WorldWideScience

Sample records for surface water areas

  1. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  2. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  3. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  4. Modelling skin surface areas involved in water transfer in the Palmate Newt (Lissotriton helveticus)

    National Research Council Canada - National Science Library

    Wardziak, Thomas; Oxarango, Laurent; Valette, Sebastien; Mahieu-Williame, Laurent; Joly, Pierre

    2014-01-01

    Magnetic resonance imaging (MRI) based 3D reconstructions were used to derive accurate quantitative data on body volume and functional skin surface areas involved in water transfer in the Palmate Newt...

  5. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  6. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  7. A microbiological assessment of the surface water quality in the Bodva river drainage area

    Directory of Open Access Journals (Sweden)

    Zdenka Maťašová

    2005-12-01

    Full Text Available This paper deals with the surface water quality assessment in the partial drainage area of the Bodva river and its tributaries. The water quality in the sampled areas ranged between polluted and strongly polluted. The main cause of the pollution is the increased abundance of coliform and thermo-tolerant coliform bacteria, and fecal streptococci. The reason the increase in their abundance is the dumping of the household waste water containing excrements and animal remains, and the unsatisfactorily treated water from the water treatment stations.

  8. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    Indian Academy of Sciences (India)

    Fathy A Abdalla; Traugott Scheytt

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  9. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  10. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  11. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  12. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  13. Impact of industrial wastewater disposal on surface water bodies in Mostord area north Greater Cairo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The studied area (Shoubra El-Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area.Shebin El-Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al-Ahleya Plastic Company discharges the highest amounts of total-Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.

  14. Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec

    Science.gov (United States)

    Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek

    2017-04-01

    Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.

  15. Repetitive ERTS-1 observations of surface water variability along rivers and low-lying areas

    Science.gov (United States)

    Rango, A.; Salomonson, V. V.

    1973-01-01

    The Earth Resources Technology Satellite, ERTS-1, provides an 18 day repetitive coverage capability and observations in the 0.8-1.1 micron spectral region where the contrast between water and adjacent surfaces is relatively large. Using these capabilities, observations in Virginia, Iowa, Missouri, and California have been acquired showing distinct patterns of flooding. Repetitive views of these areas before and after flooding have been examined, and flood mapping was performed. Sloughs in California can be seen to expand in terms of the area covered by standing water as time extends from summer to autumn. The results indicate that ERTS-1 imagery can be a valuable adjunct to conventional and aircraft survey methods for ascertaining the amount of area covered by water or affected by flooding.

  16. Stream Flooding Response and Water Quality as a Function of Increasing Impervious Surface Area

    Science.gov (United States)

    Hasenmueller, E. A.; Criss, R. E.; Winston, W. E.; Shaughnessy, A. R.

    2016-12-01

    Urban and suburban streams often exhibit frequent flash floods and low water quality, but surprisingly few studies of these systems attempt to resolve the relative contributions of different runoff fractions and their associated geochemistry. This study deliberately examined concurrent responses in three watersheds and two subbasins along a gradient of increasing impervious surface area in and around highly urbanized Saint Louis, Missouri, USA, to quantify changes in the relative contributions of pre-event (baseflow) and event (runoff) water to streamflow during flooding using hydrograph separations. Our high frequency monitoring of stable isotopes ratios (δ2H and δ18O) and water quality (temperature, dissolved O2, pH, turbidity, specific conductivity, concentrations of Cl- and nutrients, and bacterial loads) quantify large hydrologic and geochemical differences across the land use gradient. Following precipitation events, floods on a rural stream feature slow flow responses, hydrographs with low peak discharges and long lag times, high baseflow contributions, and small geochemical variations. In contrast, the flows of an urban stream and its tributary respond in a flashier manner, with peak flows that are nearly 10 times higher, average lag times that decrease by 85%, and event water contributions that are 2 times higher compared to the rural stream. The urban streams also exhibit large fluctuations in geochemistry, often with 5 times the variability of the rural end-member. These large geochemical changes in urban streams following storms are paralleled by more chaotic diurnal and seasonal variations. Importantly, we find that reduced baseflow as a function of increasing impervious surface area is not linear; thus, the hydrology of suburban streams is less impacted than would be predicted by impervious surface alone. This non-linear relationship with impervious surface area is also observed in some of the geochemical responses to flooding, and therefore

  17. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    Science.gov (United States)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  18. octanol/water partition coefficient using solvation free energy and solvent-accessible surface area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The regression model for octanol/water partition coefficients (Kow ), is founded with only two molecular descriptors available through quantum chemical calculations: solvation free energy (△ Gs ), and solvent-accessible surface area (SASA). For the properties of 47 organic compounds from 17 types, the model gives a oonection coefficient (adjusted for degrees of freedom) of 0.959 and a standard error of 0.277 log unit. It is a suitable way to predict the partition properties that are related to solute-solvent interactions in the water phase.

  19. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  20. Quality of surface-water supplies in the Triangle Area of North Carolina, water years 2012–13

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-09-07

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2011 through September 2012 (water year 2012) and October 2012 through September 2013 (water year 2013). Major findings for this period include:Annual precipitation was approximately 2 percent above the long-term mean (average) annual precipitation in 2012 and approximately 3 percent below the long-term mean in 2013.In water year 2012, streamflow was generally below the long-term mean during most of the period for the 10 project streamflow gaging stations. Streamflow was near or above the long-term mean at the same streamflow gaging stations during the 2013 water year.More than 7,000 individual measurements of water quality were made at a total of 17 sites—6 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-three water-quality properties or constituents were measured; State water-quality standards exist for 23 of these.All observations met State water-quality standards for pH, temperature, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium.North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, turbidity, chlorophyll a, copper, iron, manganese, mercury, silver, and zinc. Exceedances occurred at all 17 sites.Stream samples collected during storm events contained elevated concentrations of 19 water-quality constituents relative to non-storm events.

  1. Water-bathing synthesis of high-surface-area zeolite P from diatomite

    Institute of Scientific and Technical Information of China (English)

    Yucheng Du; Shuli Shi; Hongxing Dai

    2011-01-01

    Zeolite P was synthesized for the first time via a novel water-bathing route at 90℃ using scrubbed diatomite, sodium hydroxide, and aluminum hydroxide as precursor, with SiO2/Al2O3, SiO2/Na2O, and H2O/Na2O molar ratios of 7.43, 3.81, and 80.00, respectively. The as-fabricated samples were characterized by means of scanning electron microscopy, X-ray diffraction, and nitrogen adsorption measurements. This study showed that (i) treating the diatomite raw material with sodium hexametaphosphate could open the pores in the diatomite via removal of the clay clogged in its pores; (ii) tetragonal mesoporous zeolite P samples with a surface area of 56-60 m2/g could be generated after 6-24 h of water-bathing reaction at 90 C; (iii) extension of water-bathing reaction time could improve the mesoporous structure of zeolite P;and (iv) Ca2+ adsorption capacity of the zeolite P sample was about 300 cmol/kg. Such high-surface-area porous zeolite P could be used as an effective adsorbent for the treatment of water containing calcium and magnesium ions.

  2. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2013-01-01

    and Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN......The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (model were...

  3. Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Reiskind, Michael H; Zarrabi, Ali A

    2012-01-01

    Oviposition choice is a well-studied aspect of the mosquito life cycle, and offers a potential avenue for species-specific surveillance and control. In container inhabiting mosquitoes, there has been a focus on how the components of the aquatic media determine choice, with little work on the physical characteristics of the containers themselves. We performed five experiments examining the effect of physical container parameters on oviposition choice by Aedes albopictus. We examined containers of three different surface areas (small, 496 cm2; medium, 863 cm2; and large, 1,938 cm2) at the same water depth and the same or different heights in a series of binary choice assays. We also examined different depths with the same surface area in clear containers (where the depth may be perceived by the darkness of the water) and in opaque containers, which appear uniformly dark at different depths. We found a significant preference for medium containers over large containers, whether the containers were different or the same heights, and a trend toward a preference for small containers over medium containers. There was a preference for deeper water regardless of whether containers were clear or opaque. These behaviors suggest mosquitoes take into account physical aspects of their habitats and their oviposition choices are consistent with minimizing the risk of habitat drying.

  4. Influence of reconstruction water-bearing levels on surface displacement of post-mining areas

    Science.gov (United States)

    Milczarek, Wojciech; Blachowski, Jan; Grzempowski, Piotr

    2014-05-01

    The phenomenon of secondary deformation characteristic of the post-mining areas is not sufficiently recognized. For ground surfaces phenomenon may be continuous or discontinuous. There is no sufficient information that describes behavior of the rock mass in the long term after end of exploitation. It is considered that this phenomenon is gradually disappears with end of exploitation. Reliable quantitative data comes only from the analysis of direct measurements in selected areas: geodetic and satellites measurements. Analyzing current situation of operating mines can be said that in the near years, more centers will limit the mining of coal mining. This will contribute to separation further of post-mining areas, in which will be required to maintaining a permanent monitoring and making predictions on the impact of ended exploitation of the rock mass surface. This will be particularly important for highly urbanized areas. This study used finite element method (FEM) to describe phenomenon of reconstruction water-bearing levels and its impact on displacement on the ground surface. It was assumed that significant factors that influence the occurrence and size of secondary deformations are: reconstruction of water-bearing levels in the prior drainer rock mass, size of past exploitation, spatial distribution of coal seams and geological and tectonic structure has been assumed. The transversally isotropic model of six elastic constants: E1 = E2, E3, ν = ν12, ν13, G12, G13 has been assumed to describe of rock mass in the numerical calculations. Geometrical models used in the numerical calculations have been developed using GIS tools. For the study two-dimensional and three-dimensional models characterized by different geological conditions and different configuration of mining data have been developed. The results obtained displacements of the ground surface for the period of mining activity has been verified with the results based on the Knothe theory. The results of

  5. Water and Carbon Dioxide Ices-Rich Areas on Comet 67P/CG Nucleus Surface

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Ciarniello, M.; Barucci, M. A.; Tosi, F.; Migliorini, A.; Capria, M. T.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Arnold, G.; Kappel, D.; McCord, T. B.

    2017-01-01

    So far, only two ice species have been identified by Rosetta/VIRTIS-M [1] on the surface of 67P/Churyumov-Gerasimenko during the pre-perihelion time: crystalline water and carbon dioxide ice. Water ice has been spectroscopically identified in three distinct modalities: 1) On the active areas of Hapi region where water ice changes its abundance with local time and illumination conditions, condensing during the night hours and sublimating during daytime [2]; 2) On recent debris fields collapsed from two elevated structures in the Imhotep region where more fresh and pristine material is exposed [3]; 3) On eight bright areas located in Khonsu, Imhotep, Anhur, Atum and Khepry regions [4] where single or multiple grouped icy patches with sizes ranging between few meters to about 60 m are observed. Carbon dioxide ice has been detected only in a 60-80 m area in Anhur region while it was exiting from a four year-long winter-night season [5]. This ice deposit underwent a rapid sublimation, disappearing in about one month after its initial detection. While water and carbon dioxide ice appear always mixed with the ubiquitous dark material [6,7], there are no evidences of the presence of water and carbon dioxide ices mixed together in the same area. If observed, ices always account for very small fraction (few percent) with respect to the dark material. Moreover, the surface ice deposits are preferentially located on the large lobe and the neck while they are absent on the small lobe. Apart from these differences in the spatial distribution of ices on the surface, a large variability is observed the mixing modalities and in the grain size distributions, as retrieved from spectral modeling [8]: 1) very small μm-sized water ice grains in intimate mixing with the dark terrain are detected on Hapi active regions [2]; 2) two monodispersed distributions with maxima at 56 μm and at 2 mm, corresponding to the intimate and areal mixing classes, are observedon the Imhotep debris

  6. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  7. Environmental protection management by monitoring the surface water quality in Semenic area

    Directory of Open Access Journals (Sweden)

    Dana SÂMBOTIN

    2011-08-01

    Full Text Available Environment seems to have been the war against all. In fact recently most people polluted the environment and those few are cared for his cleaning. Today, the relationship evolvedas societies have changed in favour of ensuring environmental protection. With modern technology, performance, monitoring the environment becomes part of human activity ever more necessary, more possible and more efficient. The quality of the environment, its components: air, water, soil, plants, vegetable and animal products, is a condition "sine qua non" for the life of the modern man. The consequences of environmental pollution areso dangerous that modern man cannot afford considering them. Through this paper I will study the environmental quality by monitoring the surfaces waters from the Semenic- Gărâna area.

  8. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  9. Retting of jute grown in arsenic contaminated area and consequent arsenic pollution in surface water bodies.

    Science.gov (United States)

    Majumder, Aparajita; Bairagya, M D; Basu, B; Gupta, P C; Sarkar, S

    2013-01-01

    Arsenic (As) toxicity of ground water in Bengal delta is a major environmental catastrophe. Cultivation of jute, a non edible crop after summer rice usually reduces arsenic load of the soil. However, during retting of jute As is present in the crop and thus increase its amount in surface water bodies. To test this hypothesis, a study was carried out in ten farmers' field located in As affected areas of West Bengal, India. As content of soil and variou the jute plant were recorded on 35 and 70 days after sowing (DAS) as well as on harvest date (110 DAS). During the study period, due to the influence of rainfall, As content of surface (0-150 mm) soil fluctuates in a narrow range. As content of jute root was in the range of 1.13 to 9.36 mg kg(-1). As content of both root and leaf attained highest concentration on 35 DAS and continuously decreased with the increase in crop age. However, in case of shoot, the As content initially decreased by 16 to 50% during 35 to 70 DAS and on 110 DAS the value slightly increased over 70 DAS. Retting of jute in pond water increased the water As content by 0.2 to 2.0 mg L(-1). The increment was 1.1 to 4 times higher over the WHO safe limit (0.05 mg L(-1)) for India and Bangladesh. Microbiological assessment in this study reveals the total bacterial population of pre and post retting pond water. Bacterial strains capable in transforming more toxic As-III to less toxic AS-V were screened and six of them were selected based on their As tolerance capacity. Importantly, identified bacterial strain Bacterium C-TJ19 (HQ834294) has As transforming ability as well as pectinolytic activity, which improves fibre quality of jute. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate

    Science.gov (United States)

    Nsubuga, F. W. N.; Botai, Joel O.; Olwoch, Jane M.; Rautenbach, C. J. deW; Kalumba, Ahmed M.; Tsela, Philemon; Adeola, Abiodun M.; Sentongo, Ausi A.; Mearns, Kevin F.

    2017-01-01

    Detection of changes in Earth surface features, for example lakes, is important for understanding the relationships between human and natural phenomena in order to manage better the increasingly scarce natural resources. This work presents a procedure of using modified normalised difference water index (MNDWI) to detect fluctuations of lake surface water area and relate it to a changing climate. The study used radiometrically and geometrically rectified Landsat images for 1986, 1995 and 2010 encompassing the Kyoga Basin lakes of Uganda, in order to investigate the changes in surface water area between the respective years. The standard precipitation index (SPI) and drought severity index (DSI) are applied to show the relationship between variability of surface water area and climate parameters. The present analysis reveals that surface water area fluctuation is linked to rainfall variability. In particular, Lake Kyoga sub-basin lakes experienced an increase in surface water area in 2010 compared to 1986. This work has important implications to water resources management for Lake Kyoga and could be vital to water resource managers across Ugandan lakes.

  11. Transport and retention of phosphorus in surface water in an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2013-08-01

    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  12. Transport and retention of phosphorus in surface water in an urban slum area

    Directory of Open Access Journals (Sweden)

    P. M. Nyenje

    2013-08-01

    Full Text Available The transport of excessive phosphorus (P discharged from unsewered informal settlements (slums due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2. Samples were analyzed for orthophosphate (PO4-P, particulate P (PP, total P (TP and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36–144 mg L-1, HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9. High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  13. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    Science.gov (United States)

    Kibbey, Tohren C. G.

    2013-08-01

    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  15. Digitized generalized areas where surface-water resources likely or potentially are susceptible to groundwater withdrawals in adjacent valleys, Great Basin National Park area, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons delineate generalized areas in and around Great Basin National Park where surface-water resources likely or potentially are susceptible to groundwater...

  16. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 2011-2012

    Science.gov (United States)

    Macy, Jamie P.; Unema, Joel A.

    2014-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2011 to September 2012. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2011, total groundwater withdrawals were 4,480 acre-ft, industrial withdrawals were 1,390 acre-ft, and municipal withdrawals were 3,090 acre-ft. Total withdrawals during 2011 were about 39 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a slurry. From 2010 to 2011 total withdrawals increased by 11 percent; industrial withdrawals increased by approximately 19 percent, and total municipal withdrawals increased by 8 percent. From 2011 to 2012, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.0 feet. From the prestress period (prior to 1965) to 2012, the median water-level change for 34 wells in both

  17. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona - 2010-2011

    Science.gov (United States)

    Macy, Jamie P.; Brown, Christopher R.; Anderson, Jessica R.

    2012-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area is typically between 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2010 to September 2011. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2010, total groundwater withdrawals were 4,040 acre-ft, industrial withdrawals were 1,170 acre-ft, and municipal withdrawals were 2,870 acre-ft. Total withdrawals during 2010 were about 42 percent less than total withdrawals in 2005 because of Peabody Western Coal Company's discontinued use of water to transport coal in a slurry. From 2009 to 2010 total withdrawals decreased by 5 percent; industrial withdrawals decreased by approximately 16 percent, and total municipal withdrawals increased by 1 percent. From 2010 to 2011, annually measured water levels in the Black Mesa area declined in 7 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.0 foot. Water levels declined in 11 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.7 foot. From the prestress period (prior to 1965) to 2011, the median water-level change for 33 wells in both the

  18. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  19. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  20. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  1. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-01-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  2. Environmental geochemistry for surface and subsurface waters in the Pajarito Plateau and outlying areas, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Blake, W.D.; Goff, F.; Adams, A.I.; Counce, D.

    1995-05-01

    This report provides background information on waters in the Los Alamos and Santa Fe regions of northern New Mexico. Specifically, the presented data include major element, trace element, and isotope analyses of 130 water samples from 94 different springs, wells, and water bodies in the area. The region considered in this study extends from the western edge of the Valles Caldera to as far east as Santa Fe Lake. For each sample, the presented analysis includes fourteen different major elements, twenty-six trace elements, up to five stable isotopes, and tritium. In addition, this data base contains certain characteristics of the water that are calculated from the aforementioned raw data, including the water`s maximum and minimum residence times, as found from tritium levels assuming no contamination, the water`s recharge elevation, as found from stable isotopes, and the charge balance of the water. The data in this report are meant to provide background information for investigations in groundwater hydrology and geochemistry, and for environmental projects. For the latter projects, the presented information would be useful for determining the presence of contamination it any one location by enabling one to compare potential contaminant levels to the background levels presented here. Likely locations of interest are those possibly effected by anthropogenic activities, including locations in and around Los Alamos National Laboratory, White Rock Canyon, and developed areas in the Rio Grande Valley.

  3. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  4. Method for the prioritization of areas experiencing microbial pollution of surface water

    CSIR Research Space (South Africa)

    Venter, SN

    1998-01-01

    Full Text Available The increased threat of faecal pollution in recent years and the high priority of protecting human health by the government led to the initiation of a national microbial monitoring programme for surface water in South Africa. According to the design...

  5. The influence of surface water - groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China

    Science.gov (United States)

    Brauns, Bentje; Løgstrup Bjerg, Poul; Jakobsen, Rasmus; Song, Xianfang

    2014-05-01

    The Northern China Plain (NPC) is known as a very productive area in China for the production of maize and winter wheat, which is grown by local farmers rotationally without lag phases throughout the year. The needed application of fertilizers and pesticides can hereby have strong impacts on the quality shallow groundwaters. Because 70-80% percent of the annual rainfall in the NCP is limited to the summer months, irrigation in the spring season is a necessity. As high quality groundwater resources from deeper aquifers are a valuable and rare asset in Northern China, it should preferentially be used as drinking water, and farmers therefore often shift to flood irrigation with surface water from streams. It is due to this reason, that large agricultural areas are located very close alongside these waterways; often without buffer zones. Fu River is one of the major feeding streams for the Baiyangdian Lake region in the north of Hebei Province. It springs in the west of the lake area and - after passing the populated city of Baoding (with a population of about 600 000 in the metropolitan area) - continues on its course through agricultural area before it feeds into the lake system. Industrial and domestic wastewater as well as surface runoff from urban and agricultural areas substantiates for a significant amount of the river's recharge and often causes poor water quality. As the water from the river may infiltrate into the shallow groundwater, this could cause further deterioration of the groundwater quality, additionally to the effects of the agricultural activities. However, fluctuations may be high because of the strong seasonal differences in precipitation and depending on the connectivity and dynamics of the system . In order to assess the water quality situation and the potential link between surface water and shallow groundwater in the region, a small-scale investigation site was set up on a typical wheat-maize field that reaches almost up to the river bank in

  6. Electromagnetic Delineation and Confirmation of Areas of Groundwater-Surface Water Interaction in a Large River

    Science.gov (United States)

    Nadeau, J.; Dawe, M. R.; Butler, K. E.; Macquarrie, K. T.

    2004-05-01

    Riverbank filtration systems are typically located in heterogeneous alluvial river valley deposits. Delineation of riverbed areas where there is downward river water infiltration is important for determining the fluxes, quality, and travel time of water supplied to production wells. Efficient methods of delineation are especially required in large rivers that may also have relatively large water depths. A portion of the City of Fredericton well field recharge zone lies beneath the adjacent Saint John River, where a discontinuity in the clay/silt aquitard may allow hydraulic connection between the esker-like aquifer and the river. In this project we have investigated the potential for using electromagnetic methods to delineate zones of low electrical conductivity. Such zones, in a fresh water environment, suggest the absence of clay/silt materials. During the summers of 2001 and 2002, a total of 120 km of electromagnetic data were acquired using the Geonics EM31 and EM34 ground conductivity meters. The survey was carried out using an outboard-motor-powered canoe and raft with onboard DGPS system. Both electromagnetic instruments were operated in the vertical dipole mode, thereby providing maximum depths of exploration of approximately 30 meters. The water depths in the survey area fall in the range where the EM31 and EM34 results are very sensitive to the conductivity structure. We applied a novel bathymetry correction approach to compensate for water depth effects. Contouring of the apparent conductivity data revealed a conductivity low with an approximate area of 6 hectares. The absence of the clay/silt aquitard was confirmed by high resolution seismic profiling and drilling and sampling of riverbed sediments. Further confirmation of river water infiltration has been provided by hydraulic data from mini-piezometers and temperature time series collected beneath the riverbed. Apparent conductivity mapping proved to be a sensitive and efficient method for delineating

  7. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona--2004-05

    Science.gov (United States)

    2006-02-27

    upper part of the upper Triassic Chinle Formation and the lower Jurassic Wingate Sandstone, northwestern New Mexico and northeastern Arizona, in...Director, Arizona Water Science Center U.S. Geological Survey, 520 N. Park Avenue, Suite 221 Tucson, Arizona 85719 http://az.water.usgs.gov OFR

  8. FANN-Based Surface Water Quality Evaluation Model and Its Application in the Shaoguan Area

    Institute of Scientific and Technical Information of China (English)

    YANG Meini; LI Dingfang; YANG Jinbo; XIONG Wei

    2007-01-01

    A fuzzy neural network model is proposed to evaluate water quality. The model contains two parts: first, fuzzy mathematics theory is used to standardize the samples; second, the RBF neural network and the BP neural network are used to train the standardized samples. The proposed model was applied to assess the water quality of 16 sections in 9 rivers in the Shaoguan area in 2005. The evaluation result was compared with that of the RBF neural network method and the reported results in the Shaoguan area in 2005. It indicated that the performance of the proposed fuzzy neural network model is practically feasible in the application of water quality assessment and its operation is simple.

  9. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    Science.gov (United States)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  10. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    Science.gov (United States)

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  11. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  12. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  13. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  14. Detection of Emerging and Re-Emerging Pathogens in Surface Waters Close to an Urban Area

    Directory of Open Access Journals (Sweden)

    Stefania Marcheggiani

    2015-05-01

    Full Text Available Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV, noroviruses GI (NoGGI and GII (NoGII and human adenovirus 41 (ADV 41 were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than

  15. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    London Leslie

    2003-03-01

    Full Text Available Abstract Background In South Africa there is little data on environmental pollution of rural water sources by agrochemicals. Methods This study investigated pesticide contamination of ground and surface water in three intensive agricultural areas in the Western Cape: the Hex River Valley, Grabouw and Piketberg. Monitoring for endosulfan and chlorpyrifos at low levels was conducted as well as screening for other pesticides. Results The quantification limit for endosulfan was 0.1 μg/L. Endosulfan was found to be widespread in ground water, surface water and drinking water. The contamination was mostly at low levels, but regularly exceeded the European Drinking Water Standard of 0.1 μg/L. The two most contaminated sites were a sub-surface drain in the Hex River Valley and a dam in Grabouw, with 0.83 ± 1.0 μg/L (n = 21 and 3.16 ± 3.5 μg/L (n = 13 average endosulfan levels respectively. Other pesticides including chlorpyrifos, azinphos-methyl, fenarimol, iprodione, deltamethrin, penconazole and prothiofos were detected. Endosulfan was most frequently detected in Grabouw (69% followed by Hex River (46% and Piketberg (39%. Detections were more frequent in surface water (47% than in groundwater (32% and coincided with irrigation, and to a lesser extent, to spraying and trigger rains. Total dietary endosulfan intake calculated from levels found in drinking water did not exceed the Joint WHO/FAO Meeting on Pesticide Residues (JMPR criteria. Conclusion The study has shown the need for monitoring of pesticide contamination in surface and groundwater, and the development of drinking water quality standards for specific pesticides in South Africa.

  16. Hydrogeologic and water-quality data for the explosive experimental area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    Science.gov (United States)

    Hammond, E.C.; Bell, C.F.

