakes of widely differing trophic state (expressed as Carlson's trophic state index: TSI) shows that net accumulation rate of organic matter is related to primary productivity in the water column. In 26 other lakes the activity of unsupported 210 Pb g -1 organic matter in surficial sediments is inversely related to trophic state and, therefore, to organic accumulation rate. From this observation, the authors develop a new method that uses fallout 210 Pb as a dilution tracer to calculate net sedimentary accumulation rates of any material in surface mud. They demonstrate strong relationships between net loss rate of biologically important materials (C, N, P, and pigments) and their respective water concentrations (expressed as TSI). Multiple regression models incorporating net sediment accumulation rates of all four variables explain up to 70% of the lake-to-lake variation of TSI. The 210 Pb-dilution method has application for studies for material cycling, paleolimnology, and sediment accumulation processes

  15. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China.

    Science.gov (United States)

    Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei

    2015-05-01

    Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.

  16. Characterization of three acid strip mine lakes in Grundy County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Master, W. A.

    1979-09-01

    Three small lakes with acid water and one with circumneutral water at an abandoned strip mine site were characterized to identify factors limiting biological productivity. Dissolved oxygen, specific conductance, and temperature profiles were determined. Water samples were analyzed for 23 parameters, and the lakes were examined for the presence of aquatic vascular plants and benthic inhabitants. The acid lakes ranged from 0.9 ha to 2.7 ha in surface area and from 3.1 m to 6.7 m in maximum depth. The mean pH of the acid lakes ranged from 3.1 to 3.9. Chemicals found at concentrations higher than Illinois surface water standards or federal criteria for the protection of aquatic life included Cd, Cu, Fe, Mn, SO/sub 4/=, and Zn. A number of these chemicals were at sufficiently high concentrations to limit the survival and productivity of most aquatic fauna. The lake with the poorest water quality had the least diversity of aquatic vascular plants and benthic invertebrates, while the circumneutral lake had the greatest diversity of species.

  17. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  18. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  19. Cyanobacteria and cyanotoxins in the source water from Lake ...

    African Journals Online (AJOL)

    The phytoplankton community and cyanotoxins in Lake Chivero (formerly Lake McIlwaine) and the presence of cyanotoxins in treated drinking water were investigated between 2003 and 2004. A typical seasonal succession of Cyanobacteria species occurred from January to April, Bacillariophyta from May to July, and ...

  20. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  1. Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey

    International Nuclear Information System (INIS)

    Sema Erenturk; Zeyneb Camtakan

    2014-01-01

    In this study, radioactivity levels of 228 lake water samples, 63 upper and depth sediment samples and 12 fish samples from Lake Van were investigated from 2005 to 2008 and the distribution patterns of the radionuclides were presented. Analysis included gross alpha-beta and total radium isotopes activities and uranium concentrations of the water, and gross alpha and gross beta activities and relevant 238 U, 232 Th and 40 K activity of the sediment and fish samples of the lake. Mean gross alpha, gross beta and radium isotopes activities of lake water were found 0.74 ± 0.46, 0.02 ± 0.01 and 0.06 ± 0.04 Bq/L, respectively. Mean gross alpha and beta activities in upper and depth sediments were found to be 41 ± 6 and 1,514 ± 74 Bq/kg; 77 ± 5 and 394 ± 24 Bq/kg at a 95 % confidence level, respectively. Mean activities of 238 U, 232 Th and 40 K activity concentrations in upper and depth sediments were determined to be 225 ± 22, 70 ± 7 and 486 ± 39 Bq/kg; 174 ± 4, 63 ± 3 and 263 ± 25 Bq/kg, respectively. The mean gross alpha and beta, 238 U, 232 Th and 40 K activities in fish samples were established as 47 ± 18, 470 ± 12, 0.57 ± 0.220, 0.022 ± 0.006, 319 ± 11 Bq/kg, respectively. The transfer factor from lake water to fish tissues, annual intake by humans consuming fish, and annual committed effective doses were estimated and evaluated. (author)

  2. Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data

    Directory of Open Access Journals (Sweden)

    Erhan Alparslan

    2009-01-01

    Full Text Available This study focuses on the analysis of the Landsat-5 TM + SPOT-Pan (1992, IRS-1C/D LISS + Pan (2000, and Landsat-5 TM (2006 satellite images that reflect the drastic land use/land cover changes in the Küçükçekmece Lake region, Istanbul. Landsat-5 TM satellite data dated 2006 was used for mapping water quality. A multiple regression analysis was carried out between the unitless planetary reflectance values derived from the satellite image and in situ water quality parameters chlorophyll a, total phosphorus, total nitrogen, turbidity, and biological and chemical oxygen demand measured at a number of stations homogenously distributed over the lake surface. The results of this study provided valuable information to local administrators on the water quality of Küçükçekmece Lake, which is a large water resource of the Istanbul Metropolitan Area. Results also show that such a methodology structured by use of reflectance values provided from satellite imagery, in situ water quality measurements, and basin land use/land cover characteristics obtained from images can serve as a powerful and rapid monitoring tool for the drinking water basins that suffer from rapid urbanization and pollution, all around the world.

  3. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    Science.gov (United States)

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  4. Development of water quality in pit lakes of Lausitz - starting point, state and perspectives; Zur Entwicklung der Wasserbeschaffenheit in den Lausitzer Tagebauseen - Ausgangspunkt, Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, U. [Brandenburgische Technische Universitaet Cottbus (Germany). Lehrstuhl fuer Hydrologie und Wasserwirtschaft; Uhlmann, W. [Institut fuer Wasser und Boden Dr. Uhlmann, Dresden (Germany)

    2004-07-01

    Extensive open-cast mining activities in the Lusatian mining district left approximately 100 mine pits, which have to be reclaimed according to ecological and economical requirements. Cessation of sump drainage causes the rise of groundwater. Depending on the mineralogy of the sediment passed by rising groundwater the quality of groundwater and water of the connected post-mining lakes develop, locally posing high acidification risks to lake waters. As a countermeasure mine pits are flooded using allochthonous slightly alkaline or neutral surface water of the rivers Spree and Schwarze Elster. Beneficial effects comprise the displacement, the dilution and the chemical compensation of acidic groundwaters. However, low specific discharges, competing utilization demands and climatic factors strongly restrict the amount of regional surface water available for flooding. As a consequence, each individual lake's flooding schedule has to be updated and continuously adjusted to new scientific knowledge, changing demands and availability of water. (orig.)

  5. Restoration of intact ground waters and surface waters in the post-mining landscape; Wiederherstellung intakter Grund- und Oberflaechengewaesser nach dem Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Broder; Schipek, Mandy [Technische Univ. Bergakademie Freiberg (Germany); Scholz, Guenter; Rabe, Wolfgang; Clauss, Denny [MOVAB-D GmbH, Lauta (Germany)

    2011-12-15

    The restoration of the territories of former brown coal mining increasingly requires special efforts for the protection of affected ground waters and surface waters. With newly developed methods (the so-called inlake technology), recently various solutions to neutralize acidic mining lakes could be created. Simultaneously, this improves the water quality of adjacent aquifers at reasonable financial cost.

  6. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    Science.gov (United States)

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area

  7. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    Science.gov (United States)

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Pike Lake is a 459-acre, mesotrophic to eutrophic dimictic lake in southeastern Wisconsin. Because of concern over degrading water quality in the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 1998 to 2000 to describe the water quality and hydrology of the lake, quantify sources of phosphorus including the effects of short-circuiting of inflows, and determine how changes in phosphorus loading should affect the water quality of the lake. Measuring all significant water and phosphorus sources and estimating lesser sources was the method used to construct detailed water and phosphorus budgets. The Rubicon River, ungaged near-lake surface inflow, precipitation, and ground water provide 55, 20, 17, and 7 percent of the total inflow, respectively. Water leaves the lake through the Rubicon River outlet (87 percent) or by evaporation (13 percent). Total input of phosphorus to the lake was about 3,500 pounds in 1999 and 2,400 pounds in 2000. About 80 percent of the phosphorus was from the Rubicon River, about half of which came from the watershed and half from a waste-water treatment plant in Slinger, Wisconsin. Inlet-to-outlet short-circuiting of phosphorus is facilitated by a meandering segment of the Rubicon River channel through a marsh at the north end of the lake. It is estimated that 77 percent of phosphorus from the Rubicon River in monitoring year 1999 and 65 percent in monitoring year 2000 was short-circuited to the outlet without entering the main body of the lake.

  8. Bacterial diversity and ecological function in lake water bodies

    OpenAIRE

    Lijuan Ren; Dan He; Peng Xing; Yujing Wang; Qinglong Wu

    2013-01-01

    The healthy development of lake ecosystems is a global issue. Bacteria are not only an integral component of food webs, but also play a key role in controlling and regulating water quality in lake ecosystems. Hence, in order to provide some suggestions for maintaining the long-term and healthy development of lake ecosystems, this review discusses and analyses concepts and assessment of bacterial diversity, the distribution of bacteria communities, mechanisms of formation, and the ecological f...

  9. Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas

    Science.gov (United States)

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2014-05-01

    Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park

  10. Hydrology of lake Druksiai, the cooling pond of the Ignalina nuclear plant

    International Nuclear Information System (INIS)

    Lasinskas, M.

