WorldWideScience

Sample records for surface viral antigen

  1. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  2. Serum hepatitis B surface antigen and hepatitis B e antigen titers: disease phase influences correlation with viral load and intrahepatic hepatitis B virus markers.

    Science.gov (United States)

    Thompson, Alexander J V; Nguyen, Tin; Iser, David; Ayres, Anna; Jackson, Kathy; Littlejohn, Margaret; Slavin, John; Bowden, Scott; Gane, Edward J; Abbott, William; Lau, George K K; Lewin, Sharon R; Visvanathan, Kumar; Desmond, Paul V; Locarnini, Stephen A

    2010-06-01

    Although threshold levels for hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) titers have recently been proposed to guide therapy for chronic hepatitis B (CHB), their relationship to circulating hepatitis B virus (HBV) DNA and intrahepatic HBV replicative intermediates, and the significance of emerging viral variants, remains unclear. We therefore tested the hypothesis that HBsAg and HBeAg titers may vary independently of viral replication in vivo. In all, 149 treatment-naïve CHB patients were recruited (HBeAg-positive, n = 71; HBeAg-negative, n = 78). Quantification of HBeAg and HBsAg was performed by enzyme immunoassay. Virological characterization included serum HBV DNA load, HBV genotype, basal core promoter (BCP)/precore (PC) sequence, and, in a subset (n = 44), measurement of intrahepatic covalently closed circular DNA (cccDNA) and total HBV DNA, as well as quantitative immunohistochemical (IHC) staining for HBsAg. In HBeAg-positive CHB, HBsAg was positively correlated with serum HBV DNA and intrahepatic cccDNA and total HBV DNA (r = 0.69, 0.71, 0.76, P < 0.01). HBeAg correlated with serum HBV DNA (r = 0.60, P < 0.0001), although emerging BCP/PC variants reduced HBeAg titer independent of viral replication. In HBeAg-negative CHB, HBsAg correlated poorly with serum HBV DNA (r = 0.28, P = 0.01) and did not correlate with intrahepatic cccDNA nor total HBV DNA. Quantitative IHC for hepatocyte HBsAg confirmed a relationship with viral replication only in HBeAg-positive patients. The correlation between quantitative HBsAg titer and serum and intrahepatic markers of HBV replication differs between patients with HBeAg-positive and HBeAg-negative CHB. HBeAg titers may fall independent of viral replication as HBeAg-defective variants emerge prior to HBeAg seroconversion. These findings provide new insights into viral pathogenesis and have practical implications for the use of quantitative serology as a clinical biomarker.

  3. Development of recombinant antigen array for simultaneous detection of viral antibodies.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Protein microarrays have been developed to study antibody reactivity against a large number of antigens, demonstrating extensive perspective for clinical application. We developed a viral antigen array by spotting four recombinant antigens and synthetic peptide, including glycoprotein G of herpes simplex virus (HSV type 1 and 2, phosphoprotein 150 of cytomegalovirus (CMV, Rubella virus (RV core plus glycoprotein E1 and E2 as well as a E1 peptide with the optimal concentrations on activated glass slides to simultaneously detect IgG and IgM against HSV1, HSV2, CMV and RV in clinical specimens of sera and cerebrospinal fluids (CSFs. The positive reference sera were initially used to measure the sensitivity and specificity of the array with the optimal conditions. Then clinical specimens of 144 sera and 93 CSFs were tested for IgG and IgM antibodies directed against HSV1, HSV2, CMV and RV by the antigen array. Specificity of the antigen array for viral antibodies detection was satisfying compared to commercial ELISA kits but sensitivity of the array varied relying on quality and antigenic epitopes of the spotting antigens. In short, the recombinant antigen array has potential to simultaneous detect multiple viral antibodies using minute amount (3 µl of samples, which holds the particularly advantage to detect viral antibodies in clinical CSFs being suspicious of neonatal meningitis and encephalitis.

  4. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...

  5. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  6. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  7. Rekombinante bovin-humane Parainfluenzaviren Typ 3 als Impfvektoren gegen nicht-virale Antigene

    OpenAIRE

    Schomacker, Henrick

    2008-01-01

    Bei bhPIV3 handelt es sich um ein bovines Parainfluenzavirus Typ 3 (bPIV3), dessen Ober-flächenproteingene gegen jene des humanen Parainfluenzavirus Typ 3 (hPIV3) ausgetauscht wurden. Dieses ursprünglich als experimenteller Impfstoff gegen hPIV3 entwickelte Virus wurde darüber hinaus als Impfvektor zur Expression anderer viraler Antigene verwendet. Im Rahmen der hier vorgestellten Arbeit wurden die ersten bhPIV3-basierten Vektoren für nicht-virale Antigene hergestellt und in einem ersten Vers...

  8. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  9. Rapid solid-phase radioimmunoassay for detection of equine infectious anemia viral antigen and antibodies: parameters involved in standardization

    International Nuclear Information System (INIS)

    Horenstein, A.L.; Feinstein, R.E.

    1985-01-01

    Solid-phase radioimmunoassays (SPRIA) are described for the detection of equine infectious anemia (EIA) viral antigen and antibodies. Protein-antigen P29 currently used in the agar-gel immunodiffusion (AGID) test was used as antigen in the SPRIA. The specificity of the reaction was assessed by inhibition with the antigen. The reaction of immune serum against EIA-virus antigen adsorbed to the wells, was completely inhibited by the antigen in solution. This property was applied in an indirect competitive SPRIA for the detection of viral protein P29. The detection threshold of the SPRIA for EIA virus protein was about 5 ng and about 1 ng of antibody can be detected. The assay is rapid, specific and sensitive and allows the testing of multiple serum samples with the advantage of employing a single secondary labelled antibody. (orig.)

  10. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Directory of Open Access Journals (Sweden)

    Arturo Blazquez-Navarro

    2018-05-01

    Full Text Available BK virus (BKV associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  11. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Science.gov (United States)

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  12. Effect of BSA Antigen Sensitization during the Acute Phase of Influenza A Viral Infection on CD11c+ Pulmonary Antigen Presenting Cells

    Directory of Open Access Journals (Sweden)

    Fumitaka Sato

    2009-01-01

    Conclusions: BSA antigen sensitization during the acute phase of influenza A viral infection enhanced IL-10 production from naive CD4+ T cell interaction with CD11c+ pulmonary APCs. The IL-10 secretion evoked Th2 responses in the lungs with downregulation of Th1 responses and was important for the eosinophil recruitment into the lungs after BSA antigen challenge.

  13. Distribution of bovine viral diarrhoea virus antigen in persistently infected white-tailed deer (Odocoileus virginianus).

    Science.gov (United States)

    Passler, T; Walz, H L; Ditchkoff, S S; van Santen, E; Brock, K V; Walz, P H

    2012-11-01

    Infection with bovine viral diarrhoea virus (BVDV), analogous to that occurring in cattle, is reported rarely in white-tailed deer (Odocoileus virginianus). This study evaluated the distribution of BVDV antigen in persistently infected (PI) white-tailed deer and compared the findings with those from PI cattle. Six PI fawns (four live-born and two stillborn) from does exposed experimentally to either BVDV-1 or BVDV-2 were evaluated. Distribution and intensity of antigen expression in tissues was evaluated by immunohistochemistry. Data were analyzed in binary fashion with a proportional odds model. Viral antigen was distributed widely and was present in all 11 organ systems. Hepatobiliary, integumentary and reproductive systems were respectively 11.8, 15.4 and 21.6 times more likely to have higher antigen scores than the musculoskeletal system. Pronounced labelling occurred in epithelial tissues, which were 1.9-3.0 times likelier than other tissues to contain BVDV antigen. Antigen was present in >90% of samples of liver and skin, suggesting that skin biopsy samples are appropriate for BVDV diagnosis. Moderate to severe lymphoid depletion was detected and may hamper reliable detection of BVDV in lymphoid organs. Muscle tissue contained little antigen, except for in the cardiovascular system. Antigen was present infrequently in connective tissues. In nervous tissues, antigen expression frequency was 0.3-0.67. In the central nervous system (CNS), antigen was present in neurons and non-neuronal cells, including microglia, emphasizing that the CNS is a primary target for fetal BVDV infection. BVDV antigen distribution in PI white-tailed deer is similar to that in PI cattle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment.

    Science.gov (United States)

    Shen, Wen-Fan; Galula, Jedhan Ucat; Chang, Gwong-Jen J; Wu, Han-Chung; King, Chwan-Chuen; Chao, Day-Yu

    2017-04-01

    Early diagnosis of dengue virus (DENV) infection to monitor the potential progression to hemorrhagic fever can influence the timely management of dengue-associated severe illness. Nonstructural protein 1 (NS1) antigen detection in acute serum specimens has been widely accepted as an early diagnostic assay for dengue infection; however, lower sensitivity of the NS1 antigen-capture enzyme-linked immunosorbent assay (Ag-ELISA) in secondary dengue viral infection has been reported. In this study, we developed two forms of Ag-ELISA capable of detecting E-Ag containing virion and virus-like particles, and secreted NS1 (sNS1) antigens, respectively. The temporal kinetics of viral RNA, sNS1, and E-Ag were evaluated based on the in vitro infection experiment. Meanwhile, a panel of 62 DENV-2 infected patients' sera was tested. The sensitivity was 3.042 ng/mL and 3.840 ng/mL for sNS1 and E, respectively. The temporal kinetics of the appearance of viral RNA, E, NS1, and infectious virus in virus-infected tissue culture media suggested that viral RNAs and NS1 antigens could be detected earlier than E-Ag and infectious virus. Furthermore, a panel of 62 sera from patients infected by DENV Serotype 2 was tested. Treating clinical specimens with the dissociation buffer increased the detectable level of E from 13% to 92% and NS1 antigens from 40% to 85%. Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection. Copyright © 2015. Published by Elsevier B.V.

  15. A Molecular-Level Account of the Antigenic Hantaviral Surface

    Directory of Open Access Journals (Sweden)

    Sai Li

    2016-05-01

    Full Text Available Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV, a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses.

  16. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  17. Antigenic variability in bovine viral diarrhea virus (BVDV) isolates from alpaca (Vicugna pacos), llama (Lama glama) and bovines in Chile.

    Science.gov (United States)

    Aguirre, I M; Quezada, M P; Celedón, M O

    2014-01-31

    Llamas and alpacas are domesticated South American camelids (SACs) important to ancestral population in the Altiplano region, and to different communities where they have been introduced worldwide. These ungulates have shown to be susceptible to several livestock viral pathogens such as members of the Pestivirus genus and mainly to bovine viral diarrhea virus (BVDV). Seventeen Chilean BVDV isolates were analyzed by serum cross neutralization with samples obtained from five llama, six alpacas, three bovines, plus three reference strains belonging to different subgroups and genotypes. The objective was to describe antigenic differences and similarities among them. Antigenic comparison showed significant differences between different subgroups. Consequently, antigenic similarities were observed among isolates belonging to the same subgroup and also between isolates from different animal species belonging the same subgroup. Among the analyzed samples, one pair of 1b subgroup isolates showed significant antigenic differences. On the other hand, one pair of isolates from different subgroups (1b and 1j) shared antigenic similarities indicating antigenic relatedness. This study shows for the first time the presence of antigenic differences within BVDV 1b subgroup and antigenic similarities within 1j subgroup isolates, demonstrating that genetic differences within BVDV subgroups do not necessary corresponds to differences on antigenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  19. Conservation of myeloid surface antigens on primate granulocytes.

    Science.gov (United States)

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  20. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  1. Detection of viral antigens by solid phase radioimmunoassay on polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Prokudina, E N; Semenova, N P; Zhdanov, V M

    1986-04-01

    Polyethylene film, without any pretreatment, may serve as a solid phase (SP) for RIA. Viral antigens (HBsAg, and influenza virus) are detected by SP-RIA on the film with a sensitivity of about 2-3 ng/ml or 40-60 pg/assay. The use of polyethylene film allows one to record RIA autographically. The use of micro amounts of reagents and specimens tested is an added advantage. No special equipment is necessary, the method is inexpensive, easy to perform and may be used for mass screening. (Auth.). 7 refs.; 4 figs.

  2. Binding of hydrophobic antigens to surfaces

    DEFF Research Database (Denmark)

    2017-01-01

    A first aspect of the present invention is a method of detecting antibodies comprising the steps of: i) providing a first group of beads comprising a surface modified with C1-C10 alkyl groups comprising amine, ammonium, ether and/or hydroxyl groups, ii) contacting said first group of beads......-antigen-antibody conjugates, and v) detecting said bead-antigen-antibody conjugates. Further aspects include an antibody detection kit, a bead-antigen conjugate and a composition comprising at least two different groups of bead-antigen-conjugates....

  3. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  4. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  5. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  6. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  7. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus.

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel

    2015-04-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    International Nuclear Information System (INIS)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K.

    2017-01-01

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  9. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K., E-mail: harrisau@mail.nih.gov

    2017-02-15

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  10. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani

    2005-10-01

    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  11. Pelacakan Secara Imunohistokimiawi Antigen Virus pada Ayam yang Diinfeksi dengan Virus Penyakit Tetelo (IMMUNOHISTOCHEMICAL DETECTION OF VIRAL ANTIGEN IN TISSUE OF CHICKENS EXPERIMENTALLY INFECTED WITH NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    Anak Agung Ayu Mirah Adi

    2013-07-01

    Full Text Available In order to study the distribution of Newcastle disease virus (NDV following infection, chickenswere experimentally infected with visceretropic velogenic NDV isolate. Monoclonal antibodies (mAbsagainst the NDV LaSota vaccine strain were then produced to detect viral antigen in the infectedorgans. The mAbs were firstly tested for their specificity by enzyme linked immunosorbent assay(ELISA using NDV and normal allantoic fluids as antigens. Eight mAbs specific against NDVwere isolated and two mAbs were used for immunodetection of NDV antigen in chicken’s tissues.By immunohistochemistry labeled streptavidin-biotin (LSAB staining NDV–antigen was detectedin paraffin embedded tissues of NDV-infected chickens. NDV antigen was not detected in noninfected chickens. In the infected chickens, high intensity of NDV antigen was detected in thelymphoid tissues, lung and intestine. The NDV antigen with a lesser intensity was detected in thebrain, trachea, liver and myocardium. This study shows that although viscerotropic velogenicNDV isolate can infect almost all organs, the main target of infection are lung, intestine andlymphoids tissues

  12. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  13. Identification and characterization of surface antigens in parasites, using radiolabelling techniques

    International Nuclear Information System (INIS)

    Ramasamy, R.

    1982-04-01

    Surface proteins of Schistosoma sp and Leishmania sp were studied using 125-Iodine as tracer. The surface proteins were labelled by the Lactoperoxidase method and the proteins then separated using SDS PAG electrophoresis and autoradiography. The possible immunogens were then separated using immunoprecipitation and Fluorescent Antibody techniques using sera from patients or from artificially immunized rabbits. Four common antigens were identified from the surfaces of male and female adult worms, cercariae and schistosomulae of S.mansoni. These antigens, which had molecular weights of 150,000, 78,000, 45,000, and 22,000 were also isolated from the surfaces of S.haematobium adults. The surface antigens on promastigotes of a Kenyan strain of Leishmania donovani were separated into three protein antigens with molecular weights of 66,000, 59,000 and 43,000 respectively. The 59,000 molecular weight antigen was a glycoprotein and was common to promastigotes of an American and Indian strain of L.donovani and to L.braziliensis mexicana. None of the isolated antigens have been shown to have a protective effect when vaccinated into mice, but the study illustrates the value of radionuclide tracers in the unravelling of the mosaic of antigens which parasites possess

  14. The value of serum Hepatitis B surface antigen quantification in ...

    African Journals Online (AJOL)

    The value of serum Hepatitis B surface antigen quantification in determining viralactivity in chronic Hepatitis B virus infection. ... ofCHB andalso higher in hepatitis e antigen positive patients compared to hepatitis e antigen negative patients.

  15. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  17. Identification of Surface Exposed Elementary Body Antigens of ...

    African Journals Online (AJOL)

    This study sought to identify the surface exposed antigenic components of Cowdria ruminantium elementary body (EB) by biotin labeling, determine effect of reducing and non-reducing conditions and heat on the mobility of these antigens and their reactivity to antibodies from immunized animals by Western blotting.

  18. Concurrence of hepatitis B surface antibodies and surface antigen: implications for postvaccination control of health care workers

    NARCIS (Netherlands)

    Zaaijer, Hans L.; Lelie, P. N.; Vandenbroucke-Grauls, C. M. J. E.; Koot, M.

    2002-01-01

    Among 1081 persons testing positive for hepatitis B surface antigen, 106 (10%) tested positive for antibodies to surface antigen (anti-HBs) in the same blood sample. Thirty of these persons were studied in detail: seven tested positive for hepatitis B e-antigen, nine were apparently healthy blood

  19. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model.

    Science.gov (United States)

    Lin, Yi-Jiun; Huang, Li-Rung; Yang, Hung-Chih; Tzeng, Horng-Tay; Hsu, Ping-Ning; Wu, Hui-Lin; Chen, Pei-Jer; Chen, Ding-Shinn

    2010-05-18

    We recently developed a mouse model of hepatitis B virus (HBV) persistence, in which a single i.v. hydrodynamic injection of HBV DNA to C57BL/6 mice allows HBV replication and induces a partial immune response, so that about 20-30% of the mice carry HBV for more than 6 months. The model was used to identify the viral antigen crucial for HBV persistence. We knocked out individual HBV genes by introducing a premature termination codon to the HBV core, HBeAg, HBx, and polymerase ORFs. The specific-gene-deficient HBV mutants were hydrodynamically injected into mice and the HBV profiles of the mice were monitored. About 90% of the mice that received the HBcAg-mutated HBV plasmid exhibited high levels of hepatitis B surface antigenemia and maintained HBsAg expression for more than 6 months after injection. To map the region of HBcAg essential for viral clearance, we constructed a set of serial HBcAg deletion mutants for hydrodynamic injection. We localized the essential region of HBcAg to the carboxyl terminus, specifically to the 10 terminal amino acids (HBcAg176-185). The majority of mice receiving this HBV mutant DNA did not elicit a proper HBcAg-specific IFN-gamma response and expressed HBV virions for 6 months. These results indicate that the immune response triggered in mice by HBcAg during exposure to HBV is important in determining HBV persistence.

  20. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule.

    Science.gov (United States)

    Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel

    2012-10-12

    The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.

  1. Strains of Sarcocystis neurona exhibit differences in their surface antigens, including the absence of the major surface antigen SnSAG1.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Marsh, Antoinette E; Patil, Bhagyashree A; Saville, William J; Lindsay, David S; Dubey, J P; Granstrom, David E

    2008-05-01

    A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages

  2. [One example of false negative hepatitis B surface antigen (EIA) result due to variant S area strain and reagment reactiveness related to hepatitis B surface antigen].

    Science.gov (United States)

    Matsuda, Chikashi; Moriyama, Hidehiko; Taketani, Takeshi; Shibata, Hiroshi; Nagai, Atsushi

    2011-01-01

    The presence in serum of the Hepatitis B surface antigen (HBsAg), the outer envelope of the hepatitis B virus (HBV), indicates viral infection, used in laboratory tests to confirm this. We report a case of discrepancy among HBsAg test results detected between measurements in a subject with HB infection. Gene analysis demonstrated several S region gene mutations, not detected previously. We tested 12 measurements e.g., EIA, CLIA, CLEIA, F-EIA, MAT, and IC for whether they could detect our subject's HBsAg and found that it was not recognized by a method using only a single monoclonal antibody to detect HBsAg in two detection processes, in contrast to the 11 other measurements, which used two different antibodies. This case shows that amino acid substitution may cause a false negative result for HBsAg. Gene mutations known to occur in HBV, should thus trigger an awareness of the need to keep in mind that false negative results can happen in case such as ours.

  3. A radioimmunoassay for human antibody specific for microbial antigens

    International Nuclear Information System (INIS)

    Tew, J.G.; Burmeister, J.; Greene, E.J.; Pflaumer, S.K.; Goldstein, J.

    1977-01-01

    A simple and sensitive method for detecting and quantitating antibody specific or microbial antigens is described. Bacterial, fungal, parasitic or viral antigens attached to bromoacetyl cellulose or the intact cells themselves were added to a series of two-fold dilutions of human serum. After a short incubation period, which allowed human antibody to attach to the antigens, the complex was thoroughly washed and carbon-14 labeled anti-human light chain antibody was added to each dilution. The resulting complex was washed, collected on a filter pad, placed in a scintillation vial and radioassayed. The relationship between radioactivity bound and -log 2 of the serum dilution was linear. The endpoint for each assay and a confidence interval was calculated by doing inverse prediction from simple linear regression. Results obtained using this assay indicated the presence of antibody in a pool of normal human sera specific for herpes virus and for both cell surface and intracellular antigens of Streptococcus mutans, Naegleria fowleri and Cryptococcus neoformans. In general the dominant response was against the intracellular antigens rather than cell surface antigens

  4. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    2010-07-01

    Full Text Available Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species.We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity.The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  5. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping

    2010-07-26

    Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  6. Peg-interferon plus nucleotide analogue treatment versus no treatment in patients with chronic hepatitis B with a low viral load: a randomised controlled, open-label trial

    NARCIS (Netherlands)

    de Niet, Annikki; Jansen, Louis; Stelma, Femke; Willemse, Sophie B.; Kuiken, Sjoerd D.; Weijer, Sebastiaan; van Nieuwkerk, Carin M. J.; Zaaijer, Hans L.; Molenkamp, Richard; Takkenberg, R. Bart; Koot, Maarten; Verheij, Joanne; Beuers, Ulrich; Reesink, Hendrik W.

    2017-01-01

    Antiviral treatment is currently not recommended for patients with chronic hepatitis B with a low viral load. However, they might benefit from acquiring a functional cure (hepatitis B surface antigen [HBsAg] loss with or without formation of antibodies against hepatitis B surface antigen

  7. Neuronal surface antigen antibodies in limbic encephalitis

    Science.gov (United States)

    Graus, F; Saiz, A; Lai, M; Bruna, J; López, F; Sabater, L; Blanco, Y; Rey, M J.; Ribalta, T; Dalmau, J

    2008-01-01

    Objective: To report the frequency and type of antibodies against neuronal surface antigens (NSA-ab) in limbic encephalitis (LE). Methods: Analysis of clinical features, neuropathologic findings, and detection of NSA-ab using immunochemistry on rat tissue and neuronal cultures in a series of 45 patients with paraneoplastic (23) or idiopathic (22) LE. Results: NSA-ab were identified in 29 patients (64%; 12 paraneoplastic, 17 idiopathic). Thirteen patients had voltage-gated potassium channels (VGKC)-ab, 11 novel NSA (nNSA)-ab, and 5 NMDA receptor (NMDAR)-ab. nNSA-ab did not identify a common antigen and were more frequent in paraneoplastic than idiopathic LE (39% vs 9%; p = 0.03). When compared with VGKC-ab or NMDAR-ab, the nNSA associated more frequently with intraneuronal antibodies (11% vs 73%; p = 0.001). Of 12 patients (9 nNSA-ab, 2 VGKC-ab, 1 NMDAR-ab) with paraneoplastic LE and NSA-ab, concomitant intraneuronal antibodies occurred in 9 (75%). None of these 12 patients improved with immunotherapy. The autopsy of three of them showed neuronal loss, microgliosis, and cytotoxic T cell infiltrates in the hippocampus and amygdala. These findings were compatible with a T-cell mediated neuronal damage. In contrast, 13 of 17 (76%) patients with idiopathic LE and NSA-ab (8 VGKC-ab, 4 NMDAR-ab, 1 nNSA-ab) and 1 of 5 (20%) without antibodies had clinical improvement (p = 0.04). Conclusions: In paraneoplastic limbic encephalitis (LE), novel antibodies against neuronal surface antigens (nNSA-ab) occur frequently, coexist with antibodies against intracellular antigens, and these cases are refractory to immunotherapy. In idiopathic LE, the likelihood of improvement is significantly higher in patients with NSA-ab than in those without antibodies. GLOSSARY GAD = glutamic acid decarboxylase; LE = limbic encephalitis; NMDAR = N-methyl-D-aspartate receptor; NSA = neuronal surface antigens; nNSA = novel NSA; SCLC = small-cell lung cancer; VGKC = voltage-gated potassium channels

  8. Dysplastic hepatocytes develop nuclear inclusions in a mouse model of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Priyanka Thakur

    Full Text Available Viral hepatitis resulting in chronic liver disease is an important clinical challenge and insight into the cellular processes that drive pathogenesis will be critical in order to develop new diagnostic and therapeutic options. Nuclear inclusions in viral and non-viral hepatitis are well documented and have diagnostic significance in some disease contexts. However, the origins and functional consequences of these nuclear inclusions remain elusive. To date the clinical observation of nuclear inclusions in viral and non-viral hepatitis has not been explored at depth in murine models of liver disease. Herein, we report that in a transgenic model of hepatitis B surface antigen mediated hepatitis, murine hepatocytes exhibit nuclear inclusions. Cells bearing nuclear inclusions were more likely to express markers of cell proliferation. We also established a correlation between these inclusions and oxidative stress. N-acetyl cysteine treatment effectively reduced oxidative stress levels, relieved endoplasmic reticulum (ER stress, and the number of nuclear inclusions we observed in the transgenic mice. Our results suggest that the presence of nuclear inclusions in hepatocytes correlates with oxidative stress and cellular proliferation in a model of antigen mediated hepatitis.