    1995-01-01

    Hydrogeologic and water-quality data were collected at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1993. The U.S. Geological Survey conducted this study to provide the U.S. Navy with hydrogeologic data to aid in the evaluation of the effects from remediation of contaminated sites and to protect against additional contamination. This report describes the ground-water observation- well network, hydrogeologic, and water-quality data collected between October 1993 and April 1995. The report includes a description of the locations and construction of 28 observation wells on the Explosive Experimental Area. Hydrogeologic data include lithologic logs, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, and observation-well slug tests to determine horizontal hydraulic conductivity. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

  17. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  18. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  19. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ˜1% of the solid volume and intragranular surface areas of ˜20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  20. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  1. Provenance analysis of surface sediments in the Holocene mud area of the southern coastal waters off Shandong Peninsula, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaobo; BI Shipu; ZHANG Yong; YANG Yuan; LIU Shanshan; KONG Xianghuai; LI Xiaoyue; CHU Hongxian

    2016-01-01

    The sedimentary record of mud areas is an important carrier of information on the Holocene evolution of marine environments. Based on fine interpretations of the shallow stratigraphic section data, a small mud deposit area has been found in the southern coastal waters off Shandong Peninsula. This mud area is mainly distributed in coastal waters north of Laoshantou to the vicinity of Rushan Estuary. Overall, it is parallel to the coastline and spreads in a banded pattern, gradually thinning from offshore to the sea. The isopach map of depth distribution is parallel with the shoreline, and the depocenter lies in coastal waters of the Aoshan Bay where the maximum thickness is up to 22.5 m. Accelerator mass spectrometry (AMS)14C dating shows that the mud area was formed in the Holocene. The test data of surface sediments from the mud area, including particle size, mineral characteristics, and rare earth element contents, are used in comparisons with the composition of materials from the major surrounding medium and small rivers flowing into the sea and the Huanghe (Yellow) River. In this paper, the sedimentary characteristics and provenance of the mud deposit area are discussed. The results show that the formation of this mud area resulted from the joint action of the Huanghe River and surrounding rivers flowing into the sea.

  2. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  3. Porous boron nitride with a high surface area: hydrogen storage and water treatment.

    Science.gov (United States)

    Li, Jie; Lin, Jing; Xu, Xuewen; Zhang, Xinghua; Xue, Yanming; Mi, Jiao; Mo, Zhaojun; Fan, Ying; Hu, Long; Yang, Xiaojing; Zhang, Jun; Meng, Fanbin; Yuan, Songdong; Tang, Chengchun

    2013-04-19

    We report on the synthesis of high-quality microporous/mesoporous BN material via a facile two-step approach. An extremely high surface area of 1687 m(2) g(-1) and a large pore volume of 0.99 cm(3) g(-1) have been observed in the synthesized BN porous whiskers. The formation of the porous structure was attributed to the group elimination of organic species in a BN precursor, melamine diborate molecular crystal. This elimination method maintained the ordered pore structure and numerous structural defects. The features including high surface area, pore volume and structural defects make the BN whiskers highly suitable for hydrogen storage and wastewater treatment applications. We demonstrate excellent hydrogen uptake capacity of the BN whiskers with high weight adsorption up to 5.6% at room temperature and at the relatively low pressure of 3 MPa. Furthermore, the BN whiskers also exhibit excellent adsorption capacity of methyl orange and copper ions, with the maximum removal capacity of 298.3 and 373 mg g(-1) at 298 K, respectively.

  4. The Solutions for Adjustment and Reconstruction of Water-Drive Surface Systems in the Old Areas of Daqing Oilfield

    Institute of Scientific and Technical Information of China (English)

    Li Jiexun; Wang Jinfeng; Zhao Quanjun

    2002-01-01

    @@ Introduction Owing to long-time running, more facilities including stations, pipelines, vessels have become corrosive and aged ,some process has grown old, it has exert more burden for the maintenance and repair.Simultaneously, the fluid production rate, oil production rate and water injection rate has changed greatly so that the inflicts and problems from the established surface systems will become more obvious. Energy cost of production and running has increasing continuously. Capacity has been unbalance in systems and areas.

  5. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  6. Evaluation of Some Organic Pollutants Transport into the Shallow Groundwater and Surface Water of Jiaxing Landfill Area

    Directory of Open Access Journals (Sweden)

    Souleymane Keita

    2009-01-01

    Full Text Available Problem statement: Hangjiahu regions belong to the Yangtze River Delta region in Zhejiang Province in China. The vast majority of this region is flat, so surface and groundwater both have a low flow rate. With the rapid economic development of the area, a large number of industrial and domestic garbage are generated. These landfill or garbage are exposed and stacked. Because of mismanagement of environment, the atmosphere under the leaching rainfall, results in harmful gases and leachate. A serious pollution of the atmosphere surrounding the dump, soil, surface water and groundwater occurred. By studying the area under different hydro geological conditions this groundwater pollution due to the landfill can be stopped and prevented. This research can also provide a scientific basis. Approach: Some samples were taken to some specific sampling points in order to do chemical analysis. A hydro geological investigation was done on the study area. By using all these data, groundwater pollution was evaluated and predicted through numerical simulation software: Groundwater Modeling System (GMS, from 2006-2007. Results: A total of six main organic pollutants were found in the entire study area including: toluene, dichloropropane, benzene, dichloroethane, chloroform and dichloromethane. There concentration increased form 2006 to 2007 and is higher in surface water than groundwater. Conclusion/Recommendations: Experimental and simulation results were compared and showed that close agreement between these two values were obtained. The application of ecological methods to remove harmful substances such as the cultivation of suitable plants is also necessary.

  7. An Integrated Model of Surface Water and Groundwater Interactions at Yi-lan Area in Northeastern Taiwan

    Science.gov (United States)

    Chiu, Y.; Yeh, C. K.

    2015-12-01

    Interaction between surface water (SW) and groundwater (GW) plays an important role in local society and ecosystem, especially in areas with limited water resources. Historically, hydrologic simulations have not accounted for feedback looks between the GW system and other hydrologic processes. Integrated SW-GW modelling can provide a comprehensive and coherent understanding on basin-scale water cycle and better manage the water resources for sustainable usage. At Yi-lan area, hydrological modelling has been performed for both the entire SW and GW systems along, but fully integrated SW-GW modeling has not been attempted for this area. In order to enhance the efficiency of water useage, a coupled GW and SW flow model (GSFLOW), developed by U.S. Geological Survey, is selected as the numerical model to simulate the major processes of the hydrologic cycle. GSFLOW integrated PRMS with MODFLOW-2005 which perform surface hydrology simulation and 3-D groundwater simulation, respectively. The data of solar radiation, land use, precipitation, temperature, river stage, stream flow rate, groundwater level, and digital elevation model were collected from 2004-2012 to develop the simulation model. The coupled GSFLOW model is calibrated by automatic parameter estimation approach of using streamflows and groundwater levels. The singular value decomposition (SVD) method is performed to avoid the instability of solution during the model calibration. The calibrated results show that the state variables and fluxes in basin-scale water cycle can be simulated with high spatial and temporal resolutions, and all the important hydrologic processes can be characterized simultaneously in an integrated framework. The scenarios with different precipitation distributions and temperature patterns are conducted on the calibrated model to forecast the dynamic variations of hydrologic processes in the entire water basin. This study clearly demonstrated the benefits of using a physically based

  8. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    Science.gov (United States)

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed.

  9. Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States

    Science.gov (United States)

    Mullaney, John R.; Lorenz, David L.; Arntson, Alan D.

    2009-01-01

    A study of chloride in groundwater and surface water was conducted for the glacial aquifer system of the northern United States in forested, agricultural, and urban areas by analyzing data collected for the National Water-Quality Assessment Program from 1991 to 2004. Groundwater-quality data from a sampling of 1,329 wells in 19 states were analyzed. Chloride concentrations were greater than the secondary maximum contaminant level established by the U.S. Environmental Protection Agency of 250 milligrams per liter in 2.5 percent of samples from 797 shallow monitoring wells and in 1.7 percent of samples from 532 drinking-water supply wells. Water samples from shallow monitoring wells in urban areas had the largest concentration of chloride, followed by water samples from agricultural and forested areas (medians of 46, 12, and 2.9 milligrams per liter, respectively). An analysis of chloride:bromide ratios, by mass, and chloride concentrations compared to binary mixing curves for dilute groundwater, halite, sewage and animal waste, potassium chloride fertilizer, basin brines, seawater, and landfill leachate in samples from monitoring wells indicated multiple sources of chloride in samples from wells in urban areas and agricultural areas. Water from shallow monitoring wells in urban areas had the largest chloride:bromide ratio, and samples with chloride:bromide ratios greater than 1,000 and chloride concentrations greater than 100 milligrams per liter were dominated by halite; however, the samples commonly contained mixtures that indicated input from sewage or animal waste. Chloride:bromide ratios were significantly larger in samples from public-supply drinking-water wells than from private drinking-water wells, and ratios were significantly larger in all drinking-water wells in eastern and central regions of the glacial aquifer system than in west-central and western regions of the glacial aquifer system. Surface-water-quality data collected regularly during varying

  10. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas.

    Science.gov (United States)

    Velicu, Magdalena; Suri, Rominder

    2009-07-01

    The occurrence of pharmaceutically active chemicals (PACs) in the natural aquatic environment is recognized as an emerging issue due to the potential adverse effects these compounds pose to aquatic life and humans. This study presents the monitoring of two major categories of PACs in surface water: steroid hormones and antibiotics. Surface water samples were collected in the fall season from 21 locations in suburban (4), agricultural (5) and mixed (12) use suburban and agricultural areas. The water samples collected were analyzed using GC/MS for aqueous concentration of eleven steroid hormones: six natural (17alpha-estradiol, 17beta-estradiol, estrone, estriol, 17alpha-dihydroequilin, progesterone) and five synthetic (gestodene, norgestrel, levonorgestrel, medrogestone, trimegestone). In addition, 12 antibiotics (oxytetracycline, chlorotetracycline, tetracycline, sulfamethoxazole, sulfamethazine, trimethoprim, lincomycin, norfloxacin, ofloxacin, roxithromycin, erythromycin, tylosin tartrate) were analyzed using LC/MS. Steroid hormones detected in surface water were: 17alpha-estradiol, 17beta-estradiol, 17alpha-dihydroequilin, estriol, estrone, progesterone and trimegestone. Estrone had the highest detection frequency of >90% with concentrations ranging from 0.6 to 2.6 ng/l. The second most frequently detected estrogen was estriol (>80%) with concentrations ranging from 0.8 to 19 ng/l. The detection frequency varied at different sampling locations. No antibiotics were detected in the 21 streams sampled. This study aims to give a better understanding on the presence, fate and transport of PACs derived from humans and animals.

  11. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management

    Institute of Scientific and Technical Information of China (English)

    Jian Zhao; Guo Fu; Kun Lei; Yanwu Li

    2011-01-01

    Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 2003-2008 to investigate spatio-temporal variations and identify potential pollution sources.Using cluster analysis,the twelve months of the year were classified into three periods of lowflow (LF),normal-flow (NF),and high-flow (HF); and the 37 monitoring sites were divided into low pollution (LP),moderate pollution (MP),and high pollution (HP).Dissolved oxygen (DO),potassium permanganate index (CODMn),and ammonia-nitrogen (NH4+-N)were identified as significant variables affecting temporal and spatial variations by non-parametric tests.Factor analysis identified that the major pollutants in the HP region were organic matters and nutrients during NF,heavy metals during LF,and petroleum during HF.In the MP region,the identified pollutants primarily included organic matter and heavy metals year-around,while in the LP region,organic pollution was significant during both NF and HF,and nutrient and heavy metal levels were high during both LF and HF.The main sources of pollution came from domestic wastewater and agricultural activities and runoff; however,they contributed differently to each region in regards to pollution levels.For the HP region,inputs from wastewater treatment plants were significant; but for MP and LP regions,water pollution was more likely from the combined effects of agriculture,domestic wastewater,and chemical industry.These results provide fundamental information for developing better water pollution control strategies for the Three Gorges area.

  12. Monitoring the Presence of 13 Active Compounds in Surface Water Collected from Rural Areas in Northwestern Spain

    Directory of Open Access Journals (Sweden)

    Alejandra Iglesias

    2014-05-01

    Full Text Available Drug residues are considered environmental contaminants, and their occurrence has recently become a matter of concern. Analytical methods and monitoring systems are therefore required to control the continuous input of these drug residues into the environment. This article presents a suitable HPLC-ESI-MS/MS method for the simultaneous extraction, detection and quantification of residues of 13 drugs (antimicrobials, glucocorticosteroids, anti-inflammatories, anti-hypertensives, anti-cancer drugs and triphenylmethane dyes in surface water. A monitoring study with 549 water samples was carried out in northwestern Spain to detect the presence of drug residues over two sampling periods during 2010, 2011 and 2012. Samples were collected from rural areas with and without farming activity and from urban areas. The 13 analytes were detected, and 18% of the samples collected showed positive results for the presence of at least one analyte. More collection sites were located in rural areas than in urban areas. However, more positive samples with higher concentrations and a larger number of analytes were detected in samples collected from sites located after the discharge of a WWTP. Results indicated that the WWTPs seems to act as a concentration point. Positive samples were also detected at a site located near a drinking water treatment plant.

  13. Monitoring the Presence of 13 Active Compounds in Surface Water Collected from Rural Areas in Northwestern Spain

    Science.gov (United States)

    Iglesias, Alejandra; Nebot, Carolina; Vázquez, Beatriz I.; Coronel-Olivares, Claudia; Franco Abuín, Carlos M.; Cepeda, Alberto

    2014-01-01

    Drug residues are considered environmental contaminants, and their occurrence has recently become a matter of concern. Analytical methods and monitoring systems are therefore required to control the continuous input of these drug residues into the environment. This article presents a suitable HPLC-ESI-MS/MS method for the simultaneous extraction, detection and quantification of residues of 13 drugs (antimicrobials, glucocorticosteroids, anti-inflammatories, anti-hypertensives, anti-cancer drugs and triphenylmethane dyes) in surface water. A monitoring study with 549 water samples was carried out in northwestern Spain to detect the presence of drug residues over two sampling periods during 2010, 2011 and 2012. Samples were collected from rural areas with and without farming activity and from urban areas. The 13 analytes were detected, and 18% of the samples collected showed positive results for the presence of at least one analyte. More collection sites were located in rural areas than in urban areas. However, more positive samples with higher concentrations and a larger number of analytes were detected in samples collected from sites located after the discharge of a WWTP. Results indicated that the WWTPs seems to act as a concentration point. Positive samples were also detected at a site located near a drinking water treatment plant. PMID:24837665

  14. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  15. Integrated Environmental Quality Assessments of Surface Water around Obajana Cement Production Area

    Directory of Open Access Journals (Sweden)

    E.G. Ameh

    2014-04-01

    Full Text Available Due to industrialization, there is enormous amount of heavy metals been released from anthropogenic sources into the environment. Heavy metals are considered as one of the main sources of environmental pollution since they have significant effect on the ecological quality and water in particular. These pollutants are hazardous to consumers of water that have significant quantity of these heavy metals. The population most exposed to cement polluted water includes workers in cement factories, families of workers living in Staff houses of factories like in Obajana and other neighborhood habitations. The Obajana cement factory consists of cement kilns/coolers with clinkers. The kilns are equipped with pre-heaters and Electro-Static Precipitators (ESP. The facility has raw mills, crushing operations, cement mills that are potential source of pollutants into the water bodies. Storage silos, conveyors, vehicular travel, and other unquantified fugitive source of water contamination exist in the factory. Monitoring the contamination of water with respect to heavy metals is of interest due to their influence on humans, animals and to some extent plants. A good approach to estimate how much of the water is impacted is by using the heavy metal pollution index and metal index for metal concentrations above the control points in water bodies around Obajana cement.

  16. [Contamination of polycyclic aromatic hydrocarbons in surface water in underground river of Dashiwei Tiankeng group in karst area, Guangxi].

    Science.gov (United States)

    Kong, Xiang-Sheng; Qi, Shi-Hua; Oramah, I T; Zhang, Yuan; He, Shi-Yi

    2011-04-01

    In order to understand the composition, sources and contamination characteristics of PAHs in water from underground river of Dashiwei Tiankeng group in typical karst area located in Leye County, Guangxi. The water samples were collected from different sections to analyze 16 priority polycyclic aromatic hydrocarbons using GC-MS. The results showed that concentration of Sigma PAHs (the total PAHs) in water ranges from 54.7 ng/L to 192.0 ng/L, with an average concentration of 102.3 ng/L. The predominant PAHs in water are 2-3 ring PAHs, accounting for 65.1% of PAHs. The distribution of PAHs in water sampled along the underground river indicates that the mean concentration of PAHs in upstream area is higher than that of downstream because of wastewater discharge. Meanwhile, the underground river has some adsorption effect to 4-6 ring PAHs. The concentration of Sigma PAHs at Dashiwei Tiankeng section increases 93.8% attribute to the release of PAHs coming from Karst environmental medium and/or atmospheric transmission in underground river system. However, the concentration of Sigma PAHs at the confluence section of the tributary of Dashiwei Tiankeng is 47.3% less than that of the first upstream section duo to dilution. The concentration of Sigma PAHs at Bailang outlet section is 128.3% and 17.8% higher than that of flow-in section and Dashiwei Tiankeng section respectively. The ratios of specific PAHs indicate that the PAH sources in Leye County and Dashiwei Tiankeng areas mainly come from both petroleum and its combustion. However, the petroleum origin comes from anthropogenic inputs in town and the natural inputs in Dashiwei Tiankeng. The PAH sources in rural areas are mainly originating from the combustion of grass, wood and coal. Comparison to other areas in the world, the Sigma PAHs residual levels in underground river water in Dashiwei Tiankeng group is at the low level. In six sections, concentrations of benzo[a]pyrene (BaP) in surface water exceed the state

  17. Surface-enhanced in-situ Raman-sensor applied in the arctic area for analyses of water and sediment

    Science.gov (United States)

    Kolomijeca, Anna; Kwon, Yong-Hyok; Kronfeldt, Heinz-Detlef

    2012-06-01

    Investigations on the seafloor in the arctic area are of great scientific interest as well as of progressive economic importance. Therefore, measurements in the water column and of sediments were carried out by applying different analytical methods. In JCR 253 arctic cruise a microsystem diode laser with reflection Bragg grating emitting at 671 nm was introduced and integrated into an optode housing which was laboratory pressure tested up to 200 bar. The connection to the mobile spectrometer is realized through an optical fiber. All performed measurements were carried out on the James-Clark-Ross research vessel during a three week experiment in August 2011. Conventional Raman spectra and SERS spectra of arctic surface water and sediment acquired from locations around 78° N and 9° E will be presented. Selected SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances in the water down to very small (pmol/l) concentrations. Additionally, the applicability of shifted excitation Raman difference spectroscopy (SERDS) and a combination of SERS with SERDS for analytical applications during sea-trials for in-situ analyses of sea-water and sediments will be discussed.

  18. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  19. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, J.; Turunen, J.; Lipping, T. [Tampere Univ. of Technology (Finland); Ikonen, A.

    2014-03-15

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified

  20. Surveys of potato-growing areas and surface water in Lebanon for potato brown and ring rot pathogens

    Directory of Open Access Journals (Sweden)

    Elia CHOUEIRI

    2017-05-01

    Full Text Available Field surveys were carried out over three growing seasons (2013–2015, in the main potato growing areas of Lebanon, to assess the occurrence of potato brown rot caused by Ralstonia solanacearum and potato ring rot caused by Clavibacter michiganensis subsp. sepedonicus. A total of 232 potato samples were collected from Bekaa valley and 145 samples from Akkar plain, which are the largest Lebanese areas cropped with potatoes. Composite samples of 200 potato tubers were randomly collected from each field, following procedures laid down in EU legislation. Twelve potato demonstration fields were established in Akkar plain and designed for potato export to European markets: these were also surveyed using the same strategy. Furthermore, a network of 40 sampling sites in Bekaa and 19 sites in Akkar was established to collect surface water. GPS coordinates of potato fields and water sampling sites were recorded to map specific sampling points using Geographic Information System. All samples gave negative results for R. solanacearum and C. michiganensis subsp. sepedonicus in potatoes and R. solanacearum in water, as indicated using the official EU methods for detection and diagnosis for these pathogens. A monitoring system for R. solanacearum and C. michiganensis subsp. michiganensis has been set up in Lebanon. This will increase the phytosanitary quality of potatoes and provide access to broader international markets.

  1. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NARCIS (Netherlands)

    Brus, D.J.; Knotters, M.

    2008-01-01

    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a

  2. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan [Golder Associates AB, Uppsala (Sweden)

    2007-01-15

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128

  3. Predicting the effects of measures to reduce eutrophication in surface water in rural areas - a case study

    NARCIS (Netherlands)

    Hendriks, R.F.A.; Kolk, van der J.W.H.

    1995-01-01

    The effectiveness of measures to reduce nutrient concentrations in surface water was predicted by a combination of a nutrient leaching model for groundwater and a nutrient simulation model for surface water. Scenarios were formulated based on several measures. Different combinations of drainage

  4. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  5. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  6. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway.

  7. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota

    Science.gov (United States)

    Huang, S.; Dahal, D.; Young, Caitlin; Chander, G.; Liu, S.

    2011-01-01

    Spatiotemporal variations of wetland water in the Prairie Pothole Region are controlled by many factors; two of them are temperature and precipitation that form the basis of the Palmer Drought Severity Index (PDSI). Taking the 196km2 Cottonwood Lake area in North Dakota as our pilot study site, we integrated PDSI, Landsat images, and aerial photography records to simulate monthly water surface. First, we developed a new Wetland Water Area Index (WWAI) from PDSI to predict water surface area. Second, we developed a water allocation model to simulate the spatial distribution of water bodies at a resolution of 30m. Third, we used an additional procedure to model the small wetlands (less than 0.8ha) that could not be detected by Landsat. Our results showed that i) WWAI was highly correlated with water area with an R2 of 0.90, resulting in a simple regression prediction of monthly water area to capture the intra- and inter-annual water change from 1910 to 2009; ii) the spatial distribution of water bodies modeled from our approach agreed well with the water locations visually identified from the aerial photography records; and iii) the R2 between our modeled water bodies (including both large and small wetlands) and those from aerial photography records could be up to 0.83 with a mean average error of 0.64km2 within the study area where the modeled wetland water areas ranged from about 2 to 14km2. These results indicate that our approach holds great potential to simulate major changes in wetland water surface for ecosystem service; however, our products could capture neither the short-term water change caused by intensive rainstorm events nor the wetland change caused by human activities. ?? 2011.

  8. Level and ecological risk of four common metals in surface water along the Qinhuangdao coastal areas, China

    Science.gov (United States)

    Wang, Liping; Lei, Kun; Qiao, Yanzhen; Hao, Chenlin

    2017-01-01

    Heavy metals have been a widespread environmental contamination. Due to their associated ecological risk, the presence in water environment has attracted broad attention to public. Here 4 most common metals including copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) were determined in surface water along the Qinhuangdao coastal areas, China. And their ecological risk was assessed using species sensitivity distribution (SSD) method. Total 12 stations were designed near the main estuary in the study area. The results showed that the concentrations of Cu, Pb, Cd and Zn of surface water were in the range of 847.81-1602.81µg/L, 0.42-1.59µg/L, 1.82-7.99µg/L and 26.9 -59.36µg/L, respectively. According to the National Seawater Quality Standard of China (GB3097-1997), Cu concentration in each station was much higher than the standard value of IV level (50µg/L), thus Cu could not even met the lowest level of water quality. In contrast, Pb met the I or II level of water quality, Cd and Zn met the II or III level. The HC5 (hazardous concentration for 5% of species) of each metal was obtained from their corresponding SSD curve. In case of Cu and Zn, the concentration at all sites exceeded their HC5 values, suggesting both of them had adverse effect on the aquatic organism, especially Cu. While Pb concentration at all sites was much lower than its HC5 value, thus Pb had no negative effect on aquatic life. In case of Cd, the concentration at 5 sites was higher than its HC5 value, and the other 7 sites was lower than its HC5 value, suggesting that adverse effect only occur at partial region in the study area. The RQ (risk quotient) value of Cu varied between 1355.41 and 2621.28, far larger than 1, indicating that 100% of sites had a much higher risk. The RQ of Zn varied between 6.06 and 13.88 (>1) indicating that Zn had a high risk in the study area. In case of Cd, the RQ ranged from 0.94 to 4.41 and about 92% of sites were larger than 1, suggesting that Cd had a high risk

  9. Quantitative Impacts of Climate Change and Human Activities on Water-Surface Area Variations from the 1990s to 2013 in Honghu Lake, China

    Directory of Open Access Journals (Sweden)

    Bianrong Chang

    2015-06-01

    Full Text Available The water-surface areas of the lakes in the mid-lower reaches of the Yangtze River, China, have undergone significant changes under the combined impacts of global climate change and local anthropogenic stress. As a typical lake in this region, the Honghu Lake features water-surface area variations that are documented in this study based on high–resolution remote sensing images from the 1990s to 2013. The impact of human activities is analyzed by a novel method based on land use data. The relative impacts of each driving force are further distinguished by the statistical analysis method. Results show that the water-surface area has significant inter-annual and seasonal variabilities, and the minimum of which generally occurs in spring. The degree to which climate factors and land use structure affect the water-surface area varies between different stages. In the April-May period, the sum of the water demands of paddies and aquaculture has a negative effect that is greater than the positive effect of the difference between the monthly precipitation and monthly evaporation. In the June–October period, the precipitation features a positive impact that is greater than the negative effect of the water demand of agriculture. Meanwhile, climate factors and human activities have no influence on the lake area in the November–March period. With the land use being altered when annual precipitations are close in value, paddy field areas decrease, ponds areas increase, and the water demand of agriculture rises in both flood and drought years. These findings provide scientific foundation for understanding the causes of water-surface area variations and for effectively maintaining the stability of the Honghu Lake area through adjustments in land use structure.

  10. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  11. A study of parabens and bisphenol A in surface water and fish brain tissue from the Greater Pittsburgh Area.

    Science.gov (United States)

    Renz, Lara; Volz, Conrad; Michanowicz, Drew; Ferrar, Kyle; Christian, Charles; Lenzner, Diana; El-Hefnawy, Talal

    2013-05-01

    Pollution from xenoestrogens has been discovered in the aquatic environment of the Greater Pittsburgh Area and is suspected to be caused by the failing sewer system. Personal care products and plasticizers have the potential to enter the water supply though treated and untreated sewage. Many of these compounds are suspected xenoestrogens. Paraben detection in surface waters was as follows: methyl paraben ranged between 2.2 to 17.3 ppt; ethyl paraben was not detectable; propyl paraben was detected at 9.2 and 12.0 ppt; butyl paraben was detected at 0.2 ppt. BPA was detected between 0.6 and 15.4 ppt. Estrogenic potential of extracts from fish brain tissue was tested via Bromodeoxyuridine MCF-7 analysis and paired with HPLC-MS to investigate the presence of xenoestrogens. All samples were non-detectable for parabens. BPA was detected in 44 of the 58 samples, with a range from non-detectable to 120 pg/g. BCFs were calculated. Results were statistically significant for location of capture (p < 0.05) and correlation existed between estrogenicity and BPA.

  12. Source attribution of poly- and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan Area

    Science.gov (United States)

    Zhang, Xianming; Lohmann, Rainer; Dassuncao, Clifton; Hu, Xindi C.; Weber, Andrea K.; Vecitis, Chad D.; Sunderland, Elsie M.

    2017-01-01

    Exposure to poly and perfluoroalkyl substances (PFASs) has been associated with adverse health effects in humans and wildlife. Understanding pollution sources is essential for environmental regulation but source attribution for PFASs has been confounded by limited information on industrial releases and rapid changes in chemical production. Here we use principal component analysis (PCA), hierarchical clustering, and geospatial analysis to understand source contributions to 14 PFASs measured across 37 sites in the Northeastern United States in 2014. PFASs are significantly elevated in urban areas compared to rural sites except for perfluorobutane sulfonate (PFBS), N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA), perfluoroundecanate (PFUnDA) and perfluorododecanate (PFDoDA). The highest PFAS concentrations across sites were for perfluorooctanate (PFOA, 56 ng L−1) and perfluorohexane sulfonate (PFOS, 43 ng L−1) and PFOS levels are lower than earlier measurements of U.S. surface waters. PCA and cluster analysis indicates three main statistical groupings of PFASs. Geospatial analysis of watersheds reveals the first component/cluster originates from a mixture of contemporary point sources such as airports and textile mills. Atmospheric sources from the waste sector are consistent with the second component, and the metal smelting industry plausibly explains the third component. We find this source-attribution technique is effective for better understanding PFAS sources in urban areas. PMID:28217711

  13. Raising surface water levels in peat areas with dairy farming upscaling hydrological, agronomical and economic effects from farm-scale to local scale.

    NARCIS (Netherlands)

    Vos, de J.A.; Bakel, van P.J.T.; Hoving, I.E.; Smidt, R.A.

    2010-01-01

    Raising surface water levels in peat areas is a measure to reduce soil subsidence, to prevent decay of wooden foundations and to stimulate wet nature restoration and reduce greenhouse gas emissions. However, in these areas dairy farms are present and farming at wetter soils is difficult due to lower

  14. Very High Surface Area Mesoporous Thin Films of SrTiO3 Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Sangle, Abhijeet L; Singh, Simrjit; Jian, Jie; Bajpe, Sneha R; Wang, Haiyan; Khare, Neeraj; MacManus-Driscoll, Judith L

    2016-12-14

    Very high surface area, self-assembled, highly crystalline mesoporous SrTiO3 (STO) thin films were developed for photoelectrochemical water splitting. Much improved performance of these mesoporous films compared to planar STO thin films and any other form of STO such as single crystal samples and nanostructures was demonstrated. The high performance resulted from very large surface area films and optimization of carrier concentration.

  15. Water Supply Protection Areas, Surface Water Protection Areas; Drainage areas contributing to drinking water supply reservoirs serving public water systems in Rhode Island. Includes areas in Massachusetts contributing to Woonsocket Water Supply, Published in 2002, 1:4800 (1in=400ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Supply Protection Areas dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Published Reports/Deeds information as of 2002....

  16. Geochemistry of surface-waters in mineralized and non-mineralized areas of the Yukon-Tanana Uplands

    Science.gov (United States)

    Wang, B.; Wanty, R.B.; Vohden, J.

    2005-01-01

    The U.S. Geological Survey (USGS) and Alaska Department of Natural Resources (ADNR) are continuing investigations on element mobility in mineralized and non-mineralized areas of the Yukon-Tanana Upland in east-central Alaska. The chemistry of stream water is evaluated in the context of regional bedrock geology and geologic structure. Sampling sites were located in the Big Delta B2 quadrangle, which includes the mineralized areas of the Pogo claim block. The area is typified by steep, subarctic-alpine, boreal forest catchment basins. Samples were collected from catchments that either cross structural features and lithologic contacts, or are underlain by a single lithology. Waters are generally dilute (ion chemistry of the waters reflects a rock-dominated aqueous system. Trace-element concentrations in water are generally low; however, As and Sb are detected near mineralized areas but in most cases rapidly attenuated downstream and processes other than simple dilution are controlling the concentrations of these trace elements. There is a tendency toward increasing SO42- concentrations downstream in waters both proximal and distal to mineralized areas. More work is necessary to determine what proportion of the increase in SO42- could be derived from the oxidation of sulfide minerals as opposed to water influenced by the underlying gneissic units.

  17. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  18. Utilizing Resistivity Soundings and Forensic Geochemistry to Better Understand the Groundwater Contributions and the Interaction with Surface Water in a Streambed in the Texas Gulf Coast Area

    Science.gov (United States)

    Bighash, P.

    2012-12-01

    Water quality and quantity in a reservoir can be significantly affected by interactions between surface waters and adjacent aquifers. Environments that exhibit transient hydraulic conditions, such as changes in recharge and groundwater flow rates, are not well understood. The associated impacts to coastal water resources during elevated drought conditions can be better managed with a better understanding of the groundwater-surface water interaction and the transition zone. Proper characterization of the spatial and temporal extent of groundwater discharge is important for water resource management and contaminant migration pathways. The Texas coastal area has been experiencing exceptional drought conditions over the past few years which are expected to persist or intensify in the coming years. An investigation of how the hydrologic system is impacted by these conditions can be a valuable tool regarding water resource management, sustainability and conservation of the Gulf Coast region of South Texas. This study will be using resistivity soundings to vertically and laterally characterize groundwater-surface water interaction and provide a stratigraphic characterization of the transition zone in this area. Chemical and isotope tracers will be used to compliment the resistivity data in order to trace water sources in the surface water and transition zone. This information can aid in evaluating the extent of interaction and degree of mixing between the surface water and groundwater. The ultimate goal of this research is to provide new valuable information that could help professionals and researchers understand complex processes such as groundwater-surface water interaction using new methods that would improve the speed and accuracy of existing systems or techniques. This multidisciplinary approach can be useful in investigating land use impacts on groundwater inflow and in forecasting the availability of water resources in environmentally sensitive ecosystems such as

  19. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    Science.gov (United States)

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of

  20. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    variations in groundwater composition during the period 2005 to 2009 are presented in the report. The nitrogen concentration in the groundwater from soil pipe SFM0037 continued to be somewhat high also in August 2009, and especially the phosphate concentration was very high at that occasion. The sampled surface waters in the Forsmark area show similar seasonal variations as last year. Seasonal and annual variations in surface water composition during the period 2005 to 2009 are presented in the report. The waters are well buffered with high alkalinity, high pH and high calcium concentrations, and waters affected or recently affected by brackish sea water show high sodium chloride concentrations. Elevated tritium concentrations have been observed occasionally in samples collected close to the cooling water outlet from the nuclear power plant (Lake Biotestsjoen). This occurred once during 2009 (August)

  1. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    Science.gov (United States)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  2. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus;

    2011-01-01

    with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water...... dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  3. Effects of a drought period on physico-chemical surface water quality in a regional catchment area.

    Science.gov (United States)

    Wilbers, Gert-Jan; Zwolsman, Gertjan; Klaver, Gerard; Hendriks, A Jan

    2009-06-01

    Hydrological drought periods are expected to become more severe in North-Western Europe as a result of climate change. This may have implications for water quality, as demonstrated by declining water quality of large rivers (e.g. Rhine, Meuse) during droughts. However, similar investigations in regional catchment areas are lacking to date. In the present study, we investigated the effects of a drought period on the water quality of the Dommel River, a tributary of the Meuse river in the Netherlands. Water quality during the drought of 2003 was compared to that in reference years (2004-2006) for 18 physical/chemical parameters using ANOVA analysis. It was demonstrated that the drought period of 2003 did not significantly affect water quality, although the origin of river flow during the drought shifted from mainly overland flow to deep groundwater flow and (treated) communal effluents. Significant differences in water quality were noted for some monitoring stations during the study period, which could be related to operational water management such as cleaning of sediment traps in the river and improvements in communal effluent treatment. The results of this study are interesting to water managers in Western Europe as they contribute to understanding the potential impact of climate change on water quality/quantity patterns in regional water systems.

  4. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  5. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    Science.gov (United States)

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than

  6. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  7. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea).

    Science.gov (United States)

    Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib

    2016-03-15

    The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (3) ratios highlighted a chemical pollution with organic load of a low biodegradability.

  8. Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín; Caspersen, Michael; Egelund, Sune Daaskov;

    2014-01-01

    be manipulated by altering the time interval of the diffusion. In that way the actual electrochemical surface area and, thus, the electrocatalytic activity of the coatings towards HER and OER can be influenced. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) investigations, display...

  9. Continuous reactions in supercritical water: a new route to La{sub 2}CuO{sub 4} with a high surface area and enhanced oxygen mobility

    Energy Technology Data Exchange (ETDEWEB)

    Galkin, A.A.; Kostyuk, B.G.; Lunin, V.V. [Moscow State Univ. (Russian Federation). Physical Chemistry Dept.; Poliakoff, M. [Nottingham Univ. (United Kingdom). School of Chemistry

    2000-08-04

    A heterogeneous catalyst prepared in water is, clearly, a cleaner one that leads to cleaner syntheses. La{sub 2}CuO{sub 4} formed in superciritical water is produced more quickly, has a higher surface area, and a greater activity towards CO oxidation than the corresponding materials prepared by 'traditional' ceramic synthesis. The method could feasibly be scaled up or applied to other solid-state products. (orig.)

  10. Distribution and Risk Assessment of Heavy Metals in Surface Water from Pristine Environments and Major Mining Areas in Ghana

    Directory of Open Access Journals (Sweden)

    George Yaw Hadzi

    2015-01-01

    Conclusions. The concentrations of heavy metals in the Nyam, Subri, Bonsa and Birim Rivers from the mining sites and the Atiwa Range, Oda, Ankasa and Bosomkese Rivers from the pristine sites were found to be either below or within the USEPA and WHO's recommended limits for surface water. The health risk assessment values for the hazard quotient for ingestion of water (HQing, dermal contact (HQderm and chronic daily intake (CDI indicated no adverse effects as a result of ingestion or dermal contact from the rivers. However, arsenic (As in both the pristine and mining sites and chromium (Cr in the pristine sites pose a carcinogenic threat to the local residents.

  11. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia

    OpenAIRE

    Portolés Nicolau, Tania; Hernández Hernández, Félix; Díaz San Pedro, Ramón; Ibáñez Martínez, María; Bustos López, Martha Cristina; Botero Coy, Ana María; Fuentes, C. L.; Peñuela, Gustavo

    2012-01-01

    The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spe...

  12. Water Service Areas - Public Water Supplier's (PWS) Service Areas

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Boundaries of current public water supplier's (PWS) service areas. This data set contains the present service area boundary of the water system and does not contain...

  13. Water Service Areas - Public Water Supplier's (PWS) Service Areas

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Boundaries of current public water supplier's (PWS) service areas. This data set contains the present service area boundary of the water system and does not contain...

  14. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  15. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    Science.gov (United States)

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  16. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  17. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China.

    Science.gov (United States)

    Li, Jing; Li, Fadong; Liu, Qiang; Suzuki, Yoshimi

    2014-12-01

    Irrigation projects have diverted water from the lower reaches of the Yellow River in China for more than 50 years and are unique in the world. This study investigated the effect of irrigation practices on the transfer and regional migration mechanisms of nitrate (NO3(-)) in surface water and groundwater in a Yellow River alluvial fan. Hydrochemical indices (EC, pH, Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO4(2-), and HCO(3-)) and stable isotopic composition (δ18O and δD) were determined for samples. Correlation analysis and principal component analysis (PCA) were performed to identify the sources of water constituents. Kriging was employed to simulate the spatial diffusion of NO3(-) and stable isotopes. Our results demonstrated that the groundwater exhibited more complex saline conditions than the surface water, likely resulting from alkaline conditions and lixiviation. NO3(-) was detected in all samples, 87.0% of which were influenced by anthropogenic activity. The NO3(-) pollution in groundwater was more serious than the common groundwater irrigation areas in the North China Plain (NCP), and was also slightly higher than that in surface water in the study area, but this was not statistically significant (p > 0.05). In addition, the groundwater sites with higher NO3(-) concentrations did not overlap with the spatial distribution of fertilizer consumption, especially in the central and western parts of the study area. NO3(-) distributions along the hydrogeological cross-sections were related to the groundwater flow system. Hydrochemical and environmental isotopic evidences indicate that surface water-groundwater interactions influence the spatial distribution of NO3(-) in the Piedmont of South Taihang Mountains.

  18. [Variations of Inorganic Carbon and its Impact Factors in Surface-Layer Waters in a Groundwater-Fed Reservoir in Karst Area, SW China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Yuan, Dao-xian; Liu, Wen; Xiao, Qiong; Yu, Shi; Zhang Tao; Mo, Xue; Sun, Ping-an; Pan, Mou-cheng

    2015-08-01

    In order to understand the inorganic carbon cycle of the groundwater-fed reservoir in karst area, Dalongdong Reservoir, which is located at Shanglin County, Guangxi Zhuang Autonomous Region, China, was investigated from 12th to 20th July, 2014. Concentration of dissolved inorganic carbon (DIC), delta13C of DIC (delta13C(DIC)), partial CO2 pressure (pCO2) and CO2 flux across water-air interface were studied by observation in situ and high-resolution diel monitoring. Results show that: (1) DIC concentration and water pCO2 increased from upstream area to downstream area [DIC(average)): from 122.88 to 172.02 mg x L(-1), pCO2(average) : from 637.91 x 10(-6) to 1399.97 x 10(-6)], while delta13C(DIC) decreased from upstream area to downstream area [delta13C(DIC(average): from -4.34% per hundred to -6.97% per hundred] in the reservoir. (2) CO2 efflux across water-air interface varied from 7.11 to 335.54 mg x (m2 x h)(-1) with mean of 125.03 mg x (m2 x h)(-1) in Dalongdong reservoir surface-layer waters, which was the source of atmospheric CO2. CO2 effluxes across water-air interface in upstream area [mean 131.73 mg x (m2 x h)(-1)] and downstream area [mean 170.25 mg x (m2 x h)(-1)] were higher than that in middle area [mean 116.05 mg x (m2 x h))(-1)] in the reservoir. (3) Water pCO2 and CO2 efflux across water-air interface showed similar characteristics of diel variations, which decreased in daylight and increased in night and showed a negative correlation with chlorophyll a (Chla). Possible reasons of research results are found as follows: (1) DIC concentration, water pCO2 and delta13C(DIC) are influenced by biomass of phytoplankton, turbidity, conductivity, the depth of water and transparency, while CO2 efflux across water-air interface is controlled by both of biomass of phytoplankton and wind speed. (2) Photosynthesis, respiration and vertical motion of phytoplankton possibly affect diel variations of DIC cycle in the groundwater-fed reservoir in karst area.

  19. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  20. Determination of free cyanide and total cyanide concentrations in surface and underground waters in Bogoso and its surrounding areas in Ghana

    Directory of Open Access Journals (Sweden)

    S. Obiri

    2007-08-01

    Full Text Available Concentrations of free cyanide and total cyanide in water samples in Bogoso and its surrounding areas in Ghana have been measured in this study. Concentrations of free cyanide and total cyanide were found to be above the maximum permissible discharge limit of effluent from mining companies into natural waters set by Environmental Protection Agency, Ghana (GEPA. A comparison of the results obtained in this study with permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that surface waters in the study areas are highly polluted with cyanide and it's not safe for human consumptions. This means that, the resident in and around Bogoso are at risk.

  1. The research of the contamination levels present in samples of precipitation and surface waters collected from the catchment area Fuglebekken (Hornsund, Svalbard Archipelago)

    Science.gov (United States)

    Ruman, Marek; Szopińska, Małgorzata; Kozak, Katarzyna; Lehmann, Sara; Polkowska, Żaneta

    2014-10-01

    Persistent organic pollutants (POPs) are contaminants that may appear in polar regions. In present work surface water was collected from the main stream water in the Fuglebekken basin. The precipitationsamples was collected from the near area by Polish Polar Station in Hornsund. The present investigationreveals the results of the analysis of these samples for their total phenols, formaldehyde, TOC, PAHs and PCBs content. The presence in the basin (thousands of kilometers distant from industrial centers) of those compounds is testimony to the fact that these compounds are transported over vast distances with air masses and deposited in regions devoid of any human impact.

  2. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Bove, D.J.; Plumlee, G.S.; Runkel, R.L.

    2009-01-01

    Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ???1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to porphyry mineralized areas, this study not only documents the range in concentrations of constituents of interest but also provides insight into the primary controls of water chemistry.

  3. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  4. Correlation Between Surface Area and Dissolving Properties of Lead - A Step in the Investigation of Higher than Standard Lead Concentration in Drinking Water in Washington, D.C.

    Science.gov (United States)

    Hua, M.; Garduno, L.; Mondragon, J. D.; Cuff, K. E.

    2004-12-01

    Several recently published articles by the Washington Post exposing the alarming concentration of lead in drinking water from schools and homes in the Washington D.C. area sparked our interest in the correlation between lead-containing materials used in plumbing and rate of lead solubility. Elementary children who attend schools in various regions of the District were contacted by San Francisco Bay Area- based high school students who are participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project. After receiving a thorough explanation of required sampling procedures, the elementary school children sent 500 ml water samples from their homes and schools to Berkeley along with information on the locations from which the water samples were collected. These water samples were analyzed for lead content at the Environmental Science Research Program laboratory at Lawrence Hall of Science. The majority of the samples contained more than 15 ppb of lead, which is the EPA action level. We hypothesize that there are three possible sources of lead in the drinking water: 1) lead pipes in the water main; 2) lead pipes in the service main; and 3) lead soldering that was often previously used to connect piping. We chose to investigate the effect of lead-based solder on the overall lead concentration in water. Using a soldering iron, we melted lead solder to create discs ranging from one to five centimeter diameter and one to thirty-six grams of mass. These discs were then placed into a beaker with 500 ml of 7.1pH distilled water and allowed to stand for 48 hours. At the end of 48 hours, the water samples were prepared for analysis using the EPA approved lead-dithizone procedure. Results showed an exponential relationship between disc surface area and the concentration of dissolved lead measured in the sample. Therefore, lead-based solder can represent a possible major source of lead contamination.

  5. Variability of surface-water quantity and quality and shallow groundwater levels and quality within the Rio Grande Project Area, New Mexico and Texas, 2009–13

    Science.gov (United States)

    Driscoll, Jessica M.; Sherson, Lauren R.

    2016-03-15

    Drought conditions during the study period of January 1, 2009, to September 30, 2013, caused a reduction in surface-water releases from water-supply storage infrastructure of the Rio Grande Project, which led to changes in surface-water and groundwater (conjunctive) use in downstream agricultural alluvial valleys. Surface water and groundwater in the agriculturally dominated alluvial Rincon and Mesilla Valleys were investigated in this study to measure the influence of drought and subsequent change in conjunctive water use on quantity and quality of these water resources. In 2013, the U.S. Geological Survey, in cooperation with the New Mexico Environment Department and the New Mexico Interstate Stream Commission, began a study to (1) calculate dissolved-solids loads over the study period at streamgages in the study area where data are available, (2) assess the temporal variability of dissolved-solids loads at and between each streamgage where data are available, and (3) relate the spatiotemporal variability of shallow groundwater data (groundwater levels and quality) within the alluvial valleys of the study area to spatiotemporal variability of surface-water data over the study period. This assessment included the calculation of surface-water dissolved-solids loads at streamgages as well as a mass-balance approach to measure the change in salt load between these streamgages. Bimodal surface-water discharge data led to a temporally-dynamic volumetric definition of release and nonrelease seasons. Continuous surface-water discharge and water-quality data from three streamgages on the Rio Grande were used to calculate daily dissolved-solids loads over the study period, and the results were aggregated annually and seasonally. Results show the majority of dissolved-solids loading occurs during release season; however, decreased duration of the release season over the 5-year study period has resulted in a decrease of the total annual loads at each streamgage

  6. Osmosis and Surface Area to Volume Ratio.

    Science.gov (United States)

    Barrett, D. R. B.

    1984-01-01

    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  7. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  8. Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13

    Science.gov (United States)

    Mashburn, Shana L.; Smith, S. Jerrod

    2014-01-01

    Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer. This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels

  9. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  10. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  11. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  12. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  13. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    Science.gov (United States)

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  14. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm(2) , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  15. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China.

    Science.gov (United States)

    Ling, Chengpeng; Zhang, Qiang

    2017-04-01

    As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.

  16. [Effects of controlled release nitrogen fertilizer on surface water N dynamics and its runoff loss in double cropping paddy fields in Dongtinghu Lake area].

    Science.gov (United States)

    Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin

    2007-07-01

    By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.

  17. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  18. Seasonal variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer and subsurface water of Jiaozhou Bay and its adjacent area

    Institute of Scientific and Technical Information of China (English)

    ZHANG Honghai; YANG Guipeng; LIU Chunying; LI Chenxuan

    2009-01-01

    The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd)and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006.The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer.Higher water temperature and stronger radiant intensity in summer can enhance their solubilityand photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70μmol/(m2·d),which highlights the effects of human impacts on DMS emision.

  19. 灌区地表水与地下水联合调控分析%Analysis of Irrigation Area of Surface Water and Groundwater Joint Regulation

    Institute of Scientific and Technical Information of China (English)

    刘军

    2015-01-01

    Groundwater overexploitation leads to funnel of groundwater , and lead to severe environ-mental problems such as the surface subsidence .Well drainage joint control model can regulate and control groundwater and surface water , scientific and reasonable to solve the competition between dif-ferent users of water , improve water resources allocation rate .Tahe irrigation area is located in the northwest in our country , because of the lack of scientific regulation of water resources , groundwater overexploitation , threat to the development of local economy .Through the irrigation area of groundwa-ter numerical simulation and equilibrium calculation , puts forward a model of groundwater and sur-face water joint control , optimal utilization of local water resources is of great significance .And pre-dict the local departments of water demand in 2020 , the results can guide the rational allocation of water resources.%地下水过度开采会导致地下水漏斗,并导致地表沉降等恶劣的环境问题。井渠联合调控模型可以科学地调控地下水和地表水,合理解决不同用户间的竞争用水,提高水资源分配率。阿克苏河灌区位于我国西北地区,由于当地缺乏科学的水资源调控,导致地下水过度开发,威胁到当地经济的发展。通过灌区地下水进行数值模拟和均衡计算,提出一种地下水与地表水联合调控模型,对当地水资源优化利用具有重要意义。同时预测了2020年当地各部门需水量,研究结果可以指导当地水资源合理配置。

  20. Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-09-01

    Full Text Available .kashan.co.za] Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications S SZEWCZUK, SP ROUX, M LINDEQUE, J GERMANIS CSIR, PO Box 395, Pretoria, 0001...) and the methane-rich gas yield is used for heating the Ad reactor itself. Increased efficiency due to technological progress can increase the gas yield, reduce the reactor dependency on biogas for heating and allow more efficient use of the biogas...

  1. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2015-03-01

    New hydrological insights for the region: Overall, the study result elucidates that the chemical composition of different water bodies are due to natural processes and/or anthropogenic activities within the region. The local anthropogenic processes could be discharges from factory, domestic sewage and farming activities. Some of the water types are found to have relatively higher concentration of dissolved constituents. Irrigation waters have almost equal chemical compositions, indicating their hydrochemical sources are almost the same. Most of the concentrations are relatively high in Lake Basaka, groundwater and hot springs. It is easy to imagine the potential damaging effects of such quality waters on crop production, soil properties and environment of the region.

  2. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  3. Atrazine in Surface Water and Relation to Hydrologic Conditions Within the Delaware River Basin Pesticide Management Area, Northeast Kansas, July 1992 Through December 1994

    Science.gov (United States)

    Pope, Larry M.

    1995-01-01

    Since about 1960, atrazine has been used as an effective pre- and postemergent herbicide in the production of corn and grain sorghum. Atrazine is a triazine-class herbicide and was the most frequently detected herbicide in surface water of the lower Kansas River Basin of southeast Nebraska and northeast Kansas (Stamer and Zelt, 1994). Approximately 95 percent of the atrazine applied in the United States is used in corn and grain-sorghum production, predominately in the Mississippi River Basin where about 82 percent of the Nation's corn acreage is planted (CIBA-GEIGY Corp., 1992). Until recent changes in product labeling, atrazine commonly was applied at relatively high rates to control weeds around commercial and industrial areas and along railroad right-of-ways. Crop yields have increased during the last 40 years due in part to the use of herbicides in reducing weed growth and competition for moisture and nutrients. However, concern on the part of water suppliers, health officials, and the public also has increased regarding the safe and responsible use of herbicides. One issue is whether the widespread use of atrazine may pose a potential threat to public-water supplies in areas where the herbicide is used because of its ability to easily dissolve in water and its possible effects on the health of humans and aquatic life.

  4. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis.

    Science.gov (United States)

    Raponi, A.; Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Capria, M. T.; Barucci, M. A.; Longobardo, A.; Palomba, E.; Kappel, D.; Arnold, G.; Mottola, S.; Rousseau, B.; Rinaldi, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.