    1994-01-01

    The article presents the data on the water balance in lake Druksiai and evaluation of data on surface evaporation, surface temperature distribution, hydrothermal behaviour and water level variations under the influence of the Ignalina Nuclear Power Plant. A list is supplied of reports on the studies of hydrology in lake Druksiai, as well as of books and journal articles containing the results of studies of the lake. (author). 51 refs., 3 tabs., 10 figs

  11. Acidic deposition: State of science and technology. Report 11. Historical changes in surface-water acid-base chemistry in response to acidic deposition. Final report

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Small, M.J.; Kingston, J.C.; Bernert, J.A.; Thomas, D.R.

    1990-09-01

    The objectives of the analyses reported in the State of Science report are to: identify the lake and stream populations in the United States that have experienced chronic changes in biologically significant constituents of surface water chemistry (e.g. pH, Al) in response to acidic deposition; quantify biologically meaningful historical changes in chronic surface water chemistry associated with acidic deposition, with emphasis on ANC, pH, and Al; estimate the proportion of lakes nor acidic that were not acidic in pre-industrial times; estimate the proportional response of each of the major chemical constituents that have changed in response to acidic deposition using a subset of statistically selected Adirondack lakes for which paleolimnological reconstructions of pre-industrial surface water chemistry have been performed; evaluate and improve, where appropriate and feasible, empirical models of predicting changes in ANC; and evaluate the response of seepage lakes to acidic deposition

  12. Assessing trends in fishery resources and lake-water aluminum from paleolimnological analyses of siliceous algae

    International Nuclear Information System (INIS)

    Kingston, J.C.; Birks, H.J.B.; Uutala, A.J.; Cummings, B.F.; Smol, J.P.

    1992-01-01

    Lake water aluminum concentrations have a significant influence on the composition of microfossil assemblages of diatoms and chrysophytes deposited in lake sediments. With the paleolimnological approach of multilake datasets in the Adirondack region of New York, USA, the authors use canonical correspondence analysis to describe past trends in lake water Al. Four lakes, previously investigated regarding acidification and fishery trends, are used to demonstrate that paleolimnological assessment can also provide direction, timing, and magnitude of trends for both toxic metals and fish resources. Additionally, the authors use weighted average regression and calibration to obtain quantitative reconstructions of past lake water Al concentrations. Such reconstructions provide further insight into fishery resource damage and can be compared with modelling results. According to paleolimnological reconstructions, some of the naturally most acidic lakes in the Adirondack region had preindustrial lake water concentrations of inorganic monomeric Al near 4/micromol times L. Although these high concentrations are surprising from a geochemical point of view, they may partially explain the preindustrial absence of fish, as has been independently determined by paleolimnological analysis of phantom midges (Chaoborus). Fishery resource deterioration in acidified Adirondack lakes was coincident with major increases in lake water Al concentrations

  13. Investigation of Climate Change Impact on Salt Lake by Statistical Methods

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2017-03-01

    Full Text Available The main purpose of this paper is to investigate climate change impact that have been occurred on Salt Lake located in the central Anatolia is one of the area that has been faced to extinction. In order to monitor current status of the Salt Lake, Landsat satellite images has been obtained between the year of 2000 and 2014 (for the months of February, May, August and November. Satellite images has been processed by using ArcGIS and ERDAS softwares and the water surface area has been determined. The time series of water surface areas has been analyzed with auto-correlation method and repeated pattern has been detected. The seasonal part of the time series which period is 1 year and causes about 400 km² fluctuations has been removed with Moving Average filter, successfully. As a result of filtration process, non-seasonal time series of water surface area of Salt Lake were obtained. It is understood from the non-seasonal time series that the water surface area showed variability between 2000 and 2010 and after 2010 it is stable until 2014. In order to explain the variability, meteorological data (precipitation and temperature of the surrounding area has been acquired from the related service. The cross-correlation analyses has been performed with the movement of the water surface area and meteorological time series. As a result of analysis, the relationship between water surface changes in Salt Lake and meteorological data have correlated up to 80%. Consequently, several conclusion have been detected that the topography of the region play a direct role of the correlation coefficients and the water surface changes are effected from the environmental events that is occurred in the south of Salt Lake sub-Basin.

  14. Stable Isotope Mass Balance of the Laurentian Great Lakes to Constrain Evaporative Losses

    Energy Technology Data Exchange (ETDEWEB)

    Jasechko, S. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario and Alberta Innovates, Technology Futures, Victoria, British Columbia (Canada); Gibson, J. J. [Canada Alberta Innovates, Technology Futures, Victoria, British Columbia and Department of Geography, University of Victoria, Victoria, British Columbia (Canada); Pietroniro, A. [National Water Research Institute, Environment Canada, Saskatoon, Saskatchewan (Canada); Edwards, T.W D. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-15

    Evaporation is an important yet poorly constrained component of the water budget of the Laurentian Great Lakes, but is known historically to have a significant impact on regional climate, including enhanced humidity and downwind lake effect precipitation. Sparse over lake climate monitoring continues to limit ability to quantify bulk lake evaporation and precipitation rates by physical measurements, impeded by logistical difficulties and costs of instrumenting large areas of open water (10{sup 3}-10{sup 5} km2). Measurements of stable isotopes of oxygen and hydrogen in water samples of precipitation and surface waters within the great lakes basin are used to better understand the controls on the region's water cycle. A stable isotope mass balance approach to calculate long term evaporation as a proportion of input to each lake is discussed. The approach capitalizes on the well understood systematic isotopic separation of an evaporating water body, but includes added considerations for internal recycling of evaporated moisture in the overlying atmosphere that should be incorporated for surface waters sufficiently large to significantly influence surrounding climate. (author)

  15. Global lake response to the recent warming hiatus

    Science.gov (United States)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  16. Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan

    Science.gov (United States)

    Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru

    2018-04-01

    Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.

  17. Devils Lake Climate, Weather, and Water Decision Support System

    Science.gov (United States)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  18. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers.

    Science.gov (United States)

    Yankova, Yana; Neuenschwander, Stefan; Köster, Oliver; Posch, Thomas

    2017-10-23

    After strong fertilization in the 20 th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.

  19. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  20. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    Science.gov (United States)

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  1. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, E. H. III; Wolfe, A. P. [Colorado Univ., Inst. of Arctic and Alpine Research, Boulder, CO (United States)

    2001-06-01

    Lake sediments are attractive repositories for paleoclimate proxy data because they are temporally continuous, undisturbed and datable. It is particularly true of lakes which are ubiquitous throughout the Arctic regions, enabling dense spatial coverage of sampling sites. In more recent times diatoms have been applied to a a variety of paleoenvironmental questions. However, these studies have been of limited usefulness because they lack a regional training set that would facilitate making quantitative paleoenvironmental inferences. This article provides this inferential tool, together with an example of its application. Conductivity, pH, summer lake water temperature, and mean annual air temperature have been identified as the significant controls over diatom assemblages from the surface sediments of 61 lakes on Baffin Island. Using weighted-averaging regression and calibration, predictive models for these parameters have been developed. Results show that the summer lake water temperature model provides realistic reconstructions when compared with other paleoenvironmental records. Over the past 5000 years the amplitude of reconstructed summer lake water temperature was found to be on the order of 4 degrees C, expressed primarily as progressive neoglacial cooling culminating in the Little Ice Age. Diatom-inferred summer water temperatures have increased by about 2 degrees C in the past 150 years, which is also in agreement with independent paleoclimatic reconstructions. The data obtained in this study complements similar efforts from the western Canadian Arctic and the northern reaches of Scandinavia, however, this is the first training set developed for lakes situated entirely north of the tree line. As such, it extends the applicability of diatoms for paleotemperature reconstructions well into the Arctic tundra biome. 45 refs., 1 tab., 10 figs., 1 appendix.

  2. The Potential of Satellite Imagery to Estimate Chlorophyll-a and Water Clarity Data For the Assessment of Lake Water Quality

    Science.gov (United States)

    Shrift, M.; Weathers, K. C.; Norouzi, H.; Ewing, H. A.

    2017-12-01

    Lake water quality is declining nationwide and has become a tremendous point of interest. Remote sensing (RS) data have provided the ability to efficiently study oceans and terrestrial systems over space and time. However, fresh water systems, especially small, nutrient poor lakes have only recently been assessed using remote sensing technology. Prior research suggests that there is poor satellite sensitivity to lakes with low chlorophyll a (chl a) values. This study focuses on the potential to utilize Landsat 8 satellite imagery to predict chl a and Secchi disk transparency values from Lake Auburn, Maine, an oligo-mesotrophic lake that is the primary source of drinking water for the cities of Lewiston and Auburn and has had an increasing number of algal blooms. A total of 28 Landsat scenes from 2013-2017 within 4 days of in-lake measurements were collected for band value extraction and radiometric correction. Band combinations were explored and analyzed to obtain the most reliable prediction of in-lake chl a and Secchi disk values. A nonlinear combination of bands 5 and 4 for chl a, and bands 3 and 2 for Secchi disk transparency show the most promising algorithms, with correlations coefficients of 0.57 and 0.74, respectively. The resultant algorithms show promise for utilizing RS data to estimate water quality for a large array of low-nutrient lakes in northern North America, and thereby to gain a better understanding of water quality of our vital fresh water resources.