  9. Immunity to tumour antigens.

    Science.gov (United States)

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  10. Characterization of antigen association with accessory cells: specific removal of processed antigens from the cell surface by phospholipases

    International Nuclear Information System (INIS)

    Falo, L.D. Jr.; Haber, S.I.; Herrmann, S.; Benacerraf, B.; Rock, K.L.

    1987-01-01

    To characterize the basis for the cell surface association of processed antigen with the antigen-presenting cell (APC) the authors analyzed its sensitivity to enzymatic digestion. Antigen-exposed APC that are treated with phospholipase and then immediately fixed lose their ability to stimulate antigen-plus-Ia-specific T-T hybridomas. This effect is seen with highly purified phospholipase A 2 and phospholipase C. In addition it is observed with three distinct antigens - ovalbumin, bovine insulin, and poly(LGlu 56 LLys 35 LPhe 9 )[(GluLysPhe)/sub n/]. The effect of phospholipases is highly specific. Identically treated APC are equivalent to control in their ability to stimulate alloreactive hybridomas specific for precisely the same Ia molecule that is corecognized by antigen-plus-Ia-specific hybrids. Furthermore, the antigen-presenting function of enzyme-treated, fixed APC can be reconstituted by the addition of exogenous in vitro processed or processing independent antigens. In parallel studies 125 I-labeled avidin was shown to specifically bind to APC that were previously exposed and allowed to process biotin-insulin. Biotin-insulin-exposed APC that are pretreated with phospholipase bind significantly less 125 I-labeled avidin than do untreated, exposed APC. Identical enzyme treatment does not reduce the binding of avidin to a biotinylated antibody already bound to class II major histocompatibility complex molecules of APC. These studies demonstrate that phospholipase effectively removes processed cell surface antigen

  11. Expression and characterization of highly antigenic domains of chicken anemia virus viral VP2 and VP3 subunit proteins in a recombinant E. coli for sero-diagnostic applications

    Science.gov (United States)

    2013-01-01

    Background Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. Generally, CAV infection occurs via vertical transmission in young chicks that are less than two weeks old, which are very susceptible to the disease. Therefore, epidemiological investigations of CAV infection and/or the evaluation of the immunization status of chickens is necessary for disease control. Up to the present, systematically assessing viral protein antigenicity and/or determining the immunorelevant domain(s) of viral proteins during serological testing for CAV infection has never been performed. The expression, production and antigenic characterization of CAV viral proteins such as VP1, VP2 and VP3, and their use in the development of diagnostic kit would be useful for CAV infection prevention. Results Three CAV viral proteins VP1, VP2 and VP3 was separately cloned and expressed in recombinant E. coli. The purified recombinant CAV VP1, VP2 and VP3 proteins were then used as antigens in order to evaluate their reactivity against chicken sera using indirect ELISA. The results indicated that VP2 and VP3 show good immunoreactivity with CAV-positive chicken sera, whereas VP1 was found to show less immunoreactivity than VP2 and VP3. To carry out the further antigenic characterization of the immunorelevant domains of the VP2 and VP3 proteins, five recombinant VP2 subunit proteins (VP2-435N, VP2-396N, VP2-345N, VP2-171C and VP2-318C) and three recombinant VP3 subunit proteins (VP3-123N, VP3-246M, VP3-366C), spanning the defined regions of VP2 and VP3 were separately produced by an E. coli expression system. These peptides were then used as antigens in indirect ELISAs against chicken sera. The results of these ELISAs using truncated recombinant VP2 and VP3 subunit proteins as coating antigen showed that VP2-345N, VP2-396N and VP3-246M gave good immunoreactivity with CAV-positive chicken sera compared to the other

  12. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  13. Characterisation of surface antigens of Strongylus vulgaris of potential immunodiagnostic importance.

    Science.gov (United States)

    Nichol, C; Masterson, W J

    1987-08-01

    When antigens prepared by detergent washes of Strongylus vulgaris and Parascaris equorum were probed in an enzyme-linked immunosorbent assay test with horse sera from single species infections of S. vulgaris and P. equorum, a high degree of cross-reaction between the species was demonstrated. Western blot analysis of four common horse nematode species showed a large number of common antigens when probed with horse infection sera. Antisera raised in rabbits against the four species, including S. vulgaris, were also found to cross-react considerably. Rabbit anti-S. vulgaris sera were affinity adsorbed over a series of affinity chromatography columns, bound with cross-reactive surface antigens, to obtain S. vulgaris-specific antisera and thereby identify S. vulgaris-specific antigens by Western blotting. These studies revealed potentially specific antigens of apparent molecular weights of 100,000, 52,000, and 36,000. Of these bands, only the 52 kDa and 36 kDa appeared to be found on the surface as judged by 125I-labelling of intact worms by the Iodogen method, although neither protein was immunoprecipitated by horse infection sera. Finally, immunoprecipitation of in vitro translated proteins derived from larval S. vulgaris RNA suggests that two proteins may be parasite-derived. These findings are discussed both with respect to the surface of S. vulgaris and to the use of these species-specific antigens in immunodiagnosis.

  14. Characterization of Antigen-Specific B Cells Using Nominal Antigen-Coated Flow-Beads

    Science.gov (United States)

    Akl, Ahmed; Lepetit, Maud; Crochette, Romain; Giral, Magali; Lepourry, Julie; Pallier, Annaick; Castagnet, Stéphanie; Dugast, Emilie; Guillot-Gueguen, Cécile; Jacq-Foucher, Marylène; Saulquin, Xavier; Cesbron, Anne; Laplaud, David; Nicot, Arnaud; Brouard, Sophie; Soulillou, Jean-Paul

    2013-01-01

    In order to characterize the reactivity of B cells against nominal antigens, a method based on the coupling of antigens onto the surface of fluorescent core polystyrene beads was developed. We first demonstrate that murine B cells with a human MOG-specific BCR are able to interact with MOG-coated beads and do not recognize beads coated with human albumin or pp65. B cells purified from human healthy volunteer blood or immunized individuals were tested for their ability to interact with various nominal antigens, including viral, vaccine, self and alloantigens, chosen for their usefulness in studying a variety of pathological processes. A substantial amount of B cells binding self-antigen MOG-coated beads can be detected in normal blood. Furthermore, greater frequencies of B cell against anti-Tetanic Toxin or anti-EBNA1 were observed in primed individuals. This method can reveal increased frequencies of anti-HLA committed B cells in patients with circulating anti-HLA antibodies compared to unsensitized patients and normal individuals. Of interest, those specific CD19 cells were preferentially identified within CD27−IgD+ (i-e naïve) subset. These observations suggest that a broad range of medical situations could benefit from a tool that allows the detection, the quantification and the characterization of antigen-specific blood B cells. PMID:24386360

  15. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    International Nuclear Information System (INIS)

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.

    1989-01-01

    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with 3 H-fatty acids, [ 3 H]ethanolamine, and [ 3 H]carbohydrates. Treatment of 3 H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment

  16. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1979-01-01

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  17. Paired Expression Analysis of Tumor Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Rimas J. Orentas

    2017-08-01

    Full Text Available Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19 or antibody-based therapy (anti-CD20 in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues. We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK

  18. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    Science.gov (United States)

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  20. PENGAMATAN SERO—VIROLOGI BEBERAPA JENIS ANTIGEN VIRUS PADA SERUM TALIPUSAT BAYI DI RS. CIPTO MANGUNKUSUMO, JAKARTA

    Directory of Open Access Journals (Sweden)

    Djoko Yuwono

    2012-09-01

    Full Text Available Perinatal infection due to viral agents from mother to neonate is still a major cause of viral transmis­sion in developing countries. Several type of viruses which are known to be transmitted vertieally or perinatally from mother to neonates are: Hepatitis B virus, Herpes simplex, Rubella and Cytomegalovi­rus. In attempt to estimate the real problem of viral diseases which are vertically or perinatally transmis­sible among infants, a survey on sero-virology of several type viral antigens among neonates who were borned in Dr. Cipto Mangunkusumo hospital, was carried out. A total of 227 blood samples of umbillical cord were examined for the presence of their viral anti­gens such as: Hepatitis B surface antigen (HBsAg, Herpes simplex type 1 and type 2, and anti-rubella IgM as an indicator of early infection due to rubella virus in the fetus. The detection of antigens and anti-rubella IgM in the serum.were done by ELISA methode using reagents which are commercially available. The result of the study indicated that there was a possibility of perinatal infection due to related viruses, i.e.: 2.2%; 1.9% and 14.3% due to HBsAg; Herpes simplex type 1 and type 2 respectivelly, however none of the serum indicated seropositive IgM against rubella virus: infection.

  1. [Immunotherapy for refractory viral infections].

    Science.gov (United States)

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  2. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies.

    Science.gov (United States)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-11-15

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 °C without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Prediction of antigenic epitopes on protein surfaces by consensus scoring

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2009-09-01

    Full Text Available Abstract Background Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. Results We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring (EPCES from six different scoring functions - residue epitope propensity, conservation score, side-chain energy score, contact number, surface planarity score, and secondary structure composition. Applied to unbounded antigen structures from an independent test set, EPCES was able to predict antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The performance of the method is statistically similar to other published methods. The AUC value of EPCES is slightly higher compared to the best results of existing algorithms by about 0.034. Conclusion Our work shows consensus scoring of multiple features has a better performance than any single term. The successful prediction is also due to the new score of residue epitope propensity based on atomic solvent accessibility.

  4. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    International Nuclear Information System (INIS)

    Holers, V.M.; Kotzin, B.L.

    1985-01-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases

  5. CELLISA: reporter cell-based immunization and screening of hybridomas specific for cell surface antigens.

    Science.gov (United States)

    Chen, Peter; Mesci, Aruz; Carlyle, James R

    2011-01-01

    Monoclonal antibodies (mAbs) specific for cell surface antigens are an invaluable tool to study immune receptor expression and function. Here, we outline a generalized reporter cell-based approach to the generation and high-throughput screening of mAbs specific for cell surface antigens. Termed CELLISA, this technology hinges upon the capture of hybridoma supernatants in mAb arrays that facilitate ligation of an antigen of interest displayed on BWZ reporter cells in the form of a CD3ζ-fusion chimeric antigen receptor (zCAR); in turn, specific mAb-mediated cross-linking of zCAR on BWZ cells results in the production of β-galactosidase enzyme (β-gal), which can be assayed colorimetrically. Importantly, the BWZ reporter cells bearing the zCAR of interest may be used for immunization as well as screening. In addition, serial immunizations employing additional zCAR- or native antigen-bearing cell lines can be used to increase the frequency of the desired antigen-specific hybridomas. Finally, the use of a cohort of epitope-tagged zCAR (e.g., zCAR(FLAG)) variants allows visualization of the cell surface antigen prior to immunization, and coimmunization using these variants can be used to enhance the immunogenicity of the target antigen. Employing the CELLISA strategy, we herein describe the generation of mAb directed against an uncharacterized natural killer cell receptor protein.

  6. Novel Pneumocystis Antigen Discovery Using Fungal Surface Proteomics

    OpenAIRE

    Zheng, Mingquan; Cai, Yang; Eddens, Taylor; Ricks, David M.; Kolls, Jay K.

    2014-01-01

    Pneumonia due to the fungus Pneumocystis jirovecii is a life-threatening infection that occurs in immunocompromised patients. The inability to culture the organism as well as the lack of an annotated genome has hindered antigen discovery that could be useful in developing novel vaccine- or antibody-based therapies as well as diagnostics for this infection. Here we report a novel method of surface proteomics analysis of Pneumocystis murina that reliably detected putative surface proteins that ...

  7. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-02-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).

  8. Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences†

    Science.gov (United States)

    Howe, Daniel K.; Gaji, Rajshekhar Y.; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-01-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s). PMID:15664946

  9. Prevalence of Hepatitis B surface antigen among pregnant women ...

    African Journals Online (AJOL)

    Prevalence of Hepatitis B surface antigen among pregnant women attending antenatal ... Majigo Mtebe, Nyambura Moremi, Jeremiah Seni, Stephen E. Mshana. Abstract. In developing countries there is no routine screening of hepatitis B virus ...

  10. Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    NARCIS (Netherlands)

    Koppers-Lalic, D.; Verweij, M.C.; Lipinska, A.D.; Wang, Y.; Quinten, E.; Reits, E.A.; Koch, J.; Loch, S.; Rezende, M.M.; Daus, F.J.; Bienkowska-Szewczyk, K.; Osterrieder, N.; Mettenleiter, T.C.; Heemskerk, M.H.M.; Tampe, R.; Neefjes, J.J.; Chowdhury, S.I.; Ressing, M.E.; Rijsewijk, F.A.M.; Wiertz, E.J.H.J.

    2008-01-01

    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing

  11. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles.

    Science.gov (United States)

    Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon

    2015-07-15

    Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable.

    Science.gov (United States)

    Poirier, Danielle; Renaud, Frédéric; Dewar, Vincent; Strodiot, Laurent; Wauters, Florence; Janimak, Jim; Shimada, Toshio; Nomura, Tatsuya; Kabata, Koki; Kuruma, Koji; Kusano, Takayuki; Sakai, Masaki; Nagasaki, Hideo; Oyamada, Takayoshi

    2017-11-01

    Alternatives to syringe-based administration are considered for vaccines. Intradermal vaccination with dissolvable microneedle arrays (MNA) appears promising in this respect, as an easy-to-use and painless method. In this work, we have developed an MNA patch (MNAP) made of hydroxyethyl starch (HES) and chondroitin sulphate (CS). In swines, hepatitis B surface antigen (HBsAg) formulated with the saponin QS-21 as adjuvant, both incorporated in HES-based MNAP, demonstrated the same level of immunogenicity as a commercially available aluminum-adjuvanted HBsAg vaccine, after two immunizations 28 days apart. MNAP application was associated with transient skin reactions (erythema, lump, scab), particularly evident when the antigen was delivered with the adjuvant. The thermostability of the adjuvanted antigen when incorporated in the HES-based matrix was also assessed by storing MNAP at 37, 45 or 50 °C for up to 6 months. We could demonstrate that antigenicity was retained at 37 and 45 °C and only a 10% loss was observed after 6 months at 50 °C. Our results are supportive of MNAP as an attractive alternative to classical syringe-based vaccination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Simultaneous detection of Hepatitis B surface antigen and its antibody by radioimmunoassay

    International Nuclear Information System (INIS)

    Crouzat-Reynes, Gerard; Perigois, Francois; Lecureuil, Michel; Lejeune, Bernard

    1981-01-01

    The authors describe an original radioimmunoassay which allows the simultaneous detection of hepatitis B surface antigen and its antibody in a biological sample. Antigen and antibody are indiscriminately detected in a first step and then distinguished in a second step using the same reagents [fr

  14. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    Science.gov (United States)

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  15. HIV Viral Load

    Science.gov (United States)

    ... PF4 Antibody Hepatitis A Testing Hepatitis B Testing Hepatitis C Testing HER2/neu Herpes Testing High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV Antiretroviral Drug Resistance Testing, Genotypic HIV Viral Load HLA Testing HLA- ...

  16. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S.; Gallegos, C.E.; Dubner, D. [Radiopathology Laboratory, Nuclear Regulatory Authority, Buenos Aires (Argentina); Favier, B.; Carosella, E.D. [CEA, I2BM, Hopital Saint-Louis, IUH, Service de Recherches en Hemato-Immunologie, Paris (France)

    2009-07-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of {gamma}-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that {gamma}-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  17. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    International Nuclear Information System (INIS)

    Michelin, S.; Gallegos, C.E.; Dubner, D.; Favier, B.; Carosella, E.D.

    2009-01-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of γ-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that γ-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  18. Hepatitis B viral factors and treatment responses in chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Chih-Lin Lin

    2013-06-01

    Full Text Available Baseline and on-treatment hepatitis B viral factors are reported to affect treatment responses. A lower baseline hepatitis B virus (HBV DNA level is a strong predictor of the response to antiviral therapy. HBV genotype A/B patients have better responses to interferon-based therapy than those with genotypes C/D. Regarding the association of HBV mutants with responses to antiviral therapy, current evidence is limited. On-treatment viral suppression is the most important predictor of response to nucleoside analogs. On-treatment hepatitis B surface antigen decline is significantly associated with response to pegylated interferon. In the future, individualized therapy should be based on treatment efficacy, adverse effects, baseline and on-treatment predictors of antiviral therapy.

  19. Detection of Hepatitis B Virus Antigens in Paraffin-embedded Liver Specimens from the Amazon Region, Brazil

    Directory of Open Access Journals (Sweden)

    Simonetti SRR

    2002-01-01

    Full Text Available Hepatic viscerotomy of paraffin-preserved old specimens, collected in the period from 1934 to 1967, were analyzed by immunohistochemical assays to detect hepatitis B, hepatitis D, dengue and yellow fever virus antigens. The material belongs to the Yellow Fever Collection, Department of Pathology, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil and the cases were diagnosed at that time according to clinical aspects and histopathological findings reporting viral hepatitis, yellow fever, focal necrosis and hepatic atrophy. From the 79 specimens, 69 were collected at the Labrea Region and the other 10 in different other localities in the Amazon Region. The five micra thick histological slices were analyzed for the presence of hepatitis B surface antigen (HBsAg and hepatitis B core antigen (HBcAg by immunoperoxidase technique. An immunofluorescence assay was applied to the detection of hepatitis D, yellow fever and dengue virus antigens. Nine (11.4% histological samples were HBsAg reactive and 5 (6.3% were HBcAg reactive. The oldest reactive sample was from 1934. Viral antigens related to the other pathologies were not detected in this study. Our results confirm that the methodology described may be used to elucidate the aetiology of hepatitis diseases even after a long time of conservation of the specimens.

  20. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  1. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  2. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  3. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg).

    Science.gov (United States)

    Golsaz-Shirazi, Forough; Amiri, Mohammad Mehdi; Farid, Samira; Bahadori, Motahareh; Bohne, Felix; Altstetter, Sebastian; Wolff, Lisa; Kazemi, Tohid; Khoshnoodi, Jalal; Hojjat-Farsangi, Mohammad; Chudy, Michael; Jeddi-Tehrani, Mahmood; Protzer, Ulrike; Shokri, Fazel

    2017-08-01

    Hepatitis B virus (HBV) infection is a global burden on the health-care system and is considered as the tenth leading cause of death in the world. Over 248 million patients are currently suffering from chronic HBV infection worldwide and annual mortality rate of this infection is 686000. The "a" determinant is a hydrophilic region present in all antigenic subtypes of hepatitis B surface antigen (HBsAg), and antibodies against this region can neutralize the virus and are protective against all subtypes. We have recently generated a murine anti-HBs monoclonal antibody (4G4), which can neutralize HBV infection in HepaRG cells and recognize most of the escape mutant forms of HBsAg. Here, we describe the production and characterization of the chimeric human-murine antibody 4G4 (c-4G4). Variable region genes of heavy and light chains of the m-4G4 were cloned and fused to constant regions of human kappa and IgG1 by splice overlap extension (SOE) PCR. The chimeric antibody was expressed in Chinese Hamster Ovary (CHO)-K1 cells and purified from culture supernatant. Competition ELISA proved that both antibodies bind the same epitope within HBsAg. Antigen-binding studies using ELISA and Western blot showed that c-4G4 has retained the affinity and specificity of the parental murine antibody, and displayed a similar pattern of reactivity to 13 escape mutant forms of HBsAg. Both, the parental and c-4G4 showed a comparably high HBV neutralization capacity in cell culture even at the lowest concentration (0.6μg/ml). Due to the ability of c-4G4 to recognize most of the sub-genotypes and escape mutants of HBsAg, this antibody either alone or in combination with other anti-HBs antibodies could be considered as a potent alternative for Hepatitis B immune globulin (HBIG) as an HBV infection prophylactic or for passive immunotherapy against HBV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens.

    Science.gov (United States)

    Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H

    2017-01-15

    Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this

  5. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  6. Merkel cell carcinoma: histopathologic and prognostic features according to the immunohistochemical expression of Merkel cell polyomavirus large T antigen correlated with viral load.

    Science.gov (United States)

    Leroux-Kozal, Valérie; Lévêque, Nicolas; Brodard, Véronique; Lesage, Candice; Dudez, Oriane; Makeieff, Marc; Kanagaratnam, Lukshe; Diebold, Marie-Danièle

    2015-03-01

    Merkel cell carcinoma (MCC) is a neuroendocrine skin malignancy frequently associated with Merkel cell polyomavirus (MCPyV), which is suspected to be oncogenic. In a series of MCC patients, we compared clinical, histopathologic, and prognostic features according to the expression of viral large T antigen (LTA) correlated with viral load. We evaluated the LTA expression by immunohistochemistry using CM2B4 antibody and quantified viral load by real-time polymerase chain reaction. We analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples (n = 36) and corresponding fresh-frozen biopsies when available (n = 12), of the primary tumor and/or metastasis from 24 patients. MCPyV was detected in 88% and 58% of MCC patients by real-time polymerase chain reaction and immunohistochemistry, respectively. The relevance of viral load measurements was demonstrated by the strong consistency of viral load level between FFPE and corresponding frozen tissues as well as between primary tumor and metastases. From FFPE samples, 2 MCC subgroups were distinguished based on a viral load threshold defined by the positivity of CM2B4 immunostaining. In the LTA-negative subgroup with no or low viral load (nonsignificant), tumor cells showed more anisokaryosis (P = .01), and a solar elastosis around the tumor was more frequently observed (P = .03). LTA-positive MCCs with significant viral load had a lower proliferation index (P = .03) and a longer survival of corresponding patients (P = .008). Depending on MCPyV involvement, 2 MCC subgroups can be distinguished on histopathologic criteria, and the CM2B4 antibody is able to differentiate them reliably. Furthermore, the presence of a significant viral load in tumors is predictive of better prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cell surface antigens of radiation leukemia virus-induced BALB/c leukemias defined by syngeneic cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Oettgen, H.F.; Obata, Yuichi; Nakayama, Eiichi.

    1989-01-01

    Two cell surface antigens of mouse leukemias were defined by BALB/c cytotoxic T lymphocytes (CTL) generated against syngeneic radiation leukemia virus (RadLV)-induced leukemia, BALBRV1 or BALBRVD. Hyperimmunization of BALB/c mice with irradiated leukemias followed by in vitro sensitization of primed spleen cells resulted in the generation of CTL with high killing activity. The specificity of CTL was examined by direct cytotoxicity assays and competitive inhibition assays. A shared cell surface antigen, designated as BALBRV1 antigen, was detected by BALB/c anti-BALBRV1 CTL. BALBRV1 antigen was expressed not only on RadLV-induced BALB/c leukemias except for BALBRVD, but also on spontaneous or X-ray-induced BALB/c leukemias, chemically-induced leukemias with the H-2 d haplotype and some chemically-induced BALB/c sarcomas. In contrast, a unique cell surface antigen, designated as BALBRVD antigen, was detected by BALB/c anti-BALBRVD CTL. BALBRVD antigen was expressed only on BALBRVD, but not on thirty-nine normal lymphoid or tumor cells. These two antigens could be distinguished from those previously defined on Friend, Moloney, Rauscher or Gross murine leukemia virus (MuLV) leukemias, or MuLV-related antigens. Both cytotoxic responses were blocked by antisera against H-2K d , but not H-2D d . The relationship of BALBRV1 antigen and BALBRVD antigen to endogenous MuLV is discussed with regard to the antigenic distribution on tumor cell lines. (author)

  8. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  9. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  10. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  11. Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma.

    Science.gov (United States)

    Skappak, Christopher; Ilarraza, Ramses; Wu, Ying-Qi; Drake, Matthew G; Adamko, Darryl J

    2017-01-01

    Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then re-inoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

  12. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  13. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria....

  14. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    International Nuclear Information System (INIS)

    Mu, J.-J.; Tsay, Y.-G.; Juan, L.-J.; Fu, T.-F.; Huang, W.-H.; Chen, D.-S.; Chen, P.-J.

    2004-01-01

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [ 3 H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  15. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    International Nuclear Information System (INIS)

    Epstein, L.M.; Forney, J.D.

    1984-01-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei

  16. Prevalence of hepatitis b virus surface antigens (HBsag) and ...

    African Journals Online (AJOL)

    The prevalences of hepatitis B virus surface antigen (HBsAg) and hepatitis C virus (HCV) antibodies were determined in 560 blood donors sera using ELISA kits (DIALAB., Austria). Forty eight (8.57%) of these were positive for hepatitis B virus infection, while 33(5.89%) were positive to hepatitis C virus antibodies. The sex ...

  17. Feline Infectious Peritonitis: Immunohistochemical Features of Ocular Inflammation and the Distribution of Viral Antigens in Structures of the Eye.

    Science.gov (United States)

    Ziółkowska, Natalia; Paździor-Czapula, Katarzyna; Lewczuk, Bogdan; Mikulska-Skupień, Elżbieta; Przybylska-Gornowicz, Barbara; Kwiecińska, Kamila; Ziółkowski, Hubert

    2017-11-01

    Feline infectious peritonitis (FIP) is a serious, widely distributed systemic disease caused by feline coronavirus (FCoV), in which ocular disease is common. However, questions remain about the patterns of ocular inflammation and the distribution of viral antigen in the eyes of cats with FIP. This study characterized the ocular lesions of FIP including the expression of glial fibrillary acidic protein and proliferating cell nuclear antigen by Müller cells in the retina in cases of FIP and to what extent macrophages are involved in ocular inflammation in FIP. Immunohistochemistry for FCoV, CD3, CD79a, glial fibrillary acidic protein, calprotectin, and proliferating cell nuclear antigen was performed on paraffin sections from 15 naturally occurring cases of FIP and from controls. Glial fibrillary acidic protein expression was increased in the retina in cases of FIP. Müller cell proliferation was present within lesions of retinal detachment. Macrophages were present in FIP-associated ocular lesions, but they were the most numerous inflammatory cells only within granulomas (2/15 cats, 13%). In cases of severe inflammation of the ciliary body with damage to blood vessel walls and ciliary epithelium (3/15, 20%), some macrophages expressed FCoV antigens, and immunolabeling for calprotectin on consecutive sections suggested that these FCoV-positive macrophages were likely to be recently derived from blood. In cases of severe and massive inflammation of most ocular structures (4/15, 26%), B cells and plasma cells predominated over T cells and macrophages. These results indicate that gliosis can be present in FIP-affected retinas and suggest that breakdown of the blood-ocular barrier can allow FCoV-bearing macrophages to access the eye.

  18. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1 influenza virus reveals unexpected antigenically important regions.

    Directory of Open Access Journals (Sweden)

    Wanghui Xu

    Full Text Available The antigenic structure of the membrane protein hemagglutinin (HA from the 2009 A(H1N1 influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.

  19. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    Science.gov (United States)

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  1. Treatment of Schistosoma mansoni with miltefosine in vitro enhances serological recognition of defined worm surface antigens.

    Directory of Open Access Journals (Sweden)

    Marwa H El-Faham

    2017-08-01

    Full Text Available Miltefosine, an anti-cancer drug that has been successfully repositioned for treatment of Leishmania infections, has recently also shown promising effects against Schistosoma spp targeting all life cycle stages of the parasite. The current study examined the effect of treating Schistosoma mansoni adult worms with miltefosine on exposure of worm surface antigens in vitro.In an indirect immunofluorescence assay, rabbit anti-S.mansoni adult worm homogenate and anti-S. mansoni infection antisera gave strong immunofluorescence of the S. mansoni adult worm surface after treatment with miltefosine, the latter antiserum having previously been shown to synergistically enhance the schistosomicidal activity of praziquantel. Rabbit antibodies that recognised surface antigens exposed on miltefosine-treated worms were recovered by elution off the worm surface in low pH buffer and were used in a western immunoblotting assay to identify antigenic targets in a homogenate extract of adult worms (SmWH. Four proteins reacting with the antibodies in immunoblots were purified and proteomic analysis (MS/MS combined with specific immunoblotting indicated they were the S. mansoni proteins: fructose-1,6 bisphosphate aldolase (SmFBPA, Sm22.6, alkaline phosphatase and malate dehydrogenase. These antibodies were also found to bind to the surface of 3-hour schistosomula and induce immune agglutination of the parasites, suggesting they may have a role in immune protection.This study reveals a novel mode of action of miltefosine as an anti-schistosome agent. The immune-dependent hypothesis we investigated has previously been lent credence with praziquantel (PZQ, whereby treatment unmasks parasite surface antigens not normally exposed to the host during infection. Antigens involved in this molecular mechanism could have potential as intervention targets and antibodies against these antigens may act to increase the drug's anti-parasite efficacy and be involved in the development

  2. Assessment of specific IgM antibodies to core antigen of hepatitis B virus in acute and chronic hepatitis B using immunoradiometric assay

    International Nuclear Information System (INIS)

    Zichova, M.; Vodak, M.; Kostrhun, L.; Nadvornik, V.; Stransky, J.

    1986-01-01

    A group of 24 patients with acute viral hepatitis B was assessed for specific antibodies against the ''core'' antigen class IgM (HB c AB IgM) during 1st-4th week of the illness. These specific antibodies were positive in all patients, the mean titre being 10 -5 . The high content of these antibodies persisted for 1-2 months after the onset of the disease. The assessment of specific antibodies against ''core'' antigen class IgM was also made in a group of 39 patients with chronic hepatitis. In these patients positive HB c Ab IgM with a lower content were found (titre 10 -3 ) than in the group with acute viral hepatitis B. Based on the results the conclusion is made that specific antibodies HB c Ab class IgM are, in addition to the estimation of the surface antigen of the hepatitis B virus (HB s Ag), one more indicator of acute viral hepatitis B. The assessment is diagnostically valuable, in particular in acute hepatitis of obscure etiology, in acute jaundice of obscure etiology for the period of low and short-term antigenemia. (author). 6 figs., 1 tab., 14 refs

  3. Relation between laboratory test results and histological hepatitis activity in individuals positive for hepatitis B surface antigen and antibodies to hepatitis B e antigen

    NARCIS (Netherlands)

    ter Borg, F.; ten Kate, F. J.; Cuypers, H. T.; Leentvaar-Kuijpers, A.; Oosting, J.; Wertheim-van Dillen, P. M.; Honkoop, P.; Rasch, M. C.; de Man, R. A.; van Hattum, J.; Chamuleau, R. A.; Reesink, H. W.; Jones, E. A.

    1998-01-01

    BACKGROUND: Hepatitis B surface antigen (HBsAg) and antibodies to hepatitis B e antigen (anti-HBe) commonly coexist, and laboratory tests are often requested to assess histological hepatitis activity. An optimum panel of tests has not been found and the usefulness of hepatitis B virus (HBV) DNA

  4. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  5. Shedding of the immunodominant P20 surface antigen of Eimeria bovis sporozoites.

    OpenAIRE

    Speer, C A; Whitmire, W M

    1989-01-01

    P20 is an immunodominant surface antigen of Eimeria bovis sporozoites. As parasites underwent merogony within cultured bovine monocytes and Madin-Darby bovine kidney (MDBK) cells, P20 appeared to be shed gradually by meronts and was absent in type 1 and 2 first-generation merozoites. Meronts of E. bovis appeared to shed P20 into the parasitophorous vacuole of bovine monocytes, whereas MDBK cells evidently released P20 into the culture medium or destroyed its antigenic determinant.

  6. Contribution of viral recombinants to the study of the immune response against the Epstein-Barr virus.

    Science.gov (United States)

    Delecluse, Henri-Jacques; Feederle, Regina; Behrends, Uta; Mautner, Josef

    2008-12-01

    Over the past two decades, Epstein-Barr virus (EBV) mutants have become valuable tools for the analysis of viral functions. Several experimental strategies are currently used to generate recombinant mutant genomes that carry alterations in one or several viral genes. The probably most versatile approach utilizes bacterial artificial chromosomes (BAC) carrying parts or the whole EBV genome, which permits extensive genetic manipulations in Escherichia coli cells. The 'mini-EBVs', for example, which contain roughly half of the wild type viral information, efficiently transform primary B cells and have been used as gene vectors for foreign antigens. After expression in lymphoblastoid cell lines (LCLs), these antigens are efficiently presented on MHC molecules and recognized by antigen-specific T cells. These vectors, however, cannot undergo lytic replication and require a helper cell line for efficient replication and DNA packaging. Further experimental systems include the complete viral genome cloned onto a BAC. These mutants can typically be complemented by expression plasmids, some of which are expressed on EBV-derived vectors and can be propagated without requirement of a helper cell line. Over the last years, these viral recombinants have been utilized increasingly to analyse different aspects of the immune response against EBV. Immunological applications are manifold and steadily growing and include crude screening of T cell clones for their specificity towards latent versus lytic antigens, or more detailed analyses in which the exact specificity of T cells is determined using EBV mutants that lack a single viral antigen. Other applications include detailed analysis of protein domains important for immune recognition, e.g. Gly-Ala repeats in the EBV nuclear antigen 1 (EBNA1) protein, expansion of T cell clones directed against virion structures using virus-like particles and phenotypic analysis of virus mutants defective in infection. Future developments might

  7. Radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    Energy Technology Data Exchange (ETDEWEB)

    Tax, A; Manson, L A [Wistar Inst. of Anatomy and Biology, Philadelphia, Pa. (USA)

    1976-07-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit /sup 125/I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface.

  8. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  9. Use of nitrocellulose blotting for the study of hepatitis B surface antigen electrophoresed in agarose gels

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, J C; Greisiger, L M; Millman, I [Institute for Cancer Research, Philadelphia, PA (USA). Fox Chase Cancer Center

    1981-08-28

    Nitrocellulose-protein blotting of serum electrophoresed in agarose gels has been adapted for the study of hepatitis B surface antigen (HBsAg). /sup 125/I-labeled anti-HBs was used as the antigen probe, and the electrophoretic migration was monitored by autoradiography. The method required 3 ..mu..l or less of serum and could detect as little as 1 pg of purified HBsAg. Typically, the authors observed two bands of HBsAg; a moving band which migrated about one-third the distance moved by human serum albumin and a non-migratory band which remained at the loading site. Some examples of the use of the method include: (1) empirical methods for correlating HBsAg concentration in serum to film darkness; (2) observations of mobility changes in serial sera from dialysis patients with chronic HBsAg antigenemia; and (3) detection of related antigens such as antigen from the PLC/PRF/5 hepatoma tissue culture line and the cross-reacting woodchuck hepatitis virus surface antigen (WHsAg).

  10. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  11. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  12. Transmission of hepatitis-B virus through salivary blood group antigens in saliva

    International Nuclear Information System (INIS)

    Meo, S.A.; Abdo, A.A.; Baksh, N.D.; Sanie, F.M.

    2010-01-01

    To determine an association between transmission of hepatitis B virus and secretor and non-secretor status of salivary blood group antigens. Study Design: Cross-sectional, analytical study. Place and Duration of Study: The Department of Physiology and Division of Hepatology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, from 2007 to 2009. Methodology: Eighty eight known patients, who were positive for Hepatitis B Surface Antigen [HBsAg] were recruited. Saliva was collected for investigating the secretor and non-secretor status by using blood typing kit number Kemtec Educational Science USA. Hepatitis B Surface antigen test was performed on Enzyme Linked Immunosorbent Assay technique. Polymerase chain reaction [PCR] on saliva was also carried out in High Performance Thermal Cycler-Palm- Cycler [Corbett Life Science, Sydney, Australia] and enzymatic amplification of extracted viral DNA was performed using primers covering the promoter of the core region of HBV. Results: Out of the 88 subjects, 61 belong to blood group O, 20 to A and 7 subjects to blood group B. Fifty subjects were secretors [salivary blood group antigens positive] and 38 subjects were non-secretors [salivary blood group antigens negative]. Among core gene positive 25 (69.4%) were secretors and 11 (30.6%) were non-secretors. However, in core gene negative 25 (48.1%) were secretors and 27 (51.9%) were non-secretors. Conclusion: The result shows an association [p=0.047] between secretor and non-secretors status of the salivary blood group antigens with core gene positive and core gene negative. (author)

  13. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  14. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Marleen eVan Coevorden-Hameete

    2016-05-01

    Full Text Available Autoimmune encephalitis (AIE is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients’ serum or CSF therefore has serious consequences for the patients’ treatment and follow-up and requires the availability of sensitive and specific diagnostic tests. This mini-review provides a guideline for both diagnostic and research laboratories that work on the detection of known surface autoantibodies and/or the identification of novel surface antigens. We discuss the strengths and pitfalls of different techniques for anti-neuronal antibody detection: 1 Immunohistochemistry and immunofluorescence on rat/ primate brain sections, 2 Immunocytochemistry of living cultured hippocampal neurons, 3 Cell Based Assay (CBA. In addition, we discuss the use of immunoprecipitation and mass spectrometry analysis for the detection of novel neuronal surface antigens, which is a crucial step in further disease classification and the development of novel CBAs.

  15. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Arnot David E

    2008-06-01

    Full Text Available Abstract Background The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM and a novel labelling and fixation method have been used to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development. Methods A novel staining technique has been developed which permits distinction between erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non-ionic detergent to permit access of antibodies to internal parasite antigens. Differentiation between surface and internal antigens is achieved using antibodies labelled with different fluorochromes and confocal microscopy Results Surface exposed PfEMP1 is first detectable by antibodies at the trophozoite stage of intracellular parasite development although the improved detection method indicates that there are differences between different laboratory isolates in the kinetics of accumulation of surface-exposed PfEMP1. Conclusion A sensitive method for labelling surface and internal PfEMP1 with up to three different fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens.

  16. Prevalence of Hepatitis-B Surface Antigen among Blood Donors in ...

    African Journals Online (AJOL)

    Information is scarce on the prevalence of Hepatitis-B Virus (HBV) infection among blood donors in Taraba State. Hepatitis-B surface antigen (HBsAg) ELISA [Gudans Industrial Hong 2 Kou, China] was used to determine the prevalence of HBsAg among 804 blood donors aged between 11 and 65 years in Federal Medical ...

  17. Identification of a surface antigen on Theileria parva sporozoites by monoclonal antibody.

    OpenAIRE

    Dobbelaere, D A; Shapiro, S Z; Webster, P

    1985-01-01

    A mouse monoclonal antibody (mAbD1) that neutralizes sporozoites of different stocks of the protozoan parasite Theileria parva has been used to localize and identify a sporozoite antigen. Protein A-colloidal gold was used to localize bound mAbD1 in immunoelectron microscopic studies. mAbD1 bound to sporozoite antigen, which was evenly spread over the surface of all sporozoites. Immune complexes were obtained by incubation of sporozoite suspensions with mAbD1 followed by Zwittergent 3-14 extra...

  18. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus

    Science.gov (United States)

    Op den Brouw, Marjoleine L; Binda, Rekha S; van Roosmalen, Mark H; Protzer, Ulrike; Janssen, Harry L A; van der Molen, Renate G; Woltman, Andrea M

    2009-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Myeloid dendritic cells (mDC) of patients with chronic HBV are impaired in their maturation and function, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. The mechanism responsible for altered mDC function remains unclear. The HBV-infected patients display large amounts of HBV particles and viral proteins in their circulation, especially the surface antigen HBsAg, which allows multiple interactions between the virus, its viral proteins and DC. To assess whether HBV directly influences mDC function, the effects of HBV and HBsAg on human mDC maturation and function were investigated in vitro. As already described for internalization of HBV by DC, the present study shows that peripheral blood-derived mDC of healthy controls also actively take up HBsAg in a time-dependent manner. Cytokine-induced maturation in the presence of HBV or HBsAg resulted in a significantly more tolerogenic mDC phenotype as demonstrated by a diminished up-regulation of costimulatory molecules and a decreased T-cell stimulatory capacity, as assessed by T-cell proliferation and interferon-γ production. In addition, the presence of HBV significantly reduced interleukin-12 production by mDC. These results show that both HBV particles and purified HBsAg have an immune modulatory capacity and may directly contribute to the dysfunction of mDC in patients with chronic HBV. The direct immune regulatory effect of HBV and circulating HBsAg particles on the function of DC can be considered as part of the mechanism by which HBV escapes immunity. PMID:18624732

  19. Assessment of specific IgM antibodies to core antigen of hepatitis B virus in acute and chronic hepatitis B using immunoradiometric assay

    Energy Technology Data Exchange (ETDEWEB)

    Zichova, M; Vodak, M; Kostrhun, L; Nadvornik, V; Stransky, J

    1987-12-31

    A group of 24 patients with acute viral hepatitis B was assessed for specific antibodies against the ''core'' antigen class IgM (HB/sub c/AB IgM) during 1st-4th week of the illness. These specific antibodies were positive in all patients, the mean titre being 10/sup -5/. The high content of these antibodies persisted for 1-2 months after the onset of the disease. The assessment of specific antibodies against ''core'' antigen class IgM was also made in a group of 39 patients with chronic hepatitis. In these patients positive HB/sub c/Ab IgM with a lower content were found (titre 10/sup -3/) than in the group with acute viral hepatitis B. Based on the results the conclusion is made that specific antibodies HB/sub c/Ab class IgM are, in addition to the estimation of the surface antigen of the hepatitis B virus (HB/sub s/Ag), one more indicator of acute viral hepatitis B. The assessment is diagnostically valuable, in particular in acute hepatitis of obscure etiology, in acute jaundice of obscure etiology for the period of low and short-term antigenemia. (author). 6 figs., 1 tab., 14 refs.

  20. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    International Nuclear Information System (INIS)

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-01-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid

  1. Viral Evasion of Natural Killer Cell Activation

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-04-01

    Full Text Available Natural killer (NK cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  2. Viral Evasion of Natural Killer Cell Activation.

    Science.gov (United States)

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  3. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  4. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    Science.gov (United States)

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-05-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.

  5. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Mauro Tognon

    Full Text Available Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18-65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.

  6. Surface antigen-negative hepatitis B virus infection in Dutch blood donors

    NARCIS (Netherlands)

    Lieshout-Krikke, R. W.; Molenaar-de Backer, M. W. A.; van Swieten, P.; Zaaijer, H. L.

    2014-01-01

    Hepatitis B virus (HBV) surface antigen (HBsAg) is a reliable marker for HBV infection, but HBsAg-negative forms of HBV infection occur. The introduction of HBV DNA screening of Dutch blood donors, which were not preselected for absence of HBV core antibodies, enabled the characterization of

  7. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  8. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  9. Cell surface expression level variation between two common Human Leukocyte Antigen alleles, HLA-A2 and HLA-B8, is dependent on the structure of the C terminal part of the alpha 2 and the alpha 3 domains

    DEFF Research Database (Denmark)

    Dellgren, Christoffer; Nehlin, Jan O; Barington, Torben

    2015-01-01

    Constitutive cell surface expression of Human Leukocyte Antigen (HLA) class I antigens vary extremely from tissue to tissue and individual antigens may differ widely in expression levels. Down-regulation of class I expression is a known immune evasive mechanism used by cancer cells and viruses....... Moreover, recent observations suggest that even minor differences in expression levels may influence the course of viral infections and the frequency of complications to stem cell transplantation. We have shown that some human multipotent stem cells have high expression of HLA-A while HLA-B is only weakly...... expressed, and demonstrate here that this is also the case for the human embryonic kidney cell line HEK293T. Using quantitative flow cytometry and quantitative polymerase chain reaction we found expression levels of endogenous HLA-A3 (median 71,204 molecules per cell) 9.2-fold higher than the expression of...

  10. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    Science.gov (United States)

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  11. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by

  12. Original antigenic sin: A comprehensive review.

    Science.gov (United States)

    Vatti, Anup; Monsalve, Diana M; Pacheco, Yovana; Chang, Christopher; Anaya, Juan-Manuel; Gershwin, M Eric

    2017-09-01

    The concept of "original antigenic sin" was first proposed by Thomas Francis, Jr. in 1960. This phenomenon has the potential to rewrite what we understand about how the immune system responds to infections and its mechanistic implications on how vaccines should be designed. Antigenic sin has been demonstrated to occur in several infectious diseases in both animals and humans, including human influenza infection and dengue fever. The basis of "original antigenic sin" requires immunological memory, and our immune system ability to autocorrect. In the context of viral infections, it is expected that if we are exposed to a native strain of a pathogen, we should be able to mount a secondary immune response on subsequent exposure to the same pathogen. "Original antigenic sin" will not contradict this well-established immunological process, as long as the subsequent infectious antigen is identical to the original one. But "original antigenic sin" implies that when the epitope varies slightly, then the immune system relies on memory of the earlier infection, rather than mount another primary or secondary response to the new epitope which would allow faster and stronger responses. The result is that the immunological response may be inadequate against the new strain, because the immune system does not adapt and instead relies on its memory to mount a response. In the case of vaccines, if we only immunize to a single strain or epitope, and if that strain/epitope changes over time, then the immune system is unable to mount an accurate secondary response. In addition, depending of the first viral exposure the secondary immune response can result in an antibody-dependent enhancement of the disease or at the opposite, it could induce anergy. Both of them triggering loss of pathogen control and inducing aberrant clinical consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  14. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  15. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    International Nuclear Information System (INIS)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E.; Flores, B.M.; Hagen, F.S.

    1990-01-01

    A λgt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically 35 S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface- 125 I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4 degree C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested

  16. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    Energy Technology Data Exchange (ETDEWEB)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E. (Univ. of Washington, Seattle (USA)); Flores, B.M. (Louisiana State Univ. Medical Center, New Orleans (USA)); Hagen, F.S. (Zymogenetics Incorporated, Seattle, WA (USA))

    1990-08-01

    A {lambda}gt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically {sup 35}S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface-{sup 125}I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4{degree}C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested.

  17. A radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    International Nuclear Information System (INIS)

    Tax, A.; Manson, L.A.

    1976-01-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit 125 I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface

  18. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.

    Science.gov (United States)

    Zhang, Xiaowei; Hu, Shumin; Du, Xue; Li, Tiejun; Han, Lanlan; Kong, Jian

    2016-12-01

    Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases. Copyright © 2014. Published by Elsevier B.V.

  19. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  20. Association of Sendai virion envelope and a mouse surface membrane polypeptide on newly infected cells: lack of association with H-2K/D or alteration of viral immunogenicity

    International Nuclear Information System (INIS)

    Zarling, D.A.; Miskimen, J.A.; Fan, D.P; Fujimoto, E.K.; Smith, P.K.

    1982-01-01

    The reagent N-succinimidyl 4-azidophenyl-1,3'-dithiopropionate (SADP) was synthesized and then coupled to purified Sendai virions by the amino-reactive end of the SADP molecule. This SADP-coupled virus was fused into the membranes of surface radioiodinated P815 cells, and target structures were allowed to form. Next, the photosensitive group on SADP was activated with ultraviolet light to covalently couple the viral proteins to any neighboring cell surface proteins. The cellular neighbors were isolated from detergent extracts of membrane proteins after immunoprecipitation with antibody specific for Sendai virion proteins. The covalent cross-links between the nonradioactive Sendai proteins and the radioiodinated cellular polypeptide neighbors were broken, and the host cell polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected by autoradiography. One of these neighboring cellular proteins had an apparent m.w. of 17,000, and none was found with the characteristic size and tryptic map of either the H-2K or D gene products. Thus, the H-2K or D proteins are unlikely to be SADP- detectable neighbors of Sendai viral antigens recognized by CTL. In further experiments, the complexes of Sendai virion proteins crosslinked to cellular polypeptide neighbors were isolated from the membrane of newly infected cells and were shown to be able to stimulate CTL in vitro with approximately the same efficiency as uncross-linked Sendai virion proteins. Thus, Sendai viral proteins in the membrane of newly infected cells do not appear to be in highly immunogenic complexes with either H-2K/D or any other cellular proteins

  1. Vaccines prepared from translation products of cloned viral genes

    International Nuclear Information System (INIS)

    Patzer, J.; Obijeski, J.F.

    1985-01-01

    With the advent of recombinant DNA (rDNA) techniques and their application to viruses for vaccine research, there has been an explosion of information about the molecular structure and replication of many viruses. rDNA technology in conjunction with several other emerging technologies, e.g. monoclonal antibodies, solid phase synthesis of peptides and prediction of protein conformation on the basis of amino acid sequence, has provided a powerful battery of techniques that in many cases has allowed the identification of specific sites on the virion surface that elicit neutralizing antibodies. Knowledge of these sites allows one to design a subunit vaccine that utilizes one of the virion proteins or regions of a particular protein in the absence of any other viral proteins or the viral nucleic acid. The advantages of this approach are: that there are no potentially infectious agents contained in the vaccine if the inactivation procedure is incomplete, there is less chance of complications from the vaccine due to nonessential viral components in the vaccine, a purified protein or polypeptide is usually more stable than virus particles during storage, and many times larger quanitities of an antigen can be produced by rDNA techniques than by classical vaccine methods

  2. Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus.

    Science.gov (United States)

    Blixenkrone-Møller, M

    1989-09-01

    Using an indirect immunofluorescence technique, the distribution of viral antigen in various tissues and blood mononuclear leukocytes was studied in wild mink, either vaccinated with an attenuated vaccine strain of canine distemper virus (CDV) or experimentally inoculated with the virulent Snyder-Hill strain of CDV. Viral antigen was detected in cells of the lymphoid system 6 to 12 days after vaccination. From 2 to 3 days after inoculation with the virulent strain, CDV antigen was demonstrated in cells of the lymphoid system and, during the incubation period, the antigen had spread to the epithelia and brain at days 6 and 12, respectively. In clinical cases of acute fatal canine distemper, the viral antigen was detected in a wide variety of tissues, including the cells of the lymphoid system, epithelial cells of skin, mucous membranes, lung, kidney, and cells of the CNS. The diagnostic importance of CDV antigen detection is discussed on the basis of these findings.

  3. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  4. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Vestergaard, Lasse S; Lusingu, John

    2004-01-01

    The slow acquisition of protection against Plasmodium falciparum malaria probably reflects the extensive diversity of important antigens. The variant surface antigens (VSA) that mediate parasite adhesion to a range of host molecules are regarded as important targets of acquired protective immunity......, but their diversity makes them questionable vaccine candidates. We determined levels of VSA-specific immunoglobulin G (IgG) in human plasma collected at four geographically distant and epidemiologically distinct localities with specificity for VSA expressed by P. falciparum isolates from three African countries...

  5. Deteccion de citomegalovirus mediante la tecnica de inmunoperoxidasa y aislamiento viral Cytomegalovirus detection by Immunoperoxidase assay and viral isolation

    Directory of Open Access Journals (Sweden)

    Maritza Alvarez

    1991-06-01

    Full Text Available En el presente estudio se comparó la técnica de inmunoperoxidasa para la detección de citomegalovirus (IPCMV utilizando anticuerpos monoclonales que reconocen proteínas precoces virales con el método convencional de aislamiento viral en fibroblastos humanos. Un total de 150 muestras de orina fueron examinadas encontrando una sensibilidad de un 89.8% y una especificidad de 91.3% de la técnica de IPCMV comparada con el aislamiento viral. Una de las ventajas que presentó la IPCMV fue la rapidez con que fueron obtenidos los resultados (48 horas mientras que el aislamiento viral fue como promedio 14 días.An Immunoperoxidase assay was applied to detect early antigens of Cytomegalovirus (CMV in 150 urine samples from immunocompromised patients, using the commercial available monoclonal antibody against CMV El3. The detection of early antigen by IP (IPCMV is compared to the conventional cell culture isolation regarding specificity and sensitivity in order to evaluate is usefulness in the diagnostic of CMV infections. The IPCMV showed a sensitivity of 89.8% and a specificity of 91.3% when compared to the isolation method. The great advantage of the IPCMV is based on the shorter time results are achieved, since 48-72 Hs can be enough to provide evidence of CMV infection, while in the isolation technique cytopatho-genic effect was present around 14 days after sample inoculation.

  6. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    Science.gov (United States)

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  7. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display.

    Directory of Open Access Journals (Sweden)

    Tim J Schuijt

    2011-01-01

    Full Text Available Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.

  8. A Survey about Protective Effect of Echinococcus Granulosus Protoscolices Surface Antigens in Preventing Secondary Hydatid Cyst

    Directory of Open Access Journals (Sweden)

    H Yousofi

    2006-10-01

    Full Text Available ABSTRACT: Introduction & Objective: Hydatid cyst is located in human and some animal visceral organs such as liver and lung. The disease is considered as a medical, veterinary and economical problem in endemic area. When the hydatid cyst is ruptured, protoscolices from inside the cyst may spread out to other parts of the body and develops a new cyst named secondary hydatid cyst. In this research in an attempt to prevent secondary hydatid cyst, protective potential of protoscolices surface antigens extracted with different detergents has been investigated in animal model. Materials & Methods: In this experimental study, groups of Balb/c mice were immunized intra-peritoneally with protoscolices homogenate and three detergent (SDS, Tween and Triton x–100 extracted protoscolices surface antigens and alum as adjuvant. These mice were then boosted two times with the same antigens fortnightly. Control mice were simultaneously injected with alum alone. Two weeks following the last injection all the mice in cases and control groups were challenged with live protoscolices. Three months afterward all the mice in case and control groups were sacrificed and their peritoneal cavities were explored for hydatid cysts. Results: The mean of developed cyst number in mice injected with protoscolices homogenate was 3±2, while in control group the mean of developed cysts number was 5.8 ± 1.7 (p< 0.02. The mean of developed cyst number in mice injected with SDS, Tween and Triton x–100 extracted protoscolices surface antigens was 3, 3.6 and 3.4, respectively, while the mean of developed cyst number in control group was 5.8. Conclusion: The mean of cyst number in cases and control groups was different and this difference was statistically significant. Results of this investigation revealed that protoscolices homogenate antigens and some detergent extracted antigens are protective against secondary hydatid cyst infection

  9. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    Melanoma antigen recognized by T cell 1 (MART-1) is regarded as a candidate peptide for vaccination against malignant melanoma, and it is of importance to develop strategies to improve the vaccine-elicited T-cell activation towards MART-1. T-cell activation is, among other determinants, dependent...... on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...... to non-proteasomal targeting of the epitope to increase its cell-surface presentation. Furthermore, we explored the potential of incorporating multiple minigenes instead of one to increase cell-surface presentation. We show that both proteasomal targeting and repetition of the minigene increase cell...

  10. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    Directory of Open Access Journals (Sweden)

    Zhou Bin

    2005-04-01

    Full Text Available Abstract Background Flaviviruses, which include Dengue (DV and West Nile (WN, mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs, 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs near escape mutant positions. The analysis showed 1 that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2 two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines.

  11. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  12. Graft-versus-host disease and sialodacryoadenitis viral infection in bone marrow transplanted rats

    International Nuclear Information System (INIS)

    Rossie, K.M.; Sheridan, J.F.; Barthold, S.W.; Tutschka, P.J.

    1988-01-01

    The effect of a localized viral infection on the occurrence of graft-vs.-host disease (GVHD) was examined in allogeneic rat bone marrow chimeras (ACI/LEW). Animals without clinical evidence of GVHD, 62 days after bone marrow transplant, were infected in salivary and lacrimal glands with sialodacryoadenitis virus (SDAV), and sacrificed 8-25 days postinfection. Using established histologic criteria, GVHD was found more frequently in salivary and lacrimal glands of SDAV-infected chimeras than uninfected chimeras. Skin and oral mucosa, tissues not infected by the virus, showed no differences in occurrence of GVHD, suggesting that the viral infection induced only local and not systemic GVHD. GVHD and SDAV infection, which are histologically similar, were differentiated by examining tissues for SDAV antigen using immunoperoxidase technique. Histologic changes were present for at least 1 week longer than viral antigen, suggesting they represented GVHD rather than viral infection. GVHD and SDAV infection were also differentiated by looking for a histologic feature characteristic of GVHD and not found in SDAV infection (periductal lymphocytic infiltrate). This was found in SDAV-infected chimeras more frequently than uninfected chimeras, suggesting that the viral infection somehow induced GVHD. Results showed a localized increase in the occurrence of GVHD subsequent to localized viral infection

  13. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    Science.gov (United States)

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  14. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  15. Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles.

    Science.gov (United States)

    Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari; Beall, Anne; Mallory, Michael L; Yount, Boyd L; Graham, Rachel L; Huynh, Jeremy; Gates, J Edward; Donaldson, Eric F; Baric, Ralph S

    2018-05-22

    Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. IMPORTANCE Caliciviruses are

  16. APLASTIC ANEMIA AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    Laura Cudillo

    2009-11-01

    Liver histology is characterized by T cell infiltrating the parenchyma as reported in acute hepatitis. Recently in HAA it has been demonstrated intrahepatic  and blood lymphocytes with  T cell repertoire similar to that of confirmed viral acute hepatitis. The expanded T cell clones return to a normal distribution after response to immunosuppressive treatment, suggesting the antigen or T cell clearance. Therapeutic options are the same as acquired aplastic anemia.

  17. HBeAg and not genotypes predicts viral load in patients with hepatitis B in Denmark: A nationwide cohort study

    DEFF Research Database (Denmark)

    Krarup, Henrik; Andersen, Stig; Madsen, Poul Henning

    2011-01-01

    To explore the influence of HBV genotype on viral load in patients with HBV infection, and to investigate the relation to gender, age and country of origin or antibodies against hepatitis Be antigen (anti-HBe).......To explore the influence of HBV genotype on viral load in patients with HBV infection, and to investigate the relation to gender, age and country of origin or antibodies against hepatitis Be antigen (anti-HBe)....

  18. HBeAg and not genotypes predicts viral load in patients with hepatitis B in Denmark: a nationwide cohort study

    DEFF Research Database (Denmark)

    Krarup, Henrik Bygum; Andersen, Stig; Madsen, Poul Henning

    2011-01-01

    To explore the influence of HBV genotype on viral load in patients with HBV infection, and to investigate the relation to gender, age and country of origin or antibodies against hepatitis Be antigen (anti-HBe).......To explore the influence of HBV genotype on viral load in patients with HBV infection, and to investigate the relation to gender, age and country of origin or antibodies against hepatitis Be antigen (anti-HBe)....

  19. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies

    DEFF Research Database (Denmark)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-01-01

    microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 oC without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies...

  20. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  1. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase

    CSIR Research Space (South Africa)

    James, ER

    2012-10-01

    Full Text Available Microbiology and Biotechnology October 2012/ Vol. 96, No.2 Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase ER James a,c & WH van Zyl b & PJ van Zyl c & JF Görgens..., Pretoria 0001, South Africa Abstract This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus- like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted...

  2. Anti-N-methyl-D-aspartate receptor encephalitis with serum anti-thyroid antibodies and IgM antibodies against Epstein-Barr virus viral capsid antigen: a case report and one year follow-up

    Directory of Open Access Journals (Sweden)

    Xu Chun-Ling

    2011-11-01

    Full Text Available Abstract Background Anti-N-methyl-D-aspartate receptor encephalitis is an increasingly common autoimmune disorder mediated by antibodies to certain subunit of the N-methyl-D-aspartate receptor. Recent literatures have described anti-thyroid and infectious serology in this encephalitis but without follow-up. Case presentation A 17-year-old Chinese female patient presented with psychiatric symptoms, memory deficits, behavioral problems and seizures. She then progressed through unresponsiveness, dyskinesias, autonomic instability and central hypoventilation during treatment. Her conventional blood work on admission showed high titers of IgG antibodies to thyroglobulin, thyroid peroxidase and IgM antibodies to Epstein-Barr virus viral capsid antigen. An immature ovarian teratoma was found and removal of the tumor resulted in a full recovery. The final diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was made by the identification of anti-N-methyl-D-aspartate receptor antibodies in her cerebral spinal fluid. Pathology studies of the teratoma revealed N-methyl-D-aspartate receptor subunit 1 positive ectopic immature nervous tissue and Epstein-Barr virus latent infection. She was discharged with symptoms free, but titers of anti-thyroid peroxidase and anti-thyroglobulin antibodies remained elevated. One year after discharge, her serum remained positive for anti-thyroid peroxidase and anti-N-methyl-D-aspartate receptor antibodies, but negative for anti-thyroglobulin antibodies and IgM against Epstein-Barr virus viral capsid antigen. Conclusions Persistent high titers of anti-thyroid peroxidase antibodies from admission to discharge and until one year later in this patient may suggest a propensity to autoimmunity in anti- N-methyl-D-aspartate receptor encephalitis and support the idea that neuronal and thyroid autoimmunities represent a pathogenic spectrum. Enduring anti-N-methyl-D-aspartate receptor antibodies from admission to one year

  3. Mucosal-Associated Invariant T Cells: New Insights into Antigen Recognition and Activation

    Directory of Open Access Journals (Sweden)

    Xingxing Xiao

    2017-11-01

    Full Text Available Mucosal-associated invariant T (MAIT cells, a novel subpopulation of innate-like T cells that express an invariant T cell receptor (TCRα chain and a diverse TCRβ chain, can recognize a distinct set of small molecules, vitamin B metabolites, derived from some bacteria, fungi but not viruses, in the context of an evolutionarily conserved major histocompatibility complex-related molecule 1 (MR1. This implies that MAIT cells may play unique and important roles in host immunity. Although viral antigens are not recognized by this limited TCR repertoire, MAIT cells are known to be activated in a TCR-independent mechanism during some viral infections, such as hepatitis C virus and influenza virus. In this article, we will review recent works in MAIT cell antigen recognition, activation and the role MAIT cells may play in the process of bacterial and viral infections and pathogenesis of non-infectious diseases.

  4. Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review

    Energy Technology Data Exchange (ETDEWEB)

    Hayunga, E.G. (Division of Tropical Public Health, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD (USA)); Murrell, K.D. (Agricultural Research Service, Beltsville, MD (USA))

    1982-06-01

    Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species.

  5. Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review

    International Nuclear Information System (INIS)

    Hayunga, E.G.; Murrell, K.D.

    1982-01-01

    Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species. (Auth.)

  6. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome.

    Directory of Open Access Journals (Sweden)

    Jiacheng Lin

    2014-12-01

    Full Text Available Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing.

  7. A sensitive immunoradiometric assay for the detection of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Cameron, C.H.; Combridge, B.S.; Howell, D.R.; Barbara, J.A.J.

    1980-01-01

    A solid-phase immunoradiometric assay for hepatitis B surface antigen is described which has been in use since 1972. Initially it was used for reference laboratory work, but from 1974 it has also been used for screening blood and blood products. Methods for the production of reagents and their use in blood transfusion and reference work, are outlined. (Auth.)

  8. Purification and characterization of a major human Pneumocystis carinii surface antigen

    DEFF Research Database (Denmark)

    Lundgren, B; Lipschik, G Y; Kovacs, J A

    1991-01-01

    . To evaluate humoral immune responses to the human P. carinii protein, an enzyme-linked immunosorbent assay using purified protein was developed. Some, but not all, patients who subsequently developed P. carinii pneumonia demonstrated a serum antibody response to the surface antigen. Nearly all subjects...... without a history of P. carinii pneumonia had no detectable antibodies. Purified P. carinii proteins will greatly facilitate the investigation of host-P. carinii interactions....

  9. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Science.gov (United States)

    Maru, Saumya; Jin, Ge; Schell, Todd D; Lukacher, Aron E

    2017-04-01

    Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  10. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    Science.gov (United States)

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  11. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  12. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  13. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    Science.gov (United States)

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2018-01-30

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  15. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens

    International Nuclear Information System (INIS)

    Szala, S.; Kasai, Yasushi; Steplewski, Z.; Rodeck, U.; Koprowski, H.; Linnenbach, A.J.

    1990-01-01

    The human tumor-associated antigen CO-029 is a monoclonal antibody-defined cell surface glycoprotein of 27-34 kDa. By using the high-efficiency COS cell expression system, a full-length cDNA clone for CO-029 was isolated. When transiently expressed in COS cells, the cDNA clone directed the synthesis of an antigen reactive to monoclonal antibody CO-029 in mixed hemadsorption and immunoblot assays. Sequence analysis revealed that CO-029 belongs to a family of cell surface antigens that includes the melanoma-associated antigen ME491, the leukocyte cell surface antigen CD37, and the Sm23 antigen of the parasitic helminth Schistosoma mansoni. CO-029 and ME491 antigen expression and the effect of their corresponding monoclonal antibodies on cell growth were compared in human tumor cell lines of various histologic origins

  16. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR

    Directory of Open Access Journals (Sweden)

    Nagorsen Dirk

    2003-12-01

    Full Text Available Abstract The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV and Influenza (Flu, were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ, Interleukin-2 (IL-2, Interleukin-4 (IL-4, and Interleukin-10 (IL-10. We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization.

  17. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  18. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  19. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  20. The diagnosis of symptomatic acute antiretroviral syndrome during the window period with antigen/antibody testing and HIV viral load

    Directory of Open Access Journals (Sweden)

    Daniel O. Griffin

    Full Text Available Despite much focus on moving toward a cure to end the epidemic human immunodeficiency virus (HIV epidemic there are still thousands of new infections occurring every year in the United States. Although there is ongoing transmission of HIV in the United States and a growing population of people living with HIV, the acute presentation of HIV infection can be challenging to diagnose and is often not considered when patients present to healthcare providers. Although in certain states there are HIV testing laws that require that all persons between the ages of 13 and 64 be offered HIV testing in an opt-out approach, many patient presenting with an acute illness, that would warrant diagnostic testing for HIV, leave without having an HIV test performed for either diagnostic or screening purposes.We describe the case of a woman who presented to medical attention with symptoms later confirmed to be due to acute HIV infection. She was initially discharged from the hospital and only underwent HIV testing with confirmation of her diagnosis after readmission. We describe the algorithm where fourth generation testing combined with HIV viral load testing allowed for the diagnosis of acute HIV prior to the development of a specific immunoglobulin response. Consideration of this diagnosis, improved HIV screening, and understanding of the use of antigen/antibody screening tests, combined with Multispot and HIV viral RNA detection, when appropriate, can allow for early diagnosis of HIV before progression of disease and before undiagnosed patient spread the infection to new contacts.

  1. Viral subversion of the immune system

    International Nuclear Information System (INIS)

    Gillet, L.; Vanderplasschen, A.

    2005-01-01

    The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines. (author)

  2. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Directory of Open Access Journals (Sweden)

    Saumya Maru

    2017-04-01

    Full Text Available Establishing functional tissue-resident memory (TRM cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  3. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans

    DEFF Research Database (Denmark)

    Fløe, Andreas; Løppke, Caroline; Hilberg, Ole

    2017-01-01

    Objective We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in detection of HLA A*0201 restricted antigen specific T-cells (ASTC) by flow cytometry. Materials and methods MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melano...

  4. Benefit of Hepatitis C Virus Core Antigen Assay in Prediction of Therapeutic Response to Interferon and Ribavirin Combination Therapy

    OpenAIRE

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) ...

  5. Viral respiratory diseases: vaccines and antivirals.

    Science.gov (United States)

    Lennette, E H

    1981-01-01

    Acute respiratory diseases, most of which are generally attributed to viruses, account for about 6% of all deaths and for about 60% of the deaths associated with all respiratory disease. The huge cost attributable to viral respiratory infections as a result of absenteeism and the disruption of business and the burden of medical care makes control of these diseases an important objective. The viruses that infect the respiratory tract fall taxonomically into five viral families. Although immunoprophylaxis would appear to be the logical approach, the development of suitable vaccines has been confronted with numerous obstacles, including antigenic drift and shift in the influenzaviruses, the large number of antigenically distinct immunotypes among rhinoviruses, the occurrence after immunization of rare cases of a severe form of the disease following subsequent natural infection with respiratory syncytial virus, and the risk of oncogenicity of adenoviruses for man. Considerable expenditure on the development of new antiviral drugs has so far resulted in only three compounds that are at present officially approved and licensed for use in the USA. Efforts to improve the tools available for control should continue and imaginative and inventive approaches are called for. However, creativity and ingenuity must operate within the constraints imposed by economic, political, ethical, and legal considerations.

  6. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23

    International Nuclear Information System (INIS)

    Wang, F.; Gregory, C.D.; Rowe, M.; Rickinson, A.B.; Wang, D.; Birkenbach, M.; Kikutani, H.; Kishimoto, T.; Kieff, E.

    1987-01-01

    Epstein-Barr virus (EBV) infection of EBV-negative Burkitt lymphoma (BL) cells includes some changes similar to those seen in normal B lymphocytes that have been growth transformed by EBV. The role of individual EBV genes in this process was evaluated by introducing each of the viral genes that are normally expressed in EBV growth-transformed and latently infected lymphoblasts into an EBV-negative BL cell line, using recombinant retrovirus-mediated transfer. Clones of cells were derived that stably express the EBV nuclear antigen 1 (EBNA-1), EBNA-2, EBNA-3, EBNA-leader protein, or EBV latent membrane protein (LMP). These were compared with control clones infected with the retrovirus vector. All 10 clones converted to EBNA-2 expression differed from control clones or clones expressing other EBV proteins by growth in tight clumps and by markedly increased expression of one particular surface marker of B-cell activation, CD23. Other activation antigens were unaffected by EBNA-2 expression, as were markers already expressed on the parent BL cell line. The results indicate that EBNA-2 is a specific direct or indirect trans-activator of CD23. This establishes a link between an EBV gene and cell gene expression. Since CD23 has been implicated in the transduction of B-cell growth signals, its specific induction by EBNA-2 could be important in EBV induction of B-lymphocyte transformation

  7. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  8. Dissection and manipulation of antigen-specific T cell responses

    NARCIS (Netherlands)

    Schepers, Koen

    2006-01-01

    T cells recognize pathogen-derived antigens and are crucial for fighting pathogens such as viruses and bacteria. In addition, T cells are able to recognize and attack certain types of tumors, in particular virally induced tumors. In this thesis we aimed 1) to obtain more insight into

  9. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  10. Amino acid substitutions within the heptad repeat domain 1 of murine coronavirus spike protein restrict viral antigen spread in the central nervous system

    International Nuclear Information System (INIS)

    Tsai, Jean C.; Groot, Linda de; Pinon, Josefina D.; Iacono, Kathryn T.; Phillips, Joanna J.; Seo, Suhun; Lavi, Ehud; Weiss, Susan R.

    2003-01-01

    Targeted recombination was carried out to select mouse hepatitis viruses (MHVs) in a defined genetic background, containing an MHV-JHM spike gene encoding either three heptad repeat 1 (HR1) substitutions (Q1067H, Q1094H, and L1114R) or L1114R alone. The recombinant virus, which expresses spike with the three substitutions, was nonfusogenic at neutral pH. Its replication was significantly inhibited by lysosomotropic agents, and it was highly neuroattenuated in vivo. In contrast, the recombinant expressing spike with L1114R alone mediated cell-to-cell fusion at neutral pH and replicated efficiently despite the presence of lysosomotropic agents; however, it still caused only subclinical morbidity and no mortality in animals. Thus, both recombinant viruses were highly attenuated and expressed viral antigen which was restricted to the olfactory bulbs and was markedly absent from other regions of the brains at 5 days postinfection. These data demonstrate that amino acid substitutions, in particular L1114R, within HR1 of the JHM spike reduced the ability of MHV to spread in the central nervous system. Furthermore, the requirements for low pH for fusion and viral entry are not prerequisites for the highly attenuated phenotype

  11. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses.

    Science.gov (United States)

    Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei

    2016-01-01

    The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.

  12. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  13. Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa.

    Science.gov (United States)

    Hofmann-Lehmann, R; Fehr, D; Grob, M; Elgizoli, M; Packer, C; Martenson, J S; O'Brien, S J; Lutz, H

    1996-09-01

    While viral infections and their impact are well studied in domestic cats, only limited information is available on their occurrence in free-ranging lions. The goals of the present study were (i) to investigate the prevalence of antibodies to feline calicivirus (FCV), herpesvirus (FHV), coronavirus (FCoV), parvovirus (FPV), and immunodeficiency virus (FIV) and of feline leukemia virus (FeLV) antigen in 311 serum samples collected between 1984 and 1991 from lions inhabiting Tanzania's national parks and (ii) to evaluate the possible biological importance and the interrelationship of these viral infections. Antibodies to FCV, never reported previously in free-ranging lions, were detected in 70% of the sera. In addition, a much higher prevalence of antibodies to FCoV (57%) was found than was previously reported in Etosha National Park and Kruger National Park. Titers ranged from 25 to 400. FeLV antigen was not detectable in any of the serum samples. FCoV, FCV, FHV, and FIV were endemic in the Serengeti, while a transient elevation of FPV titers pointed to an outbreak of FPV infection between 1985 and 1987. Antibody titers to FPV and FCV were highly prevalent in the Serengeti (FPV, 75%; FCV, 67%) but not in Ngorongoro Crater (FPV, 27%; FCV, 2%). These differences could be explained by the different habitats and biological histories of the two populations and by the well-documented absence of immigration of lions from the Serengeti plains into Ngorongoro Crater after 1965. These observations indicate that, although the pathological potential of these viral infections seemed not to be very high in free-ranging lions, relocation of seropositive animals by humans to seronegative lion populations must be considered very carefully.

  14. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    Science.gov (United States)

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  15. Understanding original antigenic sin in influenza with a dynamical system.

    Science.gov (United States)

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  16. A portion of the Pf155/RESA antigen of Plasmodium falciparum is accessible on the surface of infected erythrocytes

    International Nuclear Information System (INIS)

    Saul, A.; Maloy, W.L.; Howard, R.J.; Rock, E.P.

    1988-01-01

    An investigation of antigens accessible to lactoperoxidase-catalysed cell surface iodination on intact Plasmodium falciparum-infected red blood cells (RBC) has identified a 125 I-labelled antigen with an apparent size of about 155 kD. This labelled protein was specifically immunoprecipitated by the following antibodies: a rabbit antiserum and a mouse monoclonal antibody raised against a synthetic peptide comprising the 3',8-mer repeat EENVEHDA of the Pf155/RESA protein; a rabbit antiserum raised against a synthetic octapeptide comprising two copies of the 3',4-mer repeat EENV of the Pf155/RESA protein; and rabbit antisera against another synthetic peptide C(MYSNNNVED) 2 . The last antibody shows a strong reaction in asexual blood state parasites with the Pf155/RESA antigen. While this antigen has been described previously as a submembrane component of the outer membrane of infected RBC, this report shows that at least part of it is accessible to the surface of both ring and late trophozoite-infected erythrocytes. 21 refs., 4 figs

  17. Hepatitis B surface antigen titer is a good indicator of durable viral response after entecavir off-treatment for chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Han Ah Lee

    2016-09-01

    Full Text Available Background/Aims Clear indicators for stopping antiviral therapy in chronic hepatitis B (CHB patients are not yet available. Since the level of hepatitis B surface antigen (HBsAg is correlated with covalently closed circular DNA, the HBsAg titer might be a good indicator of the off-treatment response. This study aimed to determine the relationship between the HBsAg titer and the entecavir (ETV off-treatment response. Methods This study analyzed 44 consecutive CHB patients (age, 44.6±11.4 years, mean±SD; men, 63.6%; positive hepatitis B envelope antigen (HBeAg at baseline, 56.8%; HBV DNA level, 6.8±1.3 log10 IU/mL treated with ETV for a sufficient duration and in whom treatment was discontinued after HBsAg levels were measured. A virological relapse was defined as an increase in serum HBV DNA level of >2000 IU/mL, and a clinical relapse was defined as a virological relapse with a biochemical flare, defined as an increase in the serum alanine aminotransferase level of >2 × upper limit of normal. Results After stopping ETV, virological relapse and clinical relapse were observed in 32 and 24 patients, respectively, during 20.8±19.9 months of follow-up. The cumulative incidence rates of virological relapse were 36.2% and 66.2%, respectively, at 6 and 12 months, and those of clinical relapse were 14.3% and 42.3%. The off-treatment HBsAg level was an independent factor associated with clinical relapse (hazard ratio, 2.251; 95% confidence interval, 1.076–4.706; P=0.031. When patients were grouped according to off-treatment HBsAg levels, clinical relapse did not occur in patients with an off-treatment HBsAg level of ≤2 log10 IU/mL (n=5, while the incidence rates of clinical relapse at 12 months after off-treatment were 28.4% and 55.7% in patients with off-treatment HBsAg levels of >2 and ≤3 log10 IU/mL (n=11 and >3 log10 IU/mL (n=28, respectively. Conclusion The off-treatment HBsAg level is closely related to clinical relapse after treatment

  18. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    International Nuclear Information System (INIS)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudrière-Gesbert, Cécile

    2012-01-01

    Highlights: ► P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. ► HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. ► HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  19. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France); Lagaudriere-Gesbert, Cecile, E-mail: cecile.lagaudriere-gesbert@u-psud.fr [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  20. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  1. Real-time PCR versus viral culture on urine as a gold standard in the diagnosis of congenital cytomegalovirus infection

    NARCIS (Netherlands)

    de Vries, Jutte J. C.; van der Eijk, Annemiek A.; Wolthers, Katja C.; Rusman, Lisette G.; Pas, Suzan D.; Molenkamp, Richard; Claas, Eric C.; Kroes, Aloys C. M.; Vossen, Ann C. T. M.

    2012-01-01

    Background: Cytomegalovirus (CMV) infection is the most common cause of congenital infection. Whereas CMV PCR has replaced viral culture and antigen detection in immunocompromised patients because of higher sensitivity, viral culture of neonatal urine is still referred to as the gold standard in the

  2. Multiple surface antigen mutations in five blood donors with occult hepatitis B virus infection

    NARCIS (Netherlands)

    Zaaijer, H. L.; Torres, P.; Ontañón, A.; Ponte, L. González; Koppelman, M. H. G. M.; Lelie, P. N.; Hemert, F. J. van; Boot, H. J.

    2008-01-01

    Occult hepatitis B virus (HBV) infection is characterized by the presence of HBV DNA while the HBV surface antigen (HBsAg) remains undetectable. The HBV genomes in five asymptomatic blood donors with occult HBV infection and low viremia ( <10 to 1,000 HBV DNA copies/mL, genotype D) were studied. An

  3. An investigation of an outbreak of viral hepatitis B in Modasa town, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Disha A Patel

    2012-01-01

    Full Text Available Background: Most outbreaks of viral hepatitis in India are caused by hepatitis E. Recently in the year 2009, Modasa town of Sabarkantha district in Gujarat witnessed the outbreak of hepatitis B. Purpose: An attempt was made to study the outbreak clinically and serologically, to estimate the seropositivity of hepatitis B Virus among the cases and their contacts and to know the seroprevalence of hepatitis B envelope antigen (HBeAg and IgM antibody against hepatitis B core antigen (IgM HBcAb out of all the Hepatitis B surface Antigen (HBsAg positive ones. Materials and Methods: Eight hundred and fifty-six (856 cases and 1145 contacts were evaluated for hepatitis B markers namely HBsAg, HBeAg and IgM HBcAb by enzyme-linked immuno Sorbent Assay (ELISA test. Results: This outbreak of viral hepatitis B in Modasa, Gujarat was most likely due to unsafe injection practices. Evidence in support of this was collected by Government authorities. Most of the patients and approximately 40% of the surveyed population gave history of injections in last 1.5-6 months. Total 664/856 (77.57% cases and 20/1145 (1.75% contacts were found to be positive for HBsAg. 53.41% of the positive cases and 52.93% of the positive contacts were HBeAg-positive and thus in a highly infectious stage. Conclusions: Inadequately sterilized needles and syringes are an important cause of transmission of hepatitis B in India. Our data reflects the high positivity rate of a hepatitis B outbreak due to such unethical practices. There is a need to strengthen the routine surveillance system, and to organise a health education campaign targeting all health care workers including private practitioners, especially those working in rural areas, as well as the public at large, to take all possible measures to prevent this often fatal infection.

  4. Evaluation of an Antigen-Antibody “Combination” Enzyme Linked ...

    African Journals Online (AJOL)

    Conclusion: We conclude that although this assay depicts high sensitivity and specificity in detecting antibodies to HCV, it seems not to add further benefit in our study population to detect HCV infections by enhanced sensitivity due the potential contingency to trace viral capsid antigens. Keywords: Ag-Ab Combination assay ...

  5. Markers of viral hepatitis in hemophiliacs

    International Nuclear Information System (INIS)

    Malik, N.; Hussain, Z.

    2006-01-01

    Sero prevalence of Hepatitis B surface antigen (HbsAg) and anti-HCV IgG was determined in 100 persons with Hemophilia (PWH), registered with Hemophilia Patient Welfare Society (HPWS), Lahore Zone, Pakistan. The study shows that 4% were positive for HBsAg. However, there was a high level of anti-HCV sero positivity (56%) in our PWH, including many patients in younger age groups. When compared with figures from PWH in other regions of Asia like 23% in Western India, 33% in Sri Lanka and 15% of those in Iran, this figure is one of the highest. This rate is a reflection of the same rising trend in our population that is now exceeding 10%. The practice of unscreened blood/blood-products transfusions in the backdrop of high prevalence of HCV in our population is responsible for high figures seen in PWH. The need is to increase awareness amongst the patients, health care workers and policy makers about the transfusion associated viral infections in a group of patients who already had a hereditary disorder of severe nature. (author)

  6. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  7. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    International Nuclear Information System (INIS)

    Patters, M.R.; Landsberg, R.L.; Johansson, L.-A.; Trummel, C.L.; Robertson, P.R.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated 45 Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis. (author)

  8. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    Energy Technology Data Exchange (ETDEWEB)

    Patters, M R; Landsberg, R L; Johansson, L A; Trummel, C L; Robertson, P R [Department of Periodontology, University of Connecticut, School of Dental Medicine, Farmington, Connecticut, U.S.A.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated /sup 45/Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis.

  9. [Clinical benefit of HCV core antigen assay in patients receiving interferon and ribavirin combination therapy].

    Science.gov (United States)

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Saito, Hidetsugu

    2006-02-01

    A highly sensitive second generation HCV core antigen assay has recently been developed. We compared viral disappearance and kinetics data between commercially available core antigen assays, Lumipulse Ortho HCV Ag, and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor Test, Version 2 to estimate the predictive benefit of sustained viral response (SVR) and non-SVR in 59 patients treated with interferon and ribavirin combination therapy. We found a good correlation between HCV core Ag and HCV RNA level regardless of genotype. Although the sensitivity of the core antigen assay was lower than PCR, the dynamic range was broader than that of the PCR assay, so that we did not need to dilute the samples in 59 patients. We detected serial decline of core Ag levels in 24 hrs, 7 days and 14 days after interferon combination therapy. The decline of core antigen levels was significant in SVR patients compared to non-SVR as well as in genotype 2a, 2b patients compared to 1b. Core antigen-negative on day 1 could predict all 10 SVR patients (PPV = 100%), whereas RNA-negative could predict 22 SVR out of 25 on day 14 (PPV = 88.0%). None of the patients who had detectable serum core antigen on day 14 became SVR(NPV = 100%), although NPV was 91.2% on RNA negativity. An easy, simple, low cost new HCV core antigen detecting system seems to be useful for assessing and monitoring IFN treatment for HCV.

  10. A new technique to detect antibody-antigen reaction (biological interactions) on a localized surface plasmon resonance (LSPR) based nano ripple gold chip

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Iram, E-mail: iiram.qau@gmail.com [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Widger, William, E-mail: widger@uh.edu [Department of Biology and Biochemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Chu, Wei-Kan, E-mail: wkchu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2017-07-31

    Highlights: • The nano ripple LSPR chip has monolayer molecule-coating sensitivity and specific selectivity. • Gold nano-ripple sensing chip is a low cost, and a label-free method for detecting the antibody-antigen reaction. • The plasmonic resonance shift depends upon the concentration of the biomolecules attached on the surface of the nano ripple pattern. - Abstract: We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).

  11. Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

    NARCIS (Netherlands)

    Schuijt, T.J.; Narasimhan, S.; Daffre, S.; Deponte, K.; Hovius, J.W.R.; van 't Veer, C.; van der Poll, T.; Bakhtiari, K.; Meijers, J.C.M.; Boder, E.T.; van Dam, A.P.; Fikrig, E.

    2011-01-01

    Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary

  12. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  13. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    Science.gov (United States)

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  14. Clinical report: Detection and management of bovine viral diarrhea virus Type 1b in a large dairy herd

    Science.gov (United States)

    Case Description: 1,081 newborn calves from a commercial dairy were tested for bovine viral diarrhea virus antigen by pooled RT-PCR as part of a screening program. Ear tissue from twenty six calves initially tested positive and 14 confirmed positive with antigen capture ELISA two weeks later (1.3...

  15. The Immunoproteasome and Viral Infection: A Complex Regulator of Inflammation

    Directory of Open Access Journals (Sweden)

    Mary Katherine McCarthy

    2015-01-01

    Full Text Available During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-kB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in nonimmune cells during viral infection by interferon (IFN signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-kB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.

  16. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    Science.gov (United States)

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  17. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  18. Hepatitis B virus surface antigen (HBsAg)-positive and HBsAg-negative hepatitis B virus infection among mother-teenager pairs 13 years after neonatal hepatitis B virus vaccination.

    Science.gov (United States)

    Yao, Qing-Qing; Dong, Xiao-Lian; Wang, Xue-Cai; Ge, Sheng-Xiang; Hu, An-Qun; Liu, Hai-Yan; Wang, Yueping Alex; Yuan, Quan; Zheng, Ying-Jie

    2013-02-01

    It is unclear whether a mother who is negative for hepatitis B virus surface antigen (HBsAg) but positive for hepatitis B virus (HBV) is at potential risk for mother-to-child transmission of HBV. This study, using a paired mother-teenager population, aimed to assess whether maternal HBsAg-negative HBV infection ((hn)HBI) is a significant source of child HBV infection (HBI). A follow-up study with blood collection has been conducted on the 93 mother-teenager pairs from the initial 135 pregnant woman-newborn pairs 13 years after neonatal HBV vaccination. Serological and viral markers of HBV have been tested, and phylogenetic analysis of HBV isolates has been done. The HBI prevalence was 1.9% (1 (hn)HBI/53) for teenage children of non-HBI mothers, compared with 16.7% (1 (hn)HBI/6) for those of (hn)HBI mothers and 2.9% (1 HBsAg-positive HBV infection [(hp)HBI]/34) for those of (hp)HBI mothers. Similar viral sequences have been found in one pair of whom both the mother and teenager have had (hn)HBI. In comparison with the (hp)HBI cases, those with (hn)HBI had a lower level of HBV load and a higher proportion of genotype-C strains, which were accompanied by differentiated mutations (Q129R, K141E, and Y161N) of the "a" determinant of the HBV surface gene. Our findings suggest that mother-to-teenager transmission of (hn)HBI can occur among those in the neonatal HBV vaccination program.

  19. Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections

    Directory of Open Access Journals (Sweden)

    Enrique Fuentes-Mattei

    2017-06-01

    Full Text Available Prevalence of Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8 varies greatly in different populations. We hypothesized that the actual prevalence of KSHV/HHV8 infection in humans is underestimated by the currently available serological tests. We analyzed four independent patient cohorts with post-surgical or post-chemotherapy sepsis, chronic lymphocytic leukemia and post-surgical patients with abdominal surgical interventions. Levels of specific KSHV-encoded miRNAs were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR, and KSHV/HHV-8 IgG were measured by immunoassay. We also measured specific miRNAs from Epstein Barr Virus (EBV, a virus closely related to KSHV/HHV-8, and determined the EBV serological status by ELISA for Epstein-Barr nuclear antigen 1 (EBNA-1 IgG. Finally, we identified the viral miRNAs by in situ hybridization (ISH in bone marrow cells. In training/validation settings using independent multi-institutional cohorts of 300 plasma samples, we identified in 78.50% of the samples detectable expression of at least one of the three tested KSHV-miRNAs by RT-qPCR, while only 27.57% of samples were found to be seropositive for KSHV/HHV-8 IgG (P < 0.001. The prevalence of KSHV infection based on miRNAs qPCR is significantly higher than the prevalence determined by seropositivity, and this is more obvious for immuno-depressed patients. Plasma viral miRNAs quantification proved that EBV infection is ubiquitous. Measurement of viral miRNAs by qPCR has the potential to become the “gold” standard method to detect certain viral infections in clinical practice.

  20. Human Tumor Antigens Yesterday, Today, and Tomorrow.

    Science.gov (United States)

    Finn, Olivera J

    2017-05-01

    The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. A molecular approach to immunoscintigraphy: A study of the T-antigen conformation on the surface of tumors

    International Nuclear Information System (INIS)

    Noujaim, A.; Selvaraj, S.; Suresh, M.R.; Turner, C.; McLean, G.; Willans, D.; Longenecker, B.M.; Haines, D.M.

    1987-01-01

    The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both α and β configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models. (orig.) [de

  2. Leukemia-associated antigens in man.

    Science.gov (United States)

    Brown, G; Capellaro, D; Greaves, M

    1975-12-01

    Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.

  3. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Science.gov (United States)

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  4. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Directory of Open Access Journals (Sweden)

    Chetan Sood

    Full Text Available HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles. Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  5. Use of radio-immuno-inhibition assay for the study of the y, d and w determinants of hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Donea-Debroise, B; Brocteur, J; Andre, A; Remacle, M B [Liege Univ. (Belgium)

    1979-01-01

    A radioimmunoassay determination of the HBs antigen subtypes is discussed, this simple but effective technique was used in association with the use of the Austria II kit (Abbott Laboratories). This method consists of an inhibition reaction of the Austria II test, by previous incubation of the antigen to be subtyped with a monospecific antibody. With this method we were able to distinguish the y and the d antigens as well as the w1, w3, w4 determinants of hepatitis B surface antigen. We have included a frequency table of the various HBs subtypes found among donor and patient populations in Liege.

  6. A simple assay for the detection of antibodies to endocrine islet cell surface antigens

    International Nuclear Information System (INIS)

    Contreas, G.; Madsen, O.D.; Vissing, H.; Lernmark, Aa.

    1986-01-01

    A simple and sensitive immunoradiometric assay for the detection of islet cell surface antibodies (CIRMA) has been developed. Live, transformed islet cells derived from a liver metastasis of a transplantable islet cell tumor were grown in removable microtiter wells and incubated with antibody. Cell-bound antibodies were quantitated using 125 I-labelled second antibodies. The assay was used to detect islet cell antibodies present in sera from non-diabetic and diabetic BB rats and proved to be particularly effective for screening hybridoma supernatants in order to identify monoclonal antibodies recognizing islet cell surface antigens. (Auth.)

  7. Characterization of viral proteins of Oryctes baculovirus and comparison between two geographical isolates.

    Science.gov (United States)

    Mohan, K S; Gopinathan, K P

    1989-01-01

    Bacilliform Oryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infected Oryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reported Oryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.

  8. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  9. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  10. Virus-like particle production with yeast: ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    Adnan Ahmad

    2011-06-01

    Full Text Available Abstract Background A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg. Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs, to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification. Results High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell. Conclusions It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were

  11. Postvaccination seroconversion against the surface antigen of Hepatitis B virus, in nursing students

    Directory of Open Access Journals (Sweden)

    Gladys Amanda Mera-Urbano

    2013-09-01

    Full Text Available Objective: To determine the status of seroconversion after vaccination against the surface antigen of hepatitis B virus in nursing students, University of Cauca. Methods: Cross sectional study in students of V and VI semester. The sample was taken from 37 students, 15 of V and 22 of VI semester. The instrument used was a survey that included 11 questions of multiple selections. Records for weight, height and laboratory results were collected; blood samples for antibody titers were performed with informed consent. The data were tabulated and analyzed using SPSS, version 17.0. Results: 89.2% of students had levels of antibodies to the surface antigen. This value was greater than 10 mUI/ml, considered by the scientific community as a protector value of Hepatitis B. 10.8% of had lesser values. Regarding vaccination scheme, 24% had a dose, 19% two, 48% three and 8% had a one dose. The population with 3 doses and reinforcement seroconverted by 100%. Conclusion: This study demonstrated failings in the scheme of vaccination of the students of nursing and that 10.8 % presented lower values than 10 mIU/ml. It is necessary to apply the institutional rules with more strength as a preventive measure for hepatitis B.

  12. Novel Antitumor Strategy Utilizing a Plasmid Expressing a Mycobacterium tuberculosis Antigen as a “Danger Signal” to Block Immune Escape of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Koyama

    2015-07-01

    Full Text Available Immune escape of tumor cells is one of the main obstacles hindering the effectiveness of cancer immunotherapy. We developed a novel strategy to block immune escape by transfecting tumor cells in vivo with genes of pathogenic antigens from Mycobacterium tuberculosis (TB. This induces presentation of the TB antigen on tumor cell surfaces, which can be recognized by antigen presenting cells (APCs as a “danger signal” to stimulate antitumor immune response. This strategy is also expected to amplify the immune response against tumor-associated antigens, and block immune escape of the tumor. DNA/PEI/chondroitin sulfate ternary complex is a highly effective non-viral gene vector system for in vivo transfection. A therapeutic complex was prepared using a plasmid encoding the TB antigen, early secretory antigenic target-6 (ESAT-6. This was injected intratumorally into syngeneic tumor-bearing mice, and induced significant tumor growth suppression comparable to or higher than similar complexes expressing cytokines such as interleukin-2 (IL-2 and interleukin-12 (IL-12. Co-transfection of the cytokine-genes and the ESAT-6-gene enhanced the antitumor efficacy of either treatment alone. In addition, complete tumor regression was achieved with the combination of ESAT-6 and IL-2 genes.

  13. Familial occurrence of subacute thyroiditis associated with human leukocyte antigen-B35

    NARCIS (Netherlands)

    Kramer, AB; Roozendaal, C; Dullaart, RPF

    Subacute thyroiditis (SAT) is a spontaneously remitting inflammatory disorder of the thyroid, associated with human leukocyte antigen (HLA)-B35, and may be virally induced in genetically predisposed individuals. A 57-year-old Caucasian man presented with symptoms of hyperthyroidism as well as

  14. Immunophenotyping of Waldenstroms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Aneel Paulus

    Full Text Available Waldenströms macroglobulinemia (WM is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for

  15. NaVirCept - Nucleic Acid-Based Anti-Viral Project

    International Nuclear Information System (INIS)

    Stephen, E. R.; Wong, J.; Van Loon, D.

    2007-01-01

    Vaccines are generally considered to be the most effective countermeasures to bacterial and viral diseases, however, licensed vaccines against many disease agents are either not available or their efficacies have not been demonstrated. Vaccines are generally agent specific in terms of treatment spectrum and are subject to defeat through natural mutation or through directed efforts. With respect to viral therapeutics, one of the major limitations associated with antiviral drugs is acquired drug resistance caused by antigenic shift or drift. A number of next-generation prophylactic and/or therapeutic measures are on the horizon. Of these, nucleic acid-based drugs are showing great antiviral potential. These drugs elicit long-lasting, broad spectrum protective immune responses, especially to respiratory viral pathogens. The Nucleic Acid-Based Antiviral (NaVirCept) project provides the opportunity to demonstrate the effectiveness of novel medical countermeasures against military-significant endemic and other viral threat agents. This project expands existing DRDC drug delivery capability development, in the form of proprietary liposome intellectual property, by coupling it with leading-edge nucleic acid-based technology to deliver effective medical countermeasures that will protect deployed personnel and the warfighter against a spectrum of viral disease agents. The technology pathway will offer a means to combat emerging viral diseases or modified threat agents such as the bird flu or reconstructed Spanish flu without going down the laborious, time-consuming and expensive paths to develop countermeasures for each new and/or emerging viral disease organism.(author)

  16. Ultraviolet radiation (UVR) induces cell-surface Ro/SSA antigen expression by human keratinocytes in vitro: a possible mechanism for the UVR induction of cutaneous lupus lesions

    International Nuclear Information System (INIS)

    Jones, S.K.

    1992-01-01

    Antinuclear antibodies are useful markers of connective tissue disease. In this study, UVB but not UVA induced the expression of Ro/SSA antigen on keratinocyte surfaces in vitro. This expression was also found with the extractable nuclear antigens RnP and Sm, but not with single or double-stranded DNA. The expression was prevented by blocking protein synthesis, suggesting that it was an active process. The results suggest that UVB exposure may result in the expression of Ro/SSA antigen on the surfaces of basal keratinocytes in vivo. This antigen could then bind circulating antibody leading to the cutaneous lesions in neonatal and subacute cutaneous lupus erythematosus. (Author)

  17. Radioimmunoassay for Epstein-Barr Virus (EBV)-associated Nuclear Antigen (EBNA). Binding of iodinated antibodies to antigen immobilized in polyacrylamide gel

    International Nuclear Information System (INIS)

    Dolken, G.; Klein, G.

    1977-01-01

    A solid-phase radioimmunoassay was developed for the EBV-associated nuclear antigen (EBNA). Total homogenates of EBV-DNA and EBNA positive or negative cells were polymerized in polyacrylamide gel and compared for their ability to bind 125 I-IgG prepared from anti-EBNA positive and anti-EBNA negative sera. EBNA specific binding was demonstrated and confirmed by serological and cellular specificity controls. The assay allows the quantitation of antigen or antibody even in the presence of detergents and is suitable for biochemical characterization of the antigen. Reciprocal blocking studies with extracts from different cell lines showed quantitative and qualitative differences. One part of the EBNA specificiti(es) present in the human Burkitt lymphoma derived lines RAJI, DAUDI and AW-RAMOS was lacking in B96-8, a marmoset line carrying EBV derived from a human infectious mononucleosis line. This result may reflect differences in the viral genomes derived from Burkitt lymphoma and infectious mononucleosis lines or differences in the host cells. (author)

  18. The Pacific Ocean virome (POV: a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology.

    Directory of Open Access Journals (Sweden)

    Bonnie L Hurwitz

    Full Text Available Bacteria and their viruses (phage are fundamental drivers of many ecosystem processes including global biogeochemistry and horizontal gene transfer. While databases and resources for studying function in uncultured bacterial communities are relatively advanced, many fewer exist for their viral counterparts. The issue is largely technical in that the majority (often 90% of viral sequences are functionally 'unknown' making viruses a virtually untapped resource of functional and physiological information. Here, we provide a community resource that organizes this unknown sequence space into 27 K high confidence protein clusters using 32 viral metagenomes from four biogeographic regions in the Pacific Ocean that vary by season, depth, and proximity to land, and include some of the first deep pelagic ocean viral metagenomes. These protein clusters more than double currently available viral protein clusters, including those from environmental datasets. Further, a protein cluster guided analysis of functional diversity revealed that richness decreased (i from deep to surface waters, (ii from winter to summer, (iii and with distance from shore in surface waters only. These data provide a framework from which to draw on for future metadata-enabled functional inquiries of the vast viral unknown.

  19. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology.

    Science.gov (United States)

    Hurwitz, Bonnie L; Sullivan, Matthew B

    2013-01-01

    Bacteria and their viruses (phage) are fundamental drivers of many ecosystem processes including global biogeochemistry and horizontal gene transfer. While databases and resources for studying function in uncultured bacterial communities are relatively advanced, many fewer exist for their viral counterparts. The issue is largely technical in that the majority (often 90%) of viral sequences are functionally 'unknown' making viruses a virtually untapped resource of functional and physiological information. Here, we provide a community resource that organizes this unknown sequence space into 27 K high confidence protein clusters using 32 viral metagenomes from four biogeographic regions in the Pacific Ocean that vary by season, depth, and proximity to land, and include some of the first deep pelagic ocean viral metagenomes. These protein clusters more than double currently available viral protein clusters, including those from environmental datasets. Further, a protein cluster guided analysis of functional diversity revealed that richness decreased (i) from deep to surface waters, (ii) from winter to summer, (iii) and with distance from shore in surface waters only. These data provide a framework from which to draw on for future metadata-enabled functional inquiries of the vast viral unknown.

  20. The use of radio-immuno-inhibition assay for the study of the y, d and w determinants of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Donea-Debroise, B.; Brocteur, J.; Andre, A.; Remacle, M.B.

    1979-01-01

    A radioimmunoassay determination of the HBs antigen subtypes is discussed, this simple but effective technique was used in association with the use of the Austria II kit (Abbott Laboratories). This method consists of an inhibition reaction of the Austria II test, by previous incubation of the antigen to be subtyped with a monospecific antibody. With this method we were able to distinguish the y and the d antigens as well as the w1, w3, w4 determinants of hepatitis B surface antigen. We have included a frequency table of the various HBs subtypes found among donor and patient populations in Liege

  1. INDUCTION OF AUTOANTIBODIES TO HUMAN ENZYMES FOLLOWING VIRAL-INFECTION - A BIOLOGICALLY RELEVANT HYPOTHESIS

    NARCIS (Netherlands)

    WEIJERS, RNM; LAWSON, C; LEUNISSEN, J

    Macro enzymes, i. e. complexes of normal (iso-)enzymes with an immunoglobulin, may be due to immunological cross-reactions evoked by specific viral antigenic determinants that are homologous to regions in the target enzymes. A search of the National Biomedical Research Foundation protein databank

  2. Hepatitis B and hepatitis C viruses: a review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology

    Directory of Open Access Journals (Sweden)

    Umar Saeed

    2014-04-01

    Full Text Available Hepatitis B and hepatitis C viruses (HCV are frequently propagating blood borne pathogens in global community. Viral hepatitis is primarily associated with severe health complications, such as liver cirrhosis, hepatocellular carcinoma, hepatic fibrosis and steatosis. A literature review was conducted on hepatitis B virus (HBV, HBV genome, genotypic distribution and global epidemiology of HBV, HCV, HCV genome, HCV and host immune responses, HCV genotypic distribution and global epidemiology. The valued information was subjected for review. HBV has strict tissue tropism to liver. The virus infecting hepatocytes produces large amount of hepatitis B surface antigen particles which lack the DNA. It has capability to integrate into host genome. It has been found that genotype C is most emerging genotype associated with more severe liver diseases (cirrhosis. The approximate prevalence rate of genotype C is 27.7% which represents a major threat to future generations. Approximately 8% of population is chronic carrier of HBV in developing countries. The chronic carrier rate of HBV is 2%-7% in Middle East, Eastern and Southern Europe, South America and Japan. Among HCV infected individuals, 15% usually have natural tendency to overcome acute viral infection, where as 85% of individuals were unable to control HCV infection. The internal ribosomal entry site contains highly conserved structures important for binding and appropriate positioning of viral genome inside the host cell. HCV infects only in 1%-10% of hepatocytes, but production of tumor necrosis factor alpha (from CD8+ cells and interferon-gamma cause destruction of both infected cells and non-infected surrounding cells. Almost 11 genotypes and above 100 subtypes of HCV exists worldwide with different geographical distribution. Many efforts are still needed to minimize global burden of these infections. For the complete eradication of HBV (just like small pox and polio via vaccination strategies

  3. Expression and immunological characterisation of Eimeria tenella glycosylphosphatidylinositol-anchored surface antigen-5

    Science.gov (United States)

    Ho, Sue-Kim; Nathan, Sheila; Wan, Kiew-Lian

    2016-11-01

    Eimeria tenella is the most pathogenic of the Eimeria species that infect chickens and causes huge economic losses to the poultry industry. The glycosylphosphatidylinositol-anchored surface antigen-5 (SAG5) found on the surface of the parasite has been shown to activate the chicken's immune system. In this study, recombinant SAG5 was expressed, purified and used to investigate the immune-inducing characteristics of the molecule. Chickens were immunized with purified recombinant SAG5 and sera were subjected to Enzyme-linked Immunosorbant Assay (ELISA). Results indicated that specific antibodies against rSAG5 were produced, with IgG detected at a higher level compared to IgA and IgM. Information on the immunological responses elicited by SAG5 provides essential knowledge that will contribute towards the effort to develop more effective strategies against coccidiosis.

  4. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    Science.gov (United States)

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  5. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  6. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  7. Simultaneous identification of Trypanosoma cruzi surface and internal antigens reactive to different immunoglobulin classes (radio-immunoblotting)

    International Nuclear Information System (INIS)

    Stolf, A.M.S.; Umezawa, E.S.; Zingales, B.

    1990-01-01

    A radioactive Western blotting technique was developed by which the reactivity of Immunoglobulins (IGs) from different classes to both membrane radiolabelled and internal parasite antigens is simultaneously identified. The method includes radioiodination of parasites, polypeptide fractionation by SDS-PAGE, Western-blot transfer and autoradiography of the immunoblots developed with anti-Igs conjugates labelled with enzymes. The analysis is then performed by the comparison of common bands on the autoradiograms and the respective substrate stained nitrocellulose blots. This technique was used to analyse. T.cruzi trypomastigote surface labelled antigens reactive to IgM, IgA and IgC specific antibodies. A different pattern of reactivity with acute Chagas disease patients sera was thus obtained. (author)

  8. Rabies viral encephalitis with proable 25 year incubation period!

    Directory of Open Access Journals (Sweden)

    S K Shankar

    2012-01-01

    Full Text Available We report a case of rabies viral encephalitis in a 48-year-old male with an unusually long incubation period, historically suspected to be more than 20 years. The case was referred for histological diagnosis following alleged medical negligence to the forensic department. The histology and immunocytochemical demonstration of rabies viral antigen established the diagnosis unequivocally. The case manifested initially with hydrophobia and aggressive behavior, although he suddenly went to the bathroom and drank a small amount of water. History of dog bite 25 years back was elicited retrospectively following clinical suspicion. There was no subsequent history to suggest nonbite exposure to a rabid dog to consider recent event causing the disease, although this cannot be totally excluded.

  9. Development and evaluation of single domain antibodies for vaccinia and the L1 antigen.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10(-9 M to 7.0×10(-10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×10(5 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies.

  10. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    Science.gov (United States)

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  11. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  12. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  14. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  15. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    Directory of Open Access Journals (Sweden)

    Markus M. Knodel

    2018-01-01

    Full Text Available Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  17. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    Science.gov (United States)

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  18. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    Science.gov (United States)

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  19. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    KAUST Repository

    Knodel, Markus

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  20. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity.

    Directory of Open Access Journals (Sweden)

    Janin Chandra

    Full Text Available Antigen presenting cells (APCs in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.

  1. Leishmania-specific surface antigens show sub-genus sequence variation and immune recognition.

    Directory of Open Access Journals (Sweden)

    Daniel P Depledge

    2010-09-01

    Full Text Available A family of hydrophilic acylated surface (HASP proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic and intracellular (amastigote stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia have lost HASP genes from their genomes.We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia species, L. (V. braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L. mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o HASPs are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family.These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are

  2. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    International Nuclear Information System (INIS)

    White, L.A.; Freeman, C.Y.; Hall, H.E.; Forrester, B.D.

    1990-01-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4 0 C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author)

  3. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    White, L A; Freeman, C Y; Hall, H E; Forrester, B D [Department of Health and Human Services, Atlanta, GA (USA)

    1990-10-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4{sup 0}C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author).

  4. Enzyme-linked immunosorbent assays for detection of equine antibodies specific to Sarcocystis neurona surface antigens.

    Science.gov (United States)

    Hoane, Jessica S; Morrow, Jennifer K; Saville, William J; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2005-09-01

    Sarcocystis neurona is the primary causative agent of equine protozoal myeloencephalitis (EPM), a common neurologic disease of horses in the Americas. We have developed a set of enzyme-linked immunosorbent assays (ELISAs) based on the four major surface antigens of S. neurona (SnSAGs) to analyze the equine antibody response to S. neurona. The SnSAG ELISAs were optimized and standardized with a sample set of 36 equine sera that had been characterized by Western blotting against total S. neurona parasite antigen, the current gold standard for S. neurona serology. The recombinant SnSAG2 (rSnSAG2) ELISA showed the highest sensitivity and specificity at 95.5% and 92.9%, respectively. In contrast, only 68.2% sensitivity and 71.4% specificity were achieved with the rSnSAG1 ELISA, indicating that this antigen may not be a reliable serological marker for analyzing antibodies against S. neurona in horses. Importantly, the ELISA antigens did not show cross-reactivity with antisera to Sarcocystis fayeri or Neospora hughesi, two other equine parasites. The accuracy and reliability exhibited by the SnSAG ELISAs suggest that these assays will be valuable tools for examining the equine immune response against S. neurona infection, which may help in understanding the pathobiology of this accidental parasite-host interaction. Moreover, with modification and further investigation, the SnSAG ELISAs have potential for use as immunodiagnostic tests to aid in the identification of horses affected by EPM.

  5. Comparison of two solid-phase radioimmunoassay systems and a reverse passive haemagglutination test for the detection of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Hui, Z.; Coulepis, A.G.; Gust, I.D.

    1982-01-01

    The sensitivity and specificity of two commercially available radioimmunosay tests (Austria II-125, Abbott Laboratories; and International CIS, Commissariat Alenergie Atomique-Oris Laboratoire des Produits Biomedicaux) and a reverse passive haemagglutination test (Hepatest, Wellcome) for detection of hepatitis B surface antigen were evaluated using the Australian hepatitis B reference panel of 25 sera, and a panel of 257 sera collected from patients with acute hepatitis B, chronic carriers of hepatitis B surface antigen and two populations in which hepatitis B virus infection is known to be endemic. The three techniques were found to be generally comparable in sensitivity and specificity. The advantages and disadvantages of each method are discussed

  6. Virosomes for antigen and DNA delivery

    NARCIS (Netherlands)

    Daemen, T; de Mare, A; Bungener, L; de Jonge, J; Huckriede, A; Wilschut, J

    2005-01-01

    Specific targeting and delivery as well as the display of antigens on the surface of professional antigen-presenting cells (APCs) are key issues in the design and development of new-generation vaccines aimed at the induction of both humoral and cell-mediated immunity. Prophylactic vaccination

  7. Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses.

    Science.gov (United States)

    Paroni, Moira; Maltese, Virginia; De Simone, Marco; Ranzani, Valeria; Larghi, Paola; Fenoglio, Chiara; Pietroboni, Anna M; De Riz, Milena A; Crosti, Maria C; Maglie, Stefano; Moro, Monica; Caprioli, Flavio; Rossi, Riccardo; Rossetti, Grazisa; Galimberti, Daniela; Pagani, Massimiliano; Scarpini, Elio; Abrignani, Sergio; Geginat, Jens

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. We analyzed CD4 + helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. T H 1/T H 17 central memory (T H 1/T H 17 CM ) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. T H 1/T H 17 CM cells were closely related to conventional T H 17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing T H 1 and T H 1/T H 17 subsets. However, while T H 1 cells responded consistently to viruses, T H 1/T H 17 CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive T H 1/T H 17 CM cells but also blocked virus-specific T H 1 cells. We propose that autoreactive T H 1/T H 17 CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas T H 1 cells perform immune surveillance. Thus the selective targeting of T H 1/T H 17 cells could inhibit relapses without causing John

  8. Mini-review: Can non-human leucocyte antigen genes determine susceptibility to severe dengue syndromes?

    Science.gov (United States)

    Ng, Dorothy; Ghosh, Aparna; Jit, Mark; Seneviratne, Suranjith L

    2017-09-01

    Dengue viral infections are endemic or epidemic in virtually all tropical countries. Among individuals infected with the dengue virus, severe dengue syndromes (i.e., dengue haemorrhagic fever and dengue shock syndromes) tend to affect only some and this may be due to a combination of host genetic susceptibility and viral factors. In this review article we analyse and discuss the present knowledge of non-human leucocyte antigen host genetic susceptibility to severe dengue syndromes. The relevance of genetic polymorphisms in the pathways of antigen recognition, uptake, processing and presentation, activation of interferon α responses, mast cell and complement activation and T cell activation and dengue disease severity has been reviewed and analysed. © The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  10. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  11. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Radioimmunoassay in the detection of the hepatitis Be antigen/antibody system in asymptomatic carriers of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Pastore, G.; Dentico, P.; Angarano, G.; Schiraldi, O.; Zanetti, A.R.; Ferroni, P.

    1980-01-01

    A radioimmunoassay for hepatitis e antigen (HBeAg) and antibody to e (anti-HBe) was developed and sera of 71 asymptomatic chronic carriers of hepatitis B surface antigen (HBsAg), in 44 of whom liver biopsy was obtained, were tested. In addition, testing for Dane particle associated DNA polymerase activity was performed in all sera. HBeAg was detected in 14 subjects (19.7%) and anti-HBe in 46 (64.8%). The highest proportion of HBeAg positivity (40%) was found among carriers with histological evidence of chronic hepatitis, whereas anti-HBe was present in 80% of carriers with normal liver histology, in 58% of carriers with non-specific reactive hepatitis and in 60% of carriers with chronic liver lesions. DNA polymerase activity was present in 92.8% of sera positive for HBeAg, in 13% of sera positive for anti HBe, and in 9% of sera negative for both markers. Our results demonstrate that not all HBsAg carriers reactive to HBeAg show evidence of chronic hepatitis nor, conversely, that anti-HBe is invariably associated with the healthy carrier state of HBsAg. Finally, circulating Dane particles, as revealed by the presence of serum specific DNA polymerase activity, may also be present in anti-HBe positive sera other than those of some HBsAg carriers lacking both HBeAg and anti-HBe. (orig.) [de

  13. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii g...

  14. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  15. Seroprevalence of Hepatitis B Surface Antigen and Occupational Risk Factors Among Health Care Workers in Ekiti State, Nigeria.

    Science.gov (United States)

    Alese, Oluwole Ojo; Alese, Margaret Olutayo; Ohunakin, Afolabi; Oluyide, Peter Olumuyiwa

    2016-02-01

    Hepatitis B virus (HBV) infection is contracted from blood and other body fluid making healthcare workers (HCW) prone to the infection especially in the developing world. Though it is a vaccine preventable disease, the level of awareness and universal precaution among HCW is low in sub-Saharan African and Asia. The study was aimed at determining the seroprevalence of hepatitis B surface antigen and occupational risk factors among health care workers at Ekiti State University Teaching Hospital, Ado Ekiti. One hundred and eighty-seven (187) blood samples were collected from volunteer subjects who comprised of medical doctors, nurses, health attendants, and porters who are in regular contact with blood, body fluids and patients after informed consent. Well detailed and structured questionnaires were used to obtain demographic and other relevant data from the subjects. Blood samples were tested by Enzyme Linked Immunosorbent assay (ELISA) for hepatitis B surface antigen. Out of the 187 HCWs there were 91 males (48.7%) and 96 (51.3%) females. Only 2 participants tested positive to hepatitis B surface antigen with a prevalence of 1.1%. Also, only 30 (16.0%) of the participants had been fully vaccinated against the infection while the remaining 157(84.0%) had no adult vaccination. It is obvious that the awareness of the infection is low among the HCWs studied thus the need to incorporate screening for HbsAg and vaccination against HBV into the periodic/pre-employment health intervention programmes by employers to help in the protection of HCWs and control the spread of the virus.

  16. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  17. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.

    Directory of Open Access Journals (Sweden)

    Luke Uebelhoer

    2008-09-01

    Full Text Available Mechanisms by which hepatitis C virus (HCV evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA class I-restricted epitopes targeted by CD8(+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC anchor and T cell receptor (TCR contact residues. Only one of these amino acid substitutions at position 9 (P9 of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7 TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily

  18. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome.

    Science.gov (United States)

    Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E

    2018-02-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.

  19. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome

    Science.gov (United States)

    Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.

    2018-01-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212

  20. Correlation between the e-antigen, Pre-S2 antigen and DNA of hepatitis B virus

    International Nuclear Information System (INIS)

    Cai Changhui; Liang Jinsheng

    2006-01-01

    Objective: To study the relationship between the hepatitis B e-antigen (HBeAg), Pre-S1 antigen (Pre-S1), Pre-S2 antigen (Pre-S2) and DNA of hepatitis B virus (HBV). Methods: The blood samples of 268 cases of viral B hepatitis were collected. The HBV DNA of all samples were tested by fluorescent-quantitating PCR method, and HBeAg were assayed by time-resolved fluoro-immunoassay method, and their Pre-S1 and Pre-S2 were assayed by enzyme linked immunosorbentassay method. Results: The positive rates of HBeAg, Pre-S1 and Pre-S2 in HBV DNA positive group were 48.2%, 76.4% and 100% respectively, and 1.6%, 36.3% and 32.3% respectively in HBV DNA negative group. There was significantly difference between the HBeAg, Pre-S1 and Pre-S2 positive rates of the two groups (Chi-square test, P<0.01). Conclusions: There was positive relationship between the HBeAg, Pre-S1, Pre-S2 and DNA which all were indicators of HBV reproduction. Comparing to HBV DNA, Pre-S2 was the most, Pre-S1 the second, and HBeAg the third sensitive indicator for evaluating HBV reproduction. Pre-S1 and Pre-S2 could be used as the supplementary indicator for the reproduction of HBV. (authors)

  1. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    International Nuclear Information System (INIS)

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-01-01

    Highlights: ► EV71 is a major emerging infectious disease in many Asian countries. ► Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. ► Developing subunit based EV71 vaccines is significant and novel antigen design is needed. ► DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. ► Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  2. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Energy Technology Data Exchange (ETDEWEB)

    Archbold, Julia K.; Macdonald, Whitney A.; Gras, Stephanie; Ely, Lauren K.; Miles, John J.; Bell, Melissa J.; Brennan, Rebekah M.; Beddoe, Travis; Wilce, Matthew C.J.; Clements, Craig S.; Purcell, Anthony W.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2009-07-10

    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.

  3. Antigen Loss Variants: Catching Hold of Escaping Foes.

    Science.gov (United States)

    Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke

    2017-01-01

    Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.

  4. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Retno; Ohsaki, Eriko [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Omori, Hiroko [Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871 (Japan); Ueda, Keiji, E-mail: kueda@virus.med.osaka-u.ac.jp [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2016-09-15

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  5. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    International Nuclear Information System (INIS)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji

    2016-01-01

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  6. Antigenic differences between bovine viral diarrhea viruses and HoBi virus: Possible impacts on diagnosis and control

    Science.gov (United States)

    Compare antigenic differences between HoBi virus and BVDV strains that might impact on diagnostics and control. Eighteen non-cytopathic isolates of pestiviruses including the 5 genotypic groups (BVDV1a-c, BVDV2, BDV) and HoBi virus, were tested using antigen capture enzyme-linked immunosorbent assay...

  7. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...... molecules are the questions discussed in this review. To us, the entire concept of processing has appeal not only because it explains some hitherto well-established, but poorly understood, phenomena such as the fact that T lymphocytes focus their attention entirely upon antigens on other cells. It has...

  8. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection

    Directory of Open Access Journals (Sweden)

    Marcia Bellon

    2017-10-01

    Full Text Available The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV, Hepatitis B/C/D virus (HBV/HCV/HDV, human herpesvirus 8 (HHV-8, human immunodeficiency virus (HIV, human T-cell leukemia virus type I (HTLV-I, human papillomavirus (HPV, herpes simplex virus-1/2(HSV-1/2, and Varicella–Zoster virus (VZV. Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  9. Ultrastructural, Antigenic and Physicochemical Characterization of the Mojuí dos Campos (Bunyavirus Isolated from Bat in the Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    Wanzeller Ana LM

    2002-01-01

    Full Text Available The Mojuí dos Campos virus (MDCV was isolated from the blood of an unidentified bat (Chiroptera captured in Mojuí dos Campos, Santarém, State of Pará, Brazil, in 1975 and considerated to be antigenically different from other 102 arboviruses belonging to several antigenic groups isolated in the Amazon region or another region by complement fixation tests. The objective of this work was to develop a morphologic, an antigenic and physicochemical characterization of this virus. MDCV produces cytopathic effect in Vero cells, 24 h post-infection (p.i, and the degree of cellular destruction increases after a few hours. Negative staining electron microscopy of the supernatant of Vero cell cultures showed the presence of coated viral particles with a diameter of around 98 nm. Ultrathin sections of Vero cells, and brain and liver of newborn mice infected with MDCV showed an assembly of the viral particles into the Golgi vesicles. The synthesis kinetics of the proteins for MDCV were similar to that observed for other bunyaviruses, and viral proteins could be detected as early as 6 h p.i. Our results reinforce the original studies which had classified MDCV in the family Bunyaviridae, genus Bunyavirus as an ungrouped virus, and it may represent the prototype of a new serogroup.

  10. Interaction of Cowpea Mosaic Virus (CPMV) Nanoparticles with Antigen Presenting Cells In Vitro and In Vivo

    Science.gov (United States)

    Rae, Chris S.; Manchester, Marianne

    2009-01-01

    Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch. PMID:19956734

  11. Antigenic variation and the genetics and epigenetics of the PfEMP1 erythrocyte surface antigens in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Arnot, David E; Jensen, Anja T R

    2011-01-01

    . Sterile immunity is not achieved and chronic parasitization of apparently healthy adults is the norm. In this article, we analyse the best understood malaria "antigenic variation" system, that based on Plasmodium falciparum's PfEMP1-type cytoadhesion antigens, and critically review recent literature...

  12. Induction of protective immunity to Theileria annulata using two major merozoite surface antigens presented by different delivery systems

    NARCIS (Netherlands)

    C. D'Oliveira; A. Feenstra; H.W. Vos (Helma); A.D.M.E. Osterhaus (Albert); B.R. Shiels; A.W.C.A. Cornelissen; F. Jongejan

    1997-01-01

    textabstractAllelic forms (Tams1-1 and Tams1-2) of the major merozoite surface antigen gene of Theileria annulata have recently been expressed in Escherichia coli and in Salmonella typhimurium aroA vaccine strain SL3261. To test the potential of subunit vaccines against T. annulata infection, we

  13. Identification of a novel dendritic cell surface antigen defined by carbohydrate specific CD24 antibody cross-reactivity.

    Science.gov (United States)

    Williams, L A; McLellan, A D; Summers, K L; Sorg, R V; Fearnley, D B; Hart, D N

    1996-01-01

    Dendritic cells (DC) are characterized as leucocytes that lack mature lineage specific markers and stimulate naive T-lymphocyte proliferation in vitro and in vivo. The mouse heat stable antigen (HSA) participates in T lymphocyte co-stimulation and is expressed by DC isolated from thymus, skin and spleen. The human HSA homologue, CD24, is predominantly expressed by B lymphocytes and granulocytes, but its expression on DC has not been studied in detail. CD24 clearly participates in B-lymphocyte signalling but co-stimulatory activity for T lymphocytes has not yet been described. We have examined the expression of CD24 on human peripheral blood DC populations isolated directly or following in vitro culture. The CD24 antigen was absent from blood DC however, cross-reactive sialylated carbohydrate epitopes were detected on DC with some CD24 monoclonal antibodies (mAb). These CD24 mAb define a protein surface antigen, which is expressed by an immature or resting subpopulation of peripheral blood DC and is down-regulated following activation differentiation in vitro. PMID:8911149

  14. Evaluation of monoclonal antibody-based sandwich direct ELISA (MSD-ELISA) for antigen detection of foot-and-mouth disease virus using clinical samples.

    Science.gov (United States)

    Morioka, Kazuki; Fukai, Katsuhiko; Sakamoto, Kenichi; Yoshida, Kazuo; Kanno, Toru

    2014-01-01

    A monoclonal antibody-based sandwich direct ELISA (MSD-ELISA) method was previously developed for foot-and-mouth disease (FMD) viral antigen detection. Here we evaluated the sensitivity and specificity of two FMD viral antigen detection MSD-ELISAs and compared them with conventional indirect sandwich (IS)-ELISA. The MSD-ELISAs were able to detect the antigen in saliva samples of experimentally-infected pigs for a longer term compared to the IS-ELISA. We also used 178 RT-PCR-positive field samples from cattle and pigs affected by the 2010 type-O FMD outbreak in Japan, and we found that the sensitivities of both MSD-ELISAs were about 7 times higher than that of the IS-ELISA against each sample (P<0.01). In terms of the FMD-positive farm detection rate, the sensitivities of the MSD-ELISAs were about 6 times higher than that of the IS-ELISA against each farm (P<0.01). Although it is necessary to conduct further validation study using the other virus strains, MSD-ELISAs could be appropriate as a method to replace IS-ELISA for FMD antigen detection.

  15. Prevalence of Hepatitis B Surface Antigen in US-Born and Foreign-Born Asian/Pacific Islander College Students

    Science.gov (United States)

    Quang, Yen N.; Vu, Joanne; Yuk, Jihey; Li, Chin-Shang; Chen, Moon; Bowlus, Christopher L.

    2010-01-01

    The prevalence of chronic hepatitis B (HBV) among college-age US-born Asian and Pacific Islanders (A/PI) is not well known. Objectives: To compare the prevalence of hepatitis B surface antigen (HBsAg) seropositivity in US-born to A/PI-born students at a public university. Participants: Undergraduate who self-identified themselves as A/PI. Results:…

  16. Seroprevalence of Hepatitis B Surface Antigen and Occupational Risk Factors Among Health Care Workers in Ekiti State, Nigeria

    Science.gov (United States)

    Alese, Oluwole Ojo; Ohunakin, Afolabi; Oluyide, Peter Olumuyiwa

    2016-01-01

    Introduction Hepatitis B virus (HBV) infection is contracted from blood and other body fluid making healthcare workers (HCW) prone to the infection especially in the developing world. Though it is a vaccine preventable disease, the level of awareness and universal precaution among HCW is low in sub-Saharan African and Asia. Aim The study was aimed at determining the seroprevalence of hepatitis B surface antigen and occupational risk factors among health care workers at Ekiti State University Teaching Hospital, Ado Ekiti. Materials and Methods One hundred and eighty-seven (187) blood samples were collected from volunteer subjects who comprised of medical doctors, nurses, health attendants, and porters who are in regular contact with blood, body fluids and patients after informed consent. Well detailed and structured questionnaires were used to obtain demographic and other relevant data from the subjects. Blood samples were tested by Enzyme Linked Immunosorbent assay (ELISA) for hepatitis B surface antigen. Results Out of the 187 HCWs there were 91 males (48.7%) and 96 (51.3%) females. Only 2 participants tested positive to hepatitis B surface antigen with a prevalence of 1.1%. Also, only 30 (16.0%) of the participants had been fully vaccinated against the infection while the remaining 157(84.0%) had no adult vaccination. Conclusion It is obvious that the awareness of the infection is low among the HCWs studied thus the need to incorporate screening for HbsAg and vaccination against HBV into the periodic/pre-employment health intervention programmes by employers to help in the protection of HCWs and control the spread of the virus. PMID:27042489

  17. [Detection of fps tumor antigen with mono-specific anti-fps serum in tumors induced by acute transforming ALV].

    Science.gov (United States)

    Wang, Yixin; Chen, Hao; Zhao, Peng; Li, Jianliang; Cui, Zhizhong

    2013-03-04

    To prepare anti-fps mono-specific serum, and detect the fps antigen in tumors induced by acute transforming avian leukosis/sarcoma virus containing v-fps oncogene. Two part of v-fps gene was amplified by RT-PCR using the Fu-J viral RNA as the template. Mono-specific serum was prepared by immuning Kunming white mouse with both two recombinant infusion proteins expressed by the prokaryotic expression system. Indirect immunofluorescent assay was used to detect fps antigen in tumor tissue suspension cells and CEF infected by sarcoma supernatant. Immunohistochemical method was used to detect fps antigen in tumor tissue. The mouse mono-specific serum was specific as it had no cross reaction with classical ALV-J strains. The result reveals that the tumor tissue suspension cells, the CEF infected by sarcoma supernatant, and the slice immunohistochemistry of the sarcoma showed positive results. The anti-fps mono-specific serum was prepared, and the detection method was established, which laid the foundation for the study of viral biological characteristics and mechanism of tumourgenesis of acute transforming avian leukosis/sarcoma virus containing v-fps oncogene.

  18. Evaluation of two reverse passive haemagglutination techniques and a solid-phase radioimmunoassay for detection of hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, H [Beijing Medical College (China); Coulepis, A G; Gust, I D [Fairfield Hospital for Communicable Diseases, Melbourne (Australia)

    1972-08-01

    The sensitivity and specificity of two commercially available reverse passive haemagglutination tests (Hepatest and Raphadex B) for the detection of hepatitis B surface antigen, were compared with the most widely used radioimmunoassay (Ausria II-125). A selected group of 282 sera were tested: these included the Australian hepatitis B reference panel, and a batch of 257 sera collected from patients with acute hepatitis B, chronic carriers of hepatitis B surface antigen and two populations in which hepatitis B virus infection is known to be endemic. The two reverse passive haemagglutination techniques were of comparable sensitivity but slightly less sensitive than radioimmunoassay. While radioimmunoassay still remains the test of choice for blood transfusion services, the reverse passive haemagglutination techniques are of great value for smaller laboratories and for field studies because of their longer shelf life, the absence of radioactive reagents and the lack of need to acquire a gammacounter.

  19. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    Science.gov (United States)

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  20. Viral-Associated GN: Hepatitis C and HIV.

    Science.gov (United States)

    Kupin, Warren L

    2017-08-07

    Viruses are capable of inducing a wide spectrum of glomerular disorders that can be categorized on the basis of the duration of active viremia: acute, subacute, or chronic. The variable responses of the adaptive immune system to each time period of viral infection results mechanistically in different histologic forms of glomerular injury. The unique presence of a chronic viremic carrier state with either hepatitis C (HCV) or HIV has led to the opportunity to study in detail various pathogenic mechanisms of viral-induced glomerular injury, including direct viral infection of renal tissue and the development of circulating immune complexes composed of viral antigens that deposit along the glomerular basement membrane. Epidemiologic data show that approximately 25%-30% of all HIV patients are coinfected with HCV and 5%-10% of all HCV patients are coinfected with HIV. This situation can often lead to a challenging differential diagnosis when glomerular disease occurs in this dual-infected population and requires the clinician to be familiar with the clinical presentation, laboratory workup, and pathophysiology behind the development of renal disease for both HCV and HIV. Both of these viruses can be categorized under the new classification of infection-associated GN as opposed to being listed as causes of postinfectious GN as has previously been applied to them. Neither of these viruses lead to renal injury after a latent period of controlled and inactive viremia. The geneses of HCV- and HIV-associated glomerular diseases share a total dependence on the presence of active viral replication to sustain renal injury so the renal disease cannot be listed under "postinfectious" GN. With the new availability of direct-acting antivirals for HCV and more effective combined antiretroviral therapy for HIV, successful remission and even regression of glomerular lesions can be achieved if initiated at an early stage. Copyright © 2017 by the American Society of Nephrology.

  1. STUDIES IN DYNAMICS OF APOPTOSIS-RELATED SURFACE ANTIGEN (CD95 EXPRESSION ON NEUTROPHILS FROM CERVICAL AND VAGINAL SECRETIONS IN WOMEN WITH CHLAMIDIA INFECTION

    Directory of Open Access Journals (Sweden)

    O. A. Giesinger

    2010-01-01

    Full Text Available CD95 (Fas/APO-1 antigen expression was studied on the surface of neutrophil granulocytes from cervical secretions. Sixty-five female patients with established Chlamydia infection were found to have an increased CD95+ antigen expression following basic therapy. CD95+ receptors on neutrophils in the patients with Chlamydia infection have been shown to return to normal levels following a combined magnetic laser treatment.

  2. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    Science.gov (United States)

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  3. Acute hemorrhagic encephalitis: An unusual presentation of dengue viral infection

    International Nuclear Information System (INIS)

    Nadarajah, Jeyaseelan; Madhusudhan, Kumble Seetharama; Yadav, Ajay Kumar; Gupta, Arun Kumar; Vikram, Naval Kumar

    2015-01-01

    Dengue is a common viral infection worldwide with presentation varying from clinically silent infection to dengue fever, dengue hemorrhagic fever, and severe fulminant dengue shock syndrome. Neurological manifestation usually results from multisystem dysfunction secondary to vascular leak. Presentation as hemorrhagic encephalitis is very rare. Here we present the case of a 13-year-old female admitted with generalized tonic clonic seizures. Plain computed tomography (CT) scan of head revealed hypodensities in bilateral deep gray matter nuclei and right posterior parietal lobe without any hemorrhage. Cerebrospinal fluid (CSF) and serology were positive for IgM and IgG antibodies to dengue viral antigen. Contrast-enhanced magnetic resonance imaging (MRI) revealed multifocal T2 and fluid attenuated inversion recovery (FLAIR) hyperintensities in bilateral cerebral parenchyma including basal ganglia. No hemorrhage was seen. She was managed with steroids. As her clinical condition deteriorated, after being stable for 2 days, repeat MRI was done which revealed development of hemorrhage within the lesions, and diagnosis of acute hemorrhagic encephalitis of dengue viral etiology was made

  4. Isolation of antigenic substances from HIV-1 envelope gp160 gene transfectants by mild acid elution and X-irradiation treatment. For the development of CTL-based immunotherapy

    International Nuclear Information System (INIS)

    Fujimoto, Chiaki; Nakagawa, Yohko; Shimizu, Masumi; Ohara, Kunitoshi; Takahashi, Hidemi

    2003-01-01

    Cytotoxic T lymphocytes (CTLs) play a central role in a broad spectrum of tumor immunity. Such CTLs generally recognize processed antigenic fragments in association with class I major histocompatibility complex (MHC) molecules. Thus, it is important to identify naturally processed antigens associated with class I MHC molecules to generate and activate antigen-specific CTLs. Those processed antigens fitted in the groove of class I MHC molecules are fixed by the β2-microglobulin. Mild acid elution is one method used to isolate antigenic fragments from class I MHC molecules on tumor cells by unfastening a clasp of β2-microglobulin, a critical component for stabilizing class I MHC molecules on the cell surface. Indeed, after the mild acid treatment, the expression of class I MHC molecules was temporarily down-modulated and a strong antigenic fraction for CTL recognition was obtained. To our surprise, such down-modulation of class I MHC molecule expression was also observed when the tumor cells were irradiated. Therefore, using human immunodeficiency virus type I (HIV-1) gp160 env gene transfectants, we examined the effect of X-irradiation on releasing the loaded antigenic fragments. Functional extracts were obtained from X-irradiated cell supernatants that sensitized syngeneic fibroblasts for specific CTL recognition, suggesting that X-irradiation extracts would also contain known antigenic epitopes. These results indicate that, in addition to the conventional mild acid elution treatment, X-irradiation method shown in this paper may provide a new approach for CTL-based vaccine development via isolating antigenic molecules from various tumors or virally infected cells. (author)

  5. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  6. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  7. Oxygen minimum zones harbour novel viral communities with low diversity.

    Science.gov (United States)

    Cassman, Noriko; Prieto-Davó, Alejandra; Walsh, Kevin; Silva, Genivaldo G Z; Angly, Florent; Akhter, Sajia; Barott, Katie; Busch, Julia; McDole, Tracey; Haggerty, J Matthew; Willner, Dana; Alarcón, Gadiel; Ulloa, Osvaldo; DeLong, Edward F; Dutilh, Bas E; Rohwer, Forest; Dinsdale, Elizabeth A

    2012-11-01

    Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral-to-microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non-redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non-redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Splenic B cells and antigen-specific B cells process anti-Ig in a similar manner

    International Nuclear Information System (INIS)

    Myers, C.D.; Vitetta, E.S.

    1989-01-01

    B lymphocytes can process and present antigen to T cells. However, the fate of native antigen after its binding to specific B cells, i.e., the intracellular events involved in the processing and recycling of the antigenic fragments to the cell surface for antigen presentation, are not well understood. In the present study, we demonstrate that murine B cells degrade anti-Ig molecules bound to their surface and release acid soluble fragments into the supernatant. We also demonstrate that the kinetics of this process are identical for anti-mu, anti-delta, and anti-light chain antibodies, indicating that both surface IgM and surface IgD are equally effective in binding antigen and directing its processing. We also describe the effects of azide, chloroquine, and irradiation on this process. To extend these studies to the processing of specifically bound antigen, we demonstrate that highly purified trinitrophenyl antigen-binding cells degrade anti-Ig molecules with the same kinetics as unpurified splenic B cells. Thus, this purified population provides a suitable model system for the analysis of antigen degradation by antigen-specific cells

  10. A solid phase radio immunoassay on hydrophobic membrane filters: detection of antibodies to gonocal surface antigens

    International Nuclear Information System (INIS)

    Lambden, P.R.; Watt, P.J.

    1978-01-01

    A solid phase radioimmunoassay (SPRIA) has been developed for detection of IgG antibodies to gonococcal outer membrane components. Gonococcal antigens was immobilised on a solid support by covalent coupling to CNBr-activated Sepharose in the presence of the detergent Triton X-100. Binding of specific antibody to the Sepharose-antigen complex was detected using radiolabelled Protein A as the antiglobulin. Protein A was labelled by radioacetylation with tritiated acetic anhydride, yielding a product of high specific activity and high stability. No detectable loss of activity was observed over a ten month period. The entire assay was performed on Mitex teflon hydrophobic membrane filters which held the Sepharose beads and aqueous supernatant as a discrete drop of liquid. The supernatants and incubation were easily and rapidly removed from the beads by suction on a specially-designed manifold system. This procedure removed the need for repeated and time-consuming centrifugations. Titres were obtained graphically from double log plots of cpm bound versus antiserum dilution by extrapolation of the straight line to a point corresponding to twice the control level of radioactivity binding. The assay proved to be a very reliable and simple procedure for the detection of IgG antibodies to gonococcal surface antigens. (Auth.)

  11. Helical plant viral nanoparticles-bioinspired synthesis of nanomaterials and nanostructures.

    Science.gov (United States)

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-05-19

    Viral nanotechnology is revolutionizing the biomimetic and bioinspired synthesis of novel nanomaterials. Bottom-up nanofabrication by self-assembly of individual molecular components of elongated viral nanoparticles (VNPs) and virus-like particles (VLPs) has resulted in the production of superior materials and structures in the nano(bio)technological fields. Viral capsids are attractive materials, because of their symmetry, monodispersity, and polyvalency. Helical VNPs/VLPs are unique prefabricated nanoscaffolds with large surface area to volume ratios and high aspect ratios, and enable the construction of exquisite supramolecular nanostructures. This review discusses the genetic and chemical modifications of outer, inner, and interface surfaces of a viral protein cage that will almost certainly lead to the development of superior next-generation targeted drug delivery and imaging systems, biosensors, energy storage and optoelectronic devices, therapeutics, and catalysts.

  12. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    Science.gov (United States)

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  13. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    International Nuclear Information System (INIS)

    Brodzik, R.; Bandurska, K.; Deka, D.; Golovkin, M.; Koprowski, H.

    2005-01-01

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP

  14. Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals.

    Science.gov (United States)

    Benson, Micah J; Elgueta, Raul; Schpero, William; Molloy, Michael; Zhang, Weijun; Usherwood, Edward; Noelle, Randolph J

    2009-08-31

    The hypothesis that bystander inflammatory signals promote memory B cell (B(MEM)) self-renewal and differentiation in an antigen-independent manner is critically evaluated herein. To comprehensively address this hypothesis, a detailed analysis is presented examining the response profiles of B-2 lineage B220(+)IgG(+) B(MEM) toward cognate protein antigen in comparison to bystander inflammatory signals. After in vivo antigen encounter, quiescent B(MEM) clonally expand. Surprisingly, proliferating B(MEM) do not acquire germinal center (GC) B cell markers before generating daughter B(MEM) and differentiating into plasma cells or form structurally identifiable GCs. In striking contrast to cognate antigen, inflammatory stimuli, including Toll-like receptor agonists or bystander T cell activation, fail to induce even low levels of B(MEM) proliferation or differentiation in vivo. Under the extreme conditions of adjuvanted protein vaccination or acute viral infection, no detectable bystander proliferation or differentiation of B(MEM) occurred. The absence of a B(MEM) response to nonspecific inflammatory signals clearly shows that B(MEM) proliferation and differentiation is a process tightly controlled by the availability of cognate antigen.

  15. Viral infections in acute graft-versus-host disease: a review of diagnostic and therapeutic approaches.

    Science.gov (United States)

    Tong, Lana X; Worswick, Scott D

    2015-04-01

    While immunosuppressive therapy for acute graft-versus-host disease (aGVHD) advances, viral reactivation has been found to be an increasingly common complication in these patients. Dermatologists may often be consulted on inpatient services for evaluation. We investigated the literature for the role of viral infections in aGVHD and review the current evidence regarding management. Articles in the public domain regarding aGVHD, cytomegalovirus, Epstein-Barr virus, varicella zoster virus, hepatitis viruses, parvovirus B19, and respiratory viruses were included. Dermatologic findings vary between different viral antigens, and some infections may be a marker for the development of aGVHD or worsen prognosis. The heterogeneous cohorts of the studies reviewed often preclude direct comparison between results. The relationship between viral reactivation and aGVHD may be bidirectional and is worthy of further exploration. Additional studies are needed to determine appropriate prophylaxis and treatment. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. How Does HTLV-1 Undergo Oncogene-Dependent Replication Despite a Strong Immune Response?

    Directory of Open Access Journals (Sweden)

    Hélène Gazon

    2018-01-01

    Full Text Available In 1987, Mitsuaki Yoshida proposed the following model (Yoshida and Seiki, 1987: “... T-cells activated through the endogenous p40x would express viral antigens including the envelope glycoproteins which are exposed on the cell surface. These glycoproteins are targets of host immune surveillance, as is evidenced by the cytotoxic effects of anti-envelope antibodies or patient sera. Eventually all cells expressing the viral antigens, that is, all cells driven by the p40x would be rejected by the host. Only those cells that did not express the viral antigens would survive. Later, these antigen-negative infected cells would begin again to express viral antigens, including p40x, thus entering into the second cycle of cell propagation. These cycles would be repeated in so-called healthy virus carriers for 20 or 30 years or longer....” Three decades later, accumulated experimental facts particularly on intermittent viral transcription and regulation by the host immune response appear to prove that Yoshida was right. This Hypothesis and Theory summarizes the evidences that support this paradigm.

  17. Positive hepatitis B surface antigen tests due to recent vaccination: a persistent problem

    Directory of Open Access Journals (Sweden)

    Rysgaard Carolyn D

    2012-09-01

    Full Text Available Abstract Background Hepatitis B virus (HBV is a common cause of viral hepatitis with significant health complications including cirrhosis and hepatocellular carcinoma. Assays for hepatitis B surface antigen (HBsAg are the most frequently used tests to detect HBV infection. Vaccination for HBV can produce transiently detectable levels of HBsAg in patients. However, the time course and duration of this effect is unclear. The objective of this retrospective study was to clarify the frequency and duration of transient HBsAg positivity following vaccination against HBV. Methods The electronic medical record at an academic tertiary care medical center was searched to identify all orders for HBsAg within a 17 month time period. Detailed chart review was performed to identify all patients who were administered HBV vaccine within 180 days prior to HBsAg testing and also to ascertain likely cause of weakly positive (grayzone results. Results During the 17 month study period, 11,719 HBsAg tests were ordered on 9,930 patients. There were 34 tests performed on 34 patients who received HBV vaccine 14 days or less prior to HBsAg testing. Of these 34 patients, 11 had grayzone results for HBsAg that could be attributed to recent vaccination. Ten of the 11 patients were renal dialysis patients who were receiving HBsAg testing as part of routine and ongoing monitoring. Beyond 14 days, there were no reactive or grayzone HBsAg tests that could be attributed to recent HBV vaccination. HBsAg results reached a peak COI two to three days following vaccination before decaying. Further analysis of all the grayzone results within the 17 month study period (43 results out of 11,719 tests revealed that only 4 of 43 were the result of true HBV infection as verified by confirmatory testing. Conclusions Our study confirms that transient HBsAg positivity can occur in patients following HBV vaccination. The results suggest this positivity is unlikely to persist beyond 14 days

  18. Epidemiologic and HLA Antigen Profile in Patients with Aplastic Anemia

    International Nuclear Information System (INIS)

    Taj, M.; Shamsi, T. S.; Ansari, S. H.; Farzana, T.; Nazi, A.; Nadeem, M.; Queresi, R. N.; Sheikh, K.; Kazmi, J. H.

    2014-01-01

    Objective: To analyze patients suffering from aplastic anemia (AA, peripheral pancytopenia and hypocellular bone marrow in the absence of dysplasia, infiltration and fibrosis) for documenting patient's baseline characteristics and association with various human leucocyte antigens. Study Design: An observational, cross-sectional study. Place and Duration of Study: The National Institute of Blood Disease (NIBD), Karachi, from March 2003 to August 2008. Methodology: All consecutive patients with confirmed diagnosis of AA were evaluated. Data included the baseline characteristics, complete blood counts (CBC), bone marrow biopsy findings, severity of disease, exposure to drugs or chemicals, viral serology and their HLA expression. The data was analyzed on SPSS programme and frequencies were documented. Results: Among 318 patients, there were 236 (74.21%) males and 82 (25.78%) females. Median age was 16 and 70% belonged to urban population. Drug exposure could be established in 23 (7.23%) of cases, while 4 (1.25%) were HBV surface antigen positive and 7 (2.2%) were HCV antibodies positive. In all, 73 (22.9%) had very severe AA, 195 (61.32%) had severe AA while 50 (15.7%) cases had non-severe AA. HLA B5 (52) showed high expression in 83 patients (26%) in comparison to 5.9% reported in healthy population. Conclusion: AA was found to affect young adult males living in urban areas. HLA B5 (52) showed higher expression in patients with aplastic anemia. (author)

  19. Diversity of natural self-derived ligands presented by different HLA class I molecules in transporter antigen processing-deficient cells.

    Directory of Open Access Journals (Sweden)

    Elena Lorente

    Full Text Available The transporter associated with antigen processing (TAP translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P(1 position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.

  20. Characterization of SeseC_01411 as a surface protective antigen of Streptococcus equi ssp. zooepidemicus.

    Science.gov (United States)

    Xie, Honglin; Wei, Zigong; Ma, Chunquan; Li, Shun; Liu, Xiaohong; Fu, Qiang

    2018-06-01

    Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is a commensal bacterium related to opportunistic infections of many species, including humans, dogs, cats, and pigs. SeseC_01411 has been proven to be immunogenic. However, its protective efficacy remained to be evaluated. In the present study, the purified recombinant SeseC_01411 could elicit a strong humoral antibody response and protect against lethal challenge with virulent SEZ in mice. Our finding confirmed that SeseC_01411 distributes on the surface of SEZ. In addition, the hyperimmune sera against SeseC_01411 could efficiently kill the bacteria in the phagocytosis test. The present study identified the immunogenic protein, SeseC_01411, as a novel surface protective antigen of SEZ. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Establishment of a common acute lymphoblastic leukemia cell line (LC4-1) and effects of phorbol myristate acetate (PMA) on the surface antigen expression of the cell line.

    Science.gov (United States)

    Yoshimura, T; Mayumi, M; Yorifuji, T; Kim, K M; Heike, T; Miyanomae, T; Shinomiya, K; Mikawa, H

    1987-09-01

    A common acute lymphoblastic leukemia (ALL) cell line, designated LC4-1, was established from peripheral blood mononuclear cells of a patient with acute non-T-cell ALL. LC4-1 cells were characteristically positive for Ia, B4, and common ALL antigens (CALLA), but negative for B2, Tac, T3, T4, T8, T11, and M1 antigens and E-rosette formation. Approximately 30% of LC4-1 cells expressed detectable amounts of B1 antigens. LC4-1 cells expressed neither Epstein-Barr-virus-associated nuclear antigen (EBNA), cytoplasmic immunoglobulins (cIg) nor surface immunoglobulins (sIg). Gene rearrangements had already occurred in LC4-1 in the D-J region of immunoglobulin heavy chain genes, but not in T-cell receptor (beta-chain) genes, suggesting that LC4-1 is a progenitor cell line of B-cell lineage earlier than pre-B-cells. The expression of cell surface antigens of LC4-1 was changed by treatment with 4-phorbol 12-myristate 13-acetate (PMA) (0.1 ng/ml) for 2 days. Before treatment with PMA, about 98% of LC4-1 cells were positive for B4, CALLA, and Ia. However, following treatment they lost CALLA expression without any change in expression of Ia and B4. There was no change in B1-positive population. The change in surface antigens on LC4-1 cells seems to be due to differentiation induced in the cells by PMA. These results support the hypothesis that CALLA is a differentiation antigen and suggest one possible differentiation pathway for pre-B-cells.

  2. Evaluation of monoclonal antibody-based sandwich direct ELISA (MSD-ELISA for antigen detection of foot-and-mouth disease virus using clinical samples.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available A monoclonal antibody-based sandwich direct ELISA (MSD-ELISA method was previously developed for foot-and-mouth disease (FMD viral antigen detection. Here we evaluated the sensitivity and specificity of two FMD viral antigen detection MSD-ELISAs and compared them with conventional indirect sandwich (IS-ELISA. The MSD-ELISAs were able to detect the antigen in saliva samples of experimentally-infected pigs for a longer term compared to the IS-ELISA. We also used 178 RT-PCR-positive field samples from cattle and pigs affected by the 2010 type-O FMD outbreak in Japan, and we found that the sensitivities of both MSD-ELISAs were about 7 times higher than that of the IS-ELISA against each sample (P<0.01. In terms of the FMD-positive farm detection rate, the sensitivities of the MSD-ELISAs were about 6 times higher than that of the IS-ELISA against each farm (P<0.01. Although it is necessary to conduct further validation study using the other virus strains, MSD-ELISAs could be appropriate as a method to replace IS-ELISA for FMD antigen detection.

  3. The SnSAG merozoite surface antigens of Sarcocystis neurona are expressed differentially during the bradyzoite and sporozoite life cycle stages.

    Science.gov (United States)

    Gautam, A; Dubey, J P; Saville, W J; Howe, D K

    2011-12-29

    Sarcocystis neurona is a two-host coccidian parasite whose complex life cycle progresses through multiple developmental stages differing at morphological and molecular levels. The S. neurona merozoite surface is covered by multiple, related glycosylphosphatidylinositol-linked proteins, which are orthologous to the surface antigen (SAG)/SAG1-related sequence (SRS) gene family of Toxoplasma gondii. Expression of the SAG/SRS proteins in T. gondii and another related parasite Neospora caninum is life-cycle stage specific and seems necessary for parasite transmission and persistence of infection. In the present study, the expression of S. neurona merozoite surface antigens (SnSAGs) was evaluated in the sporozoite and bradyzoite stages. Western blot analysis was used to compare SnSAG expression in merozoites versus sporozoites, while immunocytochemistry was performed to examine expression of the SnSAGs in merozoites versus bradyzoites. These analyses revealed that SnSAG2, SnSAG3 and SnSAG4 are expressed in sporozoites, while SnSAG5 was appeared to be downregulated in this life cycle stage. In S. neurona bradyzoites, it was found that SnSAG2, SnSAG3, SnSAG4 and SnSAG5 were either absent or expression was greatly reduced. As shown for T. gondii, stage-specific expression of the SnSAGs may be important for the parasite to progress through its developmental stages and complete its life cycle successfully. Thus, it is possible that the SAG switching mechanism by these parasites could be exploited as a point of intervention. As well, the alterations in surface antigen expression during different life cycle stages may need to be considered when designing prospective approaches for protective vaccination. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. iNKT Cells and Their potential Lipid Ligands during Viral Infection

    Directory of Open Access Journals (Sweden)

    Anunya eOpasawatchai

    2015-07-01

    Full Text Available Invariant natural killer T (iNKT cells are a unique population of lipid reactive CD1d restricted innate-like T lymphocytes. Despite being a minor population, they serve as an early source of cytokines and promote immunological crosstalk thus bridging innate and adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer as well as infectious diseases, including viral infection, have been reported to be influenced by iNKT cells. However, it remains unclear how iNKT cells are activated during viral infection, as virus derived lipid antigens have not been reported. Cytokines may activate iNKT cells during infections from influenza and murine cytomegalovirus (MCMV, although CD1d dependent activation is evident in other viral infections. Several viruses, such as dengue virus (DENV, induce CD1d upregulation which correlates with iNKT cell activation. In contrast, Herpes simplex virus type 1 (HSV-1, Human immunodeficiency virus (HIV, Epstein-Barr virus (EBV and Human papiloma virus (HPV promote CD1d downregulation as a strategy to evade iNKT cell recognition. These observations suggest the participation of a CD1d-dependent process in the activation of iNKT cells in response to viral infection. Endogenous lipid ligands, including phospholipids as well as glycosphingolipids, such as glucosylceramide have been proposed to mediate iNKT cell activation. Pro-inflammatory signals produced during viral infection may stimulate iNKT cells through enhanced CD1d dependent endogenous lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit endogenous lipid degradation. Recent advances in this field are reviewed.

  6. T cells for viral infections after allogeneic hematopoietic stem cell transplant.

    Science.gov (United States)

    Bollard, Catherine M; Heslop, Helen E

    2016-06-30

    Despite recent advances in the field of allogeneic hematopoietic stem cell transplantation (HSCT), viral infections are still a major complication during the period of immune suppression that follows the procedure. Adoptive transfer of donor-derived virus-specific cytotoxic T cells (VSTs) is a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after HSCT. Early proof of principle studies demonstrated that the administration of donor-derived T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could effectively restore virus-specific immunity and control viral infections. Subsequent studies using different expansion or direct selection techniques have shown that donor-derived VSTs confer protection in vivo after adoptive transfer in 70% to 90% of recipients. Because a major cause of failure is lack of immunity to the infecting virus in a naïve donor, more recent studies have infused closely matched third-party VSTs and reported response rates of 60% to 70%. Current efforts have focused on broadening the applicability of this approach by: (1) extending the number of viral antigens being targeted, (2) simplifying manufacture, (3) exploring strategies for recipients of virus-naïve donor grafts, and (4) developing and optimizing "off the shelf" approaches. © 2016 by The American Society of Hematology.

  7. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes.

    Science.gov (United States)

    Prevost, B; Goulet, M; Lucas, F S; Joyeux, M; Moulin, L; Wurtzer, S

    2016-03-15

    After many outbreaks of enteric virus associated with consumption of drinking water, the study of enteric viruses in water has increased significantly in recent years. In order to better understand the dynamics of enteric viruses in environmental water and the associated viral risk, it is necessary to estimate viral persistence in different conditions. In this study, two representative models of human enteric viruses, adenovirus 41 (AdV 41) and coxsackievirus B2 (CV-B2), were used to evaluate the persistence of enteric viruses in environmental water. The persistence of infectious particles, encapsidated genomes and free nucleic acids of AdV 41 and CV-B2 was evaluated in drinking water and surface water at different temperatures (4 °C, 20 °C and 37 °C). The infectivity of AdV 41 and CV-B2 persisted for at least 25 days, whatever the water temperature, and for more than 70 days at 4 °C and 20 °C, in both drinking and surface water. Encapsidated genomes persisted beyond 70 days, whatever the water temperature. Free nucleic acids (i.e. without capsid) also were able to persist for at least 16 days in drinking and surface water. The usefulness of a detection method based on an intercalating dye pre-treatment, which specifically targets preserved particles, was investigated for the discrimination of free and encapsidated genomes and it was compared to virus infectivity. Further, the resistance of AdV 41 and CV-B2 against two major disinfection treatments applied in drinking water plants (UV and chlorination) was evaluated. Even after the application of UV rays and chlorine at high doses (400 mJ/cm(2) and 10 mg.min/L, respectively), viral genomes were still detected with molecular biology methods. Although the intercalating dye pre-treatment had little use for the detection of the effects of UV treatment, it was useful in the case of treatment by chlorination and less than 1 log10 difference in the results was found as compared to the infectivity measurements

  8. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  9. General epidemiological parameters of viral hepatitis A, B, C, and E in six regions of China: a cross-sectional study in 2007.

    Science.gov (United States)

    Lu, Jian; Zhou, Yongdong; Lin, Xiaojing; Jiang, Yongzhen; Tian, Ruiguang; Zhang, Yonghui; Wu, Jia; Zhang, Fengwei; Zhang, Yong; Wang, Yue; Bi, Shengli

    2009-12-24

    Viral hepatitis is a serious health burden worldwide. To date, few reports have addressed the prevalence of hepatitis A, B, C, and E in China. Therefore, the general epidemiological parameters of viral hepatitis remain unknown. In this cross-sectional study, we performed a serological prevalence analysis of viral hepatitis A, B, C, and E in 8,762 randomly selected Chinese subjects, which represented six areas of China. The overall prevalence of anti-Hepatitis C virus antibody (anti-HCV) was 0.58%, which was much lower than was estimated by WHO. The prevalences of Hepatitis B virus surface antigen (HBsAg), anti-Hepatitis B virus surface protein antibody (HBsAb), and anti-Hepatitis B virus core protein antibody (HBcAb) were 5.84%, 41.31%, and 35.92%, respectively, whereas in the group of subjects less than 5 years old, these prevalences were 1.16%, 46.77%, and 8.69% respectively, which suggests that the Hepatitis B virus (HBV)-carrier population is decreasing, and the nationwide HBV vaccine program has contributed to the lowered HBV prevalence in the younger generation in China. Meanwhile, a large deficit remains in coverage provided by the national HBV immune program. In addition, our data suggested the possibility that HBsAb may not last long enough to protect people from HBV infection throughout life. The overall prevalence of anti-Hepatitis A virus antibody (anti-HAV) and anti-Hepatitis E virus antibody (anti-HEV) were as high as 72.87% and 17.66%, respectively. The indices increased with age, which suggests that a large proportion of Chinese adults are protected by latent infection. Furthermore, the pattern of HEV infection was significantly different among ethnic groups in China. Our study provided much important information concerning hepatitis A, B, C, and E prevalence in China and will contribute to worldwide oversight of viral hepatitis.

  10. Hepatitis B virus-specific miRNAs and Argonaute2 play a role in the viral life cycle.

    Directory of Open Access Journals (Sweden)

    C Nelson Hayes

    Full Text Available UNLABELLED: Disease-specific serum miRNA profiles may serve as biomarkers and might reveal potential new avenues for therapy. An HBV-specific serum miRNA profile associated with HBV surface antigen (HBsAg particles has recently been reported, and AGO2 and miRNAs have been shown to be stably associated with HBsAg in serum. We identified HBV-associated serum miRNAs using the Toray 3D array system in 10 healthy controls and 10 patients with chronic hepatitis B virus (HBV infection. 19 selected miRNAs were then measured by quantitative RT-PCR in 248 chronic HBV patients and 22 healthy controls. MiRNA expression in serum versus liver tissue was also compared using biopsy samples. To examine the role of AGO2 during the HBV life cycle, we analyzed intracellular co-localization of AGO2 and HBV core (HBcAg and surface (HBsAg antigens using immunocytochemistry and proximity ligation assays in stably transfected HepG2 cells. The effect of AGO2 ablation on viral replication was assessed using siRNA. Several miRNAs, including miR-122, miR-22, and miR-99a, were up-regulated at least 1.5 fold (P<2E-08 in serum of HBV-infected patients. AGO2 and HBcAg were found to physically interact and co-localize in the ER and other subcellular compartments. HBs was also found to co-localize with AGO2 and was detected in multiple subcellular compartments. Conversely, HBx localized non-specifically in the nucleus and cytoplasm, and no interaction between AGO2 and HBx was detected. SiRNA ablation of AGO2 suppressed production of HBV DNA and HBs antigen in the supernatant. CONCLUSION: These results suggest that AGO2 and HBV-specific miRNAs might play a role in the HBV life cycle.

  11. Antigen presentation by hapten-specific B lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function of immunoglobulin receptors

    International Nuclear Information System (INIS)

    Abbas, A.K.; Haber, S.; Rock, K.L.

    1985-01-01

    Studies were designed to examine the ability of hapten-binding murine B lymphocytes to present hapten-protein conjugates to protein antigen-specific, Ia-restricted T cell hybridomas. BALB/c B cells specific for TNP or FITC presented hapten-modified proteins (TNP-G1 phi, TNP-OVA, or FITC-OVA) to the relevant T cell hybridomas at concentrations below 0.1 microgram/ml. Effective presentation of the same antigens by B lymphocyte-depleted splenocytes, and of unmodified proteins by either hapten-binding B cells or Ig spleen cells, required about 10(3)-to 10(4)-fold higher concentrations of antigen. The use of two different haptens and two carrier proteins showed that this extremely efficient presentation of antigen was highly specific, with hapten specificity being a property of the B cells and carrier specificity of the responding T cells. The presentation of hapten-proteins by hapten-binding B lymphocytes was radiosensitive and was not affected by the depletion of plastic-adherent cells, suggesting that conventional APCs (macrophages or dendritic cells) are not required in this phenomenon. Antigen-pulsing and antibody-blocking experiments showed that this hapten-specific antigen presentation required initial binding of antigen to surface Ig receptors. Moreover, linked recognition of hapten and carrier determinants was required, but these recognition events could be temporally separated. Finally, an antigen-processing step was found to be necessary, and this step was disrupted by ionizing radiation. These data suggest a role for B cell surface Ig in providing a specific high-affinity receptor to allow efficient uptake or focusing of antigen for its subsequent processing and presentation to T lymphocytes

  12. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  13. Autologous monoclonal antibodies recognize tumour-associated antigens in X-irradiated C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Artus, A; Guillemain, B; Legrand, E; Astier-Gin, T; Mamoun, R; Duplan, J -F

    1986-09-01

    X-irradiation of C57BL/6 mice induces thymic lymphosarcomas which sometimes contain retroviruses which upon injection into normal mice mimic the effect of the irradiation. We examined whether specific antigenicities, viral or cellular, were expressed by tumour cells that could be recognized by antibodies from the irradiated animals. We developed monoclonal antibodies (MAbs) using splenocytes of the diseased animal. The reactivity of such MAbs towards thymoma cell lines established in vitro was investigated by means of an ELISA. At least 10 antibody specificities were detected on the 13 tumours investigated, allowing separation of the MAbs into three classes: (i) those recognizing the autologous tumour, heterologous tumours as well as normal thymic tissue, (ii) those specific for the autologous tumour, and (iii) those specific for one tumour, but not ones of autologous origin. The last two classes corresponded to specific tumour-associated antigens. Our panel of MAbs defined each tumour by the particular pattern of antigens harboured. It is striking that most of the antigens were present in the normal thymus and that only two tumours had additional antigenicities. Additionally, quantitative variations were observed in the levels of expression of these antigens.

  14. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  15. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  16. Antibodies to variant antigens on the surfaces of infected erythrocytes are associated with protection from malaria in Ghanaian children

    DEFF Research Database (Denmark)

    Dodoo, D; Staalsoe, T; Giha, H

    2001-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of infected erythrocytes. Each parasite genome contains about 40 PfEMP1 genes, but only 1 PfEMP1 gene is expressed at a given time. PfEMP1 serves as a parasite-sequestering ligand to endoth...

  17. 21 CFR 660.41 - Processing.

    Science.gov (United States)

    2010-04-01

    ... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...

  18. Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats

    Directory of Open Access Journals (Sweden)

    Adler Joël

    2007-12-01

    Full Text Available Abstract Background Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. Results We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. Conclusion Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

  19. The effect of interferons and viral proteins on antigen-presenting cells in chronic hepatitis B

    NARCIS (Netherlands)

    A. Boltjes (Arjan)

    2014-01-01

    markdownabstract__Abstract__ The innate immune system forms the so-called first line of defense against invading pathogens like viruses. Innate immune cells include phagocytes like monocytes, macrophages and dendritic cells (DC). Phagocytes sample their environments, binding and taking up viral

  20. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  1. A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen

    Science.gov (United States)

    Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.

    2015-10-01

    Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor

  2. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection.

    Science.gov (United States)

    Li, Jianqiang; Ge, Jun; Ren, Sulin; Zhou, Tong; Sun, Ying; Sun, Honglin; Gu, Yue; Huang, Hongying; Xu, Zhenxing; Chen, Xiaoxiao; Xu, Xiaowei; Zhuang, Xiaoqian; Song, Cuiling; Jia, Fangmiao; Xu, Aiguo; Yin, Xiaojin; Du, Sean X

    2015-08-20

    Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Viral Load Pattern Among Hepatitis B Surface Antigen‑positive ...

    African Journals Online (AJOL)

    2015-03-13

    Mar 13, 2015 ... Abstract. Background: Hepatitis B viral infection is an old medical problem with worldwide distribution. It is usually diagnosed using serologic methods. However, the decision as to which patient to treat or not remains challenging due to the poor sensitivity of serologic markers as prognostic or severity ...

  4. Effects of pregnancy and intensity of Plasmodium falciparum transmission on immunoglobulin G subclass responses to variant surface antigens

    DEFF Research Database (Denmark)

    Megnekou, Rosette; Staalsoe, Trine; Taylor, Diane W

    2005-01-01

    Placenta-sequestering Plasmodium falciparum involved in the pathogenesis of pregnancy-associated malaria (PAM) in otherwise clinically immune women expresses particular variant surface antigens (VSA(PAM)) on the surface of infected erythrocytes that differ from VSA found in parasitized nonpregnant...... individuals (non-PAM type VSA). We studied levels of immunoglobulin G (IgG) and IgG subclasses with specificity for VSA(PAM) and for non-PAM type VSA in pregnant and nonpregnant women from two sites with different endemicities in Cameroon. We found that VSA(PAM)-specific responses depended on the pregnancy......(PAM)-specific immunity to pregnancy-associated malaria....

  5. Use of antigens labelled with radioisotopes in serological epidemiology. Part of a coordinated programme

    International Nuclear Information System (INIS)

    Felsenfeld, O.

    1976-01-01

    A brief status report of intended cooperative projects is presented. Some sera were available for testing diptheria, tetanus, smallpox and typhoid antibody formation. Some very preliminary work was carried out on the diagnosis of staphyloenterotoxicosis. A preliminary report on radioisotope-labelled cercarial antigens has been published elsewhere. Lipopolysaccharide complexes were labelled with 14 C-sodium acetate for studying sera in diseases caused by gram-negative cocci (meningococci and gonococci). Leptospiral antigens were studied using 14 C-glucose. Of the other Trepanomataceae, borreliae and the cultivable syphilis T. pallidum were tested, using 14 C-amino acid mixture. The study of trypanosomes was continued. Labelling with 125 I proved effective but the antigens could also be labelled with 14 C (borohydrate- 14 C-formaldehyde). In schistosomiasis, defatted cercariae were used as antigen. Malarial diagnosis with the aid of Plasmodium knowlesi and Pl. gallinarum as antigens for human Plasmodia proved inconclusive. Pseudomonas aeruginosa toxin was successfully labelled with 125 I. Progress was achieved in viral diagnosis by using the inhibition test (influenza A virus and vaccinia virus being used as models for RNA and DNA viruses, respectively)

  6. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity.

    Directory of Open Access Journals (Sweden)

    Bo Yao

    Full Text Available Identifying protein surface regions preferentially recognizable by antibodies (antigenic epitopes is at the heart of new immuno-diagnostic reagent discovery and vaccine design, and computational methods for antigenic epitope prediction provide crucial means to serve this purpose. Many linear B-cell epitope prediction methods were developed, such as BepiPred, ABCPred, AAP, BCPred, BayesB, BEOracle/BROracle, and BEST, towards this goal. However, effective immunological research demands more robust performance of the prediction method than what the current algorithms could provide. In this work, a new method to predict linear antigenic epitopes is developed; Support Vector Machine has been utilized by combining the Tri-peptide similarity and Propensity scores (SVMTriP. Applied to non-redundant B-cell linear epitopes extracted from IEDB, SVMTriP achieves a sensitivity of 80.1% and a precision of 55.2% with a five-fold cross-validation. The AUC value is 0.702. The combination of similarity and propensity of tri-peptide subsequences can improve the prediction performance for linear B-cell epitopes. Moreover, SVMTriP is capable of recognizing viral peptides from a human protein sequence background. A web server based on our method is constructed for public use. The server and all datasets used in the current study are available at http://sysbio.unl.edu/SVMTriP.

  7. A novel merozoite surface antigen of Plasmodium falciparum (MSP-3 identified by cellular-antibody cooperative mechanism antigenicity and biological activity of antibodies

    Directory of Open Access Journals (Sweden)

    Claude Oeuvray

    1994-01-01

    Full Text Available We report the identification of a 48kDa antigen targeted by antibodies which inhibit Plasmodium falciparum in vitro growth by cooperation with blood monocytes in an ADCI assay correlated to the naturally acquired protection. This protein is located on the surface of the merozoite stage of P. falciparum, and is detectable in all isolates tested. Epidemiological studies demonstrated that peptides derived from the amino acid sequence of MSP-3 contain potent B and T-cell epitopes recognized by a majority of individuals living in endemic areas. Moreover human antibodies either purified on the recombinant protein, or on the synthetic peptide MSP-3b, as well as antibodies raised in mice, were all found to promote parasite killing mediated by monocytes.

  8. Studies on the surface antigenicity and susceptibility to antibody-dependent killing of developing schistosomula using sera from chronically infected mice and mice vaccinated with irradiated cercariae

    International Nuclear Information System (INIS)

    Bickle, Q.D.; Ford, M.J.

    1982-01-01

    Changes in the surface antigenicity and susceptibility to in vitro killing during development of schistosomula of Schistosoma mansoni were studied using serum from chronically infected mice (CIS) and from mice vaccinated with highly irradiated (20 krad) cercariae (VS). Binding of these sera was quantitated by counting the number of P388D 1 cells (a transformed, macrophage-like cell of mouse origin, bearing Fc receptors for IgG) binding to the parasite surface. Compared with schistosomula derived in vitro by mechanical transformation (MS), schistosomula recovered 3 hr after skin penetration in vitro (SS) showed a significant loss in surface binding of CIS. Schistosomula recovered 3 hr after skin penetration in vivo (SRS) showed even less binding, and this trend continued such that parasites recovered from the lungs 5 days after infection (LS) showed only minimal binding, and 10-day-old worms from the portal system showed no significant binding. In contrast, VS, which bound significantly less well to MS than CIS, showed enhanced binding to SS, and in the face of their declining antigenicity with respect to CIS, 3- to 24-hr SRS maintained this raised level of antigenicity. Although there appeared to be a decline in binding of VS thereafter, LS remained antigenic, still binding as many cells as MS did despite the fact that they also expressed host antigens detected usng antisera raised against mouse RBC. In spite of this persistence of VS binding up to the lung stage, resistance to eosinophil-mediated killing in vitro had developed by 48 hr post-infection, and LS were totally resistant to both eosinophil- and C-mediated killing

  9. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  10. Analysis of IgG with specificity for variant surface antigens expressed by placental Plasmodium falciparum isolates

    Directory of Open Access Journals (Sweden)

    Kremsner Peter G

    2004-07-01

    Full Text Available Abstract Background Pregnancy-associated malaria (PAM is caused by Plasmodium falciparum-infected erythrocytes that can sequester in placental intervillous space by expressing particular variant surface antigens (VSA that can mediate adhesion to chondroitin sulfate A (CSA in vitro. IgG antibodies with specificity for the VSA expressed by these parasites (VSAPAM are associated with protection from maternal anaemia, prematurity and low birth weight, which is the greatest risk factor for death in the first month of life. Methods In this study, the development of anti-VSAPAM antibodies in a group of 151 women who presented to the maternity ward of Albert Schweitzer Hospital in Lambaréné, Gabon for delivery was analysed using flow cytometry assays. Plasma samples from placenta infected primiparous women were also investigated for their capacity to inhibit parasite binding to CSA in vitro. Results In the study cohort, primiparous as well as secundiparous women had the greatest risk of infection at delivery as well as during pregnancy. Primiparous women with infected placentas at delivery showed higher levels of VSAPAM-specific IgG compared to women who had no malaria infections at delivery. Placental isolates of Gabonese and Senegalese origin tested on plasma samples from Gabon showed parity dependency and gender specificity patterns. There was a significant correlation of plasma reactivity as measured by flow cytometry between different placental isolates. In the plasma of infected primiparous women, VSAPAM-specific IgG measured by flow cytometry could be correlated with anti-adhesion antibodies measured by the inhibition of CSA binding. Conclusion Recognition of placental parasites shows a parity- and sex- dependent pattern, like that previously observed in laboratory strains selected to bind to CSA. Placental infections at delivery in primiparous women appear to be sufficient to induce functional antibodies which can both recognize the surface of

  11. Hepatitis B Viral Markers in Surface Antigen Negative Blood Donors ...

    African Journals Online (AJOL)

    Of the 20 who were anti-HBc positive, seven had tattoo/traditional marks on their body and one had previous history of blood transfusion. Conclusion: This study has shown that some potential blood units containing HBV are being transfused to patients unknowingly by screening for HBsAg only. Screening for other markers ...

  12. Impact of polymorphisms in the HCP5 and HLA-C, and ZNRD1 genes on HIV viral load

    DEFF Research Database (Denmark)

    Thørner, Lise Wegner; Erikstrup, Christian; Harritshøj, Lene Holm

    2016-01-01

    AIMS: Single nucleotide polymorphisms (SNPs) in the human leucocyte antigen (HLA) complex P5 (HCP5), HLA-C, and near the zinc ribbon domain containing 1 (ZNRD1) have been shown to influence viral load (VL) set point in HIV-infected individuals with a known seroconversion onset. We aimed to determ...

  13. Response of sublethally irradiated monkeys to a replicating viral antigen

    International Nuclear Information System (INIS)

    Hilmas, D.E.; Spertzel, R.O.

    1975-01-01

    Temporal effects of exposure to sublethal, total-body x radiation (400 R) on responses to vaccination with the attenuated Venezuelan equine encephalomyelitis vaccine virus, TC-83, were examined in rhesus monkeys. Viremia, often with delayed onset, was prolonged even when irradiation preceded vaccination by 28 days. Virus titers were increased, particularly in groups irradiated 4 or 7 days before vaccination. Delay in appearance of hemagglutination-inhibition and serum-neutralizing antibody correlated closely with persistence of viremia in irradiated-vaccinated monkeys. The temporal course of antibody response was markedly affected by the interval between irradiation and injection of this replicating antigen. With longer intervals between irradiation and vaccination, the somewhat depressed antibody responses approached normal or surpassed those of nonirradiated monkeys. Vaccination 14 days after radiation exposure resulted in lethality to 8 of 12 monkeys, apparently as a result of secondary infection. The additional lymphopenic stress due to the effect of TC-83, superimposed on the severely depressed hematopoietic competence at 14 days, undoubtedly contributed to this increased susceptibility to latent infection

  14. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  15. Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo

    DEFF Research Database (Denmark)

    Haase, Rikke N; Megnekou, Rosette; Lundquist, Maja

    2006-01-01

    Placenta-sequestering Plasmodium falciparum parasites causing pregnancy-associated malaria express pregnancy-specific variant surface antigens (VSA(PAM)). We report here that VSA(PAM)-expressing patient isolates adhere strongly to the choriocarcinoma cell line BeWo and that the BeWo line can...... be used to efficiently select for VSA(PAM) expression in vitro....

  16. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies

    Science.gov (United States)

    Venter, P. Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E.; Schneemann, Anette

    2011-01-01

    Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery and tissue-specific bio-imaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to covalently display a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187

  17. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii.

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  18. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  19. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  20. Detection of H5 Avian Influenza Viruses by Antigen-Capture Enzyme-Linked Immunosorbent Assay Using H5-Specific Monoclonal Antibody▿

    OpenAIRE

    He, Qigai; Velumani, Sumathy; Du, Qingyun; Lim, Chee Wee; Ng, Fook Kheong; Donis, Ruben; Kwang, Jimmy

    2007-01-01

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Asia and Europe is threatening animals and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, we developed a panel of monoclonal antibodies (MAbs) against the H5N1 avian influenza virus (AIV) and implemented an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) to detect the H5 viral antigen. Mice immunized with denatured hemagglutinin (H...

  1. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  2. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  3. Human Parvovirus B19 Induced Apoptotic Bodies Contain Altered Self-Antigens that are Phagocytosed by Antigen Presenting Cells

    Science.gov (United States)

    Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona

    2013-01-01

    Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709

  4. Detection of viral infection by immunofluorescence in formalin-fixed tissues, pretreated with trypsin

    Directory of Open Access Journals (Sweden)

    O. M. Barth

    1988-06-01

    Full Text Available The presence of viral antigen in sections from formalin-fixed and paraffin-embedded human tissues was demonstrated by trypsin digestion followed by direct or indirect immunofluorescence. The specimens may be used for retrospective diagnosis. The immunofluorescence technique has to be adapted to the suspected virus infection on the basis of previous histopathology study. Variations of trypsin concentration time and temperature of incubation, expose different viral antigens and have to be previously tested for each unknown system. For measles virus detection in lung a stronger digestion has to be applied as compared to adenovirus or respiratory disease viruses in the same tisue. Flavivirus in liver tissue needs a weaker digestion. The reproducibility of the method makes it useful as a routine technique in diagnosis of virus infection.A presença de antígeno viral em cortes de tecidos humanos fixados em formol e emblocados em parafina foi demonstrada pela digestão com tripsina foi demonstrada pela ingestão com tripsina seguida de imunofluorescência direta ou indireta. Os espécimens podem ser utilizados para diagnoses retrospectivas. A técnica da imunofluorescência deve ser adaptada à infecção viral suspeita segundo diagnosie histopatológica prévia. Os parâmetros para a digestão do tecido pela tripsina, relacionados à concentração, duração de atuação e temperatura, expõem diferentes antígenos virais e devem ser previamente testados para cada sistema a ser estabelecido. Uma digestão mais intensa deve ser aplicada para a detecção do vírus do sarampo em tecido pulmonar do que para adenovírus ou vírus respiratório sincicial no mesmo tecido. Por outro lado, o vírus da febre amarela em tecido de fígado necessita de uma digestão mais fraca.

  5. Immune responses to baculovirus-displayed enterovirus 71 VP1 antigen.

    Science.gov (United States)

    Kiener, Tanja K; Premanand, Balraj; Kwang, Jimmy

    2013-04-01

    The increased distribution and neurovirulence of enterovirus 71 is an important health threat for young children in Asia Pacific. Vaccine design has concentrated on inactivated virus with the most advanced undergoing Phase III clinical trials. By using a subunit vaccine approach, production costs could be reduced by lowering the need for biocontainment. In addition, novel mutations could be rapidly incorporated to reflect the emergence of new enterovirus 71 subgenogroups. To circumvent the problems associated with conventional subunit vaccines, the antigen can be displayed on a viral vector that conveys stability and facilitates purification. Additional advantages of viral-vectored subunit vaccines are their ability to stimulate the innate immune system by transducing cells and the possibility of oral or nasal delivery, which dispenses with the need for syringes and medical personnel. Baculovirus-displayed VP1 combines all these benefits with protection that is as efficient as inactivated virus.

  6. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  7. Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors

    Directory of Open Access Journals (Sweden)

    Robert Moot

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are used to redirect effector cell specificity to selected cell surface antigens. Using CARs, antitumor activity can be initiated in patients with no prior tumor specific immunