WorldWideScience

Sample records for surface water areas

  1. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  2. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  3. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  4. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  5. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  6. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  7. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  8. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  9. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Huaiyu; Huang, Shanqian [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Zhou, Sen [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Bi, Peng [Discipline of Public Health, University of Adelaide, Adelaide (Australia); Yang, Zhicong, E-mail: yangzc@gzcdc.org.cn [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Li, Xiujun [School of Public Health, Shandong University, Jinan (China); Chen, Lifan [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Cazelles, Bernard [UMMISCO, UMI 209 IRD – UPMC, 93142 Bondy (France); Eco-Evolutionary Mathematic, IBENS UMR 8197, ENS, 75230 Paris Cedex 05 (France); Yang, Jing [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Luo, Lei; Jing, Qinlong [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Pei, Yao; Sun, Zhe [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Yue, Tianxiang [State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing (China); Kwan, Mei-Po [Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 (United States); and others

    2016-10-15

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  10. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    International Nuclear Information System (INIS)

    Tian, Huaiyu; Huang, Shanqian; Zhou, Sen; Bi, Peng; Yang, Zhicong; Li, Xiujun; Chen, Lifan; Cazelles, Bernard; Yang, Jing; Luo, Lei; Jing, Qinlong; Yuan, Wenping; Pei, Yao; Sun, Zhe; Yue, Tianxiang; Kwan, Mei-Po

    2016-01-01

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  11. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  12. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  13. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Motamedifar, Mohammad; Zamani, Khosrow; Sedigh, Hadi; Mortazavi, Seyed Mohammad Javad; Taeb, Shahram; Haghani, M.; Mortazavi, Seyed Ali Reza; Soofi, Amir

    2014-01-01

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226 Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  14. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  15. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  16. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  17. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  18. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 2011-2012

    Science.gov (United States)

    Macy, Jamie P.; Unema, Joel A.

    2014-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2011 to September 2012. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2011, total groundwater withdrawals were 4,480 acre-ft, industrial withdrawals were 1,390 acre-ft, and municipal withdrawals were 3,090 acre-ft. Total withdrawals during 2011 were about 39 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a slurry. From 2010 to 2011 total withdrawals increased by 11 percent; industrial withdrawals increased by approximately 19 percent, and total municipal withdrawals increased by 8 percent. From 2011 to 2012, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.0 feet. From the prestress period (prior to 1965) to 2012, the median water-level change for 34 wells in both

  19. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  20. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  1. Nitrate and nitrite contamination of sub-surface water in some areas of North West Frontier Province (N.W.F.P.) Pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Khawaja, M.A.; Imdadullah

    1998-01-01

    Over the past few years, nitrate and nitrite contamination of sub-surface water samples from Peshawar, Charsada, Mardan and Nowshera districts of NWFP has been studied. In all the areas under study, nitrate concentration of sub-surface water was found to be below WHO approved limit of 45 mg/l. Whereas city area after 1987 showed a decreasing level of nitrate contamination of sub-surface water, it appeared to be on the increase in water samples from the outskirts of Peshawar-Charsada road. No uniform increasing or decreasing patterns of nitrate contamination were observed for water samples from cantonment, University and Hayatabad, areas of Mardan, Charsada and Nowshera under study. The nitrate contamination of sub-surface water appeared to be due to both the agricultural activities as well as human and animal wastes. A few sub-surface water samples from Peshawar city, Mardan and Nowshera areas indicated high concentration of nitrite, which is alarming in view of the earlier reports showing absence of nitrite in water samples from these areas. However, since 1993, nitrite presence has not been detected in sub-surface water samples from all the areas under present investigation. (author)

  2. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  3. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2013–2015

    Science.gov (United States)

    Macy, Jamie P.; Mason, Jon P.

    2017-12-07

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 16 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2013 to December 2015. The monitoring program includes measurements of (1) groundwater withdrawals (pumping), (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In 2013, total groundwater withdrawals were 3,980 acre-feet (ft), in 2014 total withdrawals were 4,170 acre-ft, and in 2015 total withdrawals were 3,970 acre-ft. From 2013 to 2015 total withdrawals varied by less than 5 percent.From 2014 to 2015, annually measured water levels in the Black Mesa area declined in 9 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 3 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.6 feet. From the prestress period (prior to 1965) to 2015, the median water-level change for 34 wells in both the confined and unconfined areas was -13.2 feet; the median water-level changes were -1.7 feet for 16 wells measured in the unconfined areas and -42.3 feet for 18 wells measured in the confined area.Spring flow was measured at four springs in 2014. Flow fluctuated during the

  4. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China

    International Nuclear Information System (INIS)

    Wang Junying; Da Liangjun; Song Kun; Li Bailian

    2008-01-01

    As the economic and financial center of China, Shanghai has experienced an extensive urban expansion since the early 1980s, with an attendant cost in environmental degradation. We use an integrated pollution index to study the temporal variations of surface water quality in urban, suburban and rural areas between 1982 and 2005. Data on monitored cross-sections were collected from the Shanghai Environmental Monitoring Center. The results indicated that the spatial pattern of surface water quality was determined by the level of urbanization. Surface water qualities in urban and suburban areas were improved by strengthening the environmental policies and management, but were worsening in rural areas. The relationship between economic growth and surface water quality in Shanghai showed an inversed-U-shaped curve, which reflected a similar pattern in most developed countries. This research suggests that decision makers and city officials should be more aware of the recent pollution increases in Shanghai. - An integrated pollution index documents the deterioration of water quality in greater Shanghai, recently most serious in rural sections

  5. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  6. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  8. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  9. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  10. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  11. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  12. Area G perimeter surface-soil and single-stage water sampling. Environmental surveillance for fiscal year 95. Progress report

    International Nuclear Information System (INIS)

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area

  13. Wetted surface area of recreational boats

    NARCIS (Netherlands)

    Bakker J; van Vlaardingen PLA; ICH; VSP

    2018-01-01

    The wetted surface area of recreational craft is often treated with special paint that prevents growth of algae and other organisms. The active substances in this paint (antifouling) are also emitted into the water. The extent of this emission is among others determined by the treated surface area.

  14. Assessment of the dynamics of the radioactivity contents in surface waters in contaminated areas

    International Nuclear Information System (INIS)

    Komissarov, F.D.; Datskevich, P.I.; Golikov, Y.N.; Basharina, L.P.; Churack, T.N.; Khvaley, O.D.

    1997-01-01

    In the connection with Chernobyl APS accident, since 1988 a network of sites was established for radioecological monitoring of surface water systems, mainly, small rivers on all Belarus territory. Small rivers are the principal way of radionuclides run off in liquid and solid discharges during rains and high-floods and their re-distribution in landscapes. The components of water systems radio-monitoring were water and water suspensions, area water-collection, bottom deposits and biota. In the paper the data are cited of radioecological studies of water systems components. Their analysis is done and some conclusions made which may be used for the development of radioecological prognosis and for taking environmental measures

  15. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  16. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  17. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence

  18. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  19. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  20. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway

  1. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  2. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  3. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  4. Distributions of dissolved monosaccharides and polysaccharides in the surface microlayer and surface water of the Jiaozhou Bay and its adjacent area

    Science.gov (United States)

    Zhang, Yan-Ping; Yang, Gui-Peng; Lu, Xiao-Lan; Ding, Hai-Bing; Zhang, Hong-Hai

    2013-07-01

    Sea surface microlayer (SML) samples and corresponding bulk surface water (SW) samples were collected in the Jiaozhou Bay and its adjacent area in July and November 2008. The average concentrations of dissolved monosaccharides (MCHO) and polysaccharides (PCHO) revealed similar temporal variability, with higher concentrations during the green-tide period (in July) than during the non-green-tide period (in November). Average enrichment factors (EF) of MCHO and PCHO, defined as the ratio of the concentration in the SML to that in the SW, were 1.3 and 1.4 in July, respectively, while those values in November were 1.9 and 1.6. Our data also showed that the concentrations of MCHO and PCHO in the SML were strongly correlated with those in the SW, indicating that most of the organic materials in the SML came from the SW. The total dissolved carbohydrate concentrations (TDCHO) in the bulk surface water were closely correlated with salinity during the cruises (July: r=-0.580, n=18, P=0.01; November: r=-0.679, n=26, P<0.001), suggesting that riverine input had an important effect on the distribution of TDCHO in surface seawater of the study area.

  5. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    Science.gov (United States)

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  6. GC/MS Analysis of Pesticides in the Ferrara Area (Italy) Surface Water: A Chemometric Study

    International Nuclear Information System (INIS)

    Pasti, L.; Dondi, F.; Nava, E.; Morelli, M.; Bignami, S.

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides - determined by GC-MS on samples from 11 points along the Ferrara area rivers - have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content

  7. Radioecological state of some surface water systems of contaminated areas of both Gomel and Mogilev Regions

    International Nuclear Information System (INIS)

    Datskevich, P. I.; Komissariv, F. D.; Khvale', O. D.; Basharina, L. P.; Lobach, I. L.

    1997-01-01

    The radioecological situation of different ecosystems of Belarus and their components has been analysed. Such components of the surface water ecosystems as water, suspensions, sediments and soils of water-collection areas were used for the investigation of the content of cesium 137 and strontium 90. The received data were given since 1990. The content of cesium 137 and strontium 90 in the components of water ecosystems was counted in the laboratory conditions by means of standard methods of beta radiometry, semiconductor gamma spectrometry and radiochemistry. The error of measurement of radioactivity was not higher than 25 and 35% for cesium 137 and strontium 90 accordingly. Water ecosystems were distinguished by the state of contamination of water-collection areas and hydrological parameters. These and some other reasons considered in the article influence on the character of cesium 137 and strontium 90 behaviour in water ecosystems

  8. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  9. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  10. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  11. Water control at certain karst U-mining area

    International Nuclear Information System (INIS)

    Lei Mingxin; Xu Qiang

    2010-01-01

    To ensure mining security, water control for certain mining area is designed. Hydrogeological conditions in the studied area are analyzed. Four methods were used to calculate the inflow of water at mineral area, such as 'bigwell' method and 'groundwater isostatic' method according to the karst development. The calculated data for average inflow of water for the 100 m middle section are mainly compared with the data for the inflow of spring water in this deposit observed during the last five years. The difference between them is found minor. This indicates that the parameters selected for the calculation of inflow of water are reasonable and the methods used are suitable. Taking into account the above, it is decided to use the combination of surface water control and groundwater control Surface water control first,and groundwater control second, Five methods are used for surface water control such as plugging, filling, stopping, draining and dredging. Three methods for groundwater control such as curtain grouting, drainage in advance and blocking. The implimentation of this program will greatly reduce the threat of groundwater in ming area to mining operation and the cost of treatment of water discharge in mining pits and wells ,and effectively protect the environment and ensure the local people's living and production. (authors)

  12. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  13. Environmental protection management by monitoring the surface water quality in Semenic area

    Directory of Open Access Journals (Sweden)

    Dana SÂMBOTIN

    2011-08-01

    Full Text Available Environment seems to have been the war against all. In fact recently most people polluted the environment and those few are cared for his cleaning. Today, the relationship evolvedas societies have changed in favour of ensuring environmental protection. With modern technology, performance, monitoring the environment becomes part of human activity ever more necessary, more possible and more efficient. The quality of the environment, its components: air, water, soil, plants, vegetable and animal products, is a condition "sine qua non" for the life of the modern man. The consequences of environmental pollution areso dangerous that modern man cannot afford considering them. Through this paper I will study the environmental quality by monitoring the surfaces waters from the Semenic- Gărâna area.

  14. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  15. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  16. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    Science.gov (United States)

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than

  17. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  18. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  19. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  20. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  1. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13

    Science.gov (United States)

    Mashburn, Shana L.; Smith, S. Jerrod

    2014-01-01

    Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer. This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels

  3. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  4. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  5. An isotope-aided study on the interaction between surface water and groundwater in the KAERI area

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Jong Hoon; Yun, Si Tae; Jeong, Chan Ho; Kim, Kae Nam

    1988-01-01

    The basement rocks of the KAERI area are compose421d of two mica granite and schistose granite. The groundwater in these fresh crystalline rocks appears to be restricted within the zones developing the fractures. The groundwater in this area occurs mainly in the weathered zones of granitic rocks, with a thickness of 5-20 m. On the results of environmental isotopes analyses, it was proved that surface water and precipitation infiltrated rapidly through the subsurface media into the weathered zone. The high environmental isotopes level found in some groundwater samples are ascribed to the impermeable layer such as clay and silt around the sampling points. Consequently, the groundwater flow in this area is controlled by the heterogeneity of weathered materials. The water types classified by the piper diagram are attributed to the Ca-Cl and Ca-HCO 3 types

  6. Water resources of the Pittsburgh area, Pennsylvania

    Science.gov (United States)

    Noecker, Max; Greenman, D.W.; Beamer, N.H.

    1954-01-01

    Pennsylvania. On the average about 63 mgd was pumped from the ground, not including 1.5 mgd pumped for air conditioning. Most of the present-day wells in the "Triangle area" of Pittsburgh have large yields and many operate continuously throughout the summer. The result has been a marked seasonal decline in water levels in some parts of the Triangle area, especially near the center of pumping. It appears that the maximum rate of summertime use has been reached in this localized area. Water from wells near rivers often has chemical characteristics similar to those of water from the adjacent stream because the well water is supplied largely by river infiltration. The ground water in the Pittsburgh area is generally more highly mineralized than surface water, harder, and contains higher concentrations of iron and manganese, all the result of solution of aquifer minerals by the water during its passage through the ground. Nevertheless, ground water commonly is less corrosive than surface water, contains little or no suspended sediment, and is free of pathogenic bacteria. Both sediment and bacteria are present in considerable quantities in the river water of this area. Water from wells supplied largely by river infiltration may have a temperature variation throughout a year of as much as 30 to 35 F and a variation in hardness of as much as 130 ppm. Certain types of chemicals having objectionable tastes and odors are not always removed by the natural infiltration of the river water to wells but pathogenic bacteria and sediment are. There is only a small range throughout a year in the temperature and chemical quality of water in individual wells farther from the rivers. Such water is generally harder and contains more dissolved solids than water supplied by river infiltration. There is no immediate likelihood of a shortage of water in the area. Present withdrawals of surface water are spread throughout the major river valleys so that the water returned to the stream after use is

  7. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  8. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    International Nuclear Information System (INIS)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan

    2007-01-01

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128-186 mm

  9. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan [Golder Associates AB, Uppsala (Sweden)

    2007-01-15

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128

  10. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  11. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  12. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  13. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  14. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    Science.gov (United States)

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  15. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  16. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  17. Research on the surface water quality in mining influenced area in north-western part of Romania

    Directory of Open Access Journals (Sweden)

    Smical Irina

    2015-01-01

    Full Text Available The paper highlights the current situation of the quality of surface water in the areas influenced by mining activities in the north-western part of Romania. In this respect a series of investigations have been conducted regarding the contamination with heavy metals of the water of the Someş and Tisa hydro- graphic Basins, which cover the northern part of Maramures County and the south-western area of Maramures County, respectively. The results of the comparative research refer to the period between 1999 and 2011 and reveal the specific heavy metal ions of mining activity: Fe, Mn, Zn, Cu, Pb Cd and Ni, as well as the water pH. The presented values as annual average values reveal an increase in several heavy metals after the closure of mines, which is due to the lack of effectiveness of the closure and of the conservation of the mine galleries, as well as of the impaired functioning of the mining wastewater treatment plants.

  18. A regional water balance for the WIPP site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1987-01-01

    A water balance or budget is developed as an accounting of the components of a closed hydrologic system. In the WIPP study area, water-budget techniques have previously been used to compute leakage from Lake Avalon and from potash refinery spoil ponds. A general expression for a closed hydrologic system is presented. In a developed area like the WIPP region, the water budget must include many usage factors, such as municipal or industrial pumpage. In the WIPP water-budget study area, inflows are precipitation, surface- and ground-water inflow, and the artificial addition of surface and ground water. Outflows are surface runoff, evaporation and transpiration, and ground-water outflow. Changes in storage in the WIPP region have also been documented. The WIPP water balance described here is based on a combination of long-term averages and figures for 1980. 12 refs., 5 figs., 1 tab

  19. Irradiation of Oil / Water Biphasic Systems: the Importance of Interfacial Surface Area on the Production of Hydrogen and Other Deleterious Products

    International Nuclear Information System (INIS)

    Causey, Patrick-W.; Stuart, Craig-R.

    2012-09-01

    interfacial surface area, control of headspace gas composition, and removal of sample aliquots. Results highlight the importance of interfacial surface area in affecting the radiolytic degradation of the studied hydrocarbons. In particular, experiments having higher oil-water interfacial surface areas generate greater quantities of oil degradation products as compared with lower surface area samples. As expected, one notable result from these irradiations was the formation of significant quantities of hydrogen, which was found to be dependent on the interfacial surface area. Presented here is a review of the radiolytic degradation of insoluble organic material in aqueous systems, a summary of experimental results focusing on biphasic systems and a description of a strategy to mitigate the effects of insoluble organic material ingress and to aid in developing station-appropriate responses. (authors)

  20. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  1. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  2. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea).

    Science.gov (United States)

    Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib

    2016-03-15

    The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (3) ratios highlighted a chemical pollution with organic load of a low biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Transport and retention of phosphorus in surface water in an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2013-08-01

    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  4. Determination of the Presence of Three Antimicrobials in Surface Water Collected from Urban and Rural Areas

    Directory of Open Access Journals (Sweden)

    Alberto Cepeda

    2013-02-01

    Full Text Available Due to the continuous release of antimicrobials into the environment, the aim of this study was to compare the frequency of detection of sulfamethazine, sulfamethoxypyridazine and trimethoprim in surface water collected from urban and rural areas in Northwestern Spain. A monitoring study was conducted with 314 river water samples analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry. The results indicated that 37% of the samples contained residues of at least one of the investigated antimicrobials, and every sampling site yielded positive samples. At sites located near the discharge points of wastewater treatment plants and near the collection point of a drinking-water treatment plant, more than 6% of the samples were positive for the presence of antimicrobial residues.

  5. Impact of war, precipitation, and water management on quantity of water resources in the Tigris/Euphrates area

    Science.gov (United States)

    Hasan, Mejs; Moody, Aaron

    2017-04-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region. In this research, we use the normalized difference water index (NDWI) in order to monitor changes in the extent of various water bodies over the time span of the Landsat 4, 5, 7, and 8 satellites (1984-present). We focused on Mosul and Haditha dam lakes, located on the Tigris and Euphrates Rivers, respectively, each of which has experienced changes in sovereignty over the last few years of conflict. We established two areas, one land and one water, on each image, plotted the distributions of all NDWI values for each area, and used the number of standard deviations between the two distributions in order to set a dynamic NDWI threshold for each image. Using this threshold, we determined water pixels and lake surface area, and computed daily percent change in lake extent between images. Furthermore, we took account of explanatory water resource variables, such as upstream dam management (via surface extent of upstream Turkish dams), precipitation (via globally-compiled databases), evaporation (based on surface area decreases during non-rainy months), and irrigation withdrawals (based on MODIS Enhanced Vegetation Indices). We used these explanatory variables in order to build a general model of expected dam lake surface extent, and we looked to see if anomalies from expected surface area corresponded with periods of conflict. We found that the recent years of conflict do not appear to have had as much impact on the Mosul and Haditha dam lakes as did the conflicts related to the earlier Gulf Wars. The dam lakes have recorded an overall decrease in surface area simultaneous to increases of upstream dams. A strong seasonal signal driven by springtime Turkish snowmelt and summer evaporation is also evident.

  6. Osmosis and Surface Area to Volume Ratio.

    Science.gov (United States)

    Barrett, D. R. B.

    1984-01-01

    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  7. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    Science.gov (United States)

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with

  8. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  9. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  10. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-01-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  11. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  12. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  13. Method of and device for detecting oil pollutions on water surfaces

    Science.gov (United States)

    Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  14. Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2018-01-01

    Soil specific surface area (SA) controls fundamental soil processes such as retention of water, ion exchange, and adsorption and release of plant nutrients and contaminants. Conventional methods for determining SA include adsorption of polar or non‐polar fluid molecules with associated advantages...... parameters varied depending on the water activity or relative humidity range of measured data (0.03–0.93 compared with 0.10–0.80), whereas the variation for desorption was minimal. For desorption isotherms, the average water activity value at which the GAB monolayer parameter was obtained was 0......‐based modelling approaches to determine SA. Measured water vapour adsorption and desorption isotherms for 321 soil samples were used to parameterize the GAB model, the Brunauer–Emmet–Teller (BET) equation and a film adsorption Tuller–Or (TO) model to estimate SA. For adsorption isotherms, the values of the GAB...

  15. Raising surface water levels in peat areas with dairy farming upscaling hydrological, agronomical and economic effects from farm-scale to local scale.

    NARCIS (Netherlands)

    Vos, de J.A.; Bakel, van P.J.T.; Hoving, I.E.; Smidt, R.A.

    2010-01-01

    Raising surface water levels in peat areas is a measure to reduce soil subsidence, to prevent decay of wooden foundations and to stimulate wet nature restoration and reduce greenhouse gas emissions. However, in these areas dairy farms are present and farming at wetter soils is difficult due to lower

  16. Water Service Areas - Public Water Supplier's (PWS) Service Areas

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Boundaries of current public water supplier's (PWS) service areas. This data set contains the present service area boundary of the water system and does not contain...

  17. Water Service Areas - MDC_WaterServiceArea

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Water and Sewer Service Area layer was derived from the original paper based sketches which contained both water and sewer utility boundary information. This...

  18. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  19. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  20. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  1. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  2. Determination of free cyanide and total cyanide concentrations in surface and underground waters in Bogoso and its surrounding areas in Ghana

    Directory of Open Access Journals (Sweden)

    S. Obiri

    2007-08-01

    Full Text Available Concentrations of free cyanide and total cyanide in water samples in Bogoso and its surrounding areas in Ghana have been measured in this study. Concentrations of free cyanide and total cyanide were found to be above the maximum permissible discharge limit of effluent from mining companies into natural waters set by Environmental Protection Agency, Ghana (GEPA. A comparison of the results obtained in this study with permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that surface waters in the study areas are highly polluted with cyanide and it's not safe for human consumptions. This means that, the resident in and around Bogoso are at risk.

  3. Regional water balance for the Waste Isolation Pilot Plant (WIPP) site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1985-12-01

    The WIPP water-balance study area defined here comprises approx.2000 mi 2 in Eddy and Lea Counties, southeastern New Mexico. Inflows to the study area are precipitation (roughly 1.47 x 10 6 ac-ft/y), surface water (roughly 1.1 x 10 5 ac-ft/y), water imported by municipalities and industries (roughly 3 x 10 4 ac-ft/y), and ground water (volume not estimated). Outflows from the area are evapotranspiration (roughly 1.5 x 10 6 ac-ft/y), surface water (roughly 1.2 x 10 5 ac-ft/y), and possibly some ground water. The volume of surface and ground water in storage in Nash Draw has increased since the beginning of potash refining. Regional ground-water flow in aquifers above the Salado Formation is from the northeast to the southwest, although this pattern is interrupted by Clayton Basin, Nash Draw, and San Simon Swale. The Pecos River is the only important perennial stream. Most of the area has no integrated surface-water drainage. The available data suggest that approx.1600 mi 2 of the study area are hydrologically separate from Nash Draw and the WIPP site. Ground water north of Highway 180 apparently discharges into Clayton Basin and evaporates. Water in San Simon Swale apparently percolates downward and flows to the southeast. Data are inadequate to create a water budget for the Nash Draw-WIPP site hydrologic system alone, although an attempt to do so can provide guidance for further study

  4. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    Science.gov (United States)

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  5. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    Science.gov (United States)

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    The Kalamazoo report area includes about 150 square miles of Kalamazoo County, Mich. The area is principally one of industry and commerce, although agriculture also is of considerable importance. It has a moderate and humid climate and lies within the Lake Michigan “snow belt”. Precipitation averages about 35 inches per year. Snowfall averages about 55 inches. The surface features of the area were formed during and since the glacial epoch and are classified as outwash plain, morainal highlands, and glaciated channels or drainageways. The area is formed largely on the remnants of an extensive outwash plain, which is breached by the Kalamazoo River in the northeastern part and is dissected elsewhere by several small tributaries to the river. Most of the land drained by these tributaries lies within the report area. A small portion of the southern part drains to the St. Joseph River. The Coldwater shale, which underlies the glacial deposits throughout the area, and the deeper bedrock formations are not tapped for water by wells and they have little or no potential for future development. Deposits of glacial drift, which are the source of water to all the wells in the area, have considerable potential for future development. These deposits range in thickness from about 40 feet along the Kalamazoo River to 350 feet where valleys were eroded in the bedrock surface. Permeable outwash and channel deposits are the sources of water for wells of large capacity. The moraines are formed dominantly by till of lower permeability which generally yields small supplies of water, but included sand and gravel beds of higher permeability yield larger supplies locally. The aquifers of the Kalamazoo area are recharged by infiltration of rainfall and snowmelt and by infiltration of surface waters induced by pumping of wells near the surface sources. Water pumped from most of the municipal well fields is replenished in part by such induced infiltration. Many of the industrial wells

  6. Chromium in surface water and groundwater in the surrounding area of a tannery: relationships with water quality baseline, Elena, Cordoba. Argentina

    International Nuclear Information System (INIS)

    Matteoda, E.; Blarasin, M.; Damilano, G.; Cabrera, A.; Giuliano Albo, J.

    2009-01-01

    The basin of the El Barreal stream is a dominantly rural area in which groundwater is used for all activities whereas the stream is used as sink of residues and effluents. The existence of a tannery, which discharge the effluents into a wetland (which is drained by the stream), reveals the need to study the presence of Chromium in surface and groundwater and to compare values derived from pollution with those corresponding to the natural water baseline values. Fifty three samples of surface and groundwater were abstracted and chemical analyses were made, including total Chromium in water and plants. The chemical analysis results were studied by means of conventional and statistical techniques. The local and regional geological characteristics allow us to interpret that Chromium in water is derived from source minerals, being possible to stand out that high values probably are related to nearby serpentinite bodies.The values of total chrome in surface and groundwater are included in the natural quality baseline range calculated for this basin (0,25-5ug/L), exempting those samples with higher values linked to sites with farming activities and to the wetland environment where the Chromium effluent is discharged. In the last place, Chromium was retained in soil and plants whereas the aquifer was affected by a contaminant plume of total dissolved solids because of advective-dispersive transport. In the 2009 monitoring survey, a small increase of Chromium in groundwater was detected in relation to that of 2005, being assumed that partial desorption of Chromium is taking place from the solid phase. (Author) 19 refs.

  7. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    Science.gov (United States)

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed.

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  10. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  11. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  12. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  13. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  14. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  15. Dual Orlicz geominimal surface area

    Directory of Open Access Journals (Sweden)

    Tongyi Ma

    2016-02-01

    Full Text Available Abstract The L p $L_{p}$ -geominimal surface area was introduced by Lutwak in 1996, which extended the important concept of the geominimal surface area. Recently, Wang and Qi defined the p-dual geominimal surface area, which belongs to the dual Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed volume, we extend the dual geominimal surface area to the Orlicz version and give its properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type inequality, and the monotonicity inequality for the dual Orlicz geominimal surface areas are established.

  16. Hydrogeological, hydrochemical and isotope-hydrological investigations of surface and crevice waters in the Grimsel area (Switzerland)

    International Nuclear Information System (INIS)

    Keppler, A.

    1995-12-01

    The Grimsel rock laboratory (Hasli valley, Berner Oberland, Switzerland) has been used since 1984 by NAGRA (Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle, Wettingen, Switzerland). It is about 450 metres deep under the Juchli ridge in the crystalline rock basement of the Aar massif. Within the framework of an international cooperation, a great many research topics in connection with the underground storage of radioactive waste are being studied at this location. Their focus is, inter alia, on the following: hydrogeological investigations of crevice water movement, investigations of geophysical structures and rock tension measurements, migration of radionuclides in an individual crevice. So far, hydrogeological and hydrogeochemical conditions have only been studied as far as they related to the needs of individual investigations, and systematic information on global waterways in the Juchli basement was scarce. By contrast, this work aimed at the chemical characterization of surface and spring waters in the catchment area of the rock laboratory as well as the crevice waters in the day-drift system, the description of the chemical development of the waters during their passage through the crevice system, and the assessment of the mean underground retention time of crevice waters by means of different stable and radioactive isotopes. In addition, hydrogeological mapping of the system of waters above ground and crevice water accesses underground was carried out. (orig./SR) [de

  17. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  18. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  19. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    Science.gov (United States)

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  20. The scaling of urban surface water abundance and impairment with city size

    Science.gov (United States)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  1. Water resources development in the Molai area, Greece

    International Nuclear Information System (INIS)

    1981-01-01

    The first volume of this report describes the work, carried out by the Government of Greece, with the assistance of UNDP and FAO, to assess the availability of groundwater for the irrigation of up to 6000 km in the Molai plain, located in the southern Peloponnese. The limestone reservoir of groundwater is restricted to the area 10 km 2 . Its groundwater is of rather poor quality (EC more than 2.0 mmho/cm) and it has a low head 3-7 m above sea level, which is 77-150 m below land surface. A water balance is presented which has been confirmed on a groundwater model. The fresh water of the limestone aquifer is characterised by the admixture of a variable amount of sea-water. The water of the Neogene aquifer is of much better quality. Combining the available resources, the irrigated area in the Molai plain can be tripled to cover half the net irrigable area. The economic feasibility of such a project has been studied

  2. A global, 30-m resolution land-surface water body dataset for 2000

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  3. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  4. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  5. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  6. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  7. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  8. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    Science.gov (United States)

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...

  9. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  10. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska

    International Nuclear Information System (INIS)

    Necsoiu, Marius; Dinwiddie, Cynthia L; Walter, Gary R; Stothoff, Stuart A; Larsen, Amy

    2013-01-01

    Multi-temporal image analysis of very-high-resolution historical aerial and recent satellite imagery of the Ahnewetut Wetlands in Kobuk Valley National Park, Alaska, revealed the nature of thaw lake and polygonal terrain evolution over a 54-year period of record comprising two 27-year intervals (1951–1978, 1978–2005). Using active-contouring-based change detection, high-precision orthorectification and co-registration and the normalized difference index, surface area expansion and contraction of 22 shallow water bodies, ranging in size from 0.09 to 179 ha, and the transition of ice-wedge polygons from a low- to a high-centered morphology were quantified. Total surface area decreased by only 0.4% during the first time interval, but decreased by 5.5% during the second time interval. Twelve water bodies (ten lakes and two ponds) were relatively stable with net surface area decreases of ≤10%, including four lakes that gained area during both time intervals, whereas ten water bodies (five lakes and five ponds) had surface area losses in excess of 10%, including two ponds that drained completely. Polygonal terrain remained relatively stable during the first time interval, but transformation of polygons from low- to high-centered was significant during the second time interval. (letter)

  11. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  12. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  13. Method for the prioritization of areas experiencing microbial pollution of surface water

    CSIR Research Space (South Africa)

    Venter, SN

    1998-01-01

    Full Text Available The increased threat of faecal pollution in recent years and the high priority of protecting human health by the government led to the initiation of a national microbial monitoring programme for surface water in South Africa. According to the design...

  14. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  15. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  16. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  17. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, J.; Turunen, J.; Lipping, T. [Tampere Univ. of Technology (Finland); Ikonen, A.

    2014-03-15

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified

  18. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    International Nuclear Information System (INIS)

    Pohjola, J.; Turunen, J.; Lipping, T.; Ikonen, A.

    2014-03-01

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified with other

  19. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  20. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  1. Seasonal variability of sea surface chlorophyll-a of waters around ...

    Indian Academy of Sciences (India)

    days during 1978--1986 are processed to produce sea surface chlorophyll maps ... shallow water areas, in particular waters in Palk Bay and Gulf of Mannar, should be carried out in order .... The circulation penetrates deeper, affecting the.

  2. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  3. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    Science.gov (United States)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  4. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  5. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  6. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  7. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  8. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  9. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  10. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    variations in groundwater composition during the period 2005 to 2009 are presented in the report. The nitrogen concentration in the groundwater from soil pipe SFM0037 continued to be somewhat high also in August 2009, and especially the phosphate concentration was very high at that occasion. The sampled surface waters in the Forsmark area show similar seasonal variations as last year. Seasonal and annual variations in surface water composition during the period 2005 to 2009 are presented in the report. The waters are well buffered with high alkalinity, high pH and high calcium concentrations, and waters affected or recently affected by brackish sea water show high sodium chloride concentrations. Elevated tritium concentrations have been observed occasionally in samples collected close to the cooling water outlet from the nuclear power plant (Lake Biotestsjoen). This occurred once during 2009 (August)

  11. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Borgiel, Micke; Qvarfordt, Susanne

    2010-09-01

    variations in groundwater composition during the period 2005 to 2009 are presented in the report. The nitrogen concentration in the groundwater from soil pipe SFM0037 continued to be somewhat high also in August 2009, and especially the phosphate concentration was very high at that occasion. The sampled surface waters in the Forsmark area show similar seasonal variations as last year. Seasonal and annual variations in surface water composition during the period 2005 to 2009 are presented in the report. The waters are well buffered with high alkalinity, high pH and high calcium concentrations, and waters affected or recently affected by brackish sea water show high sodium chloride concentrations. Elevated tritium concentrations have been observed occasionally in samples collected close to the cooling water outlet from the nuclear power plant (Lake Biotestsjoen). This occurred once during 2009 (August)

  12. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    Science.gov (United States)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  13. Determination of surface and groundwater quality in the Orontes basin (Syria) and the negative effect of some pollutants on the water, soil, and plants at this area

    International Nuclear Information System (INIS)

    Kassem, A.

    2005-01-01

    This work deals with the physical/chemical characteristics and quality of surface and ground water in the basin of the Orontes river in Syria. It also deals with concentration of basic elements and trace elements in water, soil and some plant leaves in that area. The internationally acknowledged methods were used to determine the physical constituents and to analyze elements of the most important basic and sub compounds in 95 water samples (77 ground samples and 18 surface samples). The instrumental Neutron Activation Analysis was used to analyze some major elements and trace elements in 18 soil samples and 9 plant leave samples. Evaluation of analysis results of those samples shows the great geo-ecological and geographic effect and the effect of human activities on polluting the water, soil and plants according to quality of irrigation water, effect of air, liquid and solid rejects of the industrial and municipal sites, nature and repetition of plantations and type of fertilizers and pesticides used in the studied area.(author)

  14. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  15. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    Science.gov (United States)

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  16. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  17. Contamination of the ground waters and surface waters by boron in Lerma Valley, NW-Argentina - an inventory

    International Nuclear Information System (INIS)

    Bundschuh, J.

    1992-01-01

    Ground- and surface waters in areas unaffected by pollution from borax and boric acid producing plants exhibit low boron concentrations of less than 300 μg B/l. Only at the boric acid plant 'Mineratea' is the groundwater contaminated, with up to 6200 μg B/l occurring within an area of 8 to 10 km 2 with more than 1000 μg boron/l. Even higher boron concentrations (up to 18 μg B/l) are present in polluted surface waters. Not the boron concentration in the irrigation water, but the absolute amount of boron added to the plants by irrigation is what determines plant toxicity. For the contaminated area of the boric acid 'Mineratea', characterized by boron concentrations of between 1000 and 6000 μg B/l, the maximal amounts of irrigation water that can be applied lies between 300 and 8 mm. In order to protect the local groundwater resoures from present and future contamination, environmental impact assessment on industrial projects in the area are required. In this way, the quality of the drinking and irrigation water can be guaranteed through suitable measures, without hindering further necessary industrial development of the region. (orig./UWA) [de

  18. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  19. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  20. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    Science.gov (United States)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  1. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States.

    Science.gov (United States)

    Reilly, Timothy J; Smalling, Kelly L; Orlando, James L; Kuivila, Kathryn M

    2012-09-01

    To provide an assessment of the occurrence of fungicides in water resources, the US Geological Survey used a newly developed analytical method to measure 33 fungicides and an additional 57 current-use pesticides in water samples from streams, ponds, and shallow groundwater in areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within farms using prophylactic fungicides at rates and types typical of their geographic location. At least one fungicide was detected in 75% of the surface waters and 58% of the groundwater wells sampled. Twelve fungicides were detected including boscalid (72%), azoxystrobin (51%), pyraclostrobin (40%), chlorothalonil (38%) and pyrimethanil (28%). Boscalid, a carboxamide fungicide registered for use in the US in 2003, was detected more frequently than atrazine and metolachlor, two herbicides that are typically the most frequently occurring pesticides in many large-scale water quality studies. Fungicide concentrations ranged from less than the method detection limit to approximately 2000 ngL(-1). Currently, limited toxicological data for non-target species exists and the environmental impacts are largely unknown. The results of this study indicate the importance of including fungicides in pesticide monitoring programs, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases. Published by Elsevier Ltd.

  2. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  3. Effect of high-extraction coal mining on surface and ground waters

    International Nuclear Information System (INIS)

    Kendorski, F.S.

    1993-01-01

    Since first quantified around 1979, much new data have become available. In examining the sources of data and the methods and intents of the researchers of over 65 case histories, it became apparent that the strata behaviors were being confused with overlapping vertical extents reported for the fractured zones and aquiclude zones depending on whether the researcher was interested in water intrusion into the mine or in water loss from surface or ground waters. These more recent data, and critical examination of existing data, have led to the realization that the former Aquiclude Zone defined for its ability to prevent or minimize the intrusion of ground or surface waters into mines has another important character in increasing storage of surface and shallow ground waters in response to mining with no permanent loss of waters. This zone is here named the Dilated Zone. Surface and ground waters can drain into this zone, but seldom into the mine, and can eventually be recovered through closing of dilations by mine subsidence progression away from the area, or filling of the additional void space created, or both. A revised model has been developed which accommodates the available data, by modifying the zones as follows: collapse and disaggregation extending 6 to 10 times the mined thickness above the panel; continuous fracturing extending approximately 24 times the mined thickness above the panel, allowing temporary drainage of intersected surface and ground waters; development of a zone of dilated, increased storativity, and leaky strata with little enhanced vertical permeability from 24 to 60 times the mined thickness above the panel above the continuous fracturing zone, and below the constrained or surface effects zones; maintenance of a constrained but leaky zone above the dilated zone and below the surface effects zone; and limited surface fracturing in areas of extension extending up to 50 ft or so beneath the ground surface. 119 ref., 5 figs., 2 tabs

  4. Surface runoff from urban areas. New aspects; Neue Aspekte in der Behandlung von Siedlungsabfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Bereich Siedlungswasserwirtschaft und Wasserguetewirtschaft; Lambert, Benedikt [Bioplan Landeskulturgesellschaft, Sinsheim (Germany); Grotehusmann, Dieter [Ingenieurgesellschaft fuer Stadthydrologie, Hannover (Germany)

    2010-12-15

    The surface runoff from urban areas is one of the most important sources of pollutants emitted into surface waters. Suspended solids which act as a transport vehicle for many anthropogenic pollutants (e. g. heavy metals, PAH) are a key factor in this regard. The development of efficient measures of storm water runoff treatment thus requires a further differentiation of suspended solids in a fine (clay and silt) and coarse (sand and gravel) fraction. Both fractions show distinctly different characteristics in pollutant loading, transport and retention on urban surfaces and sewer systems. The primary aim of storm water runoff treatment is the reduction of the fine particles which are always highly loaded with anthropogenic pollutants. In contrast the coarse particles are almost unpolluted especially if they have a low organic share. The widespread sedimentation tanks with surface loadings between 10 and 2 m/h are very inefficient. A significant, save and lasting reduction of the emitted load of fine particles requires a considerable reduction of the surface loads. That can be achieved with the installation of lamellar settler or the utilization of the very large volumes of flood management tanks frequently present in urban areas. Filtration plants are highly efficient but there application in urban areas is limited due to their high space demands. (orig.)

  5. Climate and surface water hydrology baseline data for Aurora Mine EIA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A climate and hydrology database was assembled to describe the existing climatic and surface water hydrological characteristics of the proposed Aurora Mine area in Leases 10, 12, 13, 31, and 34 east of the Athabasca River near Fort McKay. The study was based upon data available from the regional hydrometeorological monitoring network operated by the Governments of Canada and Alberta. The study also included the installation and monitoring of one climate station and five streamflow gauging stations on small watersheds in the area. The representative climatic and hydrologic characteristics of the area, including precipitation, evaporation, evapotranspiration, temperature and wind, were determined. Streamflow characteristics such as flood frequencies, low flow frequencies, water yield and flow durations representative of large gauged watersheds within the study area were also determined. The results offer a good basis for preliminary design of surface water management systems. It was recommended that the monitoring program should be continued to monitor potential environmental impacts of proposed development activities. 9 refs., 29 tabs., 32 figs.

  6. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  7. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  8. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage

  9. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.

    2018-01-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic

  10. Wetlands inform how climate extremes influence surface water expansion and contraction

    Directory of Open Access Journals (Sweden)

    M. K. Vanderhoof

    2018-03-01

    Full Text Available Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1 quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR and adjacent Northern Prairie (NP in the United States, and (2 explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015. The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density. To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less

  11. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  12. THE EFFECT OF STORAGE AT AMBIENT HUMIDITY ON THE BET-SPECIFIC SURFACE-AREA OF TABLETS COMPACTED FROM DIFFERENT MATERIALS

    NARCIS (Netherlands)

    RIEPMA, KA; DEKKER, BG; JAGER, RS; ELBERSE, PA; LERK, CF

    1993-01-01

    Tablets compacted from both water soluble and water insoluble particulate solids showed no change in BET-specific surface area when transferred immediately after ejection from the die in a dry atmosphere. Storage at ambient humidity resulted in an irreversible decrease in surface area, caused by

  13. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  14. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  15. Surface water change as a significant contributor to global evapotranspiration change

    Science.gov (United States)

    Zhan, S.; Song, C.

    2017-12-01

    Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in

  16. Occurrence of Antibiotics in Surface and Groundwater of a Drinking Water Catchment Area in Germany.

    Science.gov (United States)

    Burke, Victoria; Richter, Doreen; Greskowiak, Janek; Mehrtens, Anne; Schulz, Lena; Massmann, Gudrun

    2016-07-01

    The contamination of the aquatic environment with organic micropollutants, such as veterinary pharmaceuticals, has become an increasingly serious problem and has aroused attention in the course of the last decades. This study presents a screening for a series of veterinary antibiotics, potentially introduced by the application of liquid manure, in ground- and surface water of a drinking water catchment in Lower Saxony, Germany. Of the 26 compounds analyzed, eight, including sulfadiazine, sulfapyridine, sulfamethoxazole, trimethoprim, dehydrato-erythromycin, sulfadimidine, tylosin, and tetracycline were detected in surface water samples. Trimethoprim was detected in 11 out of 15 shallow groundwater samples, indicating its high environmental relevance. Column sorption experiments conducted on trimethoprim show a comparatively moderate sorption affinity to sandy aquifer material with a retardation coefficient of 5.7.

  17. An isotope-aided study on the interaction of surface water and groundwater

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Jong Hoon; Yun, Si Tae; Jeong, Chan Ho; Kim, Kae Nam

    1987-12-01

    The interaction between surface water and groundwater was studied by isotope-aided techniques in the vicinity of the KAERI area. The understanding of surface water and groundwater flow systems and the analysis of geomaterials which provide the pathway of groundwater is important for the hydrogeological safety assessment of the radioactive waste disposal. The results of the analyses of environmental isotopes have shown that the shallow groundwater in this area was originated from the meteoric water which is infiltrated rapidly into the subsurface materials. The higher content of the environmental isotopes in some groundwater samples indicate that this anomalous values is attributed to impermeable, fine-grained materials. Also, the results of hydrochemical analyses of water samples indicate that shallow groundwater and precipitation are well mixed. (Author)

  18. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery

    Science.gov (United States)

    Wang, Xiaobiao; Xie, Shunping; Zhang, Xueliang; Chen, Cheng; Guo, Hao; Du, Jinkang; Duan, Zheng

    2018-06-01

    Surface water is vital resources for terrestrial life, while the rapid development of urbanization results in diverse changes in sizes, amounts, and quality of surface water. To accurately extract surface water from remote sensing imagery is very important for water environment conservations and water resource management. In this study, a new Multi-Band Water Index (MBWI) for Landsat 8 Operational Land Imager (OLI) images is proposed by maximizing the spectral difference between water and non-water surfaces using pure pixels. Based on the MBWI map, the K-means cluster method is applied to automatically extract surface water. The performance of MBWI is validated and compared with six widely used water indices in 29 sites of China. Results show that our proposed MBWI performs best with the highest accuracy in 26 out of the 29 test sites. Compared with other water indices, the MBWI results in lower mean water total errors by a range of 9.31%-25.99%, and higher mean overall accuracies and kappa coefficients by 0.87%-3.73% and 0.06-0.18, respectively. It is also demonstrated for MBWI in terms of robustly discriminating surface water from confused backgrounds that are usually sources of surface water extraction errors, e.g., mountainous shadows and dark built-up areas. In addition, the new index is validated to be able to mitigate the seasonal and daily influences resulting from the variations of the solar condition. MBWI holds the potential to be a useful surface water extraction technology for water resource studies and applications.

  19. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  20. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  1. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  2. Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil.

    Science.gov (United States)

    Medeiros, Adaelson Campelo; Faial, Kleber Raimundo Freitas; do Carmo Freitas Faial, Kelson; da Silva Lopes, Iris Danielly; de Oliveira Lima, Marcelo; Guimarães, Raphael Mendonça; Mendonça, Neyson Martins

    2017-10-15

    In this study was to evaluate the waters quality of the Murucupi River, located in urban agglomerate area and intense industrial activity in Barcarena City, Pará State. The Arapiranga River in Abaetetuba City was used as control area (Background), next to Barcarena. Was used the Water Quality Index (WQI) based on nine variables analized. Waters quality of the Arapiranga and Murucupi rivers were regular to good and bad to good, respectively. Anthropogenic influence on the Murucupi River was higher, mainly by the disposal of domestic effluents from the urban agglomerate and of the industrial waste tailing basins upstream of this river. Due to its less inhabited environment and further away from the area urban and industrial, the Arapiranga River was more preserved. Waters pollution of around these area is increasingly intense, and restricted its uses for various purposes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Linking land use with pesticides in Dutch surface waters.

    Science.gov (United States)

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.

  4. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  5. Map showing selected surface-water data for the Alton-Kolob coal-fields area, Utah

    Science.gov (United States)

    Price, Don

    1982-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Alton-Kolob coal-fields area, Utah. Streamflow records used to compile the map and the following table were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas were delineated form a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964).

  6. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  7. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    International Nuclear Information System (INIS)

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  8. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh).

    Science.gov (United States)

    Habibullah-Al-Mamun, Md; Ahmed, Md Kawser; Raknuzzaman, Mohammad; Islam, Md Saiful; Negishi, Junya; Nakamichi, Shihori; Sekine, Makoto; Tokumura, Masahiro; Masunaga, Shigeki

    2016-11-15

    This study reports the first evidence of perfluoroalkyl acids (PFAAs) in surface waters and sediments collected from the coastal area of Bangladesh. Fifteen target PFAAs, including C4-14-PFCAs (perfluoroalkyl carboxylates) and C4, C6, C8, and C10-PFSAs (perfluoroalkyl sulfonates), were quantified by HPLC-MS/MS. The ΣPFAAs in surface water and sediment samples were in the range of 10.6 to 46.8ng/L and 1.07 to 8.15ng/gdw, respectively. PFOA in water (3.17-27.8ng/L) and PFOS in sediment samples (0.60-1.14ng/gdw) were found to be the most abundant PFAAs, and these concentrations were comparable to or less than most other reported values, particularly those recorded from the coastal areas of China, Japan, Korea and Spain. The majority of the monitored PFAAs did not show clear seasonal variation. The southeastern part (Cox's Bazar and Chittagong) of the Bangladeshi coastal area was more contaminated with PFAAs than the southern (Meghna Estuary) and southwestern parts (Sundarbans). Industrial and municipal wastewater effluents, ship breaking and port activities were identified as potential sources of the PFAA contamination in this region. Field-based sediment water distribution coefficients (KD) were calculated and corrected for organic carbon content (KOC), which reduced the variability between samples. The values of log KD (1.63-2.88) and log KOC (4.02-5.16) were higher than previously reported values, which may indicate that the partitioning of PFAAs in a tropical coastal ecosystem is different from other ecosystems, such as temperate and sub-tropical regions. Although a preliminary environmental hazard assessment indicated that PFOA or PFOS levels do not currently exceed the acute safety thresholds, we should keep in mind that they are bioavailable and can accumulate in the food chain. Therefore, the ubiquity of PFAAs in the coastal area of Bangladesh warrants further studies characterizing their specific sources and the potential long-term risks they present to both

  9. Pilot monitoring study of ibuprofen in surface waters of north of Portugal.

    Science.gov (United States)

    Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina

    2013-04-01

    Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.

  10. Stormwater harvesting: Improving water security in South Africa's urban areas

    Directory of Open Access Journals (Sweden)

    Lloyd Fisher-Jeffes

    2017-01-01

    Full Text Available The drought experienced in South Africa in 2016 one of the worst in decades has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.

  11. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  12. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water

    DEFF Research Database (Denmark)

    Dantas Mendes, Lipe Renato; Tonderski, Karin; Iversen, Bo Vangsø

    2018-01-01

    Surface-flow constructed wetlands (CWs) are potential cost-efficient solutions to mitigate phosphorus (P) loads from agricultural areas to surface waters. Hydraulic and phosphorus loading rates (HLR and PLR) are critical parameters that regulate P retention in these systems. The present study aim...

  13. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  14. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  15. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  16. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  17. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants

  18. Determination of pesticides in surface and ground water used for human consumption in Guatemala

    International Nuclear Information System (INIS)

    Knedel, W.; Chiquin, J.C.; Perez, J.; Rosales, S.

    1999-01-01

    A 15 month sampling and analysis programme was carried out to monitor concentrations of 37 targeted organochlorine, organophosphorus and organopyrethroid pesticides in surface and ground water in Guatemala. The 80 sampling points included 4 points in a lake, one point in each of the four lagoons, 10 municipal water systems of major towns, and 62 points along 52 rivers, most of which are located in the southern coast along borders with Mexico and El Salvador, and are one of the most productive areas in the country. The sampling used provided only preliminary information on the pattern of pesticide contamination of surface and ground water. It showed contamination of surface water in Los Esclavos watershed, Motagua river watershed as well as Villalobos, lake Amatitlan and Michatoya river watershed. Cypermethrin was the ubiquitous pesticides in some areas present in concentrations exceeding toxic levels for fish and other aquatic organisms. Several of the other targeted organophosphorus and ECD detectable pesticides were also detected in surface water. Some municipal water samples also had low levels of pesticides. (author)

  19. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  20. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    Science.gov (United States)

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface

  1. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  2. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  3. Water quality in gravel pits in the Bratislava area

    International Nuclear Information System (INIS)

    Flakova, R.; Rohacikova, A.; Zenisova, Z.

    1999-01-01

    The gravel pits around Bratislava have an esthetic, urban and recreational function. Open water table areas are in a direct contact with the air and acquire some characteristics of the surface water. The quality of open water table is much more susceptible to pollution than that of groundwater. Wet and dry deposition, water inflow from the surrounding surface, unmanageable sewerage effluents, solid and liquid wastes, but also the water birds contribute to the pollution. The Department of Hydrogeology has monitored the water quality in six gravel pits (Cunovo, Drazdiak, Strkovec, Pasienky, Zlate Piesky, Vajnory) since 1976 with an an interruption between 1988 - 1993. Two sampling per year have been made since 1994 and after 1998 the analyses have been supplemented by Na, K, Fe, Mn, by oxygen regime parameters, by trace elements (As, Ag, Cd, Co, Cu, Cr, Hg, Ni, Pb, V, Zn) and by organic pollutants. As regards the oxygen regime, the water quality pits is very good. The anthropogenic influence is expressed mainly by the increased contents of sulfates and chlorides. Most problematic trace elements are the mercury and vanadium (Drazdiak, Zlate Piesky and Vajnory). (authors)

  4. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  5. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    Science.gov (United States)

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  6. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  7. Cr(VI) and Conductivity as Indicators of Surface Water Pollution from Ferrochrome Production in South Africa: Four Case Studies

    Science.gov (United States)

    Loock-Hattingh, M. M.; Beukes, J. P.; van Zyl, P. G.; Tiedt, L. R.

    2015-10-01

    South Africa is one of the largest ferrochromium (FeCr) producers. Most FeCr is exported to developed countries. Therefore the impact of this industry is of national and international importance. Cr(VI) and conductivity of surface water in four case study areas, near five FeCr smelters were monitored for approximately 1 year. Results indicated that FeCr production in three case study areas had a negative influence on the Cr(VI) concentration and/or the conductivity of surface waters. In the remaining case study areas, drinking water, originating from groundwater, was severely polluted with Cr(VI). The main factors causing pollution were surface run-off and/or seepage, while atmospheric deposition did not seem to contribute significantly. The extinction of diatoms during a severe Cr(VI) surface water pollution event (concentrations up to 216 µg/L) in one of the case study areas was also observed, which clearly indicates the ecological impact of such surface water pollution events.

  8. Influence of surface mining on ground water (effects and possibilities of prevention)

    Energy Technology Data Exchange (ETDEWEB)

    Libicki, J

    1977-01-01

    This article analyzes the negative impact of surface mining on ground water. The effects of water depression on water supply for households and industry, and for vegetation and agriculture are evaluated. The negative impact of lowering the ground water level under various water conditions are analyzed: (1) vegetation is supplied with water only by rainfall, (2) vegetation is supplied with water in some seasons by rainfall and in some by ground water, and (3) vegetation uses ground water only. The impact of deteriorating water supply on forests is discussed. Problems connected with storage of waste materials in abandoned surface mines are also discussed. The influence of black coal ash and waste material from coal preparation plants on ground water is analyzed: penetration of some elements and chemical compounds to the ground water and its pollution. Some preventive measures are proposed: injection of grout in the bottom and walls of storage areas to reduce their permeability (organic resins can also be used but they are more expensive). The distance between injection boreholes should be 15 to 20 m. Covering the bottom of the storage area with plastic sheets can also be applied.

  9. Isotopic Composition and Age of Surface Water as Indicators of Groundwater Sustainability in a Semiarid Area: Case of the Souss Basin (Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hsissou, Y. [LAGAGE Laboratory, Ibn Zohr University, Agadir (Morocco); Nathaniel, W.; Vengosh, A. [Duke University (United States); Michelot, J. L.; Massault, M. [UMR ' IDES' , CNRS - Universite Paris-Sud, Orsay (France); Elfaskaoui, M. [Hydraulic Agency of Souss-Massa-Draa Basins, Agadir (Morocco)

    2013-07-15

    This study aims to determine the surface water and groundwater interconnection in the Souss catchment of western Morocco by applying multiple isotopic tracers such as {delta}{sup 18}O, {delta}{sup 2}H, {sup 3}H, Ra, {sup 14}C, {sup 87}Sr/{sup 86}Sr and CFCs. Stable water isotope data indicate that the High Atlas Mountains, with their high rainfall and low {delta}{sup 18}O and {delta}{sup 2}H values, constitute the major source of recharge to the Souss-Massa aquifer. Carbon-{sup 14} activities (34-94 pMC) and {sup 3}H indicate a long residence time of groundwater in some areas. The high {sup 14}C activities measured in the Ifni spring located at 2158 m a.s.l. and the Tiar spring at 711 m a.s.l. indicate a modern contribution, which is consistent with recharge from the High Atlas tributaries. In the upstream mountainous section, the mass balance mixing model suggest that groundwater contribution to stream flow is about 72% during the wet season and 36% during the dry season. In the downstream plain, 80% of surface flow infiltrates to the aquifer. {sup 226}Ra and {sup 87}Sr/{sup 86}Sr variations were indistinguishable for surface waters and groundwater. (author)

  10. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  11. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  12. The surface water model for assessing Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1993-01-01

    Canada's Nuclear Fuel Waste Management Program (NFWMP) is investigating the concept of disposal of nuclear fuel waste in a vault excavated deep in crystalline rock on the Canadian Shield. Probabilistic vault, geosphere, and biosphere models are implemented using Monte Carlo simulation techniques to trace nuclides transported in groundwater to the surface environment and humans far into the future. This paper describes the surface water submodel and its parameter values, sensitivity analysis, and validation. The surface water model is a simple, time-dependent, mass balance model of a lake that calculates radioactive and stable isotope contaminant concentrations in lake water and sediment. These concentrations are input to the other submodels and used to predict the radiological dose to humans and other biota. Parameter values in the model are based on the literature and the author's own data, and are generic to Canadian Shield lakes. Most parameters are represented by log normally distributed probability density functions. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing with catchment area being the most important parameter. When catchment area is held constant lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. For volatile nuclides, gaseous evasion also has a marked influence on concentrations in both water and sediment, whereas sedimentation rate strongly influences sediment nuclide concentrations. Validation tests demonstrate that the models predictions for 60 Co, 134 Cs, 3 H, P, Cd and Ca are consistent with empirical data when uncertainties are taken into account

  13. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  14. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  15. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  16. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  17. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  18. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  19. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  20. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain.

    Science.gov (United States)

    Navarro-Martinez, Francisco; Salas Garcia, Alejandro; Sánchez-Martos, Francisco; Baeza Espasa, Antonio; Molina Sánchez, Luis; Rodríguez Perulero, Antonio

    2017-12-01

    The identification of specific aquifers that supply water to river systems is fundamental to understanding the dynamics of the rivers' hydrochemistry, particularly in arid and semiarid environments where river flow may be discontinuous. There are multiple methods to identify the source of river water. In this study of the River Andarax, in the Southeast of Spain, an analysis of natural tracers (physico-chemical parameters, uranium, radium and radon) in surface water and groundwater indicates that chemical parameters and uranium clearly identify the areas where there is groundwater-surface water interaction. The concentration of uranium found in the river defines two areas: the headwaters with U concentrations of 2 μg L -1 and the lower reaches, with U of 6 μg L -1 . Furthermore, variation in the 234 U/ 238 U isotopic ratio allowed us to detect the influence that groundwater from the carbonate aquifer has on surface water in the headwaters of the river, where the saline content is lower and the water has a calcium bicarbonate facies. The concentration of 226 Ra and 222 Rn are low in the surface waters: aquifer on the surface waters. The results of this study indicate the utility in the use of physico-chemical and radiological data conjointly as tracers of groundwater-surface water interaction in semiarid areas where the lithology of aquifers is diverse (carbonate and detritic) and where evaporitic rocks are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 ''data freeze'' (July 31, 2004). The area covered in the conceptual and descriptive modelling is characterised by a low relief and a small-scale topography. Almost the whole area is located below 20 m a s l (metres above sea level). The corrected mean annual precipitation is 600-650 mm and the mean annual evapotranspiration can be estimated to a little more than 400 mm, leaving approximately 200 mm x year-1 for runoff. Till is the dominating Quaternary deposit covering approximately 75% of the area. In most of the area, the till is sandy. Bedrock outcrops are frequent but cover only approximately 5% of the area. Direct groundwater recharge from precipitation is the dominant source of groundwater recharge. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The sediment stratigraphy of lakes and wetlands is crucial for their function as discharge areas for groundwater. Comparisons between measured lake water levels and groundwater levels below and around lakes indicate that the lakes in some cases may act as sources of groundwater recharge. Specifically, observations from Lake Bolundsfjaerden and Lake Eckarfjaerden show that such conditions were at hand during the dry summer of 2003. However, whether the observed water level relations correspond to significant water fluxes depends also on the hydrogeological properties of the lake sediments and the underlying Quaternary deposits. ''Old'' water with high

  2. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  3. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  4. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  5. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    Science.gov (United States)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  6. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  7. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  8. Water treatment strategy for underground and surface waters in order to reduce the hydro-network contamination due to close out of a uranium mining area in Romania

    International Nuclear Information System (INIS)

    Georgescu, D.; Radulescu, C.

    1999-01-01

    Under the present circumstances, in correlation with the national nuclear program and strategy, it is foreseen to stop the exploitation activities in two important uranium mining areas from Romania. This close-out action is involving a number of technical decisions for environmental restoration. Reduction of waters radioactive contamination in these zones, both during the operating period and after the closeout period, is one of the main components of the environment rehabilitation strategy. In this paper there are presented the today situation and the program foreseen for ground and surface water treatment at an uranium mining unit situated in the SW side of Romania, program based on the results of our own research carried out to decrease the content of pollutant radioactive elements. (author)

  9. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  10. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    Science.gov (United States)

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  11. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  12. Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas

    Directory of Open Access Journals (Sweden)

    George C. Zalidis

    2009-08-01

    Full Text Available Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use.

  13. Assessing of landscape potential for water management regarding its surface water (using the example of the micro-region Minčol

    Directory of Open Access Journals (Sweden)

    Kunáková Lucia

    2016-06-01

    Full Text Available The presence of water is one of the decisive factors of landscape’s natural potential. Water affects landscape’s predisposition for agricultural production, water supply available to the wide population and industry (the most important is the yield of water resources. Ponds, lakes and other water areas are zones of recreation and relaxation. Near sources mineral water, several world-famous spas were build. Waterways are also used to generate electricity. Geothermal underground water represents a very significant landscape potential. Determining hydrological potential of the area is important for the regional development. This paper assesses the landscape potential for water management regarding its surface waters in the micro-region Minčol. The micro-region was divided by a square grid, and for each square, we determined the appropriateness of this potential based on score points. The determining evaluation criteria were static reserves of surface water, waterway ranking and annual average discharge. First, we determined the significance (value of individual criteria (classification characteristics, and then we calculated the values of individual classifiers, which were then multiplied by the value of the individual classifier intervals. The summary of points in each square belongs to a particular degree of suitability for water management based on surface waters. The potential was divided into five degrees (intervals: very unfavourable potential, unfavourable potential, moderately favourable potential, favourable potential and very favourable potential.

  14. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  15. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  16. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  17. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  18. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  19. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  20. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  1. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (Sweden)); Soederbaeck, Bjoern; Kalinowski, Birgitta (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-10-15

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  2. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Kalinowski, Birgitta

    2008-10-01

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  3. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.

  4. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  5. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    Science.gov (United States)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  6. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    International Nuclear Information System (INIS)

    Yokoyama, F

    2015-01-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area

  7. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  8. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  9. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  10. Uncovering surface area and micropores in almond shell biochars by rainwater wash

    Science.gov (United States)

    Biochars have been considered for adsorption of contaminants in soil and water, as well as conditioning and improving soil quality. One important property of the biochar is surface area in the pores of the biochar. Biochars were created from almond shells from two almond varieties with different ash...

  11. Recharge and discharge areas of the Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida

    Science.gov (United States)

    Phelps, G.G.

    1984-01-01

    The Floridan aquifer is the principal source of most of the freshwater used in the St. Johns River Water Management District. An important step in managing water resources is the delineation of recharge and discharge areas. Geohydrologic factors to be considered when delineating recharge and discharge areas include: altitude and configuration of the potentiometric surface; direction and magnitude of the gradient between the water table and the potentiometric surface; and thickness and permeability of the overlying sediments. Recharge to the aquifer comes almost entirely from rainfall within the Water Management District. Significant recharge occurs where the aquifer is at or very near land surface, and where the overlying sediments are very permeable sand so that recharge takes place downward leakage. Recharge also occurs through sinkholes, sinkhole lakes, and other lakes that have a good connection to the aquifer. Major recharge areas are delineated on the map. Discharge occurs in areas of artesian flow (where the potentiometric surface is above land surface), primarily by diffuse upward leakage and by discharge from springs. Fifty-five springs, with total discharge of about 1,600 million gallons per day, are in the Water Management District. Areas of discharge and the location of springs are shown on the map. In 1980, total pumpage in the Water Management District was about 1,000 million gallons per day. Under predevelopment conditions, discharge by springs and upward leakage approximately balanced recharged. Additional discharge by pumpage may or may not be balanced by decreased spring discharge of increased downward leakage. Examination of long-term water level trends can indicate if recharge and discharge balance. Graphs of rainfall, water levels, and municipal pumpage for Jacksonville, Orlando, and Daytona Beach are shown on the map. (USGS)

  12. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems ( 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  13. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  14. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  15. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  16. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  17. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  18. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    Science.gov (United States)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with

  19. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada

    Science.gov (United States)

    Bodhinayake, Waduwawatte; Si, Bing Cheng

    2004-10-01

    Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near-saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double-ring and tension infiltrometers at -0.3, -0.7, -1.5 and -2.2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field-saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at -0.3 kPa pressure head, inverse capillary length scale () and water-conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p 1.36 × 10-4 m in diameter in the three land uses. Land use modified near-saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage.

  20. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India

    OpenAIRE

    Shubra Poonia; T Shantikumar Singh; Dechen C Tsering

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculat...

  1. Assesment of pesticide fluxes to surface water using Uranine in Colombia

    Science.gov (United States)

    Garcia-Santos, G.; Scheiben, D.; Diaz, J.; Leuenberger, F.; Binder, C. R.

    2009-04-01

    In the highlands of Colombia, potato farmers maximize their yields by the application of pesticides. Properly applied pesticides can significantly reduce yield loss and improve product quality; however their misuse leads to human health and environmental problems, i.e. water bodies contaminated with pesticides. Due to the lack of control regarding local pesticide use, unmeasured hydrological parameters and use of local water runoff as a drinking water supply, an assessment of the impact of agricultural practice on water quality is mandatory as first stage. In order to accomplish this, our study assesses pesticide fluxes to surface water using the tracer Uranine. The experimental area La Hoya main basin (3 km2) contains the Pantano Verde river which flows into the Teatinos river in the Boyaca region (Colombia). Some facts such as the deep soils in the area and the importance of the unsaturated zone for the sorption and degradation of pesticides suggest a lack of contaminants in groundwater. However, due to the humid conditions, steep slopes and an intensive agricultural with high pesticide use, we expect surface water to be highly contaminated. In order to assess pesticide pathways, a tracer (Uranine), detectable at very low amount was used. Four local farmers applied the tracer instead of the pesticide mixture covering a total surface of 1.2 10-2 km2. Meteorological data were measured every 15 min with one compact meteorological station installed within the basin and water flow and water sampling were obtained using an ISCO-6700 water sampler, during one week every 10 min in the outlet of Pantano Verde River. In addition, three pairs of membranes were installed down the river and collected 1 week, one month and 4 months after the experiment to measure tracer accumulation. The tracer in water was analysed using a fluorescent spectrometer. Results of this study show first variations of tracer concentration in water in La Hoya basin and constitute an initial steep in

  2. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  3. L p -Dual geominimal surface area

    Directory of Open Access Journals (Sweden)

    Weidong Wang

    2011-01-01

    Full Text Available Abstract Lutwak proposed the notion of Lp -geominimal surface area according to the Lp -mixed volume. In this article, associated with the Lp -dual mixed volume, we introduce the Lp -dual geominimal surface area and prove some inequalities for this notion. 2000 Mathematics Subject Classification: 52A20 52A40.

  4. Groundwater suppression and surface water diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Stansfield, R.G.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, the older of the two sites [Solid Waste Storage Area Four (SWSA 4)] was equipped in September 1975 with asphalt lined drainage-ways designed to prevent infiltration of storm drainage from a 13.8-ha upslope catchment. At the second site (49-Trench area of SWSA 6), the entire 0.44-ha trench area was capped with a bentonite clay cover in 1976. These attempts have not corrected the water problems. In September 1983, engineered drainage projects were initiated at both the disposal sites. The SWSA 4 project was designed to divert surface runoff and shallow subsurface flow which originates upslope of the site away from the disposal area. The second project, a passive French drain constructed in SWSA 6, was aimed strictly at suppressing the site water table, thus preventing its intersection with the bottoms of disposal trenches. Postconstruction monitoring for performance evaluation has shown that the water table in the 49-Trench area has been suppressed to a depth > 4.9 m below the ground surface over 50% of the site as compared to a depth of only 2.1 m for certain parts of the same area observed during seasonally wet months prior to drain construction. The SWSA 4 project evaluation indicates that 56% of the Winter-Spring 1984 runoff was diverted around SWSA 4 via the drainage system

  5. Improved or Unimproved Urban Areas Effect on Soil and Water Quality

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-04-01

    Full Text Available Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without the negative impact of nutrient loss in runoff. Four sets of lawns were compared, with or without compost plus aeration, as a paired comparison. Surface bulk density was significantly reduced in the treated lawns (1.32 versus 1.42 Mg·m−3. Visual evaluation of soil structure showed improvement in the treated lawns. Of fifteen measurement dates over four years, four dates showed significantly higher surface soil water contents in the treated lawns compared with the untreated lawns. When compared over time, three of the four treated lawns had significantly higher soil water content than the untreated lawns. Nutrient concentrations in rainfall simulator runoff were not significantly different between treated and control lawns, which showed that compost did not negatively impact water quality. Compost and aeration helped restore soil quality for urban soils of recent construction.

  6. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    Science.gov (United States)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but

  7. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    Science.gov (United States)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  8. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  9. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  10. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  11. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  19. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive

  20. Occurrence of fungicides and other pesticides in surface water, groundwater, and sediment from three targeted-use areas in the United States, 2009

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Reilly, Timothy J.; Boehlke, Adam; Meyer, Michael T.; Kuivila, Kathryn

    2013-01-01

    Surface-water, groundwater, and suspended- and bedsediment samples were collected in three targeted-use areas in the United States where potatoes were grown during 2009 and analyzed for an extensive suite of fungicides and other pesticides by gas chromatograph/mass spectrometry and liquid chromatography with tandem mass spectrometry. Fungicides were detected in all environmental matrices sampled during the study. The most frequently detected fungicides were azoxystrobin, boscalid, chlorothalonil, and pyraclostrobin. Other pesticides that were detected frequently included amino phosphonic acid (AMPA), atrazine, metolaclor, and the organochlorine insecticide p,p’-DDT and its degradates p,p’-DDD and p,p’-DDE. A greater number of pesticides were detected in surface water relative to the other environmental matrices sampled, and at least one pesticide was detected in 62 of the 63 surfacewater samples. The greatest numbers of pesticides and the maximum observed concentrations for most pesticides were measured in surface-water samples from Idaho. In eight surface- water samples (six from Idaho and two from Wisconsin), concentrations of bifenthrin, metolachlor, or malathion exceeded U.S. Environmental Protection Agency freshwater aquatic-life benchmarks for chronic toxicity to invertebrates. Thirteen pesticides, including seven fungicides, were detected in groundwater samples. Shallow groundwater samples collected beneath recently harvested potato fields contained more pesticides and had higher concentrations of pesticides than samples collected from other groundwater sources sampled during the study. Generally, pesticide concentrations were lower in groundwater samples than in surfacewater or sediment samples, with the exception of the fungicide boscalid, which was found to have its highest concentration in a shallow groundwater sample collected in Wisconsin. Thirteen pesticides, including four fungicides, were detected in suspended-sediment samples. The most

  1. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  2. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Stéphanie Piel

    2012-12-01

    Full Text Available This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  3. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  4. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  5. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  6. CLASSIFICATION OF WATER SURFACES USING AIRBORNE TOPOGRAPHIC LIDAR DATA

    Directory of Open Access Journals (Sweden)

    J. Smeeckaert

    2013-05-01

    Full Text Available Accurate Digital Terrain Models (DTM are inevitable inputs for mapping areas subject to natural hazards. Topographic airborne laser scanning has become an established technique to characterize the Earth surface: lidar provides 3D point clouds allowing a fine reconstruction of the topography. For flood hazard modeling, the key step before terrain modeling is the discrimination of land and water surfaces within the delivered point clouds. Therefore, instantaneous shoreline, river borders, inland waters can be extracted as a basis for more reliable DTM generation. This paper presents an automatic, efficient, and versatile workflow for land/water classification of airborne topographic lidar data. For that purpose, a classification framework based on Support Vector Machines (SVM is designed. First, a restricted set of features, based only 3D lidar point coordinates and flightline information, is defined. Then, the SVM learning step is performed on small but well-targeted areas thanks to an automatic region growing strategy. Finally, label probabilities given by the SVM are merged during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that survey of millions of points are labelled with high accuracy (>95% in most cases for coastal areas, and >89% for rivers and that small natural and anthropic features of interest are still well classified though we work at low point densities (0.5–4 pts/m2. Our approach is valid for coasts and rivers, and provides a strong basis for further discrimination of land-cover classes and coastal habitats.

  7. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  8. Arsenic Concentration in the Surface Water of a Former Mining Area: The La Junta Creek, Baja California Sur, Mexico

    Science.gov (United States)

    Imaz Lamadrid, Miguel; Acosta Vargas, Baudilio

    2018-01-01

    The mining activity in the San Antonio-El Triunfo district, located in a mountainous region at 60 km southeast of La Paz, occured for more than 250 years and left behind severe contamination of soils and riverbed sediments which led to elevated concentrations of arsenic and other trace elements in the surface- and groundwater of the region. Although the main mining activity ended around 1911, contamination is still beeing distributed, especially from left behind tailings and mine waste piles. The contamination levels in the groundwater have been reported in several studies, but there is little information available on the surface water quality, and especially the temporal variation. In this study, we analyzed the surface water of the La Junta creek, in the southern part of the San Antonio-El Triunfo mining district. The working hypothesis was that by means of a spatial analysis of surface water and shallow groundwater, in combination with the temporal observation of the concentrations in runoff water, the effects of different sources of arsenic (natural geogene anomalies, due to historic mining activity, and hydrothermal related impact) in the La Junta creek can be recognized. This present study revealed that historic mining activity caused a mojor impact of arsenic but less contamination was observed than in the northern part of the district and elevated arsenic concentrations in stream water generally occurred during times of low streamflow. PMID:29498700

  9. Evaluation of the Surface Water Distribution in North-Central Namibia Based on MODIS and AMSR Series

    Directory of Open Access Journals (Sweden)

    Hiroki Mizuochi

    2014-08-01

    Full Text Available Semi-arid North-central Namibia has high potential for rice cultivation because large seasonal wetlands (oshana form during the rainy season. Evaluating the distribution of surface water would reveal the area potentially suitable for rice cultivation. In this study, we detected the distribution of surface water with high spatial and temporal resolution by using two types of complementary satellite data: MODIS (MODerate-resolution Imaging Spectroradiometer and AMSR-E (Advanced Microwave Scanning Radiometer–Earth Observing System, using AMSR2 after AMSR-E became unavailable. We combined the modified normalized-difference water index (MNDWI from the MODIS data with the normalized-difference polarization index (NDPI from the AMSR-E and AMSR2 data to determine the area of surface water. We developed a simple gap-filling method (“database unmixing” with the two indices, thereby providing daily 500-m-resolution MNDWI maps of north-central Namibia regardless of whether the sky was clear. Moreover, through receiver-operator characteristics (ROC analysis, we determined the threshold MNDWI (−0.316 for wetlands. Using ROC analysis, MNDWI had moderate performance (the area under the ROC curve was 0.747, and the recognition error for seasonal wetlands and dry land was 21.2%. The threshold MNDWI let us calculate probability of water presence (PWP maps for the rainy season and the whole year. The PWP maps revealed the total area potentially suitable for rice cultivation: 1255 km2 (1.6% of the study area.

  10. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  11. Grey water characteristics and treatment options for rural areas in Jordan.

    Science.gov (United States)

    Halalsheh, M; Dalahmeh, S; Sayed, M; Suleiman, W; Shareef, M; Mansour, M; Safi, M

    2008-09-01

    Low water consumption in rural areas in Jordan had resulted in the production of concentrated grey water. Average COD, BOD and TSS values were 2568mg/l, 1056mg/l and 845mg/l, respectively. The average grey water generation was measured to be 14L/c.d. Three different treatment options were selected based on certain criterions, and discussed in this article. The examined treatment systems are septic tank followed by intermittent sand filter; septic tank followed by wetlands; and UASB-hybrid reactor. Advantages and disadvantages of each system are presented. It was concluded that UASB-hybrid reactor would be the most suitable treatment option in terms of compactness and simplicity in operation. The volume of UASB-hybrid reactor was calculated to be 0.268m(3) with a surface area of 0.138m(2) for each house having 10 inhabitants on average. Produced effluent is expected to meet Jordanian standards set for reclaimed water reuse in irrigating fruit trees.

  12. Ground-water, surface-water, and water-chemistry data, Black Mesa Area, northeastern Arizona: 2000-2001, and performance and sensitivity of the 1988 USGS numerical model of the N aquifer

    Science.gov (United States)

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2000, total ground-water withdrawals were 7,740 acre-feet, industrial use was 4,490 acre-feet, and municipal use was 3,250 acre-feet. From 1999 to 2000, total withdrawals increased by 9 percent, industrial use increased by 7 percent, and municipal use increased by 12 percent. From 1999 to 2001, water levels declined in 10 of 15 wells in the unconfined part of the aquifer, and the median change was -0.4 foot. Water levels declined in 8 of 16 wells in the confined part of the aquifer, and the median change was -0.2 foot. From the prestress period (prior to 1965) to 2001, the median water-level change for 33 wells was -17.2 feet. Median water-level changes were -1.2 feet for 15 wells in the unconfined part of the aquifer and -31.0 feet for 18 wells in the confined part. Discharges were measured once in 1999 and once in 2001 at four springs. Discharges decreased by 5 percent and 33 percent at two springs and increased by 3 percent and 81 percent at two springs. For about the past 10 years, discharges did not significantly change in Burro Spring, the unnamed spring near Dennehotso, and Moenkopi School Spring. The record of discharge from a consistent measuring point for Pasture Canyon Spring is too short for statistical analysis of trends. Continuous records of surface-water discharge have been collected

  13. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    Science.gov (United States)

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  14. Water resources of the Flint area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    sand and gravel also fill some of the valleys in the bedrock surface and yield moderate to large supplies of water. Production from public supply wells tapping the drift aquifers in the area ranges from about 50 to 1,200 gpm. The water from the drift aquifer is hard or very hard and commonly contains objectionable amounts of iron.The Saginaw formation is a source of water to wells supplying some of the small communities and industries in the county. The Saginaw, which is the uppermost bedrock formation in the area, underlies most of the county. It is composed of layers of sandstone, shale, and limestone and some beds of coal. The formation is composed principally of sandstone in some areas of the county, and shale in others. Production from wells tapping the Saginaw ranges from a few to about 500 gpm. The water produced is generally moderately hard or hard and commonly contains objectionable amounts of chloride. The quality of the water limits its development for water supply. Overdrafts from the Saginaw result in a lowering of the piezometric surface and commonly cause an upward migration of water high in chloride.The Michigan and Marshall formations are generally not sources of fresh water where they are overlain by the Saginaw formation. In the southern and eastern parts of the county where they are overlain by glacial deposits, they are a source of water of good quality. The quantity of water obtainable from these formations is not fully known. However, the Marshall may be a source of large supplies of water in the southeastern part of the county.An ample supply of water is available in lakes, ponds, and streams in the metropolitan area of Flint to meet requirements for domestic, sanitary, and firefighting use in civil defense emergencies. The extent of emergency use of water from these sources would depend upon the pumping, distribution, and treatment facilities available. Enough private industrial and commercial, and public wells are present in the area normally

  15. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.

    Science.gov (United States)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi

    2015-09-01

    The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.

  16. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  17. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Hand burns surface area: A rule of thumb.

    Science.gov (United States)

    Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan

    2018-03-11

    Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  19. Map showing ground-water conditions in the House Rock area, Coconino County, Arizona-- 1976

    Science.gov (United States)

    Levings, G.W.; Farrar, C.D.

    1978-01-01

    The House Rock area includes about 1,500 sq mi in north-central Arizona. Ground water is present in several aquifers that are made up of one or more formations. In the Paria Plateau and Wahweap areas ground water is obtained from the N aquifer, which includes the Navajo Sandstone, Kayenta Formation, and Moenave Formation. Reported static water levels in wells range from 515 to 1,500 ft below the land surface. The chemical quality of the water in the N aquifer varies with location, and dissolved solids generally are less than 850 milligrams per liter. Several wells and test holes in the Lees Ferry area penetrate either the alluvium, Chinle Formation, Moenkopi Formation, or a combination of these. As of 1976, water from these wells was not being used because of poor chemical quality. In the southern and western parts of the area many springs discharge from te Kaibab, Redwall , and Muav Limestones. The quality of water from these formations generally is excellent. Information on the map (scale 1:125,000) includes the principal aquifer that furnishes water to individual wells and springs, depth to water, altitude of the water level, and chemical quality of the water. (Woodard-USGS)

  20. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  1. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  2. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer

    Science.gov (United States)

    Musgrove, M.; Stern, L. A.; Banner, J. L.

    2010-06-01

    SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.

  3. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    Science.gov (United States)

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  4. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  5. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  6. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  7. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  8. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  9. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  10. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    International Nuclear Information System (INIS)

    Mueller, Claudia E.; Gerecke, Andreas C.; Alder, Alfredo C.; Scheringer, Martin; Hungerbuehler, Konrad

    2011-01-01

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: → Consumer products are the most important source of PFAAs in Swiss surface waters. → Acesulfame proofs to be a good population marker in surface waters. → PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  11. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Claudia E., E-mail: claudia.mueller@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland); Gerecke, Andreas C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Alder, Alfredo C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlanstrasse 133, 8600 Duebendorf (Switzerland); Scheringer, Martin; Hungerbuehler, Konrad [Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland)

    2011-05-15

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: > Consumer products are the most important source of PFAAs in Swiss surface waters. > Acesulfame proofs to be a good population marker in surface waters. > PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  12. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  13. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  14. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    Science.gov (United States)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  15. Brief Appraisal of Surface Water Environmental Quality in Muri Area, Qinghai%青海木里地区地表水环境质量简评

    Institute of Scientific and Technical Information of China (English)

    王鸿飞

    2011-01-01

    木里地区地处青藏高原的高寒地区,属于生态缺水区.运用综合污染指数法对该地区的地表水环境质量做出了初步评价,结果表明:该区挥发酚的污染指数为0.40,污染分担率为57.2%,远高于其它指标,但其含量<0.002mg/L,基本无污染;其它污染物污染等级均属于清洁级;水质基本达到地表水环境质量Ⅲ级标准.随着木里煤田煤炭资源的开发利用,该地区的水环境质量和水体生态环境有污染的趋势.提出了建设小型调蓄、引水工程,加强点源和面源污染管理的防治对策及建议.%The Muri area is situated in the alpine cold Qinghai-Tibetan Plateau ecologically water deficient region. A pilot study has been carried out to assess the area's surface water environment quality using comprehensive pollution index method. The result has demonstrated that: the pollution index of volatile phenol is 0.40, pollution share rate 57.2%, outclassed than other indices, but its content <0.002mg/L, basically non-pollution; pollution category of other pollutants all belong to clean class; water quality is basically come up to surface water environment quality III category. Along with exploitation and utilization of coal resources in Muri coalfield, water environment quality and water body ecological environment will be getting worse. Thus controlling countermeasures and suggestions have been put forward to construct small water regulating, hoarding and diverging works, and strengthen point and area pollution sources management.

  16. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    Science.gov (United States)

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  17. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  18. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  19. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  20. Water resources development and management: an experience in rural hilly area.

    Science.gov (United States)

    Khadse, G K; Talkhande, A V; Andey, S P; Kelkar, P S

    2010-01-01

    The Himalayan region of Tehri Garhwal in India has scattered habitations in the villages with scanty, non-perennial and unsafe water resources like springs and streams. Poor environmental conditions arising from unsafe drinking water, inadequate sanitary measures, unhygienic disposal of excreta, sullage and accumulation of solid wastes have resulted in poor public health. The experiences gained through water supply and sanitation studies carried out especially in this rural area have been shared in this paper so as to enable adoption of relevant practices and technologies developed by the National Environmental Engineering Research Institute (NEERI, India) in the affected areas. Environmental protection of the streams and springs for sustained water availability and safe drinking water supply was ensured with active public participation, training, and awareness programs. Various surface rainwater harvesting structures were constructed at suitable sites along with ferro-cement roofwater harvesting tanks in selected villages. The activities related to designing and commissioning of a small slow sand filtration unit were carried out at Chhati (Nakot) village for safe drinking water supply. Chlorination pots were demonstrated and installed in rainwater harvesting tanks for disinfection of water for drinking purpose. Water quality assessment and health survey (parasitic and hemoglobin investigation) in the affected villages were carried out before and after technological intervention. The training and awareness programs were organised for people of 23 villages in the study area covering water and sanitation related topics. The beneficiary's opinions, perceptions, apprehensions, as well as expectations reflected positive approach towards the achievement of anticipated benefits and impacts.

  1. Estimating surface area in early hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available Height and weight-based methods of estimating surface area have played an important role in the development of the current consensus regarding the role of thermoregulation in human evolution. However, such methods may not be reliable when applied to early hominins because their limb proportions differ markedly from those of humans. Here, we report a study in which this possibility was evaluated by comparing surface area estimates generated with the best-known height and weight-based method to estimates generated with a method that is sensitive to proportional differences. We found that the two methods yield indistinguishable estimates when applied to taxa whose limb proportions are similar to those of humans, but significantly different results when applied to taxa whose proportions differ from those of humans. We also found that the discrepancy between the estimates generated by the two methods is almost entirely attributable to inter-taxa differences in limb proportions. One corollary of these findings is that we need to reassess hypotheses about the role of thermoregulation in human evolution that have been developed with the aid of height and weight-based methods of estimating body surface area. Another is that we need to use other methods in future work on fossil hominin body surface areas.

  2. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  3. Evaluation of surface water dynamics for water-food security in seasonal wetlands, north-central Namibia

    Directory of Open Access Journals (Sweden)

    T. Hiyama

    2014-09-01

    Full Text Available Agricultural use of wetlands is important for food security in various regions. However, land-use changes in wetland areas could alter the water cycle and the ecosystem. To conserve the water environments of wetlands, care is needed when introducing new cropping systems. This study is the first attempt to evaluate the water dynamics in the case of the introduction of rice-millet mixed-cropping systems to the Cuvelai system seasonal wetlands (CSSWs in north-central Namibia. We first investigated seasonal changes in surface water coverage by using satellite remote sensing data. We also assessed the effect of the introduction of rice-millet mixed-cropping systems on evapotranspiration in the CSSWs region. For the former investigation, we used MODIS and AMSR-E satellite remote sensing data. These data showed that at the beginning of the wet season, surface water appears from the southern (lower part and then expands to the northern (higher part of the CSSWs. For the latter investigation, we used data obtained by the classical Bowen ratio-energy balance (BREB method at an experimental field site established in September 2012 on the Ogongo campus, University of Namibia. This analysis showed the importance of water and vegetation conditions when introducing mixed-cropping to the region.

  4. Automated quantification of surface water inundation in wetlands using optical satellite imagery

    Science.gov (United States)

    DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Huang, Wenli; Creed, Irena F.; Carroll, Mark L.

    2017-01-01

    We present a fully automated and scalable algorithm for quantifying surface water inundation in wetlands. Requiring no external training data, our algorithm estimates sub-pixel water fraction (SWF) over large areas and long time periods using Landsat data. We tested our SWF algorithm over three wetland sites across North America, including the Prairie Pothole Region, the Delmarva Peninsula and the Everglades, representing a gradient of inundation and vegetation conditions. We estimated SWF at 30-m resolution with accuracies ranging from a normalized root-mean-square-error of 0.11 to 0.19 when compared with various high-resolution ground and airborne datasets. SWF estimates were more sensitive to subtle inundated features compared to previously published surface water datasets, accurately depicting water bodies, large heterogeneously inundated surfaces, narrow water courses and canopy-covered water features. Despite this enhanced sensitivity, several sources of errors affected SWF estimates, including emergent or floating vegetation and forest canopies, shadows from topographic features, urban structures and unmasked clouds. The automated algorithm described in this article allows for the production of high temporal resolution wetland inundation data products to support a broad range of applications.

  5. A Simple Proof of Cauchy's Surface Area Formula

    OpenAIRE

    Tsukerman, Emmanuel; Veomett, Ellen

    2016-01-01

    We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.

  6. Quantifying object and material surface areas in residences

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  7. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  8. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  9. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  10. Effects of coal mining on ground and surface water quality, Monongalia County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, R G

    1977-07-01

    Water quality data are compared. Areas disturbed extensively either by surface or underground mining for bituminous coal in Monongalia County, West Virginia yield water of poorer quality than similar terrain which is not so disturbed. Specifically, the disturbed areas yield hard water of the calcium-sulfate or calcium-magnesium-sulfate type which is low in pH, high in iron and aluminum, and which contains trace elements one or more orders of magnitude greater than water from undisturbed terrain. These hard waters differ from the more common type of hard waters in that sulfate rather than bicarbonate is the dominant anion. As such they may provide further insight into factors affecting the relationship between water hardness and cardiovascular disease rates. The necessary additional data are being collected.

  11. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  12. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  13. IDENTIFICATION OF DANGER ZONES FOR SURFACE WATER USING GIS (SIP – MAPINFO SYSTEM ON AN EXAMPLE OF UPPER NAREW RIVER CATCHMENT

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-07-01

    Full Text Available Creating the buffer zones is a function intended to designate an area in particular, of a constant distance around the spatial objects. The aim of the study was to create maps as thematic layers, which served to identify areas of existing and potential contamination of surface water and other environmental elements. Among others, it made possible to localize the areas potentially affected by the surface water pollution due to transport; localize the areas potentially affected by the surface water pollution due to the discharge of sewage from human settlements; localize the zones with mitigated impact of communication emissions due to the natural protection of forests taking the form of so-called geochemical barriers. The spatial analyzes allowed to generate model-zones of the existing and potential threat of water pollution in the Narew river catchment. Designated danger zones can be verified by studies as well as they can be very helpful in determining the monitoring network and for water quality modeling process.

  14. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    Science.gov (United States)

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-07-16

    During October 2012 through March 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (EPA) Region 4, Superfund Section, conducted borehole geophysical logging, surface geophysical surveys, and water-quality profiling in selected wells and areas to characterize or delineate the extent of elevated subsurface electrical conductivity at the EPA Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina. Elevated electrical conductivity measured at the site may be related to native rock materials, waste rock disposal areas used in past operations, and (or) groundwater having elevated dissolved solids (primarily metals and major ions) related to waste migration. Five shallow screened wells and four open-borehole bedrock wells were logged by using a suite of borehole tools, and downhole water-quality profiles were recorded in two additional wells. Well depths ranged from about 26 to 300 feet below land surface. Surface geophysical surveys based on frequency-domain electromagnetic and distributed temperature sensing (DTS) techniques were used to identify areas of elevated electrical conductivity (Earth materials and groundwater) and potential high dissolved solids in groundwater and surface water on land and in areas along the northern unnamed tributary at the site.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  17. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  18. Surface water dynamics in the Reykjanes Ridge area during the Holocene as revealed by coccolith assemblages

    NARCIS (Netherlands)

    Balestra, B.; Ziveri, P.; Baumann, K. H.; Troelstra, S.R.; Monechi, S.

    2010-01-01

    The calcareous nannofossil assemblages from sediment core DS97-2P from the Reykjanes Ridge have been investigated to document oceanographic changes in surface water during the Holocene. The recorded variations in coccolithophore species assemblages and accumulation rates indicate that the region was

  19. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  20. Influence of Ecological Factors on Estimation of Impervious Surface Area Using Landsat 8 Imagery

    Directory of Open Access Journals (Sweden)

    Yuqiu Jia

    2017-07-01

    Full Text Available Estimation of impervious surface area is important to the study of urban environments and social development, but surface characteristics, as well as the temporal, spectral, and spatial resolutions of remote sensing images, influence the estimation accuracy. To investigate the effects of regional environmental characteristics on the estimation of impervious surface area, we divided China into seven sub-regions based on climate, soil type, feature complexity, and vegetation phenology: arid and semi-arid areas, Huang-Huai-Hai winter wheat production areas, typical temperate regions, the Pearl River Delta, the middle and lower reaches of the Yangtze River, typical tropical and subtropical regions, and the Qinghai Tibet Plateau. Impervious surface area was estimated from Landsat 8 images of five typical cities, including Yinchuan, Shijiazhuang, Shenyang, Ningbo, and Kunming. Using the linear spectral unmixing method, impervious and permeable surface areas were determined at the pixel-scale based on end-member proportions. We calculated the producer’s accuracy, user’s accuracy, and overall accuracy to assess the estimation accuracy, and compared the accuracies among images acquired from different seasons and locations. In tropical and subtropical regions, vegetation canopies can confound the identification of impervious surfaces and, thus, images acquired in winter, early spring, and autumn are most suitable; estimations in the Pearl River Delta, the middle and lower reaches of the Yangtze River are influenced by soil, vegetation phenology, vegetation canopy, and water, and images acquired in spring, summer, and autumn provide the best results; in typical temperate areas, images acquired from spring to autumn are most effective for estimations; in winter wheat-growing areas, images acquired throughout the year are suitable; and in arid and semi-arid areas, summer and early autumn, during which vegetation is abundant, are the optimal seasons for

  1. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  2. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  3. Remote sensing as a surface water quality monitoring support in the semiarid region of Brazil

    OpenAIRE

    Fernando Bezerra Lopes

    2013-01-01

    The contamination of surface water bodies due to antropic action has made water ever more scarce. Knowledge of the water quality is essential to determine instruments for it's management . Monitoring water quality in huge areas requires a high number of saimples for water quality control. This fact, allied to the high costs of water analysis, limits the evaluation that can be made of continental waters. Even though in later years geoprocessing and remote sensin...

  4. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    Science.gov (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  5. The surface water submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1992-12-01

    A requirement in assessing the safety of Canada's nuclear fuel waste management concept is the prediction of radiological doses to humans and other biota, which may occur far in the future as a result of releases of nuclides to the biosphere. A biosphere model has been developed, consisting of four integrated submodels describing surface water, soil, atmosphere, and food-dose components. This report documents the surface water submodel, which is a simple, generic mass balance model of a Canadian Shield lake. Nuclide input to the lake is the time-dependent mass output from the geosphere model. Nuclides enter the lake from compacted sediments. The surface water submodel calculates nuclide concentrations in lake water and sediment. These concentrations are used in the other biosphere submodels to predict the radiological dose to biota. Selection of parameter values for the model is based on the literature, our own data, and conservative assumptions to ensure that doses are not underestimated. MOst parameters are represented by log normal. This probabilistic approach of using distributed parameter values accounts for variability and uncertainty in parameter values, and short-term environmental fluctuations. Long-term environmental changes, such as glaciation, are not considered in the model. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing, with lake catchment area being the most important parameter. When catchment area is held constant, as would occur at a specific site, lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. Sediment accumulation rate also strongly influences sediment nuclide concentrations. Validation of model predictions using published studies and other data demonstrates that our model is realistic and suitable for assessing Canada's disposal concept. (Author)

  6. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  7. Effect of lung injuries on [14C]urea permeability-surface area product in dogs

    International Nuclear Information System (INIS)

    Zelter, M.; Lipavsky, A.; Hoeffel, J.M.; Murray, J.F.

    1984-01-01

    To determine whether [ 14 C]urea permeability-surface area product (PS) is a reliable indicator of changes in permeability in various injuries and its relationship to indicator-dilution and gravimetric lung water contents, we studied six groups of anesthetized, paralyzed, and mechanically ventilated dogs (5 animals each). The groups consisted of control dogs, those injured by intravenous alloxan, oleic acid, or glass beads, and those exposed to acute hypoxia or increased left atrial pressure from volume loading (Pla). Interanimal variation of PS was large (3.0-15.0 ml/s), but successive hourly values in individual animals were stable for 2 h in experimental groups and for 4 h in controls. The PS increased after alloxan, elevated Pla, and 2 h of hypoxia; PS decreased after oleic acid and micremboli. The gravimetric lung water increased after alloxan, oleic acid, and microemboli, and indicator-dilution lung water increased only after alloxan. We conclude (1) that intersubject variability requires normalization to enable detection of significant deviation from base line, and (2) that decreased PS after oleic acid and microvascular injury occurred because vascular obstruction, which decreased surface area, masked probable coexisting increases in capillary permeability

  8. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    International Nuclear Information System (INIS)

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Arain, Muhammad Balal; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Sarfraz, Raja Adil; Jamal, Muhammad Khan; Shah, Abdul Qadir

    2009-01-01

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 μg l -1 . Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 μg l -1 , respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 μg l -1 . The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na + , K + , and SO 4 2- were found to be higher in surface and ground water, while elevated levels of Ca 2+ and Cl - were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  9. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  10. Desert water harvesting to benefit wildlife: a simple, cheap, and durable sub-surface water harvester for remote locations.

    Science.gov (United States)

    Rice, William E

    2004-12-01

    A sub-surface desert water harvester was constructed in the sagebrush steppe habitat of south-central Idaho, U.S.A. The desert water harvester utilizes a buried micro-catchment and three buried storage tanks to augment water for wildlife during the dry season. In this region, mean annual precipitation (MAP) ranges between about 150-250 mm (6"-10"), 70% of which falls during the cold season, November to May. Mid-summer through early autumn, June through October, is the dry portion of the year. During this period, the sub-surface water harvester provides supplemental water for wildlife for 30-90 days, depending upon the precipitation that year. The desert water harvester is constructed with commonly available, "over the counter" materials. The micro-catchment is made of a square-shaped, 20 mL. "PERMALON" polyethylene pond liner (approximately 22.9 m x 22.9 m = 523 m2) buried at a depth of about 60 cm. A PVC pipe connects the harvester with two storage tanks and a drinking trough. The total capacity of the water harvester is about 4777 L (1262 U.S. gallons) which includes three underground storage tanks, a trough and pipes. The drinking trough is refined with an access ramp for birds and small animals. The technology is simple, cheap, and durable and can be adapted to other uses, e.g. drip irrigation, short-term water for small livestock, poultry farming etc. The desert water harvester can be used to concentrate and collect water from precipitation and run-off in semi-arid and arid regions. Water harvested in such a relatively small area will not impact the ground water table but it should help to grow small areas of crops or vegetables to aid villagers in self-sufficiency.

  11. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries.

    Science.gov (United States)

    Lu, Guo-Hui; Gai, Nan; Zhang, Peng; Piao, Hai-Tao; Chen, Shu; Wang, Xiao-Chun; Jiao, Xing-Chun; Yin, Xiao-Cai; Tan, Ke-Yan; Yang, Yong-Liang

    2017-10-01

    Perfluoroalkyl acids (PFAAs) are widely used as multi-purpose surfactants or water/oil repellents. In order to understand the contamination level and compositional profiles of PFAAs in aqueous environment in textile, leather, and paper making industrial areas, surface waters and tap waters were collected along the watershed of the Qiantang River where China's largest textile, leather, and paper making industrial bases are located. For comparison, surface water and tapwater samples were also collected in Hangzhou and its adjacent areas. 17 PFAAs were analyzed by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. The results show that the total concentrations of PFAAs (ΣPFAAs) in the Qiantang River waters ranged from 106.1 to 322.9 ng/L, averaging 164.2 ng/L. The contamination levels have been found to be extremely high, comparable to the levels of the most serious PFAA contamination in surface waters of China. The PFAA composition profiles were characterized by the dominant PFOA (average 58.1% of the total PFAAs), and PFHxA (average 18.8%). The ΣPFAAs in tap water ranged from 9.5 to 174.8 ng/L, showing PFAA compositional pattern similar to the surface waters. Good correlations between PFAA composition profiles in tap waters and the surface waters were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  13. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  14. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  15. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  16. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  17. Water quality and hydrology in the Fort Belvoir area, Virginia, 1954-55

    Science.gov (United States)

    Durfor, Charles N.

    1961-01-01

    This report summarizes the results of an investigation of water quality and hydrology in the Fort Belvoir, Va., area for the period August 1954 to September 1955. It summarizes and evaluates information about the water resources of this area that are pertinent to the choice of location and operation of an Army nuclear power reactor. The quantity, quality, nature, and use of the local water that might be affected by the location and operation of a reactor in the area were subjects of investigation. Variations in the quality of the water caused by variation in streamflow, tidal effects, and pollution were important facets of the investigation. During extended periods of low streamflow in the Potomac River (usually in the late summer months), salty water moves upstream from Chesapeake Bay and increases the dissolved solids content of the surface waters adjacent to Fort Belvoir. When the streamflow is low the concentration of dissolved solids in the water near the river bottom exceeds that near the surface. The waters in Gunston Cove usually contain more dissolved oxygen than those in the Potomac River. During the summer, the content of dissolved oxygen in the cove waters frequently exceeds 100 percent of saturation. Surface floats that were released on a flood tide in Gunston Cove moved toward the inner portion of the cove in the same direction as the wind and the tide. The maximum average velocity of these floats was 0.65 feet per second. On an ebb tide, many surface floats that were released in Gunston Cove moved toward the inner portion of the cove in the direction of the wind, in opposition to the direction of the tidal movement. Floats released near the mouth of the cove on the same tide, moved with the tide out of the cove through a narrow pass at the end of a submerged sandbar extending from the Fort Belvoir shoreline. The maximum average velocity of the floats in the pass on this ebb tide was 0.85 feet per second. Measurements of subsurface flow direction

  18. Surface water pollution and water quality studies at Prestea Goldfields Limited (P. G. L.) Prestea, Ghana

    International Nuclear Information System (INIS)

    Ampong, Charles Horace

    1993-11-01

    Prestea is a mining community developed around Prestea Goldfields Limited, which is engaged in mining Sulphide gold ores known to give rise to several environmental problems like air pollution in the form of emissions of arsenic or arsenous oxides, with concurrent production of large amounts of Sulphur dioxide. As a result of extensive mining since 1929 using underground methods, involving about 18 million tons of ore, an estimated 3.5 - 4 million tons of tailings have been left on the surface in the vicinity of both current and historic treatment sites. Since the mine is located in an area of heavy rainfall, incessant rain will flush contaminants from tailings dumps and waste sites into the downstream environment and subsequently into surface waters. Water supply for the population in the area is derived from rivers and streams flowing in the area, supplemented by boreholes and spring water. Not much is known with respect to pollution levels along the rivers and streams which serve as water for domestic uses by settlers along these river banks and around. It therefore became necessary to carry out studies to ascertain the pollution levels of various water resources and to make some suggestions to guide pollution of these waters and uses of them as well. Water sampling was carried out in the rivers and streams. A spring water and well water were also sampled as reference data to ascertain background levels of pollutants. The work highlights activities of the mine and that of the surrounding inhabitants which are likely to result in the pollution of surface waters. It also discusses results of water samples within the area, Sample analysis included determination of parameters like pH, Temperature, Conductivity, Alkalinity, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Solids (TS), Total hardness, Cyanide and Sulphate concentrations among others. Concentrations of some heavy metals were also determined. Based on standards prevailing in the country

  19. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  20. The impact of changing climate on surface and ground water quality in southeast of Ireland

    Science.gov (United States)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk

  1. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  2. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  3. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  4. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  5. Underground storage of imported water in the San Gorgonio Pass area, southern California

    Science.gov (United States)

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  6. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  7. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps

    Science.gov (United States)

    Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John

    2018-01-01

    In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.

  8. WATER RESOURCES IN THE CONTEXT OF REGIONAL PLANNING. CASE STUDY: CLUJ-NAPOCA METROPOLITAN AREA

    Directory of Open Access Journals (Sweden)

    PAULA OLIVIA CIMPOIEŞ

    2012-04-01

    Full Text Available The issue of water resources is controversial because it reveals the complex needs of the population on a certain territory, depending on the analysis scale. Public utilities or water surfaces in the surrounding rural areas of a city are rarely paid much attention to in comparison to the urban centre, though they could provide comfort attributes, aesthetic value and leisure activities. Is it a matter of social fairness, political orientation or funding accessibility for a community to benefit from the water resources in the vicinity? The present study propos ed to analyse the metropolitan area of Cluj and explain why the distribution of resources varies according to physical conditions, distance or localities’ economic statute.

  9. Water resources of the Hartford-New Britain area, Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum; Tanski, D.; Thomas, M.P.

    1964-01-01

    The Hartford-New Britain area includes the metropolitan areas of Hartford and New Britain and parts of several adjoining towns. Water used in the area is withdrawn from the principal streams and aquifers at an average rate of 463.5 mgd (million gallons per day). Sufficient water is available from these sources to meet present requirements and those for many years to come, although local shortages may develop in some areas as the result of problems of distribution and treatment. About 98 percent of all water used in 1957 was from surface sources. More than 425 mgd was required by industry, and about 23 mgd was for domestic water supply. The Farmington River upstream from Collinsville is the chief source of water for public supply in the Hartford-New Britain area, whereas the Connecticut River is the chief source of water for industry. An average of about 40 mgd is withdrawn from the upper Farmington River for public supply, and about 404 mgd is withdrawn by industry from the Connecticut River for nonconsumptive use and returned directly to the stream. The Connecticut River is the source of the largest quantity of water in the area. The flow of the stream at Thompsonville may be expected to equal or exceed about 2,000 mgd 95 percent of the time, and the flow should not be less than this amount for periods longer than 12 days. The flow below Thompsonville is increased by additions from the Scantic, Farmington, Park, and Hockanum Rivers and from numerous smaller tributary streams. The available streamflow data for the aforementioned rivers have been summarized graphically in the report. The chemical quality of water in the Connecticut River is good, except for short periods when the iron concentration is high. In addition to the removal of iron some other treatment may be necessary if water from the Connecticut River is used for special purposes. The chemical quality of the tributary streams is good, except the quality of the Park River, which is poor. Thus the

  10. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    Science.gov (United States)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  11. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  12. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  13. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  14. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  15. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  16. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  17. Bank filtered water quality characteristics in Okgog-Ri area of Youngsan-River, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Youl; Kim, Hyoung-Soo [Korea Water Resources Corp., Taejeon(Korea)

    2001-02-28

    Preliminary artificial recharge groundwater intake method using bank filtering had been conducted in Okgog-Ri of Youngsan-River to evaluate the possibility of substitution of surface water intake method in the area. In order to investigate the characteristics of bank filtered groundwater, we examined the hydrogeological properties of alluvium and water quality of stream and groundwater. It is observed that nitrate in stream water from synthetic fertilizer and poultry manure is almost consumed during bank filtering in this area. This implies that denitrification of organic carbon and the oxidation of pyrite present in the alluvium aquifer. Groundwater samples from bank filtering show high Mn concentration. This high Mn concentration may be resulted from decreasing redox potential due to denitrification and increasing mobility due to redox reaction of Mn-oxide. In the study area, there is a typical tendency that Al concentrations of water samples decrease according to increasing pH. This tendency is interpreted as forming of amorphous Al(OH){sub 3} precipitates by reducing the Al{sup 3+} solubilities. It is revealed that the bank filtered groundwater in the area is not edible because color, turbidity, heterotrophic bacteria, coliform and Mn of the groundwater exceed the guideline of drinking water. Even though the bank filtered groundwater without treatment does not satisfy the guideline of drinking water, the groundwater shows a good water quality compared with stream water. So, the water treatment method using bank filtered groundwater can be more economical and efficient than the treatment using direct intake of stream water in the aspect of water quality. (author). 15 refs., 2 tabs., 7 figs.

  18. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  19. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    Science.gov (United States)

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH contact under ambient conditions.

  20. Ground and surface water quality along a dambo transect in Chihota smallholder farming area, Marondera district, Zimbabwe

    Science.gov (United States)

    Wuta, M.; Nyamadzawo, G.; Mlambo, J.; Nyamugafata, P.

    2016-04-01

    In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and

  1. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  2. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  3. WATER RETENTION OPTION OF DRAINAGE SYSTEM FOR DRY SEASON CORN CULTIVATION AT TIDAL LOWLAND AREA

    Directory of Open Access Journals (Sweden)

    Bakri

    2015-10-01

    Full Text Available Farming constraint at tidal lowland area is about water management related to the nature of excessive water during wet season and insufficient water during dry season. This field research objectives was to find out the corn crop cultivation in August 2014 which entered dry season. The installation of subsurface drainage that previously had functioned as water discharge was converted into water retention. The research results showed that corn had grown well during peak dry season period (October in which water table was at –50 cm below soil surface, whereas water table depth was dropped to –70 cm below soil surface in land without subsurface drainage. This condition implied that installation of subsurface drainage at dry season had function as water retention, not as water discharge. Therefore, network function was inverted from water discharge into water retention. It had impact on the development of optimum water surface that flow in capillary mode to fulfill the crop’s water requirement. Corn production obtained was 6.4 t ha-1. This condition was very promising though still below the maximum national production. The applications of subsurface drainage was still not optimum due to the supply of water from the main system was not the same because of the soil physical properties diversity and topography differences.

  4. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  5. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan

    2017-01-01

    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  6. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    Science.gov (United States)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  7. AN EXAMPLE IN SURFACE AREA*

    Science.gov (United States)

    Goffman, Casper

    1969-01-01

    For length and area, a central fact is that the value of the length of a curve or the area of a surface, as given by the Lebesgue theory, is at least as great as that given by the classical formula, whenever the latter has meaning. This is now found not to be valid in higher dimensions. We give an example of a continuous mapping of the unit cube into itself for which the value given by the formula exceeds the three-dimensional Lebesgue area of the corresponding suface. PMID:16591750

  8. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    International Nuclear Information System (INIS)

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  9. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    Science.gov (United States)

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  10. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  11. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  12. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  13. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  14. Ground and surface water developmental toxicity at a municipal landfill--Description and weather-related variation

    Science.gov (United States)

    Bruner, M.A.; Rao, M.; Dumont, J.N.; Hull, M.; Jones, T.; Bantle, J.A.

    1998-01-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4–7 preceding sampling.

  15. Assessment of Carbon Status in Marine Protected Area of Payung Island Waters, South Sumatera Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2017-03-01

    Full Text Available CO2 is a greenhouse gas that receive more attention than the other gases because the properties of carbon easily deformed and diffuseed. Changes in the concentration of CO2 in the water will impact on changes in the amount of CO2 in the atmosphere that affect sea surface temperatures. It continuously will result in a change of marine capture fisheries. Payung Island is one of the important areas in South Sumatra that acts as the provider of the fishery. This because Payung Island is located in the mouth of Musi and Telang River covered by mangrove, has a very important ecological function. However, the condition of the carbon in the waters of the Payung Island has not explored further. This elementary study is to determine status on Payung Island waters as a sink or source of CO2. The study was conducted in June until August 2015. The research stages include surface water sampling, measurement of the CO2 in the atmosphere, the analysis of the concentration of Dissolved Inorganic Carbon (DIC and Total Alkalinity (TA, and partial pressure of carbon dioxide (pCO2 calculation.  Atmospheric CO2 were measured insitu, while the DIC and TA were analyzed using titration methods. Partial pressure of carbon dioxide (pCO2 obtained from the calculation using the software CO2Calc using data of  DIC, TA, nutrients and atmospheric CO2. The results showed that the content of DIC and TA on the Payung Island waters has similar distribution pattern  i.e. high in areas close to the river, and getting lower in the area which were closer to the sea. The comparisons between pCO2 atmosphere and pCO2 waters showed that Payung Island waters generally act as a carbon sink in area towards the sea but however, in the territorial waters adjacent to the river as a source of carbon.   Keywords: carbon, marine protected area, Payung Island waters

  16. Pilot monitoring study of ibuprofen in surface waters of north of Portugal

    OpenAIRE

    Paíga, Paula; Santos, Lúcia; Amorim, Célia G.; Araújo, Alberto N.; Montenegro, M. Conceição B. S. M.; Pena, Angelina; Delerue-Matos, Cristina

    2013-01-01

    Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 ...

  17. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  18. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  20. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C

  1. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    Science.gov (United States)

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  2. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  3. Environmental geochemistry of surface and subsurface water from Dera Ismail Khan Division, Khyber Pakhtunkhwa, Pakistan

    International Nuclear Information System (INIS)

    Shah, M.T.; Alizai, A.H.; Khan, S.D.

    2012-01-01

    The Dera Ismail Khan division is situated in the southern most part of the Khyber-Pakhtunkhwa province in Pakistan. Majority of population in this region obtain domestic water from tube wells, dug wells, ponds, stored run off of the Indus and Gomal rivers and perennial streams. This study is aimed to determine the physio-chemical contaminants in the surface and subsurface water which could cause environmental problem. For this purpose, representative water sample were collected from tube wells, dug wells, streams and rivers. These analyses were performed using Hach DR/2000 spectrophotometer and graphite furnace atomic absorption spectrometer. Chemically both surface and subsurface water samples of the area were classified as alkaline fresh water. The comparison of the data with standard limits set by Word Health Organization (WHO) for drinking water suggested that in certain areas of the division, the drinking water samples have high concentrations of Total Dissolved Solids, NO/sub 3//sup 2-/, SO/sub 4//sup 2-/, F-, Cl-, Fe/sup 2+/, Ca/sup 2+/, Mg/sup 2+/, Pb/sup 2+/, Ni/sup 2+/ and Cd/sup 2+/ while pH, EC, HCO/sub 3/-, PO/sub 4//sup 3-/, Na/sup +/, Mn/sup 2+/, K/sup +/, Cr/sup 3+/ and Zn/sup 2+/ were within the permissible limits. These contaminations could be attributed to the geogenic sources which might be responsible for the health related problems in certain areas of the division. (author)

  4. Monitoring surface-water quality in Arizona: the fixed-station network

    Science.gov (United States)

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  5. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  6. In vitro and in vivo toxicities of sediment and surface water in an area near a major steel industry of Korea: endocrine disruption, reproduction, or survival effects combined with instrumental analysis.

    Science.gov (United States)

    Kim, Sunmi; Lee, Sangwoo; Kim, Cheolmin; Liu, Xiaoshan; Seo, Jihyun; Jung, Hyorin; Ji, Kyunghee; Hong, Seongjin; Park, Jinsoon; Khim, Jong Seong; Yoon, Seokmin; Lee, Woojin; Park, Jeongim; Choi, Kyungho

    2014-02-01

    The influence of industrial and/or municipal contaminant inputs on the aquatic environment of Pohang, Korea was investigated, with a focus on bioassay combined with instrumental analysis. Pohang is the most heavily populated city in Gyeongsangbuk-do province of Korea, with more than half a million residents, and also hosts the nation's biggest steel manufacturer and related industries. Sediment (n=15) and surface water samples (n=17) were collected from Hyeongsan River which runs across the Pohang city, in two separate events, i.e., June 2010 and February 2011. Sediment samples were first Soxhlet-extracted (raw extract) and were measured for estrogenicity using H295R cell line, and also analyzed for alkylphenols (APs), bisphenol A (BPA), PAHs, and PCBs. For sediment samples which exhibited greatest effects in the cell line, further fractionation was performed into non-polar, mid-polar, and polar portions. In surface water samples, heavy metals were also analyzed. Among 15 sediment samples, station S2 near the steel industry complex and station M3 near the municipal area showed the greatest sex hormone changes, and these changes were generally explained by the fractions which contained APs and BPA. Principal component analysis (PCA) however suggests that chemicals that were not analyzed in the present study would better explain endocrine disruption capacity of sediments. In water samples, adverse effects on hatchability and growth of Japanese medaka fish, and on Daphnia reproduction were noted following exposure to six water samples collected from stations near industrial and municipal areas. Several heavy metals and nonylphenol (NP) concentrations exceeded surface water quality guidelines, suggesting adverse effects of contamination inputs from both industrial and municipal activities. Observed estrogenicities in stations such as S2 and M3 warrant further investigations on longer term ecosystem impacts near industrial and municipal areas. The levels of major

  7. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  8. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  9. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  10. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  11. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  12. Stereological estimation of surface area and barrier thickness of fish gills in vertical sections.

    Science.gov (United States)

    Da Costa, Oscar T F; Pedretti, Ana Carolina E; Schmitz, Anke; Perry, Steven F; Fernandes, Marisa N

    2007-01-01

    Previous morphometric methods for estimation of the volume of components, surface area and thickness of the diffusion barrier in fish gills have taken advantage of the highly ordered structure of these organs for sampling and surface area estimations, whereas the thickness of the diffusion barrier has been measured orthogonally on perpendicularly sectioned material at subjectively selected sites. Although intuitively logical, these procedures do not have a demonstrated mathematical basis, do not involve random sampling and measurement techniques, and are not applicable to the gills of all fish. The present stereological methods apply the principles of surface area estimation in vertical uniform random sections to the gills of the Brazilian teleost Arapaima gigas. The tissue was taken from the entire gill apparatus of the right-hand or left-hand side (selected at random) of the fish by systematic random sampling and embedded in glycol methacrylate for light microscopy. Arches from the other side were embedded in Epoxy resin. Reference volume was estimated by the Cavalieri method in the same vertical sections that were used for surface density and volume density measurements. The harmonic mean barrier thickness of the water-blood diffusion barrier was calculated from measurements taken along randomly selected orientation lines that were sine-weighted relative to the vertical axis. The values thus obtained for the anatomical diffusion factor (surface area divided by barrier thickness) compare favourably with those obtained for other sluggish fish using existing methods.

  13. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman; Fu, Hui-chun; Priante, Davide; Duran Retamal, Jose Ramon; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idris A.; Mitra, Somak; Roqan, Iman S.; Ooi, Boon S.; He, Jr-Hau

    2017-01-01

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  14. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman

    2017-02-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  15. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  16. STUDY ON THE IMPACT OF OIL EXTRACTION ON WATERS FROM TICLENI AREA, GORJ COUNTY

    Directory of Open Access Journals (Sweden)

    CĂPĂŢÎNĂ CAMELIA

    2017-12-01

    Full Text Available Surface and groundwater pollution can be direct and indirect. In the extraction activity, oil and sewage are potential sources of groundwater pollution in the area. Petroleum is extracted from the deposit through methods that constitute both primary and secondary exploatation. The pollution in the areas of petroleum extraction is caused by leaks from the transport pipes. In the majority of the cases , the damages of the transport pipes are caused by the corrosive effect of salt water, which constitute the liquid impurity of the petroleum extract. A large quantity of petroleum products penetrate into the hydrosphere from industrial leaks and refineries, either directly in the sea or via the continental hydrographic network. It is estimated that via all these routes a quantity of 5-10 million tons of oilpenetrate into the ocean waters annually. In the area of Ţicleni, surface and groundwater quality indicators were monitored: pH, sulphates, chlorides, conductivity, hardness and oxygen content. The main water course draining under study in the area is the Amaradia River, a tributary of the Jiu River.Here samples were taken for analysis. Comparing the obtained results with the limits stipulated by the Order 161/2006 it is found that the groundwater samples analyzed from the section located at the confluence of Strâmba brook with Cioiana brook corresponds to the third grade in terms of salinity (chlorides, class II for sulphates and class I for the oxygen regime (chemical oxygen demand.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  19. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  20. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    International Nuclear Information System (INIS)

    Zhang, Yan; Li, Fadong; Zhang, Qiuying; Li, Jing; Liu, Qiang

    2014-01-01

    Water pollution in the form of nitrate nitrogen (NO 3 − –N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO 3 − –N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO 3 − –N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO 3 − –N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious seasonal variations. • Nitrate of

  1. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  2. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  3. The behaviour of water discharged into the subsoil in a dolomitic mining area

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1989-01-01

    Water extracted from the underground works, at a depth of approximately 1 000 m, in a mine situated in a dolomitic area was being discharged into a series of boreholes on the surface. It was, however, presumed, that some recirculation was occurring. A tracer investigation was carried out to assess whether at least some of the water was reaching the underground works and the transit times involved. Since indium can be determined by means of neutron activation analysis at concentration levels as low as 10 -11 g/l water, this element was selected as tracer. The results are discussed. 9 refs., 5 figs

  4. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

    Science.gov (United States)

    Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analyzed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (...

  5. [Water quality evaluation in rural areas of Lavras, Minas Gerais, Brazil, 1999-2000].

    Science.gov (United States)

    Rocha, Christiane Maria Barcellos Magalhães da; Rodrigues, Luciano Dos Santos; Costa, Claudionor C; de Oliveira, Paulo Roberto; da Silva, Israel José; de Jesus, Eder Ferreira Moraes; Rolim, Renata G

    2006-09-01

    In addition to personal interviews, laboratory analyses were performed using 80 water samples from 45 rural areas that are crossed by the Agua Limpa and Santa Cruz streams close to the city of Lavras, southern Minas Gerais State. The results allowed comparing the quality of water used for agriculture and the identification of determinant factors. The Agua Limpa stream mostly crosses an area used primarily for housing and characterized by low schooling. Many houses are supplied by shallow water wells and have ordinary cesspits for human waste disposal. All springs are polluted. The Santa Cruz stream displays a different scenario. The land is used mostly for agricultural purposes. Most owners live in town, with widely varied levels of school, from none to university. The houses are supplied by surface water. Most of the springs are polluted. The perception by both home and land owners concerning quality of the drinking water is determined solely by the water's physical and organoleptic characteristics. Sanitary parameters are not taken into account. Moreover, there is no relationship between fecal contamination and the type of spring. Land use and anthropic activity are far more important than the type of spring for water quality.

  6. Water leakage management by district metered areas at water distribution networks.

    Science.gov (United States)

    Özdemir, Özgür

    2018-03-01

    The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.

  7. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  8. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    Science.gov (United States)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  9. Radiological assessment of surface water quality around proposed uranium mining site in India.

    Science.gov (United States)

    Jha, S K; Lenka, P; Gothankar, S; Tripathi, R M; Puranik, V D; Khating, D T

    2009-06-01

    The gross alpha and gross beta activities were estimated for radiological assessment of surface water quality around the proposed uranium mining site Kylleng Pyndengsohiong Mawthabah (Domiasiat), West Khasi Hills District, Meghalaya situated in a high rainfall area (12,000mm) in India. 189 Surface water samples were collected over different seasons of the year from nine different locations covering around 100km(2). Gross beta activities were found to vary from 144 to 361mBq/L which is much below the prescribed WHO limit of 1000mBq/L for drinking water. Gross alpha activities varied from 61 to 127mBq/L. These values are much below the reported gross alpha values by other countries. In about 7% of the samples the alpha activities remain exceeded the WHO guideline limit of 100mBq/L. Surface water samples collected during the summer season of the year show higher activity whereas low activity was found from samples collected during monsoon season. Results show that all water sources are acceptable as drinking water for human consumption from the radiological point of view, the higher gross alpha concentrations in a few locations remains so only for short duration during the summer season.

  10. Radiological assessment of surface water quality around proposed uranium mining site in India

    International Nuclear Information System (INIS)

    Jha, S.K.; Lenka, P.; Gothankar, S.; Tripathi, R.M.; Puranik, V.D.; Khating, D.T.

    2009-01-01

    The gross alpha and gross beta activities were estimated for radiological assessment of surface water quality around the proposed uranium mining site Kylleng Pyndengsohiong Mawthabah (Domiasiat), West Khasi Hills District, Meghalaya situated in a high rainfall area (12,000 mm) in India. 189 Surface water samples were collected over different seasons of the year from nine different locations covering around 100 km 2 . Gross beta activities were found to vary from 144 to 361 mBq/L which is much below the prescribed WHO limit of 1000 mBq/L for drinking water. Gross alpha activities varied from 61 to 127 mBq/L. These values are much below the reported gross alpha values by other countries. In about 7% of the samples the alpha activities remain exceeded the WHO guideline limit of 100 mBq/L. Surface water samples collected during the summer season of the year show higher activity whereas low activity was found from samples collected during monsoon season. Results show that all water sources are acceptable as drinking water for human consumption from the radiological point of view, the higher gross alpha concentrations in a few locations remains so only for short duration during the summer season.

  11. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  12. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  13. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    reports, agriculture consumes around 93.5percent of the groundwater withdrawals in Neyshabour basin and mostly in irrigation fields, surface water resources share in total water resource withdrawals is about 4.2percent, which means that groundwater is a primary source of fresh water for different purposes and surface water has a minor role in providing water supply services in the Neyshabour basin. To determine crop cultivation area, major crops divided into two groups. two winter crops (Wheat and Barley and two summer crops (Maize and Tomato. To accomplish land classification by using supervised method, a training area is needed, so different farms for each crop were chosen by consulting with official agricultural organization expert and multiple point read on GPS for each crop. The maximum likelihood (MLC method was selected for the land cover classification. To estimate the amount of precipitation at each 199 sub-basins, 13 station data for precipitation were collected, these stations are including 11 pluviometry stations, one climatology station and one synoptic station. Actual evapotranspiration (ETa is needed to estimate actual yield (Ya. Surface Energy Balance Algorithm for Land (SEBAL technique were applied on Landsat 8 OLI images. To calculate actual ETa, the following steps in flowchart were modeled as tool in ArcGIS 10.3 and a spreadsheet file. To estimate actual crop yield, the suggested procedure by FAO-33 and FAO-66 were followed. Financial productivity could be defined in differently according to interest. In this study several of these definition was used. These definitions are Income productivity (IP and Profit productivity (PP. To optimize crop area, linear programing technique were used. Results and discussionaverage actual evapotranspiration result for each sub-basin are shown in context. In some sub-basins which there were no evapotranspiration are shown in white. And it happens in those sub-basins which assigned as desert in land classification. In

  14. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  15. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  16. Detection of Emerging and Re-Emerging Pathogens in Surface Waters Close to an Urban Area

    Directory of Open Access Journals (Sweden)

    Stefania Marcheggiani

    2015-05-01

    Full Text Available Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV, noroviruses GI (NoGGI and GII (NoGII and human adenovirus 41 (ADV 41 were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than

  17. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    ). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak

  18. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  19. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    hydroxide ML on top of an oxide ML would give 7.2 ng cm{sup -2} copper surface. Another factor that determines the amount of H{sub 2} that could be formed is the roughness of the copper surface. Mechanically polished copper surfaces has roughly twice the surface area of an ideally planar surface (on which the estimates above are based) and could thus form up to about 14 ng H{sub 2} per cm{sup 2} macroscopic copper surface. This amount is less than six times lower than the largest amount of hydrogen gas detected per surface area in any published experimental study. Possibly, the water cleavage/ hydrogen-formation reaction could proceed even further via diffusion of the adsorbed species into the bulk metal, or through extensive surface reconstruction.

  20. Effects of hot water pre-extraction on surface properties of bagasse soda pulp.

    Science.gov (United States)

    Cordeiro, Nereida; Ashori, Alireza; Hamzeh, Yahya; Faria, Marisa

    2013-03-01

    In this work, the effects of hot water pre-extraction of depithed bagasse on the soda pulping and surface properties were studied. The conditions of hot water pre-extraction were: maximum temperature 170 °C, heat-up time 90 min, time at maximum temperature 10 min, and solid to liquor ratio (S:L) 1:8. Consequently, the pre-extracted and un-extracted bagasse chips were subjected to soda pulping at 160 °C for 1h with 11, 14 and 17% active alkali charge and an S:L of 1:5. The results showed that the hot water pre-extraction increased bagasse surface texture porosity by hemicellulose degradation. Therefore, the delignification was faster for pulping of pre-extracted samples. At a certain charge of alkali, pre-extracted samples showed higher screened yield and lower Kappa number. For instance, at 17% alkali charge, pre-extracted bagasse gave 11.3% higher pulp yield compared with the un-extracted ones. Inverse gas chromatography (IGC) results showed that the hot water pre-extraction changed the active sites on the bagasse surface, decreasing the dispersive energy and the basicity character, and affected the particle morphology. The pulping process decreased the hydrophobicity and the basicity of the bagasse surface. The surfaces of un-extracted and pre-extracted bagasse pulps had similar properties but different morphology. The pulps present higher surface area and permeability with more reactive capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Ioannis Manakos

    2014-12-01

    Full Text Available The National Geomatics Center of China (NGCC produced Global Land Cover (GlobalLand30 maps with 30 m spatial resolution for the years 2000 and 2009–2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009–2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  2. Strong Control of Salts on Near Surface Liquid Water Content in a High Polar Desert Indicated by Near Surface Resistivity Mapping with a Helicopter-Borne TEM Sensor, Lower Taylor Valley, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.

    2016-12-01

    Closed depressions in the Lower Taylor Valley (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by about an order of magnitude than the resistivity of nearby slopes and ridges (100s of ohm-m vs. 1000s). We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and/or deliquescent vapor fronts. High concentration of salts in the top decimeters to meters beneath the surface may prolong the existence and abundance of liquid water in this otherwise very cold and dry high polar desert. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Transient EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation. In areas where we measured low resistivity, the integrated liquid water fraction in the top 5m may be a few to several percent by volume, equivalent to a few or several dozens of cm of water layer thickness. This estimate assumes that the interstitial waters have very low resistivity, comparable to seawater or hypersaline brines at freezing (0.2-0.35 ohm-m). If soil water was considerably fresher than this, liquid water content would have to reach dozens of percent throughout the top 5m for bulk resistivities to drop to 100s of ohm-m. We consider the latter case to be unlikely as

  3. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  4. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  5. Dispersion of inorganic contaminants in surface water in the vicinity of Potchefstroom

    Science.gov (United States)

    Manyatshe, A.; Fosso-Kankeu, E.; van der Berg, D.; Lemmer, N.; Waanders, F.; Tutu, H.

    2017-08-01

    Potchefstroom and the neighbouring cities rely mostly on the Mooi River and Vaal River for their water needs. These rivers flow through the gold mining areas and farms, and are therefore likely to be contaminated with substantial amounts of inorganic pollutants. Water was collected along the rivers network, streams, canals and dams in Potchefstroom and the vicinity. The samples were characterized for geochemical parameters, metals and anions concentrations. The results showed high concentrations of potentially toxic elements such as As (4.53 mg/L - 5.74 mg/L), Cd (0.25 mg/L - 0.7 mg/L), Pb (1.14 mg/L - 5.13 mg/L) and U (0.04 mg/L - 0.11 mg/L) which were predominantly found around the mining areas. Elevated concentrations of anions such SO42- and CN- were detected around mining areas while NO3- was dominant near farms. The relatively high levels of anions and metals in the surface water made it unfit for domestic or agricultural use. The study showed that contaminants in mining and agricultural facilities were potentially mobilised, thus impacting the nearby water systems.

  6. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  7. Groundwater and surface-water resources in the Bureau of Land Management Moab Master Leasing Plan area and adjacent areas, Grand and San Juan Counties, Utah, and Mesa and Montrose Counties, Colorado

    Science.gov (United States)

    Masbruch, Melissa D.; Shope, Christopher L.

    2014-01-01

    The Bureau of Land Management (BLM) Canyon Country District Office is preparing a leasing plan known as the Moab Master Leasing Plan (Moab MLP) for oil, gas, and potash mineral rights in an area encompassing 946,469 acres in southeastern Utah. The BLM has identified water resources as being potentially affected by oil, gas, and potash development and has requested that the U.S. Geological Survey prepare a summary of existing water-resources information for the Moab MLP area. This report includes a summary and synthesis of previous and ongoing investigations conducted in the Moab MLP and adjacent areas in Utah and Colorado from the early 1930s through the late 2000s.Eight principal aquifers and six confining units were identified within the study area. Permeability is a function of both the primary permeability from interstitial pore connectivity and secondary permeability created by karst features or faults and fractures. Vertical hydraulic connection generally is restricted to strongly folded and fractured zones, which are concentrated along steeply dipping monoclines and in narrow regions encompassing igneous and salt intrusive masses. Several studies have identified both an upper and lower aquifer system separated by the Pennsylvanian age Paradox Member of the Hermosa Formation evaporite, which is considered a confining unit and is present throughout large parts of the study area.Surface-water resources of the study area are dominated by the Colorado River. Several perennial and ephemeral or intermittent tributaries join the Colorado River as it flows from northeast to southwest across the study area. An annual spring snowmelt and runoff event dominates the hydrology of streams draining mountainous parts of the study area, and most perennial streams in the study area are snowmelt-dominated. A bimodal distribution is observed in hydrographs from some sites with a late-spring snowmelt-runoff peak followed by smaller peaks of shorter duration during the late summer

  8. Studies of the viscoelastic properties of water confined between surfaces of specified chemical nature.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Grest, Gary Stephen; Moore, Nathan W.; Feibelman, Peter J.

    2010-09-01

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 10-0973 of the same title. Understanding the molecular origin of the no-slip boundary condition remains vitally important for understanding molecular transport in biological, environmental and energy-related processes, with broad technological implications. Moreover, the viscoelastic properties of fluids in nanoconfinement or near surfaces are not well-understood. We have critically reviewed progress in this area, evaluated key experimental and theoretical methods, and made unique and important discoveries addressing these and related scientific questions. Thematically, the discoveries include insight into the orientation of water molecules on metal surfaces, the premelting of ice, the nucleation of water and alcohol vapors between surface asperities and the lubricity of these molecules when confined inside nanopores, the influence of water nucleation on adhesion to salts and silicates, and the growth and superplasticity of NaCl nanowires.

  9. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  10. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  11. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available

  12. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  14. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  15. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  16. Surface water quality and isotopic study at a section of the Lower Volta River (Akuse to Sogakope area), Ghana

    International Nuclear Information System (INIS)

    Gampson, E. K.

    2012-01-01

    The water quality examination at a section of the Lower Volta River (Akuse to the Sogakope area), Ghana, was conducted by determining the physicochemical parameters at 38 sampling sites in September (2011) during the wet season and February (2012) during the dry season. Isotope analysis was also conducted during the same period. The ranges of physicochemical parameters analysed in the surface water were 6.45 to 7.26 for pH, -053 to -010 mV for Eh, 23.6 to 27 degrees celsius for temperature, 61.7 to 83.6 μS/cm for EC, 0% 0 for salinity, 29.7-39.4 mg/L for TDS, 0.63 to 2.28 mg/L for DO, 0 to 4 NTU for turbidity, 0 to 8mg/L for TSS, 36 to 108mg/L for total hardness, 0.8 to 5mg/L for BOD 5 , 23.16 to 46.33mg/L for HCO 3 - , 2.92 to 23.33mg/L for Mg 2+ , 7.8 to 11.0mg/L for Na + , 4.0 to 5.9mg/L for K + , 1.99 to 13.99mg/L for CI - , 3.2 to 14.4MG/L for Ca 2+ , 1.0 to 24.889mg/L for NO 3 - , 6.556 to 28.111mg/L for SO 4 2- and 1.333 to 11.667mg/L for PO 4 3- . While the results for dissolved metals (μg/L) were 32 to 348 for Fe, 12 to 278 for Mn, 16 to 84 for Cu, 4 to 38 for Pb, 20 to 162 for Ni, 12 to 32 for Cd and 12μg/L to 98 for Cd, Hg, Se, V and Zn were below detection limit. The river water will support agricultural activities. Except Cu which was low, about 37%, 89%, 29%, 33%, 8% and 29% of the sampled sites had Pb, Ni, Cd, Cr, Fe and Mn values respectively above the WHO (2004) standard for drinking water. Therefore, water quality monitoring and control of release of untreated anthropogenic wastes into the river is strongly needed. Stable isotope data of water (δ 2 H and δ 18 O) obtained showed stream waters are depleted and possibly recharge by rain and waters from the Akwapim Mountains than the isotopically heavy evaporated waters found within the Lower Volta River. (au)

  17. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  18. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    Science.gov (United States)

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  19. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  20. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  1. Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data

    Directory of Open Access Journals (Sweden)

    Chang Huang

    2016-07-01

    Full Text Available Monitoring the dynamics of surface water using remotely sensed data generally requires both high spatial and high temporal resolutions. One effective and popular approach for achieving this is image fusion. This study adopts a widely accepted fusion model, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, for blending the newly available coarse-resolution Suomi NPP-VIIRS data with Landsat data in order to derive water maps at 30 m resolution. The Pan-sharpening technique was applied to preprocessing NPP-VIIRS data to achieve a higher-resolution before blending. The modified Normalized Difference Water Index (mNDWI was employed for mapping surface water area. Two fusion alternatives, blend-then-index (BI or index-then-blend (IB, were comparatively analyzed against a Landsat derived water map. A case study of mapping Poyang Lake in China, where water distribution pattern is complex and the water body changes frequently and drastically, was conducted. It has been revealed that the IB method derives more accurate results with less computation time than the BI method. The BI method generally underestimates water distribution, especially when the water area expands radically. The study has demonstrated the feasibility of blending NPP-VIIRS with Landsat for achieving surface water mapping at both high spatial and high temporal resolutions. It suggests that IB is superior to BI for water mapping in terms of efficiency and accuracy. The finding of this study also has important reference values for other blending works, such as image blending for vegetation cover monitoring.

  2. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  3. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    Energy Technology Data Exchange (ETDEWEB)

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  4. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    International Nuclear Information System (INIS)

    Abbatt, J P D; Bartels-Rausch, T; Ullerstam, M; Ye, T J

    2008-01-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 μm min -1 . In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T≥263 K and ethanol at T≥255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T≤263 K and for acetone at T≤255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  5. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  6. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  7. Indexing aortic valve area by body surface area increases the prevalence of severe aortic stenosis

    DEFF Research Database (Denmark)

    Jander, Nikolaus; Gohlke-Bärwolf, Christa; Bahlmann, Edda

    2014-01-01

    To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are......To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are...

  8. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  9. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  10. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  11. Radiological impact of surface water and sediment near uranium mining sites.

    Science.gov (United States)

    Ivanova, K; Stojanovska, Z; Badulin, V; Kunovska, B; Yovcheva, M

    2015-12-01

    The aim of this study is to assess the radiological impact of surface water and sediment around uranium mining sites 20 years after their closing. The areas under observations are 31 former classical underground uranium mining and exploratory sites in Bulgaria, named as objects. The extraction and processing of uranium ores in the Republic of Bulgaria were ended in 1992. To assess the radiological impact of radionuclides field expeditions were performed to sample water and bottom sediment. The migration of uranium through surface water was examined as one of the major pathways for contamination spread. The range of uranium concentration in water flowing from the mining sites was from 0.012 to 6.8 mgU l(-1) with a geometric mean of 0.192 mgU l(-1). The uranium concentrations in water downstream the mining sites were approximately 3 times higher than the background value (upstream). The concentrations of Unat, (226)Ra, (210)Pb, and (232)Th in the sediment of downstream river were higher than those upstream by 3.4, 2.6, 2, and 1.7 times, respectively. The distribution coefficient of uranium reflects its high mobility in most of the sites. In order to evaluate the impact on people as well as site prioritization for more detailed assessment and water management, screening dose assessments were done.

  12. Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992-2012

    Science.gov (United States)

    Lipecki, Tomasz

    2018-03-01

    The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface - subsidence and uplift - were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.

  13. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  14. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    Directory of Open Access Journals (Sweden)

    Francisco Maduell

    2015-05-01

    Conclusion: The increase in 40% and 80% of dialyzer surface area entails an increase in convective volume of 6 and 16% respectively, showing minimal differences both in convective volume and clearance capacity when UFC was greater than 45 mL/h/mmHg. It is advisable to optimise dialyser efficiency to the smallest surface area possible, adjusting treatment prescription.

  15. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  16. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  17. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  18. Impact of Surface Soil Moisture Variations on Radar Altimetry Echoes at Ku and Ka Bands in Semi-Arid Areas

    Directory of Open Access Journals (Sweden)

    Christophe Fatras

    2018-04-01

    Full Text Available Radar altimetry provides information on the topography of the Earth surface. It is commonly used for the monitoring not only sea surface height but also ice sheets topography and inland water levels. The radar altimetry backscattering coefficient, which depends on surface roughness and water content, can be related to surface properties such as surface soil moisture content. In this study, the influence of surface soil moisture on the radar altimetry echo and backscattering coefficient is analyzed over semi-arid areas. A semi-empirical model of the soil’s complex dielectric permittivity that takes into account that small-scale roughness and large-scale topography was developed to simulate the radar echoes. It was validated using waveforms acquired at Ku and Ka-bands by ENVISAT RA-2 and SARAL AltiKa respectively over several sites in Mali. Correlation coefficients ranging from 0.66 to 0.94 at Ku-band and from 0.27 to 0.96 at Ka-band were found. The increase in surface soil moisture from 0.02 to 0.4 (i.e., the typical range of variations in semi-arid areas increase the backscattering from 10 to 15 dB between the core of the dry and the maximum of the rainy seasons.

  19. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    Directory of Open Access Journals (Sweden)

    Lisa L Robbins

    Full Text Available Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  20. Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016

    Science.gov (United States)

    Carmichael, John K.; Johnson, Gregory C.

    2017-12-14

    The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.

  1. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  2. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  3. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  4. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  5. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  6. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  7. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  8. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  9. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  10. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in the Czech Republic. Critical loads of acidity to surface waters, north-eastern Bohemia and northern Moravia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Raclavska, H.; Matysek, D.; Hovind, H.

    1996-01-01

    This report discusses estimates of critical loads of acidity to surface waters and their exceedances, for north-eastern Bohemia and Moravia in The Czech Republic. The survey covers 13 400 km{sup 2}, or 17% of the area of the country. Varying critical loads were observed within the examined region. 19% of the examined area showed exceedance of critical load and another 11% was close to exceedance. The survey should continue in Bohemia. 24 refs., 20 figs., 4 tabs.

  11. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Lance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Institute for Computational Sciences (JIBS); Univ. of Tennessee, Knoxville, TN (United States); Chen, Banghao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Li, Meijun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Mann, Amanda K. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hagaman, Edward W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T1) and spin–spin (T2) relaxation, and DFT calculations. In air, the (100) surface exists as a fully hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D2O does not occur under mild or forcing conditions. Despite large differences in the T1 of surface hydroxyls and physisorbed water, surface hydroxyl T1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na+ remaining in incompletely washed ceria nanocubes

  12. North Putrajaya Catchment Area Putrajaya, Malaysia-Challenges in Water Quality Management

    International Nuclear Information System (INIS)

    Mohd Zamri Daud; Pereira, J.J.; Mazlin Mokhtar

    2011-01-01

    The Putrajaya Administrative area covers 70 % of the Putrajaya Lake catchment area. Development work carried out within the Putrajaya area abides by the rules and regulations set by the Putrajaya Corporation to ensure that the quality of the lake water and wetland within the Putrajaya area meets the stipulated benchmark standards. However, 30 % of the Putrajaya lake and wetland catchment area is located outside of administration and prerogative of the Putrajaya Corporation. The North Putrajaya catchment area which originates from the Sg. Chuau River contributes the bulk of the water that flows into the lake and wetlands of Putrajaya. Water quality data collected by the Putrajaya Corporation for the period of 2002 to 2005 has been analysed to identify major issues in the Putrajaya Wetland North Catchment area. Data from 2002 shows average percentage parameter of non-compliance Putrajaya Standard for ammoniacal nitrogen (NH 3 -N) at 43.7 %, E. coli at 31.3 % and TSS at 12.5 % while the DO and COD are both 6.2 %. For 2003, the average percentage parameter of non compliance for NH 3 -N was at 23.7 %, E. coli at 18.4 %, total coliform at 18.4 %, TSS at 2.6 %, DO at 13.2 %, COD at 13.2 % and BOD at 10.5 %. For 2004, the average percentage parameter of non complying for NH 3 -N was at 35.5 %, E. coli at 22.6 %, total coliform at 12.9 %, TSS at 9.7 %, COD at 3.2 % and BOD at 16.1 %. For 2005, the average percentage parameter of non compliance were at is 36.4 % for E. coli, 22.7 % for NH 3 -N, 18.2 % for total coliform, 13.6 % for BOD and 4.5 % for both DO and COD. In conclusion the analysed data within the four year period showed that the NH 3 -N and E. coli discharge from the north catchment area did not comply with the Putrajaya Standard. The main factors of water quality issues in the Putrajaya Wetland North Catchment area include the failure of integrating the management of the catchment areas and the stake holders attitude of total disregard of the management and

  13. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    Science.gov (United States)

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  14. STEREOLOGICAL ESTIMATION OF SURFACE AREA FROM DIGITAL IMAGES

    Directory of Open Access Journals (Sweden)

    Johanna Ziegel

    2011-05-01

    Full Text Available A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J. Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius. For general shapes bounds for the asymptotic expected relative worst case error are given. A simulation example is discussed for surface area estimation based on 2×2×2-configurations.

  15. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    Science.gov (United States)

    Becker, Carol J.

    2014-01-01

    The Citizen Potawatomi Nation needs to characterize their existing surface-water and groundwater resources in and near their tribal jurisdictional area to complete a water-resource management plan. Water resources in this area include surface water from the North Canadian and Little Rivers and groundwater from the terrace and alluvial aquifers and underlying bedrock aquifers. To assist in this effort, the U.S. Geological Survey (USGS), in cooperation with the Citizen Potawatomi Nation, collected water-quality samples at 4 sites on 3 streams and from 30 wells during 2012 and 2013 in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area in central Oklahoma. Stream samples were collected eight times on the North Canadian River at the upstream USGS streamflow-gaging station North Canadian River near Harrah, Okla. (07241550); at the downstream USGS streamflow-gaging station North Canadian River at Shawnee, Okla. (07241800); and on the Little River at the USGS streamflow-gaging station Little River near Tecumseh, Okla., (07230500). Stream samples also were collected three times at an ungaged site, Deer Creek near McLoud, Okla. (07241590). Water properties were measured, and water samples were analyzed for concentrations of major ions, nutrients, trace elements, counts of fecal-indicator bacteria, and 69 organic compounds.

  16. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  17. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  18. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  19. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  20. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    Science.gov (United States)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.