  3. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Climatic data for Mirror Lake, West Thornton, New Hampshire, 1984

    Science.gov (United States)

    Sturrock, A.M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Mirror lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface; dry-bulb and wet-bulb air temperatures; wind speed at 3 levels above the water surface; and solar and atmospheric radiation. Data are collected at raft and land stations. (USGS)

  5. Mercury emission from a temperate lake during autumn turnover

    International Nuclear Information System (INIS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-01-01

    Lakes in temperate regions stratify during summer and winter months, creating distinct layers of water differentiated by their physical and chemical characteristics. When lakes mix in autumn and spring, mercury cycling may be affected by the chemical changes that occur during mixing. Sampling was conducted in Lake Lacawac, Eastern Pennsylvania, USA, throughout the autumn of 2007 to characterize changes in emission of gaseous elemental mercury (Hg 0 ) from the lake surface and dissolved mercury profiles in the water column during mixing. Water chemistry and weather parameters were also measured, including dissolved organic carbon (DOC), iron, and solar radiation which have been shown to interact with mercury species. Results indicate that emission of Hg 0 from the lake to the atmosphere during turnover was controlled both by solar radiation and by surface water mercury concentration. As autumn turnover progressed through the months of October and November, higher mercury concentration water from the hypolimnion mixed with epilimnetic water, increasing mercury concentration in epilimnetic waters. Dissolved absorbance was significantly correlated with mercury concentrations and with iron, but DOC concentrations were essentially constant throughout the study period and did not exhibit a relationship with either dissolved mercury concentrations or emission rates. Positive correlations between dissolved mercury and iron and manganese also suggest a role for these elements in mercury transport within the lake, but iron and manganese did not demonstrate a relationship with emission rates. This research indicates that consideration of seasonal processes in lakes is important when evaluating mercury cycling in aquatic systems

  6. Spatiotemporal variability of carbon dioxide and methane in a eutrophic lake

    Science.gov (United States)

    Loken, Luke; Crawford, John; Schramm, Paul; Stadler, Philipp; Stanley, Emily

    2017-04-01

    Lakes are important regulators of global carbon cycling and conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a single location. Within-lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, physical mixing, and local transformations; all of which can be influenced by anthropogenic disturbances and vary at multiple temporal and spatial scales. During the 2016 open water season (March - December), we mapped surface water concentrations of CO2 and CH4 weekly in a eutrophic lake (Lake Mendota, WI, USA), which has a predominately agricultural and urban watershed. In total we produced 26 maps of each gas based on 10,000 point measurements distributed across the lake surface. Both gases displayed relatively consistent spatial patterns over the stratified period but exhibited remarkable heterogeneity on each sample date. CO2 was generally undersaturated (global mean: 0.84X atmospheric saturation) throughout the lake's pelagic zone and often differed near river inlets and shorelines. The lake was routinely extremely supersaturated with CH4 (global mean: 105X atmospheric saturation) with greater concentrations in littoral areas that contained organic-rich sediments. During fall mixis, both CO2 and CH4 increased substantially, and concentrations were not uniform across the lake surface. CO2 and CH4 were higher on the upwind side of the lake due to upwelling of enriched hypolimnetic water. While the lake acted as a modest sink for atmospheric CO2 during the stratified period, the lake released substantial amounts of CO2 during turnover and continually emitted CH4, offsetting any reduction in atmospheric warming potential from summertime CO2 uptake. These data-rich maps illustrate how lake-wide surface concentrations and lake-scale efflux estimates based on single point measurements diverge from spatially weighted calculations. Both gases are not

  7. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  8. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  9. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    Science.gov (United States)

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  10. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    Science.gov (United States)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (days) and slow (> 4 days) drainages are investigated for both small (summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  11. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  12. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    Science.gov (United States)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of

  13. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  14. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis.

    Science.gov (United States)

    McGinnis, Daniel F; Kirillin, Georgiy; Tang, Kam W; Flury, Sabine; Bodmer, Pascal; Engelhardt, Christof; Casper, Peter; Grossart, Hans-Peter

    2015-01-20

    Exchange of the greenhouse gases carbon dioxide (CO2) and methane (CH4) across inland water surfaces is an important component of the terrestrial carbon (C) balance. We investigated the fluxes of these two gases across the surface of oligotrophic Lake Stechlin using a floating chamber approach. The normalized gas transfer rate for CH4 (k600,CH4) was on average 2.5 times higher than that for CO2 (k600,CO2) and consequently higher than Fickian transport. Because of its low solubility relative to CO2, the enhanced CH4 flux is possibly explained by the presence of microbubbles in the lake’s surface layer. These microbubbles may originate from atmospheric bubble entrainment or gas supersaturation (i.e., O2) or both. Irrespective of the source, we determined that an average of 145 L m(–2) d(–1) of gas is required to exit the surface layer via microbubbles to produce the observed elevated k600,CH4. As k600 values are used to estimate CH4 pathways in aquatic systems, the presence of microbubbles could alter the resulting CH4 and perhaps C balances. These microbubbles will also affect the surface fluxes of other sparingly soluble gases in inland waters, including O2 and N2.

  15. On the optimization of empirical data concerning radionuclides in water of Lake Juodis

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Koviazina, E.; Shliahtich, E.

    2004-01-01

    Quality of site-dependent water sampling for radionuclide analysis assessing their removal from the complicated aquatic system of eutrophic Lake Juodis is analyzed comparing time courses of site-specific data on standard variables (pH, temperature, redox potential, oxygen concentration, conductivity) in 2003-2004. Compared data were measured simultaneously: a) in the open bottom terrace of the lake adjoining its outflow; b) before the beaver dam bounding the lake rush grown area and c) at the site of the outflowing brook usually used for water sampling for radionuclide analysis. The rush grown area adjoining the outflowing brook is a natural filter for plutonium transport from the lake during warm season as well as for radiocesium activity fraction associated with the suspended matter. Using information on site-specific variations of vertical profiles of standard variables measured in the shallow bottom terrace of the lake, seasonal peculiarities of vertical radionuclide transport in the water column and their release from the sediments are discussed. In winter beaver activities in the lake as well as formation of the anaerobic zone in the rush grown area are considered as supplementary mechanisms facilitating vertical transport of radionuclides in the temperature stratificated water column and their removal from similar lakes. (author)

  16. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    Science.gov (United States)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  17. ECONOMETRIC MODELLING OD THE INFLUENCE OF LAKE WATER QUALITY CHANGES ON FISHING ECONOMY

    Directory of Open Access Journals (Sweden)

    Marek Antoni Ramczyk

    2017-06-01

    Full Text Available The econometric model can be a precise instrument for the analysis of the impact of the natural environment's degradation on fishing economy. This paper aims at analysing the influence of the water quality changes in lake Charzykowskie on the fishing economy. This dissertation present the results of a research on the lake water pollution's impact on fishing economy. The economic-ecological models have been constructed, explaining the changes of economic effects of the lake fishery in the conditions of an increasing water pollution in the epilimnion on the example of the catch of Rutilus rutilus, Abramis brama, Blicca bjoerkna, Coregonus albula, Coregonus lavaretus, Anguilla anguilla and Esox lucius in Lake Charzykowskie. Performed empirical research looked into the influence of the environmental factors on the size of fish catch. Calculations and analysis show clearly that though the habitat factors do influence the catch size of each studied fish species, they do it with different intensity and in various combinations. Both lake water quality and climate factors changes cause measurable effects on fishing industry of lake Charzykowskie. Among all the examined Rutilus rutilus, Abramis brama and Blicca bjoerkna the highest environmental requirements concerning water quality has Blicca bjoerkna. Whereas Abramis brama has slightly higher environmental requirements than Rutilus rutilus. Empirical calculations showed as well that Coregonus albula and Coregonus lavaretus have considerably higher water cleanness requirements than Rutilus rutilus, Abramis brama and Blicca bjoerkna. While when talking about Rutilus rutilus, Abramis brama and Blicca bjoerkna, most water characteristics still rather stimulated these species' development, when it comes to Coregonus albula and Coregonus lavaretus, in general they suppressed their development. The model has also proved quite high habitat requierements of Anquilla anquilla and correctness of the thesis that

  18. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    Science.gov (United States)

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  19. The effect of lake water quality and wind turbines on Rhode Island property sales price

    Science.gov (United States)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  20. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland

    Directory of Open Access Journals (Sweden)

    Angela Kuriata-Potasznik

    2016-08-01

    Full Text Available River-lake systems most often behave as hydrographic units, which undergo complex interactions, especially in the contact zone. One such interaction pertains to the role of a river in the dispersal of trace elements carried into and out of a lake. In this study, we aimed to assess the impact of rivers on the accumulation of heavy metals in bottom sediments of natural lakes comprised in postglacial river-lake systems. The results showed that a river flowing through a lake is a key factor responsible for the input of the majority of available fraction of heavy metals (Zn, Mn, Cd and Ni into the water body and for their accumulation along the flow of river water in the lake. The origin of other accumulated elements were the linear and point sources in catchments. In turn, the Pb content was associated with the location of roads in the direct catchment, while the sediment structure (especially size of fraction and density could have affected the accumulation of Cr and Zn, which indicated correlations between these metals and fine fraction. Our results suggest that lakes act as filters and contribute to the self-purification of water that flows through them. As a result, the content of most metals in lake sediments showed a decrease by approx. 75% between the upstream (inflow and downstream (outflow sections. The increased content of two metals only, such as chromium and cadmium (higher by 2.0 and 2.5 times, respectively, after passing through the lake, was due to the correlation of the metals with fine sand. Both the content and distribution pattern of heavy metals in lake sediments are indicative of the natural response of aquatic ecosystems to environmental stressors, such as pollutant import with river water or climate change. The complex elements creating the water ecosystem of each lake can counteract stress by temporarily removing pollutants such as toxic metals form circulation and depositing them mostly around the delta.

  1. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  2. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  3. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  4. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    Science.gov (United States)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  5. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    Science.gov (United States)

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies ( 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  6. climate change and lake water resourcesin sub-saharan africa: case ...

    African Journals Online (AJOL)

    user

    STUDY OF LAKE CHAD AND LAKE VICTORIA ... contribution to agriculture and socio-economic development of the region were ... many developing countries, current levels in water use .... 2050 and will become increasingly urban by implication. ... 4.1 Justification of Selected Case Studies ..... Orstom, Paris France. 1996.

  7. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  8. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery

    Directory of Open Access Journals (Sweden)

    Sarah W. Cooley

    2017-12-01

    Full Text Available Recent deployments of CubeSat imagers by companies such as Planet may advance hydrological remote sensing by providing an unprecedented combination of high temporal and high spatial resolution imagery at the global scale. With approximately 170 CubeSats orbiting at full operational capacity, the Planet CubeSat constellation currently offers an average revisit time of <1 day for the Arctic and near-daily revisit time globally at 3 m spatial resolution. Such data have numerous potential applications for water resource monitoring, hydrologic modeling and hydrologic research. Here we evaluate Planet CubeSat imaging capabilities and potential scientific utility for surface water studies in the Yukon Flats, a large sub-Arctic wetland in north central Alaska. We find that surface water areas delineated from Planet imagery have a normalized root mean square error (NRMSE of <11% and geolocation accuracy of <10 m as compared with manual delineations from high resolution (0.3–0.5 m WorldView-2/3 panchromatic satellite imagery. For a 625 km2 subarea of the Yukon Flats, our time series analysis reveals that roughly one quarter of 268 lakes analyzed responded to changes in Yukon River discharge over the period 23 June–1 October 2016, one half steadily contracted, and one quarter remained unchanged. The spatial pattern of observed lake changes is heterogeneous. While connections to Yukon River control the hydrologically connected lakes, the behavior of other lakes is complex, likely driven by a combination of intricate flow paths, underlying geology and permafrost. Limitations of Planet CubeSat imagery include a lack of an automated cloud mask, geolocation inaccuracies, and inconsistent radiometric calibration across multiple platforms. Although these challenges must be addressed before Planet CubeSat imagery can achieve its full potential for large-scale hydrologic research, we conclude that CubeSat imagery offers a powerful new tool for the study and

  9. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  10. Foreseen hydrological changes drive efforts to formulate water balance improvement measures as part of the management options of adaptation at Lake Balaton, Hungary

    Science.gov (United States)

    Molnar, Gabor; Kutics, Karoly

    2013-04-01

    Located in Western Hungary, Lake Balaton (LB) is one of the shallowest large lakes of the world. The catchment area including the lake is 5775 km2, only 10 times more than the lake surface area of 593 km2. This relatively small catchment area and the relatively dry climate results in high vulnerability of the lake water budget to any hydro-meteorological changes. Due to the combined effects of planned water quality protection measures (refer to adjoining article on LB water quality) water quality was not as serious a concern over the last 15 years. However, a new and potentially more damaging threat, decreasing water level started to emerge in 2000. The natural water budget was negative half of the time, i.e. 6 years in the last 12 years. It hadn't occurred in the previous 80 years, since 1921, the year from which detailed meteorological data on the area are available. This new phenomenon raised and continues to raise serious sustainability concerns in the Lake Balaton area requiring better understanding of climatic changes and their foreseen impacts on hydrological and ecological processes that would lead decision makers to formulate the appropriate vulnerability and adaptation policies. Based on the common methodologies of the EULAKES project, present state of the hydrological conditions was analyzed as well as qualitative vulnerability assessment carried out to the area. Using the climate scenarios developed by the project partner Austrian Institute of Technology, calculations on water budget changes was possible. It is estimated that by the middle of the 21st century the lake will experience a drastic drop in the inflow and, accompanied by the increased evaporation, it is likely that years without outflow and serious drops in water-level would occur. The increased frequency of unfavorable water deficit will cause not only ecological, but also socio-economic conflicts in the multipurpose usage of the lake. Therefore, a qualitative vulnerability assessment was

  11. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    Science.gov (United States)

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  12. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Daniel Boyd Kramer; Stephen Polasky; Anthony Starfield; Brian Palik; Lynn Westphal; Stephanie Snyder; Pamela Jakes; Rachel Hudson; Eric Gustafson

    2006-01-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to...

  13. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  14. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  15. VT Impervious Surfaces for the Lake Champlain Basin - 2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) High-resolution impervious surfaces dataset for the Lake Champlain Basin, Vermont and New York. Two impervious classes were mapped: (1)...

  16. Estimation of surface water quality in a Yazoo River tributary using the duration curve and recurrence interval approach

    Science.gov (United States)

    Ying Ouyang; Prem B. Parajuli; Daniel A. Marion

    2013-01-01

    Pollution of surface water with harmful chemicals and eutrophication of rivers and lakes with excess nutrients are serious environmental concerns. This study estimated surface water quality in a stream within the Yazoo River Basin (YRB), Mississippi, USA, using the duration curve and recurrence interval analysis techniques. Data from the US Geological Survey (USGS)...

  17. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  18. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    Science.gov (United States)

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  19. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bo [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Shen, E-mail: syu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Gui-Lin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Yi; Yu, Guang-Bin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Hong [Department of Environmental Sciences, Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wu, Sheng-Chun [State Key Laboratory in Marine Pollution, Biology and Chemistry Department, City University of Hong Kong, Hong Kong (China); Wong, Ming-Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2012-08-15

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 {mu}m) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: Black-Right-Pointing-Pointer Obvious

  20. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    International Nuclear Information System (INIS)

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Liu, Yi; Yu, Guang-Bin; Deng, Hong; Wu, Sheng-Chun; Wong, Ming-Hung

    2012-01-01

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 μm) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: ► Obvious urbanization effect on metal

  1. Effect of agriculture on water quality of Lake Biwa tributaries, Japan

    International Nuclear Information System (INIS)

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-01

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO 3 , SO 4 , NO 3 , Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The δ 34 S values of SO 4 in the river water converged to 0 ± 2 per mille as the SO 4 concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO 3 concentration increased. In particular, both the δ 34 S values (0 ± 2 per mille ) and the 87 Sr/ 86 Sr ratios (0.7117 ± 0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the δ 34 S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable 87 Sr/ 86 Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg and Sr. Compared

  2. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    Science.gov (United States)

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  3. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  4. Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2014-10-01

    Full Text Available The knowledge of water storage variations in ungauged lakes is of fundamental importance to understanding the water balance on the Tibetan Plateau. In this paper, a simple framework was presented to monitor the fluctuation of inland water bodies by the combination of satellite altimetry measurements and optical satellite imagery without any in situ measurements. The fluctuation of water level, surface area, and water storage variations in Lake Qinghai were estimated to demonstrate this framework. Water levels retrieved from ICESat (Ice, Cloud, and and Elevation Satellite elevation data and lake surface area derived from MODIS (Moderate Resolution Imaging Spectroradiometer product were fitted by linear regression during the period from 2003 to 2009 when the overpass time for both of them was coincident. Based on this relationship, the time series of water levels from 1999 to 2002 were extended by using the water surface area extracted from Landsat TM/ETM+ images as inputs, and finally the variations of water volume in Lake Qinghai were estimated from 1999 to 2009. The overall errors of water levels retrieved by the simple method in our work were comparable with other globally available test results with r = 0.93, MAE = 0.07 m, and RMSE = 0.09 m. The annual average rate of increase was 0.11 m/yr, which was very close to the results obtained from in situ measurements. High accuracy was obtained in the estimation of surface areas. The MAE and RMSE were only 6 km2, and 8 km2, respectively, which were even lower than the MAE and RMAE of surface area extracted from Landsat TM images. The estimated water volume variations effectively captured the trend of annual variation of Lake Qinghai. Good agreement was achieved between the estimated and measured water volume variations with MAE = 0.4 billion m3, and RMSE = 0.5 billion m3, which only account for 0.7% of the total water volume of Lake Qinghai. This study demonstrates that it is feasible to monitor

  5. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia

    Science.gov (United States)

    Hidayati, N.; Soeprobowati, T. R.; Helmi, M.

    2018-03-01

    The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.

  6. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012.

    Science.gov (United States)

    Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong

    2016-03-01

    Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.

  7. Microbial safety assessment of recreation water at Lake Nabugabo ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Lake Nabugabo, microbial safety assessment, recreation water, water quality. ... the environment is favourable for growth (Jaiani et al., ... Swimming and bathing in inland waters are recognized .... in India. This can be attributed to variation in number of recreational users and the frequency of use of the various.

  8. Assessment of Lake Water Quality and Quantity Using Satellite Remote Sensing

    Science.gov (United States)

    Daniel, K. C.; Suresh, A.; Paredes Mesa, S.

    2017-12-01

    Lakes are one of the few sources of freshwater used throughout the world but due to human activities, its quality and availability has been decreasing. The drying of lakes is a concerning issue in different communities around the world. This problem can affect jobs and the lives of individuals who use lakes as a source of income, consumption and recreation. Another dilemma that has occurred in lakes is eutrophication which is the buildup of excess nutrients in the lakes caused by runoff. This natural process can lead to anoxic conditions that may have a detrimental impact on surrounding ecosystems. Therefore, causing a devastating impact to economies and human livelihood worldwide. To monitor these issues, satellite data can be used to assess the water quality of different lakes throughout the world. Landsat satellite data from the past 10 years was used to conduct this research. By using the IOP (Inherent Optical Properties) of chlorophyll and suspended solids in the visible spectrum, the presence of algal blooms and sediments was determined. ARCGIS was used to outline the areas of the lakes and obtain reflectance values for quantity and quality assessment. Because there is always a certain amount of contamination in the lake, this research is used to evaluate the condition of the lakes throughout the years. Using the data that we have collected, we are able to understand how the issues addressed can harm civilians seasonally. Key Words: Lakes, Water Quality, Algal Blooms, Eutrophication, Remote Sensing, Satellite DataData Source: Landsat 4, Landsat 5, Landsat 7, Landsat 8

  9. Residence time and physical processes in lakes

    Directory of Open Access Journals (Sweden)

    Nicoletta SALA

    2003-09-01

    Full Text Available The residence time of a lake is highly dependent on internal physical processes in the water mass conditioning its hydrodynamics; early attempts to evaluate this physical parameter emphasize the complexity of the problem, which depends on very different natural phenomena with widespread synergies. The aim of this study is to analyse the agents involved in these processes and arrive at a more realistic definition of water residence time which takes account of these agents, and how they influence internal hydrodynamics. With particular reference to temperate lakes, the following characteristics are analysed: 1 the set of the lake's caloric components which, along with summer heating, determine the stabilizing effect of the surface layers, and the consequent thermal stratification, as well as the winter destabilizing effect; 2 the wind force, which transfers part of its momentum to the water mass, generating a complex of movements (turbulence, waves, currents with the production of active kinetic energy; 3 the water flowing into the lake from the tributaries, and flowing out through the outflow, from the standpoint of hydrology and of the kinetic effect generated by the introduction of these water masses into the lake. These factors were studied in the context of the general geographical properties of the lake basin and the watershed (latitude, longitude, morphology, also taking account of the local and regional climatic situation. Also analysed is the impact of ongoing climatic change on the renewal of the lake water, which is currently changing the equilibrium between lake and atmosphere, river and lake, and relationships

  10. [Occurrence of bacteria of the Yersinia genus in surface water].

    Science.gov (United States)

    Krogulska, B; Maleszewska, J

    1992-01-01

    The aim of the study was determination of the frequency of occurrence of Yersinia genus bacteria in surface waters polluted to various degrees with bacteria of the coliform and of fecal coli. For detection of Yersinia rods the previously elaborated medium Endo MLCe and the membrane filter method were applied. Samples of 42 surface waters were examined, including 26 from rivers and 16 from lakes, ponds and clay-pits. On the basis of sanitary bacteriological analysis 16 surface waters were classified to class I purity, 10 to class II, the remaining ones to class III or beyond classification. Yersinia rods were detected in 15 water bodies that is 35.7% of the examined waters. A total of 27 Yersinia strains were identified with dominance of Y. intermedia (14 strains) and Y. enterocolitica (10 strains). Three strains represented by the species Yersinia frederiksenii. Most of the Y. enterocolitica strains belonged to biotype 1, the particular strains being represented by various serotypes. Hence their different origin may be concluded. The pathogenic serotypes 0:3 and 0:9 of Yersinia enterocolitica were not detected.

  11. Lake Izabal (Guatemala) shoreline detection and inundated area estimation from ENVISAT ASAR images

    Science.gov (United States)

    Medina, C.; Gomez-Enri, J.; Alonso, J. J.; Villares, P.

    2008-10-01

    The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.

  12. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  13. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2Department of Geology, University of Pune, Pune 411 007, India. 3Chhattisgarh Council of .... influenced by three climate patterns as categorized by precipitation regime: (1) ... Water level changes of high altitude lakes in Himalaya–Karakoram. 1535 ...... mate warming and growth of high elevation inland lakes on the ...

  14. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring.

    Science.gov (United States)

    Meyer-Jacob, Carsten; Tolu, Julie; Bigler, Christian; Yang, Handong; Bindler, Richard

    2015-05-26

    Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.

  15. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  16. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China

    Institute of Scientific and Technical Information of China (English)

    Lifei Zhang; Liang Dong; Lijun Ren; Shuangxin Shi; Li Zhou; Ting Zhang; Yeru Huang

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated.Fourteen surface water samples were collected in June 2010.Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry.Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L,respectively.Fluoranthene,naphthalene,pyrene,phenanthrene,di-2-ethylhexyl phthalate,and di-n-butyl phthalate were the most abundant compounds in the samples.The water samples were moderately Polluted with benzo[a]pyrene according to China's environmental quality standard for surface water.The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake,Wuxi City and the western section of Yangchenghu Lake.Potential sources of Pollution at S7 were petroleum combustion and the plastics industry,and at Yangchenghu Lake were petroleum combustion and domestic waste.Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines.There were no obvious sources of pollution for the other water samples.These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  17. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  18. Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations

    Science.gov (United States)

    Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver

    2018-07-01

    Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant

  19. Whiting in Lake Michigan

    Science.gov (United States)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  20. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  1. A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy).

    Science.gov (United States)

    Minella, Marco; Rogora, Michela; Vione, Davide; Maurino, Valter; Minero, Claudio

    2011-08-15

    A model-based approach is here developed and applied to predict the long-term trends of indirect photochemical processes in the surface layer (5m water depth) of Lake Maggiore, NW Italy. For this lake, time series of the main parameters of photochemical importance that cover almost two decades are available. As a way to assess the relevant photochemical reactions, the modelled steady-state concentrations of important photogenerated transients ((•)OH, ³CDOM* and CO₃(-•)) were taken into account. A multivariate analysis approach was adopted to have an overview of the system, to emphasise relationships among chemical, photochemical and seasonal variables, and to highlight annual and long-term trends. Over the considered time period, because of the decrease of the dissolved organic carbon (DOC) content of water and of the increase of alkalinity, a significant increase is predicted for the steady-state concentrations of the radicals (•)OH and CO₃(-•). Therefore, the photochemical degradation processes that involve the two radical species would be enhanced. Another issue of potential photochemical importance is related to the winter maxima of nitrate (a photochemical (•)OH source) and the summer maxima of DOC ((•)OH sink and ³CDOM* source) in the lake water under consideration. From the combination of sunlight irradiance and chemical composition data, one predicts that the processes involving (•)OH and CO₃(-•) would be most important in spring, while the reactions involving ³CDOM* would be most important in summer. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    Science.gov (United States)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  3. Use of Satellite and In Situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region

    Directory of Open Access Journals (Sweden)

    Erica Matta

    2017-02-01

    Full Text Available This study applied remote sensing techniques to the study of water color in Himalayan glacial lakes as a proxy of suspended solid load. In situ measurements gathered in 5 lakes in October 2014 during satellite data acquisition enabled the characterization of water reflectance and clarity and supported image processing. Field data analysis led to a distinction between 3 water colors and a consequent lake water color classification on a regional scale from Landsat-8 data previously corrected for atmospheric and adjacency effects. Several morphometric parameters (lake size and shape, distance between lake and glacier were also computed for the lakes thus classified. The results showed spatial and temporal variations in lake water color, suggestive of relationships between glacier shrinkage and the presence of brighter and more turbid water. A finer-scale analysis of the spatial variability of water reflectance on Chola Lake (based on GeoEye-1 data captured on 18 October 2014 showed the contribution of water component absorption from the inflow. Overall, the findings support further research to monitor Himalayan lakes using both Landsat-8 and Sentinel-2 (with its improved resolutions.

  4. A multivariate analysis of water quality in lake Naivasha, Kenya

    NARCIS (Netherlands)

    Ndungu, J.N.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.; Fulanda, B.; Kitaka, N.; Mathooko, J.M.

    2014-01-01

    Water quality information in aquatic ecosystems is crucial in setting up guidelines for resource management. This study explores the water quality status and pollution sources in Lake Naivasha, Kenya. Analysis of water quality parameters at seven sampling sites was carried out from water samples

  5. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  6. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Katie E. Miles

    2017-07-01

    Full Text Available Supraglacial lakes are an important component of the Greenland Ice Sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days vs. daily but a higher spatial resolution (25–40 vs. 250–500 m, is then used together with a fully automated lake drainage detection algorithm. Rapid (<4 days and slow (>4 days drainages are investigated for both small (<0.125 km2, the minimum size detectable by MODIS and large (≥0.125 km2 lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m, and slightly earlier (mean 4.5 days in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1,270 m mean elevation. Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively. These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1,593 and 1,185 m, respectively. Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  7. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    Science.gov (United States)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  8. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  9. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    Science.gov (United States)

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  10. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  11. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  12. Lead-210 analyses of sediment accumulation rates in five Southern Illinois surface mine lakes

    International Nuclear Information System (INIS)

    Brugam, R.B.; Carlson, M.A.