    2016-11-01

    Water ice-rich patches have been detected on the surface of comet 67P/Churyumov-Gerasimenko by the VIRTIS hyperspectral imager on-board the Rosetta spacecraft, since the orbital insertion in late August 2014. Among those, three icy patches have been selected, and VIRTIS data have been used to analyse their properties and temporal evolution while the comet was moving towards the Sun. We performed an extensive analysis of the spectral parameters, and we applied the Hapke radiative transfer model to retrieve the abundance and grain size of water ice, as well as the mixing modalities of water ice and the ubiquitous dark refractory terrains of the surface. Study of the spatial distribution of the spectral parameters within the ice-rich patches has revealed that water ice follows different patterns associated to a bimodal distribution of the grains: 50 μm sized and 2000 μm sized, respectively in intimate and areal mixture with the dark material. In all three cases we identified different stages of the evolution of abundance of ice in the selected patches after the first detections at about 3.5 AU heliocentric distance; the spatial extension and intensity of the water ice spectral features reached a maximum after 60-100 days at about 3.0 AU, was followed by an approximately equally timed decrease, and the features were no longer visible when observed again at about 2.2 AU, before perihelion. The exposure of deeper layers is consistent with their occurrence in "active" areas where falls or landslides could have caused the occasional exposure of water ice-rich layers. After the initial exposure of the ice, the activity of the affected area increases thus causing dust removal powered by sublimation, which provides a positive feedback on the exposure itself. The process develops as the solar flux increases, and it reaches a turning point when the exposure rate is outweighed by the sublimation rate, until the complete sublimation of the patch. It is interesting to note that

  5. Spectral modeling of water ice-rich areas on Ceres' surface from Dawn-VIR data analysis: abundance and grain size retrieval

    Science.gov (United States)

    Raponi, Andrea; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Combe, Jean-Philippe; Frigeri, Alessandro; Zambon, Francesca; Ammannito, Eleonora; Giacomo Carrozzo, Filippo; Magni, Gianfranco; Capria, Maria Teresa; Formisano, Michelangelo; Longobardo, Andrea; Palomba, Ernesto; Pieters, Carle; Russell, Christopher T.; Raymond, Carol; Dawn/VIR Team

    2016-10-01

    Dawn spacecraft orbits around Ceres since early 2015 acquiring a huge amount of data at different spatial resolutions during the several phases of the mission. VIR, the visible and InfraRed spectrometer onboard Dawn [1] allowed to detect the principal mineralogical phases present on Ceres: a large abundance of dark component, NH4-phillosilicates and carbonates.Water has been detected in small areas on Ceres' surface by the Dawn-VIR instrument. The most obvious finding is located in Oxo crater [2]. Further detections of water have been made during the Survey observation phase (1.1 km/pixel) and High-Altitude Mapping Orbit (400 m/px) [3]. During the LAMO phase (Low Altitude Mapping Orbit), the data with increased spatial resolution (100 m/px) coming from both regions have improved the detection of water, highlighting clear diagnostic water ice absorption features. In this study, we focused on spectral modeling of VIR spectra of Oxo and another crater (lon = 227°, lat 57°), near Messor crater.The Hapke radiative transfer model [4] has been applied in order to retrieve the water ice properties. We consider two types of mixtures: areal and intimate mixing. In areal mixing, the surface is modelled as patches of pure water ice, with each photon scattered within one patch. In intimate mixing, the particles of water ice are in contact with particles of the dark terrain, and both are involved in the scattering of a single photon. The best fit with the measured spectra has been derived with the areal mixture. The water ice abundance obtained is up to 15-20% within the field of view, and the grain size retrieved is of the order of 100-200 μm. Phyllosilicates and carbonates, which are ubiquitous on Ceres surface [5], have been also detected and modeled in correspondence with the icy regions. The water ice is typically located near and within the shadows projected by the crater rims. Further analysis is required to study the thermal state of the ice and its origin

  6. Toxicity of surface waters from Benton Lake National Wildlife Refuge and Freezout Lake Wildlife Management Area, Montana, to mallard ducklings

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We measured the growth and survival of captive mallard (Anas platyrhvnchos) ducklings housed in wire cages during a 28-day drinking water bioassay to assess...

  7. Managing ground and surface water resources using innovative methods in rural and urban areas of Sub-Saharan Africa

    Science.gov (United States)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Mazvimavi, Dominic; Meck, Maideyi; Mul, Maloes

    2016-06-01

    Management of water resources across the world is becoming more challenging as a result of population increase and the changes in climatic patterns that are now evident across the globe, especially so in Southern Africa. It is therefore imperative that water researchers begin to apply innovative methods that are accurate and reliable. In this editorial we highlight some of the methods that have been applied in this changing environment.

  8. Potentiometric-surface map of water in the Fox Hills-Lower Hell Creek aquifer in the Northern Great Plains area of Montana

    Science.gov (United States)

    Levings, Gary W.

    1982-01-01

    The potentiometric surface of water in the Upper Cretaceous Fox Hills-lower Hell Creek aquifer is shown on a base map at a scale of 1:1,000,000. The map is one of a series produced as part of regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 100 feet. The map shows that the direction of regional ground-water movement is toward the northeast. Recharge occurs on the flanks of the Black Hills uplift, the Cedar Creek anticline, the southwest part of the Bull Mountains basin, and on the out-crop areas. Discharge from the aquifer occurs along a short reach of the Yellowstone River. The average discharge from 335 wells is about 16 gallons per minute and the specific capacity of 185 wells averages 0.49 gallon per minute per foot of drawdown. (USGS)

  9. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal - industrial area (Tuscany-Central Italy)

    Science.gov (United States)

    Grassi, Sergio; Amadori, Michele; Pennisi, Maddalena; Cortecci, Gianni

    2014-02-01

    A study on the upper reaches of the Cecina River (Tuscany-Central Italy) and the associated unconfined aquifer was carried out from September 2007 to August 2008. The study aimed to identify the sources of B and As contamination in stream water and groundwater, and record contamination levels. The study area, which comprises a northern sector of the Larderello geothermal field, has in time been contaminated by both surface geothermal manifestations (now thought to have ceased) and anthropogenic activity. The latter refers to the disposal of spent geothermal fluids and borogypsum sludge, by-product of colemanite treatment with sulphuric acid, which until the late '70s were discharged in the Larderello area into the Possera Creek, a southern tributary of the Cecina River. A network of 22 stream sections and 9 observation wells was defined. Stream discharge (16 sites), well water levels and chemical concentrations (mainly B, As and anions) in water were measured monthly. Together, discharge and chemical concentrations were used to define the source of contamination by calculating the contaminant load in successive sections of the river network. Due to the stream's intermittent flow, only 50% of the performed monthly surveys could be used in comparing the contaminant load at different sections. Both contaminant loads (referring to median to high flow conditions) and chemical concentrations suggest that B mainly derives from the leakage of a concentrated Na-SO4 water rich in B, SO4, NO3 likely from a small aquitard located in the Larderello area. The B load from this area is about 2 kg/h and increases to approximately 2.7 kg/h in the final section of the study area, likely due to contribution of groundwater. As mainly derives from dissolution and adsorption-desorption processes involving water and As-rich stream bed sediments. Of the total 15 g/h As load measured at the end section, only about 3 g/h derive from the Larderello area. Further to stream bed, As

  10. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  11. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'.

    Science.gov (United States)

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.

  12. Comment on and Reinterpretation of Gabriel et al. (2014) `Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area'

    Science.gov (United States)

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.

  13. Theoretical and experimental substantiation of a thermogravimetric method for assessing the water-retention capacity and specific surface area of disperse systems

    Science.gov (United States)

    Smagin, A. V.; Sadovnikova, N. B.; Bashina, A. S.; Kirichenko, A. V.; Vityazev, V. G.

    2016-12-01

    A conceptually new instrumental method has been proposed for the determination of the sorption fragment of the soil water retention curve and the specific surface area of soils and sediments by drying samples at different temperatures, which is based on fundamental models for relative air humidity and thermodynamic water potential ( Ψ) as functions of temperature ( T). The basic equation for the calculation of water potential in the first (linear) approximation is as follows: Ψ = Q- aT, where Q is the specific heat of evaporation, and a is the physically substantiated parameter related to the initial relative air humidity in the laboratory. The setting of model parameters necessary for quantitative calculations has been performed from tabulated data for the saturated water vapor pressure as a function of temperature and results of an independent experiment with gradual air heating and synchronous automated control of air humidity and temperature with DS 1923 hydrochrons. The potentialities of the method have been demonstrated using literature data on the dehydration of soil colloids and our own results on the drying of a silty sandy soil (Arenosol) from Dubai, a light loamy soddy-podzolic soil (Albic Retisol) and a low-moor peat soil (Histosol) from Moscow oblast, and a loamy ordinary chernozem (Haplic Chernozem) from Krasnodar region.

  14. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh).

    Science.gov (United States)

    Habibullah-Al-Mamun, Md; Ahmed, Md Kawser; Raknuzzaman, Mohammad; Islam, Md Saiful; Negishi, Junya; Nakamichi, Shihori; Sekine, Makoto; Tokumura, Masahiro; Masunaga, Shigeki

    2016-11-15

    This study reports the first evidence of perfluoroalkyl acids (PFAAs) in surface waters and sediments collected from the coastal area of Bangladesh. Fifteen target PFAAs, including C4-14-PFCAs (perfluoroalkyl carboxylates) and C4, C6, C8, and C10-PFSAs (perfluoroalkyl sulfonates), were quantified by HPLC-MS/MS. The ΣPFAAs in surface water and sediment samples were in the range of 10.6 to 46.8ng/L and 1.07 to 8.15ng/gdw, respectively. PFOA in water (3.17-27.8ng/L) and PFOS in sediment samples (0.60-1.14ng/gdw) were found to be the most abundant PFAAs, and these concentrations were comparable to or less than most other reported values, particularly those recorded from the coastal areas of China, Japan, Korea and Spain. The majority of the monitored PFAAs did not show clear seasonal variation. The southeastern part (Cox's Bazar and Chittagong) of the Bangladeshi coastal area was more contaminated with PFAAs than the southern (Meghna Estuary) and southwestern parts (Sundarbans). Industrial and municipal wastewater effluents, ship breaking and port activities were identified as potential sources of the PFAA contamination in this region. Field-based sediment water distribution coefficients (KD) were calculated and corrected for organic carbon content (KOC), which reduced the variability between samples. The values of log KD (1.63-2.88) and log KOC (4.02-5.16) were higher than previously reported values, which may indicate that the partitioning of PFAAs in a tropical coastal ecosystem is different from other ecosystems, such as temperate and sub-tropical regions. Although a preliminary environmental hazard assessment indicated that PFOA or PFOS levels do not currently exceed the acute safety thresholds, we should keep in mind that they are bioavailable and can accumulate in the food chain. Therefore, the ubiquity of PFAAs in the coastal area of Bangladesh warrants further studies characterizing their specific sources and the potential long-term risks they present to both

  15. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  16. Three-year Variations of Water, Energy and CO2 Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China

    Institute of Scientific and Technical Information of China (English)

    LIU Huizhi; TU Gang; FU Congbin; SHI Liqing

    2008-01-01

    Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25'N, 122°52'E, 184 m a.s.l.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.

  17. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  18. Some physiochemical and heavy metal concentration in surface water stream of Tutuka in the Kenyasi mining catchment area

    Directory of Open Access Journals (Sweden)

    B.M. Tiimub

    2012-09-01

    Full Text Available The research was conducted in the Akantansu stream of Tutuka in Kenyasi in the Brong Ahafo Region of Ghana from October 2010 to January 2011. The objectives of the study were to find out the contamination levels of pH, BOD5, Lead, Chromium, and Arsenic in the Akantansu stream of Tutuka to promote public health safety of people patronizing the stream for bathing and cooking. Determination of pH was achieved using Etech instrument (PC 300 series where as BOD5 level was assessed by means of empirical standard laboratory test which determined the relative oxygen requirements of waste water, effluents and polluted water using the standard procedure as per America Public Health Association (2006. An AAS 220 atomic absorption spectrometer was used for the analyses of heavy metals (lead, chromium and arsenic. The Research revealed that, the geometric mean levels of (0.01- 0.02, 0.03 – 0.26, 0 - 0.01, 3.99 – 7.06 mg/L and 5.64 – 6.40 for Arsenic, Lead, Chromium, BOD5 and pH compared to the EPA Maximum Permissible Limits of ( 0.5, 0.1, 0.1, 50 mg/L and 6-9 were respectively within the acceptable standards. However, due to slightly higher concentration of chromium (0.26 mg/L up the stream, the people of Tutuka may develop health effects such as nausea, vomiting, diarrhea, hallucinations, headaches, depression, sleeping disorders, skin cancers, tumours in lungs, bladder, kidney and liver if they continue to use water from the stream for bathing and cooking.

  19. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  20. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  1. Some physiochemical and heavy metal concentration in surface water streams of Tutuka in the Kenyasi mining catchment area

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, Louis [University of Education, Winneba Ghana, P. O. Box 40, Mampong (Ghana)

    2013-07-01

    This research was conducted in the Akantansu stream of Tutuka in Kenyasi in the Brong Ahafo Region of Ghana in the months of October and November 2010 and January 2011. The major objectives of the study were to measure levels of pH, BOD (biochemical oxygen demand), lead, chromium, and arsenic in the Akantansu stream of Tutuka and to find ways that the community could ensure safe water use. To achieve the objectives of the study, sampling was done over a period of three months and data was collected and analyzed into graphs and ANOVA tables. The research revealed that the levels of arsenic and BOD were high as compared to the standards of WHO and EPA. If the people of Tutuka continue to use the stream, they may experience negative health effects (e.g., nausea, vomiting, diarrhea, etc.). The level of pH, chromium and lead was acceptable as compared to the standard of WHO and EPA. (authors)

  2. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  3. Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, Northwestern Mediterranean Sea.

    Science.gov (United States)

    Guigue, Catherine; Tedetti, Marc; Giorgi, Sébastien; Goutx, Madeleine

    2011-12-01

    Aliphatic (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dissolved and particulate material from surface microlayer (SML) and subsurface water (SSW) sampled at nearshore observation stations, sewage effluents and harbour sites from Marseilles coastal area (Northwestern Mediterranean) in 2009 and 2010. Dissolved and particulate AH concentrations ranged 0.05-0.41 and 0.04-4.3 μg l(-1) in the SSW, peaking up to 38 and 1366 μg l(-1) in the SML, respectively. Dissolved and particulate PAHs ranged 1.9-98 and 1.9-21 ng l(-1) in the SSW, amounting up 217 and 1597 ng l(-1) in the SML, respectively. In harbours, hydrocarbons were concentrated in the SML, with enrichment factors reaching 1138 for particulate AHs. Besides episodic dominance of biogenic and pyrogenic inputs, a moderate anthropisation from petrogenic sources dominated suggesting the impact of shipping traffic and surface runoffs on this urbanised area. Rainfalls increased hydrocarbon concentrations by a factor 1.9-11.5 in the dissolved phase.

  4. Influence of sub-surface irrigation on soil conditions and water irrigation efficiency in a cherry orchard in a hilly semi-arid area of northern China.

    Directory of Open Access Journals (Sweden)

    Gao Peng

    Full Text Available Sub-surface irrigation (SUI is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1 The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01. The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01, 8.7% (P<0.01 and 43.8% (P<0.01 higher than for soils using FLI. 2 The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3 Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m(-3 ha(-1. 4 The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01. 5 The average yields of cherries under SUI with irrigation quotas of 80-320 m(3 ha(-1 were 8.7%-34.9% higher than those in soil with no irrigation (CK2. The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m(3 ha(-1 per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China.

  5. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    Science.gov (United States)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  6. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    Science.gov (United States)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  7. A Dynamic Model for Simulating Atmospheric, Surface and Soil Water Interactions in Hillslope of Loess Area Under Natural Conditions and Its Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism of atmospheric, surface and soil water interactions (water transformation) in hillslope under natural conditions was analyzed, and a dynamic model was developed to simulate infiltration, overland flow and soil water movement during natural rainfall in hillslope, by bringing forward concepts such as rainfall intensity on slope and a correction coefficient of saturated soil water content for soil surface seal. Some factors, including slope angle, slope orientation and raindrop inclination, which affect the rainfall amount on slope, were taken into account while developing the dynamic model. The effect of surface seal on infiltration and water balance under a boundary condition of the second kind was also considered. Application of the model in a field experiment showed that the model simulated precisely the infiltration, overland flow and soil water movement in hillslope under natural rainfall conditions.

  8. A Dynamic Model for Simulating Atmospheric,Surface and Soil Water Interactions in Hillslope of Loess Area Under Natural Conditions and Its Application

    Institute of Scientific and Technical Information of China (English)

    ZHANGSHUHAN; NIEGUANGYONG; 等

    2001-01-01

    The mechanism of atmospheric,surface and soil water interactions( water transformation) in hillslope under natural conditions was analyzed,and a dynamic model was developed to simulate infiltration,overland flow and soil water movement during natural rainfall in hillslope,by bringing froward concepts such as rainfall intensity on slope and a correction coefficient of saturated soil water content for soil surface seal.Some factors,including slope angle,slope orientation and raindrop inclination,which affect the rainfall amount on slope, were taken into account while developing the dynamic model.The effect of surface seal on infiltration and water balance under a boundary condition of the second kind was aslo considered. Application of the model in a field experiment showed that the model simulated precisely the infiltration,overland flow and sol water monvement in hillsope under natural rainfall conditions.

  9. Reconstruction of surface ocean water pCO2(aq) in Nansha area, the South China Sea during the last 30 ka

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The reconstruction of pCO2 in the tropic ocean is one of the most important issues to understand global climatic changes. In this study, the high-resolution stratigraphic analysis of core 17962 was conducted, which is located in the southern South China Sea (SCS). The contents of sedimentary organic matter, the stable carbon isotopic composition of sedimentary organic matter, and the δ13C values of black carbon and terrigenous n-alkanes were determined. And the δ13Cwc value of carbon derived from aquatic was calculated. On the basis of δ13Corg-pCO2 equation proposed by Popp et al. (1989), we estimated the pCO2 in the Nansha area, SCS, since the last glaciation using δ13Cwc instead of δ13Corg. The results show that the average pCO2 was estimated at 240 ppmV during the last glaciation, and at 320 ppmV in the Holocene. A comparison of surface sea pCO2 with the atmosphere CO2 recorded in the Vostok ice core, indicates that CO2 in surface water of the southern SCS could emit into atmosphere during the last 30 ka.

  10. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  11. Sustaining dry surfaces under water

    Science.gov (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  12. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia.

    Science.gov (United States)

    Hernández, F; Portolés, T; Ibáñez, M; Bustos-López, M C; Díaz, R; Botero-Coy, A M; Fuentes, C L; Peñuela, G

    2012-11-15

    The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others.

  13. Groundwater and surface-water resources in the Bureau of Land Management Moab Master Leasing Plan area and adjacent areas, Grand and San Juan Counties, Utah, and Mesa and Montrose Counties, Colorado

    Science.gov (United States)

    Masbruch, Melissa D.; Shope, Christopher L.

    2014-01-01

    The Bureau of Land Management (BLM) Canyon Country District Office is preparing a leasing plan known as the Moab Master Leasing Plan (Moab MLP) for oil, gas, and potash mineral rights in an area encompassing 946,469 acres in southeastern Utah. The BLM has identified water resources as being potentially affected by oil, gas, and potash development and has requested that the U.S. Geological Survey prepare a summary of existing water-resources information for the Moab MLP area. This report includes a summary and synthesis of previous and ongoing investigations conducted in the Moab MLP and adjacent areas in Utah and Colorado from the early 1930s through the late 2000s.Eight principal aquifers and six confining units were identified within the study area. Permeability is a function of both the primary permeability from interstitial pore connectivity and secondary permeability created by karst features or faults and fractures. Vertical hydraulic connection generally is restricted to strongly folded and fractured zones, which are concentrated along steeply dipping monoclines and in narrow regions encompassing igneous and salt intrusive masses. Several studies have identified both an upper and lower aquifer system separated by the Pennsylvanian age Paradox Member of the Hermosa Formation evaporite, which is considered a confining unit and is present throughout large parts of the study area.Surface-water resources of the study area are dominated by the Colorado River. Several perennial and ephemeral or intermittent tributaries join the Colorado River as it flows from northeast to southwest across the study area. An annual spring snowmelt and runoff event dominates the hydrology of streams draining mountainous parts of the study area, and most perennial streams in the study area are snowmelt-dominated. A bimodal distribution is observed in hydrographs from some sites with a late-spring snowmelt-runoff peak followed by smaller peaks of shorter duration during the late summer

  14. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  15. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  16. MOISTURE AND SURFACE AREA MEASUREMENTS OF PLUTONIUM-BEARING OXIDES

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, M.; Duffey, J.; Livingston, R.; Scogin, J.; Kessinger, G.; Almond, P.

    2009-09-28

    To ensure safe storage, plutonium-bearing oxides are stabilized at 950 C for at least two hours in an oxidizing atmosphere. Stabilization conditions are expected to decompose organic impurities, convert metals to oxides, and result in moisture content below 0.5 wt%. During stabilization, the specific surface area is reduced, which minimizes readsorption of water onto the oxide surface. Plutonium oxides stabilized according to these criteria were sampled and analyzed to determine moisture content and surface area. In addition, samples were leached in water to identify water-soluble chloride impurity content. Results of these analyses for seven samples showed that the stabilization process produced low moisture materials (< 0.2 wt %) with low surface area ({le} 1 m{sup 2}/g). For relatively pure materials, the amount of water per unit surface area corresponded to 1.5 to 3.5 molecular layers of water. For materials with chloride content > 360 ppm, the calculated amount of water per unit surface area increased with chloride content, indicating hydration of hygroscopic salts present in the impure PuO{sub 2}-containing materials. The low moisture, low surface area materials in this study did not generate detectable hydrogen during storage of four or more years.

  17. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    Science.gov (United States)

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  18. Traces of life on Mars must be sought around the valley Hellas in areas where the water coming out from under the planet's surface

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    Discovered by a number of spacecraft the presence of clay on Mars is an important sign of the presence of liquid water on the planet's surface. But the wet period in the history of the planet was a very short for possibility of the development of Earth-type life. And it was in the early stages of the history of Mars about 4 billion years ago. Then Mars was similar to the ancient Earth: had a thick atmosphere of carbon dioxide, water vapor and ammonia, a liquid ocean of water on the surface, and there was much warmer than it is now. The formed at that time soil is containing clay minerals-phyllosilicates.

  19. Water Quality Assessment in the Tsunami Areas of Banda Aceh

    Directory of Open Access Journals (Sweden)

    Suhendrayatna Suhendrayatna

    2009-06-01

    Full Text Available Water quality assessment in the tsunami-affected areas conducted in Meuraxa and Kutaradja sub-districts in the area of Banda Aceh City. Water samples were collected in October 2006 from dug wells of tsunami-affected areas. These were characterized for various physical and chemical parameters. Water quality in the selected areas has shown that the surface water was contaminated due to the tsunami. Total Dissolved Solid, Total Suspended Solid, Acidity, and salinity were high in the affected areas indicating saline water intrusion into surface water tables. Dug wells in the highly affected locations showed higher values of heavy metal ions like Mn, Pb, Cu, Fe, Zn, and Cu compared to the reference points. No ion Hg was found in all samples. Keywords: Banda Aceh, heavy metals, tsunami, water quality

  20. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  1. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  2. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  3. Body Surface Area Prediction in Odorrana grahami

    Institute of Scientific and Technical Information of China (English)

    Guiying CHEN; Jiongyu LIU; Qiang DAI; Jianping JIANG

    2014-01-01

    Body surface area (BSA) was regarded as a more readily quantiifable parameter relative to body mass in the normalization of comparative biochemistry and physiology. The BSA prediction has attracted unceasing research back more than a century on animals, especially on humans and rats. Few studies in this area for anurans were reported, and the equation for body surface area (S) and body mass (W):S=9.9 W 0.56, which was concluded from toads of four species in 1969, was generally adopted to estimate the body surface areas for anurans until recent years. However, this equation was not applicable to Odorrana grahami. The relationship between body surface area and body mass for this species was established as:S=15.4 W 0.579. Our current results suggest estimation equations should be used cautiously across different species and body surface area predictions on more species need to be conducted.

  4. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; De Maio, Marina; Singh, Prasoon Kumar; Mahato, Mukesh Kumar

    2015-09-01

    Twenty eight surface water samples were collected from fourteen sites of the West Bokaro coalfield, India. The concentration of Mn, Cu, Zn, Ni, As, Se, Al, Cr, Ba, and Fe were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) for determination of seasonal fluctuations and a heavy metal pollution index (HPI). The HPI values were below the critical pollution index value of 100. Metal concentrations were higher in the pre-monsoon season as compared to the post-monsoon season. The Zn, Ni, Mn, As, Se, Al, Ba, Cu, and Cr concentrations did not exceed the desirable limits for drinking water in either season. However, at many sites, concentrations of Fe were above the desirable limit of the WHO (2006) and Indian drinking water standard (BIS 2003) in both seasons. The water that contained higher concentrations of Fe would require treatment before domestic use.

  5. Using multivariate techniques to assess the effects of urbanization on surface water quality: a case study in the Liangjiang New Area, China.

    Science.gov (United States)

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2017-04-01

    Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.

  6. Water resources of the Flint area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    sand and gravel also fill some of the valleys in the bedrock surface and yield moderate to large supplies of water. Production from public supply wells tapping the drift aquifers in the area ranges from about 50 to 1,200 gpm. The water from the drift aquifer is hard or very hard and commonly contains objectionable amounts of iron.The Saginaw formation is a source of water to wells supplying some of the small communities and industries in the county. The Saginaw, which is the uppermost bedrock formation in the area, underlies most of the county. It is composed of layers of sandstone, shale, and limestone and some beds of coal. The formation is composed principally of sandstone in some areas of the county, and shale in others. Production from wells tapping the Saginaw ranges from a few to about 500 gpm. The water produced is generally moderately hard or hard and commonly contains objectionable amounts of chloride. The quality of the water limits its development for water supply. Overdrafts from the Saginaw result in a lowering of the piezometric surface and commonly cause an upward migration of water high in chloride.The Michigan and Marshall formations are generally not sources of fresh water where they are overlain by the Saginaw formation. In the southern and eastern parts of the county where they are overlain by glacial deposits, they are a source of water of good quality. The quantity of water obtainable from these formations is not fully known. However, the Marshall may be a source of large supplies of water in the southeastern part of the county.An ample supply of water is available in lakes, ponds, and streams in the metropolitan area of Flint to meet requirements for domestic, sanitary, and firefighting use in civil defense emergencies. The extent of emergency use of water from these sources would depend upon the pumping, distribution, and treatment facilities available. Enough private industrial and commercial, and public wells are present in the area normally

  7. Estimation of surface area and surface area measure of three-dimensional sets from digitizations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A local method for estimating surface area and surface area measure of three-dimensional objects from discrete binary images is presented. A weight is assigned to each 2 × 2 × 2 configuration of voxels and the total surface area of an object is given by summation of the local area contributions. ...

  8. Delineation of areas contributing groundwater to selected receiving surface water bodies for long-term average hydrologic conditions from 1968 to 1983 for Long Island, New York

    Science.gov (United States)

    Misut, Paul E.; Monti,, Jack

    2016-10-05

    To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and the New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of groundwater recharge areas (or areas contributing groundwater), travel times, and outflows to streams and saline embayments on Long Island. A four-layer regional three-dimensional finite-difference groundwater-flow model of hydrologic conditions from 1968 to 1983 was used to provide delineations of 48 groundwater watersheds on Long Island. Sixteen particle starting points were evenly spaced within each of the 4,000- by 4,000-foot model cells that receive water-table recharge and tracked using forward particle-tracking analysis modeling software to outflow zones. For each particle, simulated travel times were grouped by age as follows: less than or equal to 10 years, greater than 10 years and less than or equal to 100 years, greater than 100 years and less than or equal to 1,000 years, and greater than 1,000 years; and simulated ending zones were grouped into 48 receiving water bodies, based on the New York State Department of Environmental Conservation Waterbody Inventory/Priority Waterbodies List. Areal delineation of travel time zones and groundwater contributing areas were generated and a table was prepared presenting the sum of groundwater outflow for each area.

  9. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois.

    Science.gov (United States)

    Wilson, Cyril O; Weng, Qihao

    2011-09-15

    Modeling the effects of past and current land use composition and climatic patterns on surface water quality provides valuable information for environmental and land planning. This study predicts the future impacts of urban land use and climate changes on surface water quality within Des Plaines River watershed, Illinois, between 2010 and 2030. Land Change Modeler (LCM) was used to characterize three future land use/planning scenarios. Each scenario encourages low density residential growth, normal urban growth, and commercial growth, respectively. Future climate patterns examined include the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenario (SRES) B1 and A1B groups. The Soil and Water Assessment Tool (SWAT) was employed to estimate total suspended solids and phosphorus concentration generated at a 10 year interval. The predicted results indicate that for a large portion of the watershed, the concentration of total suspended solids (TSS) would be higher under B1 and A1B climate scenarios during late winter and early spring compared to the same period in 2010; while the summer period largely demonstrates a reverse trend. Model results further suggest that by 2020, phosphorus concentration would be higher during the summer under B1 climate scenario compared to 2010, and is expected to wane by 2030. The projected phosphorus concentrations during the late winter and early spring periods vary across climate and land use scenarios. The analysis also denotes that middle and high density residential development can reduce excess TSS concentration, while the establishment of dense commercial and industrial development might help ameliorate high phosphorus levels. The combined land use and climate change analysis revealed land use development schemes that can be adopted to mitigate potential future water quality impairment. This research provides important insights into possible adverse consequences on surface water quality and resources

  10. The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger

    Science.gov (United States)

    Bromley, J.; Brouwer, J.; Barker, A. P.; Gaze, S. R.; Valentine, C.

    1997-11-01

    The surface hydrology of a semi-arid area of patterned vegetation in south-west Niger is described. In this region alternating bands of vegetation and bare ground aligned along the contours of a gently sloping terrain give rise to a phenomenon known as `brousse tigrée' (tiger bush). At the selected study site the vegetation bands are 10-30 m wide, separated by 50-100-m-wide bands of bare ground. Five species of shrub dominate, Guiera senegalensis, Combretum micranthum, C. nigricans, Acacia ataxacantha and A. macrostachya. Herbaceous vegetation is generally limited to the upslope edges of vegetation bands. A comprehensive field programme was undertaken to investigate the hydrology. Topographic, vegetation and surface feature surveys were carried out in conjunction with the measurement of rainfall, surface and subsurface hydraulic conductivity, particle size and soil moisture content. Four types of vegetation class are recognised, each tending to occupy a constant position relative to the others and to the regional slope. In a downslope direction the classes are: bare ground, grassy open bush, closed bush, bare open bush, bare ground etc. The nature of the ground surface is closely linked to the vegetation class. Over the bare, bare open and grassy open classes various types of surface crust are present with each type of crust tending to occupy a constant position on the regional slope relative to the vegetation class and other crust types. Below closed bush crusts are generally absent. The typical downslope sequence from the downslope boundary of a vegetation band is: structural (sieving) crust→erosion crust→(gravel crust)→sedimentation crust→microphytic sedimentation crust→no crust→sieving crust, etc. It is also shown that these crust types are dynamic and evolve from one to the other as hydrological conditions change. Hydraulic conductivities of surface crusts are low, typically falling within the range 10 -6-10 -7 m s -1. The presence of large

  11. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  12. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  13. Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream.

    Science.gov (United States)

    Luís, Ana Teresa; Teixeira, Paula; Almeida, Salomé Fernandes Pinheiro; Matos, João Xavier; da Silva, Eduardo Ferreira

    2011-09-15

    Lousal mine is a typical "abandoned mine" with all sorts of problems as consequence of the cessation of the mining activity and lack of infrastructure maintenance. The mine is closed at present, but the heavy metal enriched tailings remain at the surface in oxidizing conditions. Surface water and stream sediments revealed much higher concentrations than the local geochemical background values, which the "Contaminated Sediment Standing Team" classifies as very toxic. High concentrations of Cu, Pb, Zn, As, Cd and Hg occurred within the stream sediments downstream of the tailings sites (up to: 817 mg kg(-1) As, 6.7 mg kg(-1) Cd, 1568 mg kg(-1) Cu, 1059 mg kg(-1) Pb, 82.4 mg kg(-1) Sb, 4373 mg kg(-1) Zn). The AMD waters showed values of pH ranging from 1.9 to 2.9 and concentrations of 9249 to 20,700 mg L(-1) SO(4)(-2), 959 to 4830 mg L(-1) Fe and 136 to 624 mg L(-1) Al. Meanwhile, the acid effluents and mixed stream waters also carried high contents of SO(4)(2-,) Fe, Al, Cu, Pb, Zn, Cd, and As, generally exceeding the Fresh Water Aquatic Life Acute Criteria. Negative impacts in the diatom communities growing at different sites along a strong metal pollution gradient were shown through Canonical Correspondence Analysis: in the sites influenced by Acid Mine Drainage (AMD), the dominant taxon was Achnanthidium minutissimum. However, Pinnularia acoricola was the dominant species when the environmental conditions were extremely adverse: very low pH and high metal concentrations (sites 2 and 3). Teratological forms of Achnanthidium minutissimum (Kützing) Czarnecki, Brachysira vitrea (Grunow) Ross in Hartley, Fragilaria rumpens (Kützing) G. W. F. Carlson and Nitzschia hantzschiana Rabenhorst were found. A morphometric study of B. vitrea showed that a decrease in size was evident at the most contaminated sites. These results are evidence of metal and acidic pollution.

  14. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.

  15. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  16. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  17. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  18. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  19. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Zheng, Binghui; Ma, Yingqun; Qin, Yanwen; Zhang, Lei; Zhao, Yanmin; Cao, Wei; Yang, Chenchen; Han, Chaonan

    2016-12-01

    Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.

  20. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  1. Monitoring temporal changes of the surface water area of the Burullus and Manzala lagoons using automatic techniques applied to a Landsat satellite data series of the Nile Delta coast

    Directory of Open Access Journals (Sweden)

    KH.M. DEWIDAR

    2012-12-01

    Full Text Available This study introduces the automated shoreline techniques used to monitor the temporal change of surface water area of the Burullus and Manzala lagoons. In this study, a series of Landsat image data are acquired at intermittent intervals between 1972 and 2006 for the Burullus lagoon and between 1972 and 2007 for the Manzala lagoon. All Landsat images were radiometrically calibrated and converted to reflectance values. The reflectance values of each date were atmospherically corrected using the 6S model. The automated shoreline technique was checked against field observations by using GPS over the four seasons for each lagoon during reconnaissance for the shoreline boundary. The accuracy of the extracted shoreline boundary for each lagoon was validated by calculating the area of a big aquaculture farm in the study area from satellite imagery and the available topographic maps. The resulting accuracy of this technique used was approximately 97.5%. From the spatial temporal analysis of the satellite data, the results indicate that the rate change of aquatic surface area of the Manzala lagoon is –7.3 km2/yr and for the Burullus lagoon -2.7 km2/yr during the approximately 35 year period of study. The changes which were detected in this study indicate that the surface water area of Manzala lagoon and Burullus lagoon have decreased to 62.6% and 61.9 respectively of their original size during this time.

  2. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  3. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  4. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... the surface water supplies within the service area are insufficient from both a quality and quantity... Scoping Meetings MSU-Bottineau, Nelson Science Center Room 125, 105 Simrall Boulevard, Bottineau, ND Sleep... of the proposed action is to provide a reliable source of high quality treated water to...

  5. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... the surface water supplies within the service area are insufficient from both a quality and quantity... MSU-Bottineau, Nelson Science Center Room 125, 105 Simrall Boulevard, Bottineau, ND. Sleep Inn--Inn... of the proposed action is to provide a reliable source of high quality treated water to...

  6. Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development-Why existing national data sets cannot tell us what we would like to know

    Science.gov (United States)

    Bowen, Zachary H.; Oelsner, Gretchen P.; Cade, Brian S.; Gallegos, Tanya J.; Farag, Aida M.; Mott, David N.; Potter, Christopher J.; Cinotto, Peter J.; Clark, Melanie L.; Kappel, William M.; Kresse, Timothy M.; Melcher, Cynthia P.; Paschke, Suzanne; Susong, David D.; Varela, Brian A.

    2015-01-01

    Heightened concern regarding the potential effects of unconventional oil and gas development on regional water quality has emerged, but the few studies on this topic are limited in geographic scope. Here we evaluate the potential utility of national and publicly available water-quality data sets for addressing questions regarding unconventional oil and gas development. We used existing U.S. Geological Survey and U.S. Environmental Protection Agency data sets to increase understanding of the spatial distribution of unconventional oil and gas development in the U.S. and broadly assess surface water quality trends in these areas. Based on sample size limitations, we were able to estimate trends in specific conductance (SC) and chloride (Cl-) from 1970 to 2010 in 16% (n=155) of the watersheds with unconventional oil and gas resources. We assessed these trends relative to spatiotemporal distributions of hydraulically fractured wells. Results from this limited analysis suggest no consistent and widespread trends in surface water quality for SC and Cl- in areas with increasing unconventional oil and gas development and highlight limitations of existing national databases for addressing questions regarding unconventional oil and gas development and water quality.

  7. Area inequalities for stable marginally trapped surfaces

    CERN Document Server

    Jaramillo, José Luis

    2012-01-01

    We discuss a family of inequalities involving the area, angular momentum and charges of stably outermost marginally trapped surfaces in generic non-vacuum dynamical spacetimes, with non-negative cosmological constant and matter sources satisfying the dominant energy condition. These inequalities provide lower bounds for the area of spatial sections of dynamical trapping horizons, namely hypersurfaces offering quasi-local models of black hole horizons. In particular, these inequalities represent particular examples of the extension to a Lorentzian setting of tools employed in the discussion of minimal surfaces in Riemannian contexts.

  8. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  9. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  10. Movement characteristics of Karst water in a deep mining area

    Institute of Scientific and Technical Information of China (English)

    CHAO Chen-ming; BAI Hai-bo; MIAO Xie-xing; YAO Bang-hua

    2009-01-01

    In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri-bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a horizontal direction, we directed our attention to the source of deep groundwater, its seepage and hydro-chemical characteristics in a typical mining area. We used a neotectonic water-control theory, chemical and isotope methods, as well as a method for analyzing dynamic groundwater conditions. The results indicate that 1) Karst water in the deep and medium parts of this mining area is recharged by vertical leakage through neotectonic fractures rather than seepage along strata from subcrop parts or surrounding flows; 2) from surface to deep leakage paths, the variation in the types of chemical groundwater agrees with the normal lixiviation water distribution rule and the age of mixed groundwater increases; 3) the water-rich zones along neotectonic fractures correspond with water-diluted zones in a hori-zontal direction; 4) the leakage coefficient and water capacity of aquifers increases during the flow process of Kant water along the antidip direction (from west to east) and 5) Karst water in shallow mining areas forms a strong runoff belt along strikes and quickly dilutes the water from deep and medium mining areas. Overall, chemical and dynamic water characteristics actually agree with in terms of the entire consideration for differences in vertical leakage and abnormalities in the zone of water chemical distribution, along a horizontal runoff direction.

  11. Puyang City Surface Water Drinking Water Source Protection Areas of Research%濮阳市城市地表水饮用水源保护区划分研究

    Institute of Scientific and Technical Information of China (English)

    陈兰丁

    2012-01-01

    Through the city of Puyang city drinking water source protection zones division job description,proposed drinking water conservation area,area,target.Aiming at the characteristics of drinking water source in Puyang City,puts forward own suggestions and measures,for the next step of our city drinking water source protection provides train of thought.%通过濮阳市城市饮用水源保护区的划分工作的简介,提出饮用水保护区范围、面积、目标。并针对濮阳市饮用水源的特点,提出自己的独特建议和措施,为下一步我市饮用水源的保护提供思路。

  12. Volumes and surface areas of pendular rings

    Science.gov (United States)

    Rose, W.

    1958-01-01

    A packing of spheres is taken as a suitable model of porous media. The packing may be regular and the sphere size may be uniform, but in general, both should be random. Approximations are developed to give the volumes and surface areas of pendular rings that exist at points of sphere contact. From these, the total free volume and interfacial specific surface area are derived as expressive of the textural character of the packing. It was found that the log-log plot of volumes and surface areas of pendular rings vary linearly with the angle made by the line joining the sphere centers and the line from the center of the largest sphere to the closest edge of the pendular ring. The relationship, moreover, was found not to be very sensitive to variation in the size ratio of the spheres in contact. It also was found that the addition of pendular ring material to various sphere packings results in an unexpected decrease in the surface area of the boundaries that confine the resulting pore space. ?? 1958 The American Institute of Physics.

  13. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  14. Determination of Reactive Surface Area of Melt Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier,W.L.; Roberts, S.; Smith, D.K.; Hulsey, S.; Newton,L.; Sawvel, A.; Bruton, C.; Papelis, C.; Um, W.; Russell, C. E.; Chapman,J.

    2000-10-01

    A comprehensive investigation of natural and manmade silicate glasses, and nuclear melt glass was undertaken in order to derive an estimate of glass reactive surface area. Reactive surface area is needed to model release rates of radionuclides from nuclear melt glass in the subsurface. Because of the limited availability of nuclear melt glasses, natural volcanic glass samples were collected which had similar textures and compositions as those of melt glass. A flow-through reactor was used to measure the reactive surface area of the analog glasses in the presence of simplified NTS site ground waters. A measure of the physical surface area of these glasses was obtained using the BET gas-adsorption method. The studies on analog glasses were supplemented by measurement of the surface areas of pieces of actual melt glass using the BET method. The variability of the results reflect the sample preparation and measurement techniques used, as well as textural heterogeneity inherent to these samples. Based on measurements of analog and actual samples, it is recommended that the hydraulic source term calculations employ a range of 0.001 to 0.01 m{sup 2}/g for the reactive surface area of nuclear melt glass.

  15. Uncertainty in surface water flood risk modelling

    Science.gov (United States)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  16. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  17. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  18. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  19. Concentrations of selected constituents in surface-water and streambed-sediment samples collected from streams in and near an area of oil and natural-gas development, south-central Texas, 2011-13

    Science.gov (United States)

    Opsahl, Stephen P.; Crow, Cassi L.

    2014-01-01

    sample collected at the Cibolo Creek near Saint Hedwig, Tex. (Cibolo St. Hedwig), site contained toluene, a fuel additive, solvent, and industrial feedstock used to produce benzene and a constituent associated with produced waters. The Cibolo St. Hedwig site is upstream from current (2014) oil and natural-gas production areas. Dichloromethane, an industrial solvent with multiple uses, was detected in surface-water samples at both the San Antonio River at State Highway 72 near Runge, Tex. (SAR 72), and SAR Goliad sites.

  20. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  1. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  4. Palatal Surface Area of Maxillary Plaster Casts

    DEFF Research Database (Denmark)

    Darvann, Tron Andre; Hermann, Nuno V.; Ersbøll, Bjarne Kjær

    2007-01-01

    Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three-dimensional measu......Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three......-dimensional measurements of selected linear distances, curve lengths, and (surface) areas were carried out on maxillary plaster casts from individuals with unilateral or bilateral cleft lip and palate. The relationship between two-dimensional and three-dimensional measurements was investigated using linear regression....... Results and Conclusions: Error sources in the measurement of three-dimensional palatal segment surface area from a two-dimensional photograph were identified as photographic distortion (2.7%), interobserver error (3.3%), variability in the orientation of the plaster cast (3.2%), and natural shape...

  5. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, Western Switzerland: proof of widespread export to surface waters. Part I: method validation in different water matrices.

    Science.gov (United States)

    Daouk, Silwan; Grandjean, Dominique; Chevre, Nathalie; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    An analytical method for the quantification of the widely used herbicide, glyphosate, its main by-product, aminomethylphosphonic acid (AMPA) and the herbicide glufosinate at trace level was developed and tested in different aqueous matrices. Their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. The concentrated derivates were then analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Spiking tests at three different concentrations were realized in several water matrices: ultrapure water, Evian(©) mineral water, river water, soil solution and runoff water of a vineyard. Except for AMPA in runoff water, obtained regression curves for all matrices of interest showed no statistical differences of their slopes and intercepts, validating the method for the matrix effect correction in relevant environmental samples. The limits of detection and quantification of the method were as low as 5 and 10 ng/l respectively for the three compounds. Spiked Evian(©) and river water samples at two different concentrations (30 and 130 ng/l) showed mean recoveries between 86 and 109%, and between 90 and 133% respectively. Calibration curves established in spiked Evian(©) water samples between 10 and 1000 ng/l showed r(2) values above 0.989. Monitoring of a typical vineyard river showed peaks of pollution by glyphosate and AMPA during main rain events, sometimes above the legal threshold of 100 ng/l, suggesting the diffuse export of these compounds by surface runoff. The depth profile sampled in the adjacent lake near a waste water treatment plant outlet showed a concentration peak of AMPA at 25m depth, indicating its release with treated urban wastewater.

  6. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  7. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  8. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  9. Apparent Resistivity and Estimated Interaction Potential of Surface Water and Groundwater along Selected Canals and Streams in the Elkhorn-Loup Model Study Area, North-Central Nebraska, 2006-07

    Science.gov (United States)

    Teeple, Andrew P.; Vrabel, Joseph; Kress, Wade H.; Cannia, James C.

    2009-01-01

    In 2005, the State of Nebraska adopted new legislation that in part requires local Natural Resources Districts to include the effect of groundwater use on surface-water systems in their groundwater management plan. In response the U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, did a study during 2006-07 to investigate the surface-water and groundwater interaction within a 79,800-square-kilometer area in north-central Nebraska. To determine how streambed materials affect surface-water and groundwater interaction, surface geophysical and lithologic data were integrated at four sites to characterize the hydrogeologic conditions within the study area. Frequency-domain electromagnetic and waterborne direct- current resistivity profiles were collected to map the near-surface hydrogeologic conditions along sections of Ainsworth Canal near Ainsworth, Nebraska; Mirdan and Geranium Canals near Ord, Nebraska; North Loup River near Ord, Nebraska; and Middle Loup River near Thedford, Nebraska. Lithologic data were collected from test holes at each site to aid interpretation of the geophysical data. Geostatistical analysis incorporating the spatial variability of resistivity was used to account for the effect of lithologic heterogeneity on effective hydraulic permeability. The geostatistical analysis and lithologic data descriptions were used to make an interpretation of the hydrogeologic system and derive estimates of surface-water/groundwater interaction potential within the canals and streambeds. The estimated interaction potential at the Ainsworth Canal site and the Mirdan and Geranium Canal site is generally low to moderately low. The sediment textures at nearby test holes typically were silt and clay and fine-to-medium sand. The apparent resistivity values for these sites ranged from 2 to 120 ohm-meters. The vertical

  10. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    Science.gov (United States)

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  11. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  12. Surface water discharges from onshore stripper wells.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  13. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation......-up water; corresponding to 0.32 m3 make-up water kg−1 feed). This was likely due to the accumulation of dissolved nutrients sustaining free-living bacterial populations, and/or accumulation of suspended colloids and fine particles less than 5 μm in diameter, which were not characterized in the study...

  14. Determination of area averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment

    NARCIS (Netherlands)

    Meijninger, W.M.L.; Green, A.E.; Hartogensis, O.K.; Kohsiek, W.; Hoedjes, J.C.B.; Zuurbier, R.M.; DeBruin, H.A.R.

    2002-01-01

    A large aperture scintillometer (LAS) and radio wave scintillometer (RWS) were installed over a heterogeneous area to test the applicability of the scintillation method. The heterogeneity in the area, which consisted of many plots, was mainly caused by differences in thermal properties of the crops;

  15. Water Table Dynamics of a Rocky Mountain Riparian Area

    Science.gov (United States)

    Westbrook, C. J.

    2009-05-01

    Riparian areas in mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern riparian water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Herein I describe the magnitude and rate of change of groundwater storage in a 1.3 km2 Canadian Rocky Mountain peat riparian area. Weekly manual measurement of hydraulic heads in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. A near constant increase in the spatial heterogeneity of the water table was observed as the riparian area dried. Cluster analysis and principle components analysis were performed on these weekly data to objectively classify the riparian area into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that measured hourly head, which was used to characterize temporal dynamics of water table response. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the riparian area. In summer, the water table fell throughout the riparian in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. Chloride concentrations suggest variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Water table regime responses to rain events were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (export and plant community composition.

  16. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    with sampling fraction equal to 1/9 followed by point counting using a 4.3 cm2/point grid produced a coefficient of error of less than 7%. The smooth fractionator can be used to ensure that the additional contribution to the estimator variance due to between-plant variability is small.......We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...

  17. Stormwater harvesting: Improving water security in South Africa's urban areas

    Directory of Open Access Journals (Sweden)

    Lloyd Fisher-Jeffes

    2017-01-01

    Full Text Available The drought experienced in South Africa in 2016 one of the worst in decades has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.

  18. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  19. High surface area, high permeability carbon monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Schroeder, J.L. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

    1994-12-31

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  20. Evaluating impervious surface growth and its impacts on water environment in Beijing-Tianjin-Tangshan Metropolitan Area%京津唐城市群不透水地表增长对水环境的影响

    Institute of Scientific and Technical Information of China (English)

    KUANG Wenhui

    2012-01-01

    @@%The impervious surface area (ISA) at the regional scale is one of the important environmental factors for examining the interaction and mechanism of Land Use/Cover Change (LUCC)-ecosystem processes-climate change under the interactions of urbanization and global environmental change.Timely and accurate extraction of ISA from remotely sensed data at the regional scale is challenging.This study explored the ISA extraction based on MODIS and DMSP-OLS data and the incorporation of China's land use/cover data.ISA datasets in Beijing-Tianjin-Tangshan Metropolitan Area (BTTMA) in 2000 and 2008 at a spatial resolution of 250 m were developed,their spatiotemporal changes were analyzed,and their impacts on water quality were then evaluated.The results indicated that ISA in BTTMA increased rapidly along urban fringe,transportation corridors and coastal belt both in intensity and extents from 2000 to 2008.Three cities (Tangshan,Langfang and Qinhuangdao) in Hebei Province had higher ISA growth rates than Beijing due to the pressure of population-resources-environments in the city resulting in increasingly transferring industries to the nearby areas.The dense ISA distribution in BTTMA has serious impacts on water quality in the Haihe River watershed.Meanwhile,the proportion of ISA in sub-watersheds has significantly linear relationships with the densities of river COD and NH3-N.

  1. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  2. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  3. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  4. Water resources of the Marquette Iron Range area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Newport, Thomas Gwyn; Skinner, Earl L.

    1967-01-01

    Large quantities of water are needed in the beneficiation and pelletizing processes by which the ore mined from low-grade iron-formations is upgraded into an excellent raw material for the iron and steel industry. Extensive reserves of low-grade iron-formation available for development herald an intensification of the demands upon the area's water supplies. This study was designed to provide water facts for public and private agencies in planning orderly development and in guiding the management of the water resources to meet existing and new requirements. Inland lakes and streams are the best potential sources of water for immediate development. The natural flow available for 90 percent of the time in the Middle and East Branches of the Escanaba River, the Carp River, and the Michigamme River is about 190 cubic feet per second. Potential storage sites are identified, and their complete development could increase the available supply from the above streams to about 450 cubic feet per second. Outwash deposits are the best potential sources of ground water. Large supplies could be developed from extensive outwash deposits in the eastern part of the area adjacent to Goose Lake Outlet and the East Branch Escanaba River. Other areas of outwash occur in the vicinity of Humboldt, West Branch Creek, and along the stream valleys. Streamflow data were used to make rough approximations of the ground-water potential in some areas. In general, however, the available data were not sufficient to permit quantitative evaluation of the potential ground-water supplies. Chemical quality of the surface and ground waters of the area is generally acceptable for most uses. Suspended sediment in the form of mineral tailings in effluents from ore-processing plants is a potential problem. Existing plants use settling basins to effectively remove most of the suspended material. Available records indicate that suspended-sediment concentrations and loads in the receiving waters have not been

  5. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  6. ASSESSMENT OF SURFACE WATER QUALITY IN AN ARSENIC CONTAMINATED VILLAGE

    Directory of Open Access Journals (Sweden)

    Kumud C. Saikia

    2012-01-01

    Full Text Available Arsenic contamination of ground water has occurred in various parts of the world, becoming a menace in the Ganga-Meghna-Brahmaputra basin (West Bengal and Assam in India and Bangladesh. Recently arsenic has been detected in Cachar and Karimganj districts of barak valley, Assam, bordering Bangladesh. In this area coli form contamination comprises the major constraint towards utilization of its otherwise ample surface water resources. The local water management exploited ground water sources using a centralized piped water delivery scheme without taking into account the geologically arsenic-prone nature of the sediments and aquifers in this area. Thus surface water was the suggestive alternative for drinking water in this area. The present study investigated surface water quality and availability in a village of Karimganj district, Assam, India contaminated with arsenic for identifying the potential problems of surface water quality maintenance so that with effective management safe drinking water could be provided. The study revealed that the area was rich in freshwater ecosystems which had all physico-chemical variables such as water temperature, pH, DO, total alkalinity, free CO2, heavy metals like lead, chromium and cadmium within WHO standards. In contrast, coli form bacteria count was found far beyond permissible limit in all the sources. Around 60% people of the village preferred ground water for drinking and only 6% were aware of arsenic related problems. The problem of bacterial contamination could be controlled by implementing some ameliorative measures so that people can safely use surface water. Inhabitants of the two districts should be given proper education regarding arsenic contamination and associated health risk. Effluents should be treated to acceptable levels and standards before discharging them into natural streams.

  7. An Integrated Risk Management Model for Source Water Protection Areas

    Directory of Open Access Journals (Sweden)

    Shang-Lien Lo

    2012-10-01

    Full Text Available Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  8. An integrated risk management model for source water protection areas.

    Science.gov (United States)

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-10-17

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  9. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  10. Water in the Kahuku area, Oahu, Hawaii

    Science.gov (United States)

    Takasaki, K.J.; Valenciano, Santos

    1969-01-01

    The Kahuku area comprises the north end of the Koolau Range and its bordering coastal plain. This part of the range is less deeply eroded than oth3r parts, and except for long, narrow valleys and cliffs near the shore, it has retained the general shape of the original volcanic dome. A 21/2-mile-wide dike zone of parallel and subparallel dikes along the crest is the remnant of the fissure zone of eruption. Outcrops are mostly permeable lava flows of the Koolau Volcanic Series, which are intruded by dikes inside the dike zone and are free of dikes outside it. The lava flows constitute main aquifers, and water bodies in them are called dike water inside the dike zone and basal water outside it. Dikes, because they are less permeable than the lava flows they intrude, impound ground water, thereby controlling its movement, discharge, and storage. The top of the dike-impounded water is at an altitude of at least 1,000 feet near the south end of the Kahuku area. Dike water is discharged as leakage, the amount of which fluctuates in response to changes in storage, as flow into streams, where they intersect saturated rock, and as underflow to the basal-water body. Basal water occurs on either side of the dike zone, which forms both a structural and hydrologic boundary. It is artesian on the windward side wherever it underlies the coastal plain, and the altitude of water levels ranges from 7 to 22 feet. Leeward of the dike zone, basal water occurs only under water-table conditions because of the near absence of a coastal plain, and the altitude of water levels ranges from less than 1 foot to about 3 feet. The quality of dike water is excellent except near the north end. where it is slightly contaminated by infiltration of irrigation water that contains as much as 1,200 mg/1 (milligrams per liter) chloride. Irrigation water is also a source of contamination of the basal-water body. The major contaminant, however, is sea water, which underlies the basal-water body. In the

  11. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  12. SCREENING TO IDENTIFY AND PREVENT URBAN STORM WATER PROBLEMS: ESTIMATING IMPERVIOUS AREA ACCURATELY AND INEXPENSIVELY

    Science.gov (United States)

    Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...

  13. SCREENING TO IDENTIFY AND PREVENT URBAN STORM WATER PROBLEMS: ESTIMATING IMPERVIOUS AREA ACCURATELY AND INEXPENSIVELY

    Science.gov (United States)

    Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...

  14. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    Science.gov (United States)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  15. Body surface area formulae: an alarming ambiguity.

    Science.gov (United States)

    Redlarski, Grzegorz; Palkowski, Aleksander; Krawczuk, Marek

    2016-06-21

    Body surface area (BSA) plays a key role in several medical fields, including cancer chemotherapy, transplantology, burn treatment and toxicology. BSA is often a major factor in the determination of the course of treatment and drug dosage. A series of formulae to simplify the process have been developed. Because easy-to-identify, yet general, body coefficient results of those formulae vary considerably, the question arises as to whether the choice of a particular formula is valid and safe for patients. Here we show that discrepancies between most of the known BSA formulae can reach 0.5 m(2) for the standard adult physique. Although many previous studies have demonstrated that certain BSA formulae provide an almost exact fit with the patients examined, all of these studies have been performed on a limited and isolated group of people. Our analysis presents a broader perspective, considering 25 BSA formulae. The analysis revealed that the choice of a particular formula is a difficult task. Differences among calculations made by the formulae are so great that, in certain cases, they may considerably affect patients' mortality, especially for people with an abnormal physique or for children.

  16. Casimir effect in dielectrics Surface area contribution

    CERN Document Server

    Molina-Paris, C; Molina-Paris, Carmen; Visser, Matt

    1997-01-01

    In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which the Casimir energy in dielectric media is interpreted as the change in the total zero point energy of the electromagnetic vacuum summed over all states. Extending results presented in previous papers [hep-th/9609195; hep-th/9702007] we approximate the sum over states by an integral over the density of states including finite volume corrections. For an arbitrarily-shaped finite dielectric, the first finite-volume correction to the density of states is shown to be proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic calculations. As a concrete example we discuss Schwinger's suggestion that the Casimir effect might be the underlying ph...

  17. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  18. Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas

    Directory of Open Access Journals (Sweden)

    George C. Zalidis

    2009-08-01

    Full Text Available Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use.

  19. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  20. Method for treatment of a surface area of steel

    NARCIS (Netherlands)

    Bhowmik, S.; Aaldert, P.J.

    2009-01-01

    The invention relates to a method for treatment of a surface area of steel by polishing said surface area and performing a plasma treatment of said surface area wherein the plasma treatment is performed at at least atmospheric conditions and wherein the plasma treatment is carried out at a power of

  1. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  2. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  3. Recovery from acidification in European surface waters

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2001-01-01

    Full Text Available Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56 showed significant (p ≤0.05 decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites, indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53. Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

  4. An integrated risk management model for source water protection areas

    National Research Council Canada - National Science Library

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    .... For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans...

  5. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  6. Studying surface water balance in Kurdistan province using GIS

    Directory of Open Access Journals (Sweden)

    Nader Fallah

    2016-06-01

    Full Text Available The study of water exchange in a region or area, which emphasizes the principle of conservation of matter in the water cycle, is called balance. Investigating their balance is the basis for managing the rivers’ water management, the results of which refer to the change rate in surface water supply and can efficiently be used in decision making and optimal use of water resources. The present study was carried out in order to investigate the surface water balance in Kurdistan province using GIS. In so doing, digital topographic maps, soil map of the area, and meteorological data retrieved from the regional stations were used to prepare layers of precipitation, evaporation and infiltration of rainwater into the soil. Discharge-arearegion comparative method was employed to measure the amount of runoff and base flow for each sub-basin in raster form saved per unit area which was subsequently overlapped based on balance equation, and the balance of the region was displayed in a graphical mode. The results indicated that more surface water is wasted in the southeast and central area of the province.

  7. 重庆地区地表水地源热泵系统冬季供暖工程应用%Engineering application of surface water source heat pump for winter heating in Chongqing area

    Institute of Scientific and Technical Information of China (English)

    卢军; 黄俊杰; 廖兴中

    2013-01-01

    Tests the heating operating conditions of five surface water source heat pump projects in Chongqing area,and compares them with those of the air source heat pump and boiler heating mode.The results show that the heating coefficient of performance (COP) of the river water source heat pump unit reaches 2.8 to 5.3 and the heating energy efficiency ratio (EER) reaches 2.7 to 4.3,and the COP and EER of the lake water source heat pump system reach 4.4 and 3.0 respectively; the indoor temperature and relative humidity can be maintained about 20℃ and above 40% respectively; the improving rates in energy efficiency of a surface water source heat pump system for winter heating are respectively 8.0% to 72.0%and 18.0% to 87.9% compared with the air source heat pump and boiler heating,and energy saving is significant.%以重庆地区5个地表水地源热泵项目为例,对其冬季供暖运行工况进行了实测,并与空气源热泵和锅炉供暖进行了比较.结果表明,江水源热泵系统的机组制热性能系数COP和系统制热能效比EER分别能达到2.8~5.3和2.7~4.3,湖水源热泵系统的COP和EER分别能达到4.4和3.0,并且室内温度和相对湿度分别能保持在20℃左右和40%以上;相比于空气源热泵和锅炉供暖,地表水地源热泵系统冬季供暖的能效提高率分别达到了8.0%~72.0%和18.0%~87.9%,节能显著.

  8. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  9. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  10. Utilizing an Automated Home-Built Surface Plasmon Resonance Apparatus to Investigate How Water Interacts with a Hydrophobic Surface

    Science.gov (United States)

    Poynor, Adele

    2011-03-01

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low- density region forms near the surface. We have employed an automated home-built Surface Plasmon Resonance (SPR) apparatus to investigate this boundary.

  11. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  12. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  13. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  14. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  15. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  16. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  17. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  18. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  19. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  20. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  1. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  2. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  3. Estimation of the fluctuating water surface area of the Three Gorges Reservoir in China[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.R. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Chongqing Pharmaceutical Industry Designing Inst., Chongqing (China); Li, S.S. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2009-07-01

    The Three Gorges Reservoir (TGR) in China is the largest river-type reservoir in the world. This paper presented a simple methodology to assess the reservoir project impacts. In particular, it determined the variations in the submersion of the TGR's water storage on an annual discharge-storage cycle. A good understanding of the variations is important to investigate channel morphology, sediment transport, ecological changes, geological hazards and relocation of local residents. The surface area of the TGR was calculated from output of HEC-RAS, a 1-D hydrodynamics model developed by the United States Army Corps of Engineers. Mass transfer-based methods were used to estimate evaporation, which required wind and vapour pressure as input. The flow velocities and water levels in the TGR were numerically predicted. The predictions of cross-sectional mean flow velocities and the slope of the water surface were in good agreement with field data. The calibrated model was then run for the design water levels and inflows for each month of the year. The total area of the water surface that fluctuates in time was calculated from model results. The amount of water evaporation loss from the water surface was estimated using the calculated area and climatologic statistics of water and air temperatures, humidity and winds. 15 refs., 1 tab., 8 figs.

  4. 30 CFR 56.17001 - Illumination of surface working areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Illumination of surface working areas. 56.17001... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Illumination § 56.17001 Illumination of surface working areas. Illumination sufficient to provide safe...

  5. Effects of CO/sub 2/ enrichment on internal leaf surface area in soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Leadley, P.W.; Reynolds, J.A.; Thomas, J.F.; Reynolds, J.F.

    1987-06-01

    Internal cell surface areas were measured on fully expanded leaves of soybean seedlings that had been continuously exposed to 348 or 645 ppm CO/sub 2/ environments. Plants grown in the high CO/sub 2/ treatment had thicker leaves but less palisade cell surface area per unit of leaf area. Surface area of the mesophyll per unit leaf area was unaffected by CO/sub 2/. The potential ramifications of these CO/sub 2/-induced changes in leaf anatomy on photosynthesis and water-use efficiency are explored.

  6. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies

    Science.gov (United States)

    Ucar, Ikrime O.; Erbil, H. Yildirim

    2012-10-01

    This study investigates the effect of surface roughness, wettability, water contact angle hysteresis (CAH) and wetting hysteresis (WH) of polymeric substrates to the water drop condensation rate. We used five polyolefin coatings whose surface free energies were in a close range of 30-37 mJ/m2 but having different surface roughness and CAH. The formation of water breath figures was monitored at a temperature just below the dew point. The initial number of the condensed droplets per unit area (N0) and droplet surface coverage were determined during the early stage of drop condensation where the droplet coalescence was negligible. It was found that the mean drop diameter of condensed droplets on these polymer surfaces grow according to a power law with exponent 1/3 of time, similar to the previous reports given in the literature. It was determined that surface roughness and corresponding CAH and WH properties of polymers have important effects on the number of nucleation sites and growth rate of the condensed water droplets. N0 values and the surface coverage increased with the increase in surface roughness, CAH and WH of the polymer surfaces. The total condensed water drop volume also increased with the increase in surface roughness in accordance with the increase of the number of nucleated droplets.

  7. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  8. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive

  9. Synthesis of water-dispersible poly-l-lysine-functionalized magnetic Fe3O4-(GO-MWCNTs) nanocomposite hybrid with a large surface area for high-efficiency removal of tartrazine and Pb(II).

    Science.gov (United States)

    Hu, Dan; Wan, Xiaodong; Li, Xiaohui; Liu, Jianguo; Zhou, Chunhua

    2017-03-07

    In this study, a novel, effective and environment-friendly methods was used to prepare poly-l-lysine (PLL)-functionalized magnetic Fe3O4-(GO-MWCNTs) hybrid composite with large surface area and abundant hydroxyl and amino groups. The as-prepared PLL-Fe3O4-(GO-MWCNTs) nanocomposite was systematically characterized by FT-IR, XRD, TGA, SEM, TEM, VSM and EDX. The PLL-Fe3O4-(GO-MWCNTs) hybrid composite exhibited excellent adsorption performance for the removal of a dye (tartrazine) and a heave metal (Pb(II)). The result showed that adsorption of Pb(II) reached equilibrium in 30min and adsorption of tartrazine reached equilibrium in approximately 60min. Most importantly, PLL-Fe3O4-(GO-MWCNTs) hybrid possesses high adsorption capacity, rapid separation, and less time-consuming. The equilibrium adsorption capacity was 1038.42mgg(-1) for Pb(II) and 775.19mgg(-1) for tartrazine under the optimal conditions. These two pollutants removal were found to obey Langmuir adsorption model, while the kinetics of adsorption followed pseudo-second-order kinetic model. A possible adsorption mechanism has been proposed where the chelation between PLL and Pb(II) or electrostatic interaction between GO and tartrazine. These results demonstrated the potential applications of PLL-Fe3O4-(GO-MWCNTs) hybrid composite in deep-purification of polluted water. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  11. Method of and device for detecting oil pollutions on water surfaces

    Science.gov (United States)

    Belov, Michael Leonidovich; Gorodnichev, Victor Aleksandrovich; Kozintsev, Valentin Ivanovich; Smimova, Olga Alekseevna; Fedotov, Yurii Victorovich; Khroustaleva, Anastasiva Michailovnan

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  12. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    Science.gov (United States)

    Snyder, Daniel T.

    2008-01-01

    Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and

  13. On semiautomatic estimation of surface area

    DEFF Research Database (Denmark)

    Dvorak, J.; Jensen, Eva B. Vedel

    2013-01-01

    . For convex particles, the estimator is equal to four times the area of the support set (flower set) of the particle transect. We study the statistical properties of the flower estimator and compare its performance to that of two discretizations of the flower estimator, namely the pivotal estimator...

  14. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  15. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  16. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  17. The Surface Chemical Properties of Novel High Surface Area Solids ...

    African Journals Online (AJOL)

    and MFA3 are the result of the high chromium content in the original ash (UFA1). ... ties has a significant influence on the crystal form produced during zeolite ... that the surface is enriched in Si compared with the bulk compo- sition. This is ...

  18. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  19. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  20. Method for producing high surface area chromia materials for catalysis

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe; Tillotson, Thomas; Hrubesh, Lawrence; Simpson, Randall

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  1. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    Science.gov (United States)

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  4. Why Do We Need the Derivative for the Surface Area?

    Science.gov (United States)

    Hristova, Yulia; Zeytuncu, Yunus E.

    2016-01-01

    Surface area and volume computations are the most common applications of integration in calculus books. When computing the surface area of a solid of revolution, students are usually told to use the frustum method instead of the disc method; however, a rigorous explanation is rarely provided. In this note, we provide one by using geometric…

  5. 30 CFR 57.17001 - Illumination of surface working areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Illumination of surface working areas. 57.17001 Section 57.17001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Illumination § 57.17001 Illumination of surface working areas. Illumination sufficient to provide safe...

  6. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    Science.gov (United States)

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-22

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  7. Geology and water quality at selected locations in the San Antonio area, Texas, Progress Report, 1969

    Science.gov (United States)

    Reeves, R.D.; Blakey, J.F.

    1970-01-01

    The Edwards aquifer is the principal source of water supply for the San Antonio area. Increasing urban development on or adjacent to the recharge area of the aquifer is causing great concern because of possible pollution of the ground water. A detailed map of the surface geology has been prepared for areas where the greatest threat of pollution exists. Water-quality data are being collected throughout the San Antonio area to provide background reference information and to detect any current pollution of the ground water in the Edwards and associated limestones.

  8. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  9. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  10. 77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...

    Science.gov (United States)

    2012-08-20

    ... Administration. Title: Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities ] and Surface Work... Safety and Health Administration Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration,...

  11. 胶州湾湿地海域水体和表层沉积物环境质量评价%Environmental aualitv assessment of water body and surface sediment in the sea area of Jiaozhou Bay wetland

    Institute of Scientific and Technical Information of China (English)

    马洪瑞; 陈聚法; 崔毅; 赵俊; 杨风

    2011-01-01

    Based on the investigation data from 48 sampling stations in the sea area of Jiaozhou Bay wetland in 2009, and by using Nemerow index, eutrophication index ( El) , and Hakanson potential ecological risk index, an assessment was conducted on the environmental quality of water body and surface sediment in the sea area. According to the assessment on the 16 indicators including pH, dissolved oxygen ( DO) , dissolved inorganic nitrogen ( DIN) , dissolved inorganic phosphorous (DIP) , chemical oxygen demand (CODMn) , petroleum hydrocarbons, Cu, Zn, Pb, Cd, Hg, As, hexachlorocyolohexane (HCH) , dichlorodiphenyltrichloroethane (DDT) , conform, and faecal coli-form, the water quality was at moderate and serious pollution level in the tidal reach of Dagu River, at slight and moderate pollution level in the intertidal zone, and at slight pollution level in the shallow sea. The eutrophication level differed markedly with the regions, being very serious in the tidal reach of Dagu River (El value 58. 13-327. 89), serious in the intertidal zone (El value 1. 34-19. 96) , and slight in the shallow sea (El value 0. 65-2. 10). The surface sediments in the sea area were basically at slight pollution level. The sediment quality was at slight pollution level in the tidal reach of Dagu River, at slight and moderate pollution level in the intertidal zone, and at cleaner and slight pollution level in the shallow sea. The pollution parameter ( C/ ) and contamination index (Cd) of the heavy metals in the surface sediments were low, suggesting that the pollution de-gree was at a lower level. The Cu and Zn were the primary pollution factors in the sediments. The potential ecological risk parameter (£,') and risk index (RI) of the heavy metals in the surface sediments were lower, indicating a slight ecological risk of heavy metals pollution.%基于2009年对胶州湾湿地48个站点的调查数据,采用内梅罗(Nemerow)指数、富营养指数(EI)和Hakanson潜在生态危害指数法对

  12. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  13. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  14. Preparation and Characterization of Porous Yttrium Oxide Powders with High Specific Surface Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The porous cubic yttrium oxides with high specific surface area were prepared by the explosive decomposition of yttrium nitrate and its complex formed with methyl salicylate. The specific surface area and properties of powders synthesized at various temperatures were characterized using BET, X-ray diffraction (XRD), infrared spectra (IR), and scanning electron microscopy (SEM). The results indicate that the highest specific surface area is found to be 65.37 m2*g-1 at the calcination temperature of 600 ℃, and then decreases to 20.33 m2*g-1 with the calcination temperature rising from 600 to 900 ℃. The powders show strong surface activity for adsorping water and carbon dioxide in air, which also decreases with the rising calcination temperature. The drop both on the surface area and surface activity of samples at higher temperatures may be due to pore-narrowing(sintering) effects.

  15. A method for increasing the surface area of perovskite-type oxides

    Indian Academy of Sciences (India)

    S Banerjee; V R Choudhary

    2000-10-01

    A method based on hydrothermal treatments is described for increasing the surface area of sintered ABO3-type perovskite oxides. Influence of hydrothermal treatments, such as water treatment at 125-300°C under autogeneous pressure and steam treatment at 350-800°C, to low surface area (or sintered) LaCoO3 and LaMnO3 perovskite oxides on their surface properties (viz. surface area, crystal size and morphology and surface La/(Co or Mn) ratio) and also catalytic activity in complete combustion of methane at different temperatures (450-600°C) has been thoroughly investigated. The hydrothermal treatments result in the activation of the perovskite oxides by increasing their surface area very markedly.

  16. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    Science.gov (United States)

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the

  17. Indexing aortic valve area by body surface area increases the prevalence of severe aortic stenosis

    DEFF Research Database (Denmark)

    Jander, Nikolaus; Gohlke-Bärwolf, Christa; Bahlmann, Edda

    2014-01-01

    To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are......To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are...

  18. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  19. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  20. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  1. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  2. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  3. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  4. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  5. 78 FR 21343 - New Ski Area Water Rights Clause

    Science.gov (United States)

    2013-04-10

    ... Forest Service New Ski Area Water Rights Clause AGENCY: Forest Service, USDA. ACTION: Notice of meeting... rights clause for ski area permits issued by the Forest Service. There will be several stations at the... Service will consider in developing a new ski area water rights clause. There will be another...

  6. Quantifying area changes of internationally important wetlands due to water consumption in LCA.

    Science.gov (United States)

    Verones, Francesca; Pfister, Stephan; Hellweg, Stefanie

    2013-09-03

    Wetlands harbor diverse species assemblages but are among the world's most threatened ecosystems. Half of their global area was lost during the last century. No approach currently exists in life cycle impact assessment that acknowledges the vulnerability and importance of wetlands globally and provides fate factors for water consumption. We use data from 1184 inland wetlands, all designated as sites of international importance under the Ramsar Convention, to develop regionalized fate factors (FF) for consumptive water use. FFs quantify the change of wetland area caused per m(3)/yr water consumed. We distinguish between surface water-fed and groundwater-fed wetlands and develop FFs for surface water and groundwater consumption. FFs vary over 8 (surface water-fed) and 6 (groundwater-fed) orders of magnitude as a function of the site characteristics, showing the importance of local conditions. Largest FFs for surface water-fed wetlands generally occur in hyper-arid zones and smallest in humid zones, highlighting the dependency on available surface water flows. FFs for groundwater-fed wetlands depend on hydrogeological conditions and vary largely with the total amount of water consumed from the aquifer. Our FFs translate water consumption into wetland area loss and thus become compatible with life cycle assessment methodologies of land use.

  7. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  8. Water Residence Times and Runoff Sources Across an Urbanizing Gradient (Croton Water Supply Area, New York)

    Science.gov (United States)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; McDonnell, J. J.

    2002-12-01

    Water residence times and nutrient budgets were measured in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1km 2) have different levels of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on impervious surfaces and slow flow through the subsurface) and different watershed landscape characteristics (wet zones, hillslopes). Throughfall, stream water, soil water and groundwater in the saturated zone were sampled bi-weekly during a period of up to 2 years and analyzed for major chemical constituents, oxygen-18 content, and nitrogen species. Mean residence times of the stream water of about 30 weeks were estimated using Oxygen-18 and Helium-3/Tritium isotopes for all 3 watersheds. There was no significant difference in mean residence times among the three study watersheds, despite their different levels of urbanization. However, residence times from a few weeks up to ca 2 years vary within the watersheds, depending on the local runoff sources and their geographical conditions (riparian and hillslope topography, aquifer type). The runoff sources were quantified for selected streamwater and groundwater sampling sites using the end member mixing analysis technique (EMMA). The mixing analysis shows the impact of the runoff sources on runoff generation in the selected watersheds, i.e. it shows how big is the impact of urbanization on the runoff generation and how big is the natural control. These results may be useful in watershed management and planning of further urbanization in the Croton water supply area.

  9. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    Science.gov (United States)

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-07-16

    During October 2012 through March 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (EPA) Region 4, Superfund Section, conducted borehole geophysical logging, surface geophysical surveys, and water-quality profiling in selected wells and areas to characterize or delineate the extent of elevated subsurface electrical conductivity at the EPA Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina. Elevated electrical conductivity measured at the site may be related to native rock materials, waste rock disposal areas used in past operations, and (or) groundwater having elevated dissolved solids (primarily metals and major ions) related to waste migration. Five shallow screened wells and four open-borehole bedrock wells were logged by using a suite of borehole tools, and downhole water-quality profiles were recorded in two additional wells. Well depths ranged from about 26 to 300 feet below land surface. Surface geophysical surveys based on frequency-domain electromagnetic and distributed temperature sensing (DTS) techniques were used to identify areas of elevated electrical conductivity (Earth materials and groundwater) and potential high dissolved solids in groundwater and surface water on land and in areas along the northern unnamed tributary at the site.

  10. Refined Modeling of Water Temperature and Salinity in Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongming; ZHENG Yonghong; QIU Dahong

    2000-01-01

    The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k- turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperatureand salinity in coastal areas has been developed to simulate the seasonal variations of water temperatureand salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety ofhydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay,Japan.

  11. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu ... of the ground water distribution of the settlements around cement factories in ... The concentrations of lead and cadmium are above the World Health ...

  12. Water resources of the Hartford-New Britain area, Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum; Tanski, D.; Thomas, M.P.

    1964-01-01

    The Hartford-New Britain area includes the metropolitan areas of Hartford and New Britain and parts of several adjoining towns. Water used in the area is withdrawn from the principal streams and aquifers at an average rate of 463.5 mgd (million gallons per day). Sufficient water is available from these sources to meet present requirements and those for many years to come, although local shortages may develop in some areas as the result of problems of distribution and treatment. About 98 percent of all water used in 1957 was from surface sources. More than 425 mgd was required by industry, and about 23 mgd was for domestic water supply. The Farmington River upstream from Collinsville is the chief source of water for public supply in the Hartford-New Britain area, whereas the Connecticut River is the chief source of water for industry. An average of about 40 mgd is withdrawn from the upper Farmington River for public supply, and about 404 mgd is withdrawn by industry from the Connecticut River for nonconsumptive use and returned directly to the stream. The Connecticut River is the source of the largest quantity of water in the area. The flow of the stream at Thompsonville may be expected to equal or exceed about 2,000 mgd 95 percent of the time, and the flow should not be less than this amount for periods longer than 12 days. The flow below Thompsonville is increased by additions from the Scantic, Farmington, Park, and Hockanum Rivers and from numerous smaller tributary streams. The available streamflow data for the aforementioned rivers have been summarized graphically in the report. The chemical quality of water in the Connecticut River is good, except for short periods when the iron concentration is high. In addition to the removal of iron some other treatment may be necessary if water from the Connecticut River is used for special purposes. The chemical quality of the tributary streams is good, except the quality of the Park River, which is poor. Thus the

  13. Some Inequalities for Lp-mixed Affine Surface Area

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-yang

    2012-01-01

    In this paper,the concepts of the ith Lp-mixed affine surface area and Lp-polar curvature images are introduced,some new inequalities connecting these new notions with Lp-centroid bodies and p-Blaschke bodies are showed.Moreover,a Blaschke-Santaló type inequality for Lp-mixed affine surface area is established.Our results also imply the similar to the inequalities for Marcus-Lopes,Bergstrom and Ky Fan.

  14. High surface area carbon and process for its production

    Science.gov (United States)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  15. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  16. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    Science.gov (United States)

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC.

  17. Water study report : Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary purpose of this study was to assemble and evaluate water records that are in the files of the Truckee-Carson Irrigation District, Fallon, Nevada. The...

  18. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  19. Influence of building resolution on surface water inundation outputs

    Science.gov (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  20. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  1. Determination of Surface Area of Red Mud and BeringiteUsing Methylene Blue Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of methylene blue (MB) on three soil amendments, red mud from Hungary, red mud from UK and beringite from Belgium, was studied to determine the surface areas of the amendments using a 0.005 mol L-1 NaCl solution and deionised water as background solutions. The surface areas determined by the methylene blue method in the 0.005 mol L-1 NaCl solution were 3.357, 2.340 and 5.576 m2 g-1 for red nmd (Hungary), red mud (UK) and beringite, respectively, slightly lower than those in the deionised water system. The largest surface area of beringite suggested that the MB could adsorb effectively on the interlayer surface of illite. The effect of NaCl on the surface areas was relatively small and may therefore be ignored. Both the 0.005 mol L-1 NaCl solution and deionised water could be used as a background solution for measurement of surface area of oxide-rich materials.

  2. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  3. Chromium in surface water and groundwater in the surrounding area of a tannery: relationships with water quality baseline, Elena, Cordoba. Argentina; Cromo en aguas subterraneas y superficiales en el entorno de una curtiembre, relacion con valores de fondo natural. Elena, Cordoba. Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Matteoda, E.; Blarasin, M.; Damilano, G.; Cabrera, A.; Giuliano Albo, J.

    2009-07-01

    The basin of the El Barreal stream is a dominantly rural area in which groundwater is used for all activities whereas the stream is used as sink of residues and effluents. The existence of a tannery, which discharge the effluents into a wetland (which is drained by the stream), reveals the need to study the presence of Chromium in surface and groundwater and to compare values derived from pollution with those corresponding to the natural water baseline values. Fifty three samples of surface and groundwater were abstracted and chemical analyses were made, including total Chromium in water and plants. The chemical analysis results were studied by means of conventional and statistical techniques. The local and regional geological characteristics allow us to interpret that Chromium in water is derived from source minerals, being possible to stand out that high values probably are related to nearby serpentinite bodies.The values of total chrome in surface and groundwater are included in the natural quality baseline range calculated for this basin (0,25-5ug/L), exempting those samples with higher values linked to sites with farming activities and to the wetland environment where the Chromium effluent is discharged. In the last place, Chromium was retained in soil and plants whereas the aquifer was affected by a contaminant plume of total dissolved solids because of advective-dispersive transport. In the 2009 monitoring survey, a small increase of Chromium in groundwater was detected in relation to that of 2005, being assumed that partial desorption of Chromium is taking place from the solid phase. (Author) 19 refs.

  4. How water meets a hydrophobic surface: Reluctantly and with flucuations

    Science.gov (United States)

    Poynor Torigoe, Adele Nichole

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low density region forms near the surface. This depleted region would have implications in such diverse areas as colloidal self-assembly, and the boundary conditions of fluid flow. However, the literature still remains divided as to whether or not such a depleted region exists. To investigate the existence of this layer, we have employed three surface-sensitive techniques, time-resolved phase-modulated ellipsometry, surface plasmon resonance, and X-ray reflectivity. Both ellipsometry and X-ray reflectivity provide strong evidence for the low-density layer and illuminate unexpected temporal behavior. Using all three techniques, we found surprising fluctuations at the interface with a non-Gaussian distribution and a single characteristic time on the order of tenths of seconds. This information supports the idea that the boundary fluctuates with something akin to capillary waves. We have also investigated the dependence of the static and dynamic properties of the hydrophobic/water interface on variables such as temperature, contact angle, pH, dissolved gasses, and sample quality, among others, in a hope to discover the root of the controversy in the literature. We found that the depletion layer is highly dependent on temperature, contact angle and sample quality. This dependence might explain some of the discrepancies in the literature as different groups often use hydrophobic surfaces with different properties.

  5. Quantifying object and material surface areas in residences

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  6. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  7. Surface area considerations for corroding N reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to {open_quotes}true{close_quotes} surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated {open_quotes}true{close_quotes} surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage.

  8. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  9. Impacts of tourism in Slovenian alpine areas on water

    Directory of Open Access Journals (Sweden)

    Dejan Cigale

    2007-12-01

    Full Text Available Tourism is not only an important economic activity but also a source of pressures on environment, including water. On the other hand appropriate water quality is of great importance for tourism development. The contribution of tourism to pressures on water is important, but not dominant. Exceptions are impacts of tourism on the uninhabited areas, where tourism and recreation are the main sources of pressures on water resources. Nonetheless, quantities of used and sewage water are relatively modest.

  10. Estimated water requirements : Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An estimated 84,850 acre-feet of water are required annually to maintain 23,231 acres of marsh currently developed on the Stillwater WMA. An additional 34,003...

  11. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  12. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  13. Impact of war, precipitation, and water management on quantity of water resources in the Tigris/Euphrates area

    Science.gov (United States)

    Hasan, Mejs; Moody, Aaron

    2017-04-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region. In this research, we use the normalized difference water index (NDWI) in order to monitor changes in the extent of various water bodies over the time span of the Landsat 4, 5, 7, and 8 satellites (1984-present). We focused on Mosul and Haditha dam lakes, located on the Tigris and Euphrates Rivers, respectively, each of which has experienced changes in sovereignty over the last few years of conflict. We established two areas, one land and one water, on each image, plotted the distributions of all NDWI values for each area, and used the number of standard deviations between the two distributions in order to set a dynamic NDWI threshold for each image. Using this threshold, we determined water pixels and lake surface area, and computed daily percent change in lake extent between images. Furthermore, we took account of explanatory water resource variables, such as upstream dam management (via surface extent of upstream Turkish dams), precipitation (via globally-compiled databases), evaporation (based on surface area decreases during non-rainy months), and irrigation withdrawals (based on MODIS Enhanced Vegetation Indices). We used these explanatory variables in order to build a general model of expected dam lake surface extent, and we looked to see if anomalies from expected surface area corresponded with periods of conflict. We found that the recent years of conflict do not appear to have had as much impact on the Mosul and Haditha dam lakes as did the conflicts related to the earlier Gulf Wars. The dam lakes have recorded an overall decrease in surface area simultaneous to increases of upstream dams. A strong seasonal signal driven by springtime Turkish snowmelt and summer evaporation is also evident.

  14. Hydrogeology and ground-water quality of Lannon-Sussex area, Northeastern Waukesha County, Wisconsin

    Science.gov (United States)

    Cotter, R.D.

    1986-01-01

    The Silurian dolomite aquifer in the Lannon-Sussex area of southeastern Wisconsin is overlain by glacial deposits, but is within 8 ft of the land surface over 15% of the study area. The proximity of the dolomite aquifer to the land surface makes it susceptible to contamination from man 's activities. Water from the aquifer was analyzed and several characteristics were monitored in a 30-sq-mi area of Waukesha County, including: water temperature, calcium, magnesium, potassium, strontium, alkalinity, chlorides, fluorides, sulfates, nitrites, nitrates, nitrogen, iron, manganese, hardness, and pH.

  15. Water needs and women's health in the Kumasi metropolitan area, Ghana.

    Science.gov (United States)

    Buor, Daniel

    2004-03-01

    This paper examines the impact of water fetching by women and the quality of water during periods of water scarcity on the health of women in the Kumasi metropolitan area. A sample of 210 women drawn using systematic random procedure is used for the study. Formal interview is the main instrument used. The survey has established that income, quality of water, hours spent fetching water during scarcity and age are the main factors influencing women's health in the metropolis during water scarcity. In both the core and periphery, the water-related problem influencing health is hours spent fetching water during scarcity. An empirical model on water needs and women's health has emerged from the survey. Recommendations have been made on strategies to ensure regular volume of surface water, effective management of scarce water resources with the participation of women, and ensuring gender equity in domestic services.

  16. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    Directory of Open Access Journals (Sweden)

    Francisco Maduell

    2015-05-01

    Conclusion: The increase in 40% and 80% of dialyzer surface area entails an increase in convective volume of 6 and 16% respectively, showing minimal differences both in convective volume and clearance capacity when UFC was greater than 45 mL/h/mmHg. It is advisable to optimise dialyser efficiency to the smallest surface area possible, adjusting treatment prescription.

  17. A framework for predicting surface areas in microporous coordination polymers.

    Science.gov (United States)

    Schnobrich, Jennifer K; Koh, Kyoungmoo; Sura, Kush N; Matzger, Adam J

    2010-04-20

    A predictive tool termed the linker to metal cluster (LiMe) ratio is introduced as a method for understanding surface area in microporous coordination polymers (MCPs). Calibrated with geometric accessible surface area computations, the LiMe ratio uses molecular weight of building block components to indicate the maximum attainable surface area for a given linker and metal cluster combination. MOF-5 and HKUST-1 are used as prototypical structures to analyze MCPs with octahedral M(4)O(CO(2)R)(6) and paddlewheel M(2)(CO(2)R)(4) metal clusters. Insight into the effects of linker size, geometry, number of coordinating groups, and framework interpenetration is revealed through the LiMe ratio analysis of various MCPs. Experimental surface area deviation provides indication that a material may suffer from incomplete guest removal, structural collapse, or interpenetration. Because minimal data input are required, the LiMe ratio surface area analysis is suggested as a quick method for experimental verification as well as a guide for the design of new materials.

  18. Influence of surface morphology and surface area on release behavior of hydrogen isotopes in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Deqiong, E-mail: zhudeqiong@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Oda, Takuji [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Tanaka, Satoru [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan (Japan)

    2014-11-15

    Surface processes have profound influence on tritium release behavior in ceramic breeder materials. In this paper, the release behavior of hydrogen isotopes in LiNbO{sub 3} is studied by thermal desorption spectroscopy (TDS) with focusing on the influence of the surface morphology and surface area. It is found that the amount of surface hydroxyl groups is proportional to the specific surface area and can be decreased by smoothing the surface roughness through heating pretreatment at high temperatures. The isotope exchange reaction between the surface hydroxyl groups and water molecules residue in the system is discussed and turns out to proceed fast. The release behavior of hydrogen isotopes in LiNbO{sub 3} is compared with that in Li{sub 2}TiO{sub 3} studied in our previous work. It reveals that LiNbO{sub 3} and Li{sub 2}TiO{sub 3} have similar surface environment and similar concentration of surface hydroxyl groups with the level of 10{sup 20} m{sup −2}. The formation mechanism of hydroxyl groups on the surface is discussed and a model to explain the experimental observations is proposed.

  19. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  20. Features of wind field over the sea surface in the coastal area

    Science.gov (United States)

    Monzikova, A. K.; Kudryavtsev, V. N.; Myasoedov, A. G.; Chapron, B.; Zilitinkevich, S. S.

    2017-01-01

    In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the "smooth" water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land-Lake Chudskoe-land-Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.

  1. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence...

  2. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.

  3. STEREOLOGICAL ESTIMATION OF SURFACE AREA FROM DIGITAL IMAGES

    Directory of Open Access Journals (Sweden)

    Johanna Ziegel

    2011-05-01

    Full Text Available A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J. Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius. For general shapes bounds for the asymptotic expected relative worst case error are given. A simulation example is discussed for surface area estimation based on 2×2×2-configurations.

  4. The "nylon T" intrauterine device: surface area versus copper adjunct.

    Science.gov (United States)

    Kamal, I; Shaaban, H; Ezzat, R; Zaki, S

    1981-04-01

    A study to evaluate the relative effect of copper ions and increased surface area added through the wiring of the stem of the inert "T" device was performed. The experimental design was set up to test a hypothesis that the effectiveness of a copper device is a result of the increase in surface area of the IUD and not a result of the copper itself. Ninety-eight TCu 200 mm2 devices were stripped of their copper wire and rewound with a "nylon" thread of the same length, caliber and surface area. the devices were then repacked and gas sterilized. The 98 "nylon T" devices were fitted early in 1977 and followed up for 2 years. The major finding was that the replacement of copper wire on the "copper T" device by a "nylon" thread, "nylon T", had shown a comparable antifertility effect.

  5. Observed Asteroid Surface Area in the Thermal Infrared

    Science.gov (United States)

    Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  6. A provider-based water planning and management model--WaterSim 4.0--for the Phoenix Metropolitan Area.

    Science.gov (United States)

    Sampson, D A; Escobar, V; Tschudi, M K; Lant, T; Gober, P

    2011-10-01

    Uncertainty in future water supplies for the Phoenix Metropolitan Area (Phoenix) are exacerbated by the near certainty of increased, future water demands; water demand may increase eightfold or more by 2030 for some communities. We developed a provider-based water management and planning model for Phoenix termed WaterSim 4.0. The model combines a FORTRAN library with Microsoft C# to simulate the spatial and temporal dynamics of current and projected future water supply and demand as influenced by population demographics, climatic uncertainty, and groundwater availability. This paper describes model development and rationale. Water providers receive surface water, groundwater, or both depending on their portfolio. Runoff from two riverine systems supplies surface water to Phoenix while three alluvial layers that underlie the area provide groundwater. Water demand was estimated using two approaches. One approach used residential density, population projections, water duties, and acreage. A second approach used per capita water consumption and separate population growth estimates. Simulated estimates of initial groundwater for each provider were obtained as outputs from the Arizona Department of Water Resources (ADWR) Salt River Valley groundwater flow model (GFM). We compared simulated estimates of water storage with empirical estimates for modeled reservoirs as a test of model performance. In simulations we modified runoff by 80%-110% of the historical estimates, in 5% intervals, to examine provider-specific responses to altered surface water availability for 33 large water providers over a 25-year period (2010-2035). Two metrics were used to differentiate their response: (1) we examined groundwater reliance (GWR; that proportion of a providers' portfolio dependent upon groundwater) from the runoff sensitivity analysis, and (2) we used 100% of the historical runoff simulations to examine the cumulative groundwater withdrawals for each provider. Four groups of water

  7. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 4

    Science.gov (United States)

    Planert, Michael; Pritchett, J.L.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the Alabama Department of Environmental Management, is conducting a series of geohydrologic studies to delineate the major aquifers (those which provide water for public supplies) in Alabama, their recharge areas, and areas susceptible to contamination. This report summarizes these factors for two major aquifers in Area 4--Calhoun, Jefferson, St. Clair, Shelby, and Talladega Counties. The major aquifers in the study area are in Cambrian and Ordovician and Mississippian rocks. Highest yields from aquifers are associated with solution openings in carbonate rocks. Springs in the area provide substantial amounts of water for municipal supply. Coldwater Spring provides 17 million gal of water/day to the city of Anniston, the largest groundwater user in the area. All recharge areas for the aquifers are susceptible to contamination from land surface. Two conditions exist in the study area that may cause the aquifers to be highly susceptible to contamination on a local scale: fracturing of rock materials due to faulting and the production of a porous cherty soil through weathering. Where sinkholes are present, there may be a direct connection between the land surface and the aquifer. Areas with sinkholes are considered to be extremely susceptible to contamination. (USGS)

  8. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  9. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  10. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  11. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    OpenAIRE

    N. S. Ahmad Zauzi; Zakaria, M. Z. H.; R. Baini; Rahman, M. R.; N. Mohamed Sutan; Hamdan, S.

    2016-01-01

    Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH) on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipita...

  12. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  13. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  14. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  15. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  16. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  17. Portrayal of fuzzy recharge areas for water balance modelling - a case study in northern Oman

    Science.gov (United States)

    Gerner, A.; Schütze, N.; Schmitz, G. H.

    2012-06-01

    The research project IWAS Oman aims at implementing integrated water resources management (IWRM) to a pilot area in Al Batinah, Oman. This requires - amongst others - a realistic assessment of groundwater recharge to the alluvial aquifer which obviously has to be based upon the extension of recharge areas. In this context, the subsequent investigation focuses on the role of vagueness as regards the portrayal of the areas that provide water for particular aquifers. For that purpose, concepts of fuzziness in spatial analysis are applied to describe possible extents of recharge areas. In general, any water assessment is based on clearly delineated boundaries. However, in many cases, aquifer recharge areas are not clearly defined due to the nature of the study area. Hence, surfaces indicating a gradual membership to the recharge area of a particular aquifer are used in this investigation. These surfaces, which are based on available qualitative information, visualise a potential range of spatial extension. With regard to water balance calculations, functional relationships in tabular form are derived as well. Based on a regionalisation approach providing spatially distributed recharge rates, the corresponding recharge volume is calculated. Hence, this methodology provides fuzzy input data for water balance calculations. Beyond the portrayal of one singular aquifer recharge area, this approach also supports the complementary consideration of adjacent areas.

  18. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    Science.gov (United States)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment

  19. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    Science.gov (United States)

    1976-01-01

    the river as surface supply. This second area lies mostly north of the Spokane River extending up the val- ley known as Rathdrum Prairie and includes...4 10. 2-29 I .~ -A- IvA -4 -4 IS I rp4r 1-4 - 4NCs 4~ 10. 2- 3o * r~tar gg~wr 4 . fAPPENDIX I en00 -4 - r., 0 CM- WMC q ~~0 0r0 4. .44 . VFog 4102A3

  20. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  1. Evaporating behaviors of water droplet on superhydrophobic surface

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  2. Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region

    NARCIS (Netherlands)

    Güntner, Andreas; Krol, Martinus S.; de Araújo, José Carlos; Bronstert, Axel

    2004-01-01

    Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará i

  3. Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region

    NARCIS (Netherlands)

    Güntner, Andreas; Krol, Martinus S.; de Araújo, José Carlos; Bronstert, Axel

    2004-01-01

    Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará

  4. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  5. Stereological estimation of surface area from digital images

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J. Ra....... For general shapes bounds for the asymptotic expected relative worst case error are given. A simulation example is discussed for surface area estimation based on 2×2×2-configurations.......A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J....... Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius...

  6. Evaluation of Five Formulae for Estimating Body Surface Area of ...

    African Journals Online (AJOL)

    in pediatric practice and child health is body surface area (BSA) ... Conclusion: Formulae by Boyd and Mosteller are the best BSA estimate for. Nigerian .... weight: (21.5 [7.6] kg vs. 20.8 [6.7] .... formula best fits with the “gold standard.” However ...

  7. Characterization of large area nanostructured surfaces using AFM measurements

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2012-01-01

    magnitude of the 3D surface amplitude parameters chosen for the analysis, when increasing the Al purity from 99,5% to 99,999%. AFM was then employed to evaluate the periodical arrangements of the nano structured cells. Image processing was used to estimate the average areas value, the height variation...

  8. Estimation of Specific Surface Area using Langmuir Isotherm ...

    African Journals Online (AJOL)

    Michael Horsfall

    13.884) units in multiple of 10-3km2kg-1. The reliability of the ... In this present study, the linear least- squares method via the correlation coefficient (R2) was used (Yuh,2006). ... specific surface area determination has been adopted widely for ...

  9. Estimating the global surface area of rivers and streams using satellite imagery

    Science.gov (United States)

    Allen, George; Pavelsky, Tamlin

    2017-04-01

    Global observational assessments of river and stream systems are based largely on gauge station data, which are fragmented and often limited to country-level statistics. This limitation severely impedes our understanding of global-scale hydrologic, geomorphic, and biogeochemical fluvial processes. In contrast, satellite remote sensing data provide a globally-consistent and spatially-continuous tool for studying rivers. Here we present a novel method estimate the total surface area of all rivers and stream globally using measurements from the recently-developed Global River Widths from Landsat (GRWL) database and field surveys. The surface area of rivers and streams is a key model parameter in global evaluations of greenhouse gas emissions from inland waters. Preliminary analysis suggests that rivers occupy a total area of 80 thousand square kilometers, or 0.58% of Earth's land surface. This result is 30% greater than the previous best estimate that is based on digital elevation models and gauge station measurements. Compared to previous regional assessments, we find that rivers and streams occupy a greater proportion of the land surface in the arctic and in the tropics, and a lower proportion of land surface in the United States and in Europe. Our results suggest that current estimates of greenhouse gas emissions from inland waters should be revised upwards to account for the greater abundance of river and stream surface area.

  10. Ground-water geology of the Bruneau-Grand View area, Owyhee County, Idaho

    Science.gov (United States)

    Littleton, Robert Thomas; Crosthwaite, E.G.

    1957-01-01

    The Bruneau-Grand View area is part of an artesian basin in northern Owyhee County, Idaho. The area described in this report comprises about 600 square miles, largely of undeveloped public domain, much of which is open, or may be opened, for desert-entry filing. Many irrigation-entry applications to the Federal Government are pending, and information about ground-water geology is needed by local citizens and well drillers, by Federal agencies that have custody of the land, and by local and State agencies that administer water rights. The areal geology and ground-water conditions in the Bruneau-Grand View area seemingly typify several basins in southwestern Idaho, and this study is a step toward definition and analysis of regional problems in ground-water geology and the occurrence and availability of ground water for irrigation or other large-scale uses. Owyhee County is subdivided physiographically into a plateau area, the Owyhee uplift, and the Snake River valley. The Bruneau-Grand View area is largely within the Snake River valley. The climate is arid and irrigation is essential for stable agricultural development. Nearly all usable indigenous surface water in the area is appropriated, including freshet flow in the Bruneau River, which is used for power generation at the C. J. Strike Dam. However, with storage facilities additional land could be irrigated, and some land may be irrigated with Snake River water if suitable reclamation projects are constructed. Sedimentary and igneous rocks exposed in the area range in age from Miocene to Recent. The igneous rocks include silicic and basic intrusive and extrusive bodies, and the sedimentary rocks are compacted stream and lake sediments. The rocks contain economically important artesian aquifers; the principal ones are volcanic rocks in which ground water is imperfectly confined beneath sediments of the Idaho formation, thus forming a leaky artesian system. The altitude of the piezometric surface of the artesian

  11. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  12. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  13. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  14. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and q

  15. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  16. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  17. A water policy and planning model for the Phoenix Metropolitan Area

    Science.gov (United States)

    Sampson, D. A.; Quay, R.

    2012-12-01

    City level water policy and management decisions are typically based on past experience and best "guess" estimates of future conditions. These analyses use a limited number of socio-economic, water supply, and water demand projections, often only a single one. Increasingly, however, water planners are beginning to realize that high uncertainty associated with population projections and water use trends, and with future water supply estimates, greatly limit their ability to adequately predict a city's water future. We suggest that water governance at the municipal level could greatly benefit from water planning tools that generate and analyze a large ensemble of possible future scenarios in population growth dynamics and water availability. We adapted our existing water supply model to create a demand-based water planning and analysis tool that can explore the potential effects of population growth, drought, climate change, and policy options on surface water supplies, water demand, and groundwater pumping for the Phoenix Metropolitan Area. Our advanced scenario framework can be used as a decision support tool (DST) by creating a broad spectrum of adaptive decision boundaries for a city's water planning horizon. This DST uses population estimates in conjunction with water use to estimate water demand, and legal rights in combination with estimates of groundwater, stream flows, and reservoir operations to estimate water supply. Policy options—water banking, the use of reclaimed water, etc.—permit evaluation of alternative governance strategies. In this contribution we compare and contrast two municipal water providers that have dramatically different growth projections and per capita water use, groundwater supplies, and water portfolios (one robust, the other not), examining potential, future water supply challenges under simulated climate change. Infrastructure elements for each water provider simulated. Presence of a state and rate are water-provider specific.

  18. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  19. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea

    Directory of Open Access Journals (Sweden)

    Hakkwan Kim

    2016-03-01

    Full Text Available The change in the impervious-pervious balance has significantly altered the stream water quality, and thus the threshold of the impervious surface area in the watershed has been an active research topic for many years. The objective of this study is to verify the correlation between impervious surfaces and water quality and to determine the threshold of the percentage of the impervious surface area (PISA for diagnosing the severity of future stream water quality problems in the watershed as well as regulating the PISA in Korea. Statistical results indicated that the PISA is a suitable indicator of water quality at the watershed scale and can illustrate the water quality problems caused by the impervious surface. In addition, the results from this study suggest that controlling the PISA within about 10% in watersheds is a fundamental strategy to mitigate the degradation of water quality.

  20. National Water-Quality Assessment (NAWQA) Area-Characterization Toolbox

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is release 1.0 of the National Water-Quality Assessment (NAWQA) Area-Characterization Toolbox. These tools are designed to be accessed using ArcGIS Desktop...

  1. Ground-water resources of the Bengasi area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Doyel, William Watson; Maguire, Frank J.

    1964-01-01

    The Benpsi area of Libya, in the northwestern part of the Province of Cyrenaica (Wilayat Barqah), is semiarid, and available ground-water supplies in the area are relatively small. Potable ground water from known sources is reserved for the present and future needs of the city, and no surface-water supplies are available in the area. This investigation to evaluate known, as well as potential, water supplies in the area was undertaken as part of a larger program of ground-water investigations in Libya under the auspices of the U. S. Operations Mission to Libya and the Government of Libya. A ground-water reservoir underlies the Bengasi area, in which the water occurs in solution channels, cavities, and other openings in Miocene limestone. The reservoir is recharged directly by rainfall on the area and by infiltration from ephemeral streams (wadis) rising in Al Jabal al Akhar to the east. In the Baninah and Al Fuwayhit areas the ground-water reservoir yields water of fair quality and in sufficient quantity for the current (1959) needs. of the Bengasi city supply. The test-drilling program in the area south and southeast of Bengasi indicates that water in sufficient quantity for additional public supply probably can be obtained in some localities from wells. The water, however, is moderately to highly mineralized and would require treatment or demineralization before it could be used for additional public supply. Much of the water could be used directly for irrigation, but careful attention would have to be given to cultivation, drainage, and cropping practices. The hazard of saltwater encroachment also exists if large-scale withdrawals are undertaken in the coastal zones.

  2. Regional Virtual Water Trade Strategy in Drought Area in China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]The aim was to analyze the virtual water trade in drought area in China.[Method]Taking agricultural production which was related to water resources as study object and by dint of opportunity cost and comparative advantage theory,water resources have been included into a series of state macro-objective models,such as economic growth,crops safety,and increase of people's well-fare.Virtual water resource strategy was verified effectively and relevant suggestions on virtual water trade in the drought...

  3. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  4. Water resources of the Grand Rapids area, Michigan

    Science.gov (United States)

    Stramel, G.J.; Wisler, C.O.; Laird, L.B.

    1954-01-01

    The Grand Rapids area, Michigan, has three sources from which to obtain its water supply: Lake Michigan, the Grand River and its tributaries, and ground water. Each of the first two and possibly the third is capable of supplying the entire needs of the area.This area is now obtaining a part of its supply from each of these sources. Of the average use of 50 mgd (million gallons per day) during 1951, Lake Michigan supplied 29 mgd; the Grand River and its tributaries supplied 1 mgd; and ground water supplied 20 mgd.Lake Michigan offers a practically unlimited source of potable water. However, the cost of delivery to the Grand Rapids area presents an economic problem in the further development of this source. Even without storage the Grand River can provide an adequate supply for the city of Grand Rapids. The present average use of the city of Grand Rapids is about 30 mgd and the maximum use is about 60 mgd, while the average flow of the Grand River is 2, 495 mgd or 3, 860 cfs (cubic feet per second) and the minimum daily flow recorded is 246 mgd. The quality and temperature of water in the Grand River is less desirable than Lake Michigan water. However, with proper treatment its chemical quality can be made entirely satisfactory.The city of Grand Rapids is actively engaged in a study that will lead to the expansion of its present water-supply facilities to meet the expected growth in population in Grand Rapids and its environs.Ground-water aquifers in the area are a large potential source of supply. The Grand Rapids area is underlain by glacial material containing a moderately hard to very hard water of varying chemical composition but suitable for most uses. The glacial outwash and lacustrine deposits bordering principal streams afford the greatest potential for the development of large supplies of potable ground water. Below the glacial drift, bedrock formations contain water that is extremely hard and moderately to highly mineralized. Thus the major sources of

  5. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  6. Surface area and conductivity of polyaniline synthesized under UV irradiation

    Science.gov (United States)

    Budi, S.; Fitri, E.; Paristiowati, M.; Cahyana, U.; Pusparini, E.; Nasbey, H.; Imaddudin, A.

    2017-02-01

    This paper reports our study on the synthesis of high electrical conductivity and surface area polyaniline using oxidative polymerization under UV light irradiation. The formation of emeraldine structures of polyaniline was revealed by major absorption bands of FTIR (Fourier transform infrared spectroscopy) spectra attributed to C-N stretching, C=C stretching in the benzenoid ring, C=C stretching in the quinoid ring and QNH+B stretching. XRD (X-ray diffractometer) measurements confirmed typical diffraction patterns with a crystallinity of 13% and 16% for polyaniline prepared under non-stirred and stirred reaction, respectively. SEM (Scanning electron microscope) studies showed more uniform morphology of polyaniline was obtained with stirring reaction process compare to those prepared without stirring. Surface analysis using SAA (surface area analyzer) showed that pure polyaniline with the relatively high surface area of ca.28 m2/g was successfully prepared in this work. Based on four point probe measurement, the prepared polyaniline possesses high conductivity which is important in electrode application.

  7. Promoting Sustainable Water Management in Area Development: A Regulatory Approach

    NARCIS (Netherlands)

    Buijze, Anoeska

    2015-01-01

    Water management is an integral part of sustainable area/urban development, and this article examines the interplay between water law and governance in three cases in the Netherlands to determine what sort of written law can provide normative guidance during governance processes, whilst at the same

  8. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces.

    Science.gov (United States)

    Wagner, P; Fürstner, R; Barthlott, W; Neinhuis, C

    2003-04-01

    Many plant surfaces are water-repellent because of a complex 3-dimensional microstructure of the epidermal cells (papillae) and a superimposed layer of hydrophobic wax crystals. Due to its surface tension, water does not spread on such surfaces but forms spherical droplets that lie only on the tips of the microstructures. Studying six species with heavily microstructured surfaces by a new type of confocal light microscopy, the number, height, and average distance of papillae per unit area were measured. These measurements were combined with those of an atomic force microscope which was used to measure the exposed area of the fine-structure on individual papillae. According to calculations based upon these measurements, roughening results in a reduction of the contact area of more than 95% compared with the projected area of a water droplet. By applying water/methanol solutions of decreasing surface tension to a selection of 33 water-repellent species showing different types of surface structures, the critical value at which wetting occurs was determined. The results impressively demonstrated the importance of roughening on different length scales for water-repellency, since extremely papillose surfaces, having an additional wax layer, are able to resist up to 70% methanol. Surfaces that lack papillae or similar structures on the same length scale are much more easily wetted.

  9. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  10. Evaluation of methods for delineating areas that contribute water to wells completed in valley-fill aquifers in Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Madden, Thomas M.

    1994-01-01

    Valley-fill aquifers in Pennsylvania are the source of drinking water for many wells in the glaciated parts of the State and along major river valleys. These aquifers area subject to contamination because of their shallow water-table depth and highly transmissive sediments. The possibility for contamination of water-supply wells in valley-fill aquifers can be minimized by excluding activities that could contaminate areas that contribute water to supply wells. An area that contributes water to a well is identified in this report as either an area of diversion, time-of-travel area, or contributing area. The area of diversion is a projection to land surface of the valley-fill aquifer volume through which water is diverted to a well and the time-of travel area is that fraction of the area of diversion through which water moves to the well in a specified time. The contributing area, the largest of three areas, includes the area of diversion but also incorporates bedrock uplands and other area that contribute water. Methods for delineating areas of diversion and contributing areas in valley-fill aquifers, described and compared in order of increasing complexity, include fixed radius, uniform flow, analytical, semianalytical, and numerical modeling. Delineated areas are considered approximations because the hydraulic properties and boundary conditions of the real ground-water system are simplified even in the most complex numerical methods. Successful application of any of these methods depends on the investigator's understanding of the hydrologic system in and near the well field, and the limitations of the method. The hydrologic system includes not only the valley-fill aquifer but also the regional surface-water and ground-water flow systems within which the valley is situated. As shown by numerical flow simulations of a well field in the valley-fill aquifer along Marsh Creek Valley near Asaph, Pa., water from upland bedrock sources can provide nearly all the water

  11. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    Science.gov (United States)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  12. Ground-Water Conditions and Studies in the Brunswick-Glynn County Area, Georgia, 2007

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2008-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited the development of the ground-water supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water-resources program with the City of Brunswick to monitor and assess the effect of ground-water development on saltwater contamination of the Floridan aquifer system. The potential development of alternative sources of water in the Brunswick and surficial aquifer systems also is an important consideration in coastal areas. During calendar year 2007, the cooperative water-resources monitoring program included continuous water-level recording of 13 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 22 wells to map the potentiometric surface of the Upper Floridan aquifer during July and August 2007; and collecting and analyzing water samples from 76 wells to map chloride concentrations in the Upper Floridan aquifer during July and August 2007. In addition, work was initiated to refine an existing ground-water flow model for evaluation of water-management scenarios.

  13. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  14. Water resources of the Milford area, Utah, with emphasis on ground water

    Science.gov (United States)

    Mower, R.W.; Cordova, R.M.

    1974-01-01

    The investigation of the water resources of the Milford area was made as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The primary purpose of this report is to provide basic hydrologic information needed for the effective administration and adjudication of water rights in the valley.

  15. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  16. The spatio-temporal variations of surface water quality in China during the "Eleventh Five-Year Plan".

    Science.gov (United States)

    Sun, Jingbo; Chen, Yi; Zhang, Zhao; Wang, Pin; Song, Xiao; Wei, Xing; Feng, Boyan

    2015-03-01

    Surface water pollution has become a hot issue in recent years in that deterioration of surface water quality has hampered the sustainable development of China's economy. Previous studies have analyzed regional changes of water pollutants, but very few have studied at a national scale. By analyzing 9 water quality parameters recorded at 422 sampling stations nationwide, this studies summarized the spatial and temporal variations of surface water quality in China in "11th Five-Year Plan" period. Research showed that China's surface water quality is improving. But, further deterioration in several areas cannot be ignored. Human activities including over-urbanization and farming exerted a negative impact on surface water quality. Though the water quality in the upstream of major rivers located in northwest China was relatively better than that of other areas, deterioration of surface water quality has begun to emerge in the area. Additionally, the surface water quality in southern China was better than that of northern China. But some studies indicated that surface water quality was likely to worsen at a high speed. It was also found that different water quality parameters are characterized by spatial and temporal variations. These studies pointed out, the government should pay more attention to in the areas where the water quality parameters significantly exceeded the national standards. These studies provides theoretical basis for the decision-making and implementation of macro-scale water quality control policies.

  17. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.

    Science.gov (United States)

    Zhu, H; Yu, Y; Ozkan, H E; Derksen, R C; Krause, C R

    2008-01-01

    Understanding the evaporation of pesticide droplets and wetting of Leaf surfaces can increase foliar application efficiency and reduce pesticide use. Evaporation time and wetted area of single pesticide droplets on hairy and waxy geranium leaf surfaces were measured under the controlled conditions for five droplet sizes and three relative humidities. The sprays used to form droplets included water, a nonionic colloidal polymer drift retardant, an alkyl polyoxyethylene surfactant, and an insecticide. Adding the surfactant into spray mixtures greatly increased droplet wetted area on the surfaces while droplet evaporation time was greatly reduced. Adding the drift retardant into spray mixture slightly increased the droplet evaporation time and the wetted area. Also, droplets had Longer evaporation times on waxy leaves than on hairy leaves for all droplet diameters and all relative humidity conditions. Increasing relative humidity could increase the droplet evaporation time greatly but did not change the the wetted area. The droplet evaporation time and wetted area increased exponentially as the droplet size increased. Therefore, droplet size, surface characteristics of the target, relative humidity, and chemical composition of the spray mixtures (water alone, pesticide, additives) should be included as important factors that affect the efficacy and efficiency of pesticide applications.

  18. Water Service Areas, Water Franchise Areas, Published in 2011, 1:1200 (1in=100ft) scale, CITY OF PORTAGE.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Service Areas dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2011. It is described as...

  19. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan

    2017-01-01

    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  20. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  1. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  2. Baltimore WATERS Test Bed -- Quantifying Groundwater in Urban Areas

    Science.gov (United States)

    Welty, C.; Miller, A. J.; Ryan, R. J.; Crook, N.; Kerchkof, T.; Larson, P.; Smith, J.; Baeck, M. L.; Kaushal, S.; Belt, K.; McGuire, M.; Scanlon, T.; Warner, J.; Shedlock, R.; Band, L.; Groffman, P.

    2007-12-01

    The purpose of this project is to quantify the urban water cycle, with an emphasis on urban groundwater, using investigations at multiple spatial scales. The overall study focuses on the 171 sq km Gwynns Falls watershed, which spans an urban to rural gradient of land cover and is part of the Baltimore Ecosystem Study LTER. Within the Gwynns Falls, finer-scale studies focus on the 14.3 sq km Dead Run and its subwatersheds. A coarse-grid MODFLOW model has been set up to quantify groundwater flow magnitude and direction at the larger watershed scale. Existing wells in this urban area are sparse, but are being located through mining of USGS NWIS and local well data bases. Wet and dry season water level synoptics, stream seepage transects, and existing permeability data are being used in model calibration. In collaboration with CUAHSI HMF Geophysics, a regional-scale microgravity survey was conducted over the watershed in July 2007 and will be repeated in spring 2008. This will enable calculation of the change in groundwater levels for use in model calibration. At the smaller spatial scale (Dead Run catchment), three types of data have been collected to refine our understanding of the groundwater system. (1) Multiple bromide tracer tests were conducted along a 4 km reach of Dead Run under low-flow conditions to examine groundwater- surface water exchange as a function of land cover type and stream position in the watershed. The tests will be repeated under higher base flow conditions in early spring 2008. Tracer test data will be interpreted using the USGS OTIS model and results will be incorporated into the MODFLOW model. (2) Riparian zone geophysical surveys were carried out with support from CUAHSI HMF Geophysics to delineate depth to bedrock and the water table topography as a function of distance from the stream channel. Resistivity, ground penetrating radar, and seismic refraction surveys were run in ten transects across and around the stream channels. (3) A finer

  3. 四川丘陵农区地表水水质时空变化与污染现状评价%Variation of surface water quality based on crop-livestock structure change and its pollution assessment in Sichuan Hilly Area

    Institute of Scientific and Technical Information of China (English)

    陈尚洪; 张晴雯; 陈红琳; 郑盛华; 吴铭; 梅旭荣; 刘定辉

    2016-01-01

    In order to analyze the influence of crop-livestock structure to the seasonal change and spatial variation characteristics of surface water in Sichuan Hilly Area, the water quality indexes including CODC r,TN, NO3--N, NH4+-N and TP were investigated from March 2013 to February 2015 in Zhongjiang county of Sichuan province, based on seven monitoring sections in Xiangtan river and four research points in Zhenggouwan small watershed, and the water quality pollution status was also evaluated by using single factor evaluation method and the comprehensive pollution index method. The outcomes showed that in low flow period, CODcr, NH4+-N and TP were major pollutants of surface water in seven monitoring sections in Xiangtan river, and their concentrations were 15.67% ,59.35% and 12.83% higher than that of the annual average value respectively. In high water period, the major pollutant was TN, and its concentration value increased by 19.27 % comparing with that of the annual average value. The concentrations of TN, NO3--N, NH4+-N and TP of surface water in different areas followed the order that Livestock Farms > Planting Regions & Livestock Farm > Planting Regions in Xiangtan river, and Large-scale pig farming’s waste emissions was the root cause of surface water pollution in Planting Regions & Livestock Farm area, and the CODcr, TN, NO3--N, NH4+-N and TP concentrations of surface water in this area increased by 17.79%, 198.15%, 132.10%, 219.85%, 567.57% respectively, comparing with that of Planting Regions. Both the Large scale pig farming in Xiangtan river and below designated size pig farming in Zhenggouwan small watershed significantly increased the total surface water pollution index, it also changed the type of surface water pollution, and in Planting Regions, the surface water pollution type was TN - CODcr pollution, but that was TN - TP pollution in both of Livestock Farms and Planting Regions & Livestock Farm area. According to the results of single factor

  4. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail: flaviano@ita.br; Simonetti, E.A.N.; Thim, G.P.

    2016-01-30

    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  5. Error bounds for surface area estimators based on Crofton's formula

    DEFF Research Database (Denmark)

    Kiderlen, Markus; Meschenmoser, Daniel

    2009-01-01

    and the mean is approximated by a finite weighted sum S(A) of the total projections in these directions. The choice of the weights depends on the selected quadrature rule. We define an associated zonotope Z (depending only on the projection directions and the quadrature rule), and show that the relative error...... in the sense that the relative error of the surface area estimator is very close to the minimal error.......According to Crofton’s formula, the surface area S(A) of a sufficiently regular compact set A in R^d is proportional to the mean of all total projections pA (u) on a linear hyperplane with normal u, uniformly averaged over all unit vectors u. In applications, pA (u) is only measured in k directions...

  6. Tokamak dust particle size and surface area measurement

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J.; Smolik, G.R.; Anderl, R.A.; Pawelko, R.J.; Hembree, P.B.

    1998-07-01

    The INEEL has analyzed a variety of dust samples from experimental tokamaks: General Atomics` DII-D, Massachusetts Institute of Technology`s Alcator CMOD, and Princeton`s TFTR. These dust samples were collected and analyzed because of the importance of dust to safety. The dust may contain tritium, be activated, be chemically toxic, and chemically reactive. The INEEL has carried out numerous characterization procedures on the samples yielding information useful both to tokamak designers and to safety researchers. Two different methods were used for particle characterization: optical microscopy (count based) and laser based volumetric diffraction (mass based). Surface area of the dust samples was measured using Brunauer, Emmett, and Teller, BET, a gas adsorption technique. The purpose of this paper is to present the correlation between the particle size measurements and the surface area measurements for tokamak dust.

  7. Human epididymis: structural pattern, total length and inner surface area.

    Science.gov (United States)

    Skandhan, Kalanghot P; Soni, Ashutosh; Joshi, Anantkumar; Avni, Kalanghot P S; Gupta, Bansi Dhar

    2017-05-24

    The organ epididymis is secured the name considering it functioned as an appendix to the testis; earlier testis was called as didymi. Regarding the length of human epididymis, several values are attributed by different authors. The present study was aimed to find out the pattern, total length and inner surface area of human epididymis. The study was conducted by employing microsurgical procedures on five testes from unclaimed human dead bodies. Caput was formed by few tubes interconnecting at three levels. These tubes led to corpus, which in turn was having more number of tubes interconnecting at different levels. Tubules were many looking like a mesh. United tubes of corpus form the single tube to form cauda. Epididymis length was 30.48 cm. Inner surface area was 818.16 mm2. Reported values of others seem to be a modified version from that of animals. Authors believe that organic revolutionary changes in man led to a reduction in the length of epididymis.

  8. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  9. Floating Vegetated Mats For Improving Surface Water Quality

    Science.gov (United States)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  10. The study of pervious concrete mix proportion by the method of specific surface area of aggregate

    Science.gov (United States)

    Xiao, Liguang; Jiang, Dawei

    2017-09-01

    The purpose of this paper is to solve the shortcoming of the mix proportion of pervious concrete. So we have done the research on the measurement of the specific surface area of aggregate, and the research on the volume change of cement after hydration, and the research on the best water-binder ratio and thickness of gelled material package. The experimental results show that the equivalent method is more accurate for measuring the specific surface area of aggregate. It can better reflect the specific surface area of aggregate. Moreover, the calculation method of the mix proportion of the cementing material can improve the utilization ratio of material and the quality of pervious concrete.

  11. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R(2), RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  12. Integrating remotely sensed surface water extent into continental scale hydrology

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  13. DETERMINATION OF GLACIER SURFACE AREA USING SPACEBORNE SAR IMAGERY

    OpenAIRE

    Fang, L.; Maksymiuk, O.; Schmitt, M.; Stilla, U.

    2013-01-01

    Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the "data holes" in the SAR scenes affected by radar shadowing and specular backscattering of smooth i...

  14. Water levels in the Yucca Mountain Area, Nevada, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.P.

    1998-11-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c{number_sign}3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters.

  15. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  16. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  17. Determination of hand and palm area as a ratio of body surface area in Indian population

    Directory of Open Access Journals (Sweden)

    Agarwal Pawan

    2010-01-01

    Full Text Available Background: Accurate estimation of body surface area (BSA burn is important. In small and patchy burns, the patient′s hand is used to estimate percentage of burn which is traditionally considered as 1%. There is discrepancy about what percentage of TBSA is constituted by the palm and hand. Therefore, this study was designed to determine correctly the TBSA represented by the palmar surface of the entire hand and palm in the Indian population. Material and Methods: 300 healthy adult (male and female and 300 healthy children (male and female were included in the study. TBSA was calculated using DuBois formula and hand and palm surface area was calculated using hand tracing on plain paper. The hand/palm percentage of BSA (ratio was determined by dividing hand/palm surface area by total BSA. Results: The mean hand and palm ratio for adults was 0.92% and 0.50%, respectively. The mean hand and palm ratio in children was 1.06% and 0.632%, respectively. Conclusion: The hand area (palm plus digits is more closely represented to 1% of TBSA in Indian population.

  18. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  19. Determination of Glacier Surface Area Using Spaceborne SAR Imagery

    Science.gov (United States)

    Fang, L.; Maksymiuk, O.; Schmitt, M.; Stilla, U.

    2013-04-01

    Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the "data holes" in the SAR scenes affected by radar shadowing and specular backscattering of smooth ice surfaces by combining the two complementary different imaging geometries (from ascending and descending satellite tracks). Then, a set of suitable features is derived from the intensity image, the texture information generated based on the gray level co-occurrence matrix (GLCM), glacier velocity estimated by speckle tracking, and the interferometric coherence map. Furthermore, the features are selected by 10-foldcross- validation based on the feature relevance importance on classification accuracy using a Random Forests (RF) classifier. With these most relevant features, the glacier surface is discriminated from the background by RF classification in order to calculate the corresponding surface area.

  20. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    Science.gov (United States)

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  1. Compilation of surface-water and water-quality data-collection sites on selected streams in Virginia

    Science.gov (United States)

    Prugh, Byron; Humphrey, C.G.

    1993-01-01

    This report presents a listing of about 8,900 selected surface-water and water-quality data sites in Virginia where hydrologic and water-quality measurements have been made for the past 100 yr. The listing includes the agency station/site identification number and name, drainage area, datum, source agency, type of data collected, period of record for data collection, latitude and longitude, county, and name of the 7.5-minute topographic quadrangle containing the site location

  2. Visualization of Lake Mead Surface Area Changes from 1972 to 2009

    Directory of Open Access Journals (Sweden)

    David M. Atkinson

    2012-06-01

    Full Text Available For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000. The minimum lake area extent occurred in 2009 (356.4 km2, while the maximum occurred in 1998 (590.6 km2. Variable trends in water level and lake area were observed throughout the analysis period, however progressively lower values were observed since 2000. The Landsat derived lake areas show a very strong relationship with actual measured water levels at the Hoover Dam. Yearly water level variations at the dam vary minimally from the satellite derived estimates. A complete (yearly record of satellite images may have helped to reduce the slight deviations in the time series.

  3. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  4. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  5. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    Science.gov (United States)

    Ersoy, Orkun

    2010-05-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions , dispersion etc.), remote sensing of transport and SO2, HCl, H2O, CO2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offer new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m2/g to 0.021 m2/g) for the size increment 63 μm to 125 μm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 μm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 μm) but both seem to be inadequate for representation of real ash surfaces.

  6. Water environment and zooplankton community structures in surface and bottom layer seawater in mari-culture area in Dapeng Cove coastal water%大鹏澳养殖海域表底层水环境及浮游动物群落结构的比较研究

    Institute of Scientific and Technical Information of China (English)

    邓邦平; 杨宇峰

    2011-01-01

    The seasonal changes in water environment culture and zooplankton community between the sea surface layer and the bottom layer in fish fanning area, shellfish farming area and control area in Dapeng Cove were studied during May 2007- Apr. 2008. The results showed that the difference of DO level between the two layers were significant (p <0.01), the annual average concentrations of DO in the sea surface layer were 5.46,7.26 and 8.10 mg/L, respectively. The highest annual average concentrations of TN ,TP, PO4-P, SiO3 -Si, TIN and the lowest value of pH were all recorded in the fish fanning area. 82 species of zooplankton were recorded during the survey period. The similarity of the species composition between the sea surface layer and the bottom layer were 85.37%. Protozoans and nauplii are the most dominant component, accounting for 93.63% ,91.64% ,81.69% in the sea surface layer and 92.04% , 90.33% ,82.83% in the bottom layer of the total zooplankton abundance,respectively. The difference of the densities of zooplankton between the two layers were significant (p <0.05). The densities of zooplankton were higher in the sea surface layer than in the bottom layer. The size-frequency distributions showed that the frequency of micro-zooplankton ( <0.2 mm) was higher in the sea surface layer (0.533) than in the bottom layer (0.367 ) .the frequency of micro-zooplankton ( <0.3 mm) was higher in the mariculture area (0.785) than in the control area (0.540).The small-sized zooplankton was dominant in the mariculture area in Dapeng Cove.%2007年5月~2008年4月对大鹏澳鱼类养殖区、贝类养殖区、自然海区(对照区)进行了每月一次的调查,分析比较了不同站点表底层水环境因子和浮游动物种类组成、数量变动的季节差异.结果表明:3个站点表层溶解氧年均值分别为5.46、7.26和8.10 mg/L,表层高于底层,表底层差异极显著(p<0.01);总氮(TN)、总磷(TP)、活性磷酸盐(PO4-P)、活性硅酸盐(SiO3-Si

  7. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  8. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  9. Ordination of environmental data using principal component analysis: the case of the radium isotopes (Ra-226 and Ra-28) in surface waters in an area associated with NORM/TENORM mining

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Antunes, Marcos M., E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b, E-mail: antunes@inb.gov.b [Industrias Nucleares do Brasil SA, Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios. Coordenacao de Protecao Radiologica; Kelecom, Alphonse, E-mail: kelecom@uol.com.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Curso de Pos-Graduacao em Biologia Marinha; Carmo, Roberto F., E-mail: rfcarmo@inb.gov.b [Industrias Nucleares do Brasil SA, Caetite, BA (Brazil). Unidade de Concentracao de Uranio. Coordenacao de Protecao Radiologica; Oliveira, Gabriela T. de [Centro Universitario de Sao Joao da Boa Vista (UNIFAE), SP (Brazil). Curso de Engenharia Quimica

    2009-07-01

    The radium isotopes Ra-226 and Ra-228 were analyzed in surface water at six points, during eighteen months, from June 2006 to December 2007, in the neighborhood of a mine of phosphate associated with uranium in the region of Santa Quiteria, state of Ceara, Brazil. The soluble fraction (which passes through filter of 0.45 micron) and the particulate fraction (which is retained on the 0.45 micron filter) were analyzed using the Principal Component Analysis, PCA, a method for ranking environmental data, and were analyzed also by F test for testing the difference between radionuclides and the difference between the two analyzed fractions. The PCA has identified four groups of samples. Results of Ra-226 in soluble fraction are grouped in the negative part of axis 1 (Factor 1) and axis 2 (Factor 2). Results of Ra-228 in particulate fraction are grouped in the positive part of axis 1 (Factor 1) and in the negative part of axis 2. Results of Ra-226 in soluble fraction are grouped along the positive part of axis 1 (Factor 1). Finally, results of Ra-228 in the particulate fraction are grouped in the positive part of axis 1 (Factor 1) and axis 2 (Factor 2). This last group has two discrepant points (01 and 06). There is no statistical difference between the two analyzed fractions but there are statistical differences between analyzed radionuclides. Therefore, three conclusions can be identified: The use of PCA with radionuclides and analyzed fractions as parameters permits the grouping of collecting data by their environmental similarities; the mean concentration of Ra-226 was statistically higher than that of Ra-228; and there is no statistical difference between soluble and particulate fractions. (author)

  10. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  11. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  12. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  13. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  14. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  15. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  16. Evaluation of the impact of farming activity in the water quality in surface catchment areas in hydrographic basin from Mogi-Guacu and Pardo Rivers, Sao Paulo; Avaliacao do impacto da atividade agropecuaria na qualidade da agua em areas de captacao superficial nas bacias hidrograficas dos Rios Mogi-Guacu e Pardo, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Katsuoka, Lidia

    2001-07-01

    This study was performed in 10 small basins located in the Mogi-Guacu and Pardo Rivers, in the Northeastern area of Sao Paulo State. The land belonging of these basins is used to grow row crops of potato, coffee and pasture areas. This study aimed to characterize small basins, to evaluate water and sediment quality and to correlate basic aspects of climatology, hydrology, toxicology and land uses to the physical, chemical and toxicological characteristics of the water in the streams. Geographic Information System (GIS) was used as a tool of evaluation of land uses and risk assessment was performed for a final evaluation. The samplings were carried out from June/1999 to June/2000 in the 13 collecting points. It was verified that water quality is dependent upon the rainy and dry periods and the harvest periods. In the beginning of rainy periods were found large concentrations of metals and traces of herbicides leachate from soil and, in the dry period the same event was verified, caused by concentration of the water. In August, September and October phosphorus concentrations were very low getting an improvement in the water quality. Al, Fe and Mn are majority elements of chemical compositions of rocks of the study area, and exceed the Brazilian Guidelines. The stream waters were classified as 44% oligotrophic, 42% mesotrophic and 14% eutrophic. Jaguari-Mirim River presented the largest values of Trophic Index (TI). Sediment analyses showed a great variety of organic compounds coming from anthropogenic activities (industrial and farming activity). Toxicity tests with hyalella azteca in the sediments presented toxicity for sediments from Sao Joao da Boa Vista and Divinolandia. A methodology was developed for organochlorinated pesticides by gas chromatography coupled to mass spectrometry (GCMS). The presence of organochlorinated pesticides was not verified. (author)

  17. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost of indiv......-of-t