    1981-01-01

    210 Pb is a naturally occurring radionuclide with a short half-life (22 yrs) which can be used to determine sedimentation rates in lakes. The technique was applied in 5 Southern Illinois surface mine lakes where it revealed past sedimentation rates to have been extremely variable. In some of the lakes there was evidence for extensive slumping immediately after mining ceased followed by a more regular sedimentary regime that continued until the present. In others there have been one or more changes in sediment accumulation rates since lacustrine sedimentation began. These results suggest that simply measuring the amount of sediment that has accumulated in a surface mine lake since mining ceased is inadequate to determine filling rates. Sedimentation rates in the 5 lakes varied from .60 +- .19 to 1.46 +- .19 cm/y. These rates are similar to natural lakes with moderately disturbed watersheds

  13. Ecological Health and Water Quality Assessments in Big Creek Lake, AL

    Science.gov (United States)

    Childs, L. M.; Frey, J. W.; Jones, J. B.; Maki, A. E.; Brozen, M. W.; Malik, S.; Allain, M.; Mitchell, B.; Batina, M.; Brooks, A. O.

    2008-12-01

    Big Creek Lake (aka J.B. Converse Reservoir) serves as the water supply for the majority of residents in Mobile County, Alabama. The area surrounding the reservoir serves as a gopher tortoise mitigation bank and is protected from further development, however, impacts from previous disasters and construction have greatly impacted the Big Creek Lake area. The Escatawpa Watershed drains into the lake, and of the seven drainage streams, three have received a 303 (d) (impaired water bodies) designation in the past. In the adjacent ecosystem, the forest is experiencing major stress from drought and pine bark beetle infestations. Various agencies are using control methods such as pesticide treatment to eradicate the beetles. There are many concerns about these control methods and the run-off into the ecosystem. In addition to pesticide control methods, the Highway 98 construction projects cross the north area of the lake. The community has expressed concern about both direct and indirect impacts of these construction projects on the lake. This project addresses concerns about water quality, increasing drought in the Southeastern U.S., forest health as it relates to vegetation stress, and state and federal needs for improved assessment methods supported by remotely sensed data to determine coastal forest susceptibility to pine bark beetles. Landsat TM, ASTER, MODIS, and EO-1/ALI imagery was employed in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as to detect concentration of suspended solids, chlorophyll and water turbidity. This study utilizes NASA Earth Observation Systems to determine how environmental conditions and human activity relate to pine tree stress and the onset of pine beetle invasion, as well as relate current water quality data to community concerns and gain a better understanding of human impacts upon water resources.

  14. The greatest soda-water lake in the world and how it is influenced by climatic change

    Directory of Open Access Journals (Sweden)

    M. Kadioğlu

    1997-11-01

    Full Text Available Global warming resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.

  15. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Tiit Kutser

    2016-06-01

    Full Text Available Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter. Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400–700 nm due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks—near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass—chlorophyll-a (R2 = 0.77, total suspended matter (R2 = 0.70, and suspended particulate organic matter (R2 = 0.68. There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak

  16. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  17. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in western North America

    Directory of Open Access Journals (Sweden)

    Brian Fraser Cumming

    2015-08-01

    Full Text Available Recently there has been an active discussion about the potential and challenges of tracking past lake-water trophic state using paleolimnological methods. Herein, we present analyses of the relationship between modern-day diatom assemblages from the surface sediments of 251 fresh-water lakes from British Columbia and contemporary limnological variables. Total phosphorus (TP was significantly related to the modern distribution of diatom assemblages. The large size of this new calibration dataset resulted in higher abundances and occurrences of many diatom taxa thereby allowing a more accurate quantification of the optima of diatom taxa to TP in comparison to previous smaller calibration datasets. Robust diatom-based TP inference models with a moderate predictive power were developed using weighted-averaging regression and calibration. Information from the calibration dataset was used to interpret changes in the diatom assemblages from the north and south basins of Osoyoos Lake, in conjunction with fossil pigment analyses. Osoyoos Lake is a large salmon-bearing lake that straddles the British Columbia-Washington border and has undergone cultural eutrophication followed by recovery due to substantial mitigation efforts in managing sources of nutrients. Both diatom assemblages and sedimentary pigments indicate that eutrophication began c. 1950 in the north basin and c. 1960 in the southern basin, reaching peak levels of production between 1960 and 1990, after which decreases in sedimentary pigments occurred, as well as decreases in the relative abundance and concentrations of diatom taxa inferred to have high TP optima. Post-1990 changes in the diatom assemblage suggests conditions have become less productive with a shift to taxa more indicative of lower TP optima in concert with measurements of declining TP, two of these diatom taxa, Cyclotella comensis and Cyclotella gordonensis, that were previously rare are now abundant.

  18. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    Science.gov (United States)

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive

  19. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  20. Behaviour of cesium 134 and 137 in lake ecosystems

    International Nuclear Information System (INIS)

    Huebel, K.; Saenger, W.; Luensmann, W.

    1989-01-01

    The time dependent cesium activity concentration observed in surface water samples from South Bavarian lakes after the Chernobyl accident is analysed by use of a two-compartment model simulating the accidental transport of radiocesium from surface water to suspended particles. (orig.)

  1. WATER QUALITY ASSESSMENT OF LAKE TEXOMA BEACHES, 1999-2001

    Science.gov (United States)

    A biological and inorganic assessment of five beaches on Lake Texoma was conducted from September 1999 through July 2001. Water samples for each beach site were divided into two groups, a swimming season and non-swimming season. Water properties such as temperature, alkalinity,...

  2. Water quality and water pollution sources in Poyang lake, China; Poyang ko ni okeru suishitsu chosa to odakugen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M. [Shin-Nippon Meteorological and Oceanographical Consultant Co. Ltd., Tokyo (Japan)

    1996-01-10

    This paper summarizes the current status of water quality and pollution sources in Poyang Lake in China. The lake is located in Chianghsi Province of China, and a largest fresh water lake in China that flows out into the Yangtze river. The basin is surrounded by mountains on three sides and faces the Yangtze on one side, whereas the plains formed by the lake and the rivers flowing in extends in the center of the basin. The plains around the lake has the city of Nanchang, the capital of the province, the city of Jiujiang (both cities have a population of about 4 million, respectively), and four other cities with a size of one million people including Jingdezhen. Water supply system in the basin is used in a 37% area of the urban areas, and no sewage facilities of whatsoever are available as of 1991. The lake has COD of about 3 mg{times}1/l. No severe pollution by organic matters is seen. While the T-P concentration is at a high level, PO4-P is low. Majority of phosphorus flowing into the basin exists in the form trapped in soil particles. In order to maintain the current water quality in the future, waste water treatment is required in the basin. Construction of an oxidation pond in the vast land exposed during the drought period is a measure that can be tackled relatively easily. 1 fig., 4 tabs.

  3. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  4. Impact of urbanization on inflows and water quality of rawal lake

    International Nuclear Information System (INIS)

    Awais, M.; Afzal, M.

    2016-01-01

    Two phenomena playing important role in affecting water resources all over the world are: urbanization and climate changes. Urban and peri-urban water bodies are very vulnerable to these phenomena in terms of quality and quantity protection. This study was aimed to perceive the impact of ever-increasing urbanization on water quality in the catchment area of Rawal Lake. Rawal Lake supplies water for domestic use to Rawalpindi city and Cantonment area. The water was found biologically unfit for human consumption due to total and faecal coliforms counts higher than WHO limits. Similarly, turbidity and calcium was more than WHO standards. There should be detailed study on climate change parallel to urbanization in the Rawal catchment to quantify its impacts on water quality and inflows. (author)

  5. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    Science.gov (United States)

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.

  6. Aquatic environmental assessment of Lake Balaton in the light of physical-chemical water parameters.

    Science.gov (United States)

    Sebestyén, Vitkor; Németh, József; Juzsakova, Tatjana; Domokos, Endre; Kovács, Zsófia; Rédey, Ákos

    2017-11-01

    One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).

  7. Lake Victoria's Water Budget and the Potential Effects of Climate ...

    African Journals Online (AJOL)

    This paper presents the Lake Victoria water budget for the period 1950-2004 and findings of a study on potential climate change impact on the lake's Hydrology through the 21st Century. The mass balance components are computed from measured and simulated data. A2 and B2 emission scenarios of the Special Report ...

  8. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  9. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    Science.gov (United States)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  10. NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  11. Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.

    Science.gov (United States)

    Bonte, Matthijs; Zwolsman, John J G

    2010-08-01

    In this paper we present a modelling study to investigate the impacts of climate change on the chloride concentration and salinisation processes in two man-made freshwater lakes in the Netherlands, Lake IJsselmeer and Lake Markermeer. We used a transient compartmental chloride and water balance model to elucidate the salinisation processes occurring under present conditions and assess future salinisation under two climate forcing scenarios. The model results showed that the Rhine River is the dominant determinant for the chloride concentration in both lakes, followed by drainage of brackish groundwater from the surrounding polders. The results further show that especially during dry years, seawater intrusion through the tidal closure dam is an important source of chloride to Lake IJsselmeer. The results from the climatic forcing scenarios show that Lake IJsselmeer is especially vulnerable to climate-induced salinisation whereas effects on Lake Markermeer are relatively small. Peak chloride concentrations at the raw water intake of the Andijk drinking water facility on Lake IJsselmeer are projected to increase to values above 250 mg/l in the most far-reaching climate change scenario W+ in 2050 for dry years. This is well above the maximum allowable concentration of 150 mg/l for chloride in drinking water. Modelling showed that climate change impacts the chloride concentrations in a variety of ways: 1) an increasing occurrence of low river flows from summer to autumn reduces the dilution of the chloride that is emitted to the Rhine with a constant load thereby increasing its concentration; 2) increased open water evaporation and reduced rainfall during summer periods and droughts increases the chloride concentration in the water; and 3) rises in sea level increase seawater intrusion through the tidal closure dam of Lake IJsselmeer. The processes described here are likely to affect many other tidal rivers or lakes and should be considered when planning future raw

  12. Monitoring changes in Greater Yellowstone Lake water quality following the 1988 wildfires

    Science.gov (United States)

    Lathrop, Richard G., Jr.; Vande Castle, John D.; Brass, James A.

    1994-01-01

    The fires that burned the Greater Yellowstone Area (GYA) during the summer of 1988 were the largest ever recorded for the region. Wildfire can have profound indirect effects on associated aquatic ecosystems by increased nutrient loading, sediment, erosion, and runoff. Satellite remote sensing and water quality sampling were used to compare pre- versus post-fire conditions in the GYA's large oliotrophic (high transparency, low productivity) lakes. Inputs of suspended sediment to Jackson Lake appear to have increased. Yellowstone Lake has not shown any discernable shift in water quality. The insights gained separately from the Landsat Thematic and NOAA Advanced Very High Resolution Radiometer (AVHRR) remote sensing systems, along with conventional in-situ sampling, can be combined into a useful water quality monitoring tool.

  13. Investigation by tritium of the dynamics of Lake Leman waters. Contribution of tritium to physical limnology

    International Nuclear Information System (INIS)

    Hubert, P.

    1971-01-01

    This research thesis addressed the fundamental issues of kinematics of lakeside waters. The author investigated vertical movements of waters related to lakeside thermodynamics, as well as the large horizontal circulations related to lake renewal (the mixing of lakeside and fluvial waters is an aspect of that). He also studied the notion of renewal time for a lake by determining the distribution of stay times of water molecules in a lake

  14. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India.

    Science.gov (United States)

    Gaury, Pawan Kumar; Meena, Narendra Kumar; Mahajan, A K

    2018-01-17

    The present research is to study hydrochemistry and water quality of Rewalsar Lake during pre-monsoon, monsoon, and post-monsoon seasons. The Ca 2+ and Na + are observed as the dominant cations from pre- to post-monsoon season. On the other hand, HCO 3 - and Cl - are observed dominant anions during pre-monsoon and monsoon seasons, whereas HCO 3 - and SO 4 2- during post-monsoon season. The comparison of alkaline earth metals with alkali metals and total cations (Tz + ) has specified that the carbonate weathering is the dominant source of major ions in the water of lake.  The HCO 3 - is noticed to be mainly originated from carbonate/calcareous minerals during monsoon and post-monsoon, but through silicate minerals during pre-monsoon.  The SO 4 2- in Rewalsar Lake is produced by the dissolution of calcite and dolomite etc. The alkali metals and Cl - in the lake can be attributed to the silicate weathering as well as halite dissolution and anthropogenic activities. Certain other parameters like NO 3 - , NH 4 + , F - , and Br - are mainly a result of anthropogenic activities. The alkaline earth metals are found to surpass over alkali metals, whereas weak acid (HCO 3 - ) exceed to strong acid (SO 4 2- ). The Piper diagram has shown Ca 2+ -HCO 3 - type of water during all the seasons. The water quality index has indicated that the water quality of the lake is unsuitable for drinking from pre- to post-monsoon. Several parameters like salinity index, sodium adsorption ratio, sodium percent, residual sodium carbonate, magnesium hazard etc. have revealed the water of Rewalsar Lake as suitable for irrigation.

  16. Behavior of plutonium and other long-lived radionuclides in Lake Michigan. I. Biological transport, seasonal cycling, and residence times in the water column

    International Nuclear Information System (INIS)

    Wahlgren, M.A.; Marshall, J.S.

    1975-01-01

    Eight operating nuclear reactors are situated on the shores of Lake Michigan, but their releases of radioactivity have been much less than that entering the lake from stratospheric fallout. Measurements of 239 , 240 Pu, 241 Am, and 137 Cs from the latter source have been made in order to study biological transport, seasonal cycling, and residence times of long-lived radionuclides in the lake. The apparent turnover times for the residual fallout 239 , 240 Pu and 137 Cs, which are present as nonfilterable, ionic forms, are about 3 to 4 y. Resuspension may be occurring at a low rate, probably through the feeding activities of benthic organisms. Transport by settling of phytodetritus and zooplankton fecal pellets is postulated to be the cause of the rapid decline of the concentration of 239 , 240 Pu in surface waters observed during summer thermal stratification of the lake, while the concentration of 137 Cs remained almost constant. Concentration factors for fallout 239 , 240 Pu, 137 Cs, and 90 Sr at various trophic levels in the food chain in Lake Michigan have been measured. Analyses of biological samples taken at various distances from the Big Rock Point Nuclear Power Plant and of plant waste discharge show that any plutonium possibly released from the recycle plutonium test fuel is too low to be detectable in the presence of fallout plutonium. Measurements of 239 , 240 Pu, 137 Cs, and 90 Sr on a comparison set of surface water and net plankton samples from all five Great Lakes indicate generally consistent behavior patterns in these lakes. (U.S.)

  17. Determination of water quality at lake of Engineering at UKM campus Bangi: Towards integrated water resources management

    International Nuclear Information System (INIS)

    Mazlin Mokhtar; Othman Abdul Karim

    2008-01-01

    Integrated Water Resources Management (IWRM) is a process, which promotes the coordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystem. A study on the water quality of the Engineering Lake, UKM Bangi Campus was carried out to determine the water quality, and compare it with the Interim National Water Quality Standard (INWQS) (DOE, 2001), followed by estimation of its Water Quality Index (WQI) based on six selected parameters. The purpose of this study was to identify the possible causes of the water pollution and level of this pollution at the lake. The comparisons of concentration values measured during dry days with those on rainy were performed using suitable statistical methods. Water quality parameters that were measured are pH, temperature, dissolve oxygen (DO), conductivity, turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal-nitrogen, lead and cadmium. Temperature, pH, conductivity, dissolved oxygen and turbidity were measured in situ by using calibrated meters, whilst metal concentrations were determined by using Atomic Absorption Spectrophotometer (AAS). Methods of sampling and water analyses were performed according to recommendations that were outlined by the American Public Health Association (APHA, 1998). On normal days, the inflow and the outflow of the lake were estimated to be 0.057 ± 0.024 m 3 / s inflows and 0.052 ± 0.018 m 3 / s outflows. The theoretical retention time of the lake water with a mean depth of 1.5 m and area of 18,000 m 2 was 62.5 ± 37.6 days. On the normal days, the estimated total amounts of materials that were present in the lake were DO (200.88 ± 28.25 kg), TSS (163.78 ± 18.19 kg), NH-N (12.65 ± 13.90 kg), BOD (41.90 ± 23.95 kg), COD (1605.58 ± 74.68 kg), Pb (9.50 ± 0.90 kg) and Cd (2.81 ± 0

  18. Occurrence investigation of perfluorinated compounds in surface water from East Lake (Wuhan, China) upon rapid and selective magnetic solid-phase extraction

    Science.gov (United States)

    Zhou, Yusun; Tao, Yun; Li, Huarong; Zhou, Tingting; Jing, Tao; Zhou, Yikai; Mei, Surong

    2016-12-01

    Using a novel magnetic nanocomposite as adsorbent, a convenient and effective magnetic solid-phase extraction (MSPE) procedure was established for selective separation and concentration of nine perfluorinated compounds (PFCs) in surface water sample. Then an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was employed for detection of PFCs. Good linearity of the developed analytical method was in the range of 0.5-100 ng L-1 with R2 > 0.9917, and the limits of detection (LODs) ranged from 0.029 to 0.099 ng L-1. At three fortified concentrations of 0.5, 5 and 50 ng L-1, the spiked recoveries of PFCs were in the range of 90.05-106.67% with RSDs < 12.62% (n = 3). The proposed analytical method was applied for determination of PFCs in surface water from East Lake (Wuhan, China). The total concentrations of nine PFCs ranged from 30.12 to 125.35 ng L-1, with perfluorooctane sulfonate and perfluoroctanoic acid as the most prevalent PFCs, and the greatest concentrations of PFCs were observed in Niuchao lakelet. The concentrations of the PFCs (C ≥ 11) were mostly less than the limits of quantification (LOQs), attributed to the possibility that the more hydrophobic long-chain PFCs are potential to accumulate in sediment and aquatic biota.

  19. An introduction to the processes, problems, and management of urban lakes

    Science.gov (United States)

    Britton, L.J.; Averett, R.C.; Ferreira, R.F.

    1975-01-01

    Lakes are bodies of water formed in depressions on the earth's surface, and as such, act as depositories for a variety of chemical and biological materials. The study of lakes has become increasingly prevalent in recent years. Lakes are a valuable resource, and their multiple uses have made them susceptible to water-quality problems such as algal blooms, sediment deposition and fish kills. These problems are products of the eutrophication process (enrichment, aging and extinction of lakes), which is often accelerated by man. Therefore, it becomes important to understand the properties and processes of lakes which govern lake enrichment, and the measures available to control enrichment.

  20. Modes of supraglacial lake drainage and dynamic ice sheet response

    Science.gov (United States)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  1. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  2. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  3. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters.

    Science.gov (United States)

    Hernández-Crespo, C; Gargallo, S; Benedito-Durá, V; Nácher-Rodríguez, Beatriz; Rodrigo-Alacreu, M A; Martín, M

    2017-10-01

    Three medium size constructed wetlands (CWs) with a total surface of 90ha are working since 2009 in the Albufera de Valencia Natural Park (Spain). Two of them are fed with eutrophic waters from l'Albufera Lake. Their objectives are both reduce the phytoplankton biomass and increase the biodiversity; consequently, improved water quality is returned to the lake. A "science based governance" of these CWs is ongoing inside the LIFE+12 Albufera Project to demonstrate the environmental benefits of these features. In this paper, results and relationships among hydraulic operation, physicochemical variables and plankton in two different CWs typologies, five free water surface CW (FWSCW) and one horizontal subsurface flow CW (HSSFCW), were analysed showing that CWs were capable of improving the water quality and biodiversity but showing clear differences depending on the CW type. The CWs worked under different hydraulic load rates (HLR) from <0.12 to 54.75myr -1 . Inflow water quality was typical from eutrophic waters with mean values of chlorophyll a (Chl a) about 22-90μgChlal -1 and mean total phosphorus (TP) between 0.122 and 0.337mgl -1 . The main conclusion is that HSSFCW was much more efficient than FWSCW in the removal of organic matter, suspended solids and nutrients. The biological role of several shallow lagoons located at the end of the CWs has also been evaluated, showing that they contribute to increase the zooplankton biomass, a key factor to control the phytoplankton blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lake Water Quality Improvement by Using Waste Mussel Shell Powder as an Adsorbent

    Science.gov (United States)

    Zukri, N. I.; Khamidun, M. H.; Sapiren, M. S.; Abdullah, S.; Rahman, M. A. A.

    2018-04-01

    Lake water in UTHM was slightly greenish in color indicating the eutrophication process. Eutrophication problem is due to excessive amount of nutrient in the lake water which causes nuisance growth of algae and other aquatic plant. The improvement of lake water quality should be conducted wisely in preventing from eutrophication problem by using a suitable water treatment method. Natural materials, agricultural wastes and industrial wastes are locally available sources can be utilized as low-cost adsorbents. The natural abundant source of waste mussel’s shells is advantages to use as basis material to produce the low cost adsorbent for water treatment. Batch experiments were carried out with the preparation 500 ml volume of lake water sample with the dosage of 2.5g, 7.5g and 12.5g. Then the solution shaking in an incubator with 200 rpm shaking speed. The various dosage of mussel shell greatly affected pollutants removal. Both of NH4+ and PO43- have a higher percentage removal with 31.28% and 21.74% at the 7.5g of sample dosage. Other parameters such as COD and TSS also shown good percentage of removal at 7.5g of dosage sample with 44.45% and 25% respectively. While, dosage at 2.5g was performed as a good adsorption capacity of NH4+, PO43-, COD and TSS as high as 0.142, 0.234, 7.6 and 20 mg/g, respectively. These experimental results suggested that the use of mussel shell powder as good basis material in removing pollutants from lake water.

  5. Relationship between natural radioactivity and rock type in the Van lake basin - Turkey

    International Nuclear Information System (INIS)

    Tolluoglu, A. U.; Eral, M.; Aytas, S.

    2004-01-01

    The Van Lake basin located at eastern part of Turkey. The Van lake basin essentially comprises two province, these are namely Van and Bitlis. The former geochemistry research indicated that the uranium concentrations of Van lake water and deep sediments are 78-116 ppb and 0.1-0.5 ppm respectively. Uranium was transported to Van Lake by rivers and streams, flow through to outcrops of Paleozoic Bitlis Massive, and young Pleistocene alkaline/calkalkaline volcanic rocks. This study focused on the revealing natural radioactivity and secondary dispersion of radioactivity related to rock types surface environments in the Van Lake Basin. The Van Lake Basin essentially subdivided into three different parts; the Eastern parts characterized by Mesozoic basic and ultra basic rocks, southern parts dominated by metamorphic rocks of Bitlis Massive, Western and Northwestern parts covered by volcanic rocks of Pleistocene. Volcanic rocks can be subdivided into two different types. The first type is mafic rocks mainly composed of basalts. The second type is felsic rocks represented by rhyolites, dacites and pumice tuff. Surface gamma measurements (cps) and dose rate measurements (μR/h) show different values according to rock type. Surface gamma measurement and surface dose rate values in the basaltic rocks are slightly higher than the average values (130 cps, 11 μR/h). In the felsic volcanic rocks such as rhyolites and dacites surface gamma measurement values and surface dose rate values, occasionally exceed the background. Highest values were obtained in the pumice tuffs. Rhyolitic eruptions related to Quaternary volcanic activity formed thick pumice (natural glassy froth related to felsic volcanic rocks and exhibit spongy texture) sequences Northern and Western part of Van Lake basin. The dose rate of pumice rocks was measured mean 15 μR/h. The highest value for surface gamma measurements was recorded as 200 cps. The pumice has very big water capacity, due to porous texture of

  6. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  7. Distribution and Ecology of Cyanobacteria in the Rocky Littoral of an English Lake District Water Body, Devoke Water

    Directory of Open Access Journals (Sweden)

    Allan Pentecost

    2014-12-01

    Full Text Available Cyanobacteria were sampled along two vertical and two horizontal transects in the littoral of Devoke Water, English Lake District. Profiles of cyanobacterium diversity and abundance showed that both attained a maximum close to the water line, but declined rapidly 20–40 cm above it. The distribution of individual species with height together with species and site ordinations showed that several taxa occurred in well-defined zones. A narrow “black zone” in the supralittoral was colonised mainly by species of Calothrix, Dichothrix and Gloeocapsa with pigmented sheaths. There was no evidence of lateral variation of species around the lake, but the height of the black zone correlated positively with wind exposure. The flora of Devoke Water is that of a base-poor mountain lake with some elements of a lowland, more alkaline water-body.

  8. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    Science.gov (United States)

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  9. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  10. Dynamics of lake Koeycegiz, SW Turkey: An environmental isotopic and hydrochemical study

    International Nuclear Information System (INIS)

    Bayari, C.S.; Kurttas, T.; Tezcan, L.

    2001-01-01

    Lake Koeycegiz, located in southwestern Turkey, is a meromictic lake with a surface area of 55 km 2 . Impermeable ophiolitic rocks, and groundwater bearing alluvium and karstified limestone are the major geologic units around the lake. Lake Koeycegiz, fed mainly by rainfall and stream flow, discharges into the Mediterranean Sea via a 14 km long natural channel. The average water level is estimated to be slightly above the sea level and the estimated lake volume is 826 million m 3 . Lake level fluctuations are well correlated with rainfall intensity. Lake Koeycegiz comprises two major basins: Sultaniye basin (-32m) at the south and Koeycegiz Basin (-24m) at the north which are connected by a 12m deep strait. Environmental isotopic and chemical data reveals that the Lake Koeycegiz has complicated mixing dynamics which are controlled mainly by density-driven flow of waters from different origins. The lake is fed mainly by rainfall and stream flow as low density waters and by high density thermal groundwater inflow at the southern coast. Complete annual mixing cannot be achieved, because of the density difference between mixolimnion and recharge. Continuous high-density thermal water input into the Sultaniye basin is the major factor controlling the lake dynamics. The high density thermal groundwater discharging into the lake sinks to the bottom of Sultaniye basin and overflows toward the north along the bottom surface. During its travel, dense bottom water is mixed with mixolimnion water and as the distance from the thermal water inflow increases, the density tends to decrease throughout the lake. Calculations based on long-term average electrical conductivity data reveal that about 60% of mixolimnion in both basins is replenished annually, whereas the annual mixing with mixolinmion for Sultaniye and Koeycegiz Basins is 20% and 30%, respectively. Turnover times for mixolimnion and monimolimnions of Sultaniye and Koeycegiz Basins are estimated to be 2 years, 5 years

  11. Surface water connectivity drives richness and composition of Arctic lake fish assemblages

    Science.gov (United States)

    Laske, Sarah M.; Haynes, Trevor B.; Rosenberger, Amanda E.; Koch, Joshua C.; Wipfli, Mark S.; Whitman, Matthew; Zimmerman, Christian E.

    2016-01-01

    Surface water connectivity can influence the richness and composition of fish assemblages, particularly in harsh environments where colonisation factors and access to seasonal refugia are required for species persistence.

  12. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be

  13. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  14. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    Science.gov (United States)

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  15. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    Science.gov (United States)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  16. Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Mitchell, Peter I; Vintró, Luis León; Omarova, Aigul; Burkitbayev, Mukhambetkali; Nápoles, Humberto Jiménez; Priest, Nicholas D

    2005-06-01

    The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm(-3) (95% confidence interval:4.1-4.7 Bq dm(-3)). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12,600 Bq dm(-3). Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133,000--235,500 Bq dm(-3). No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.

  17. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  18. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  19. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    Science.gov (United States)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  20. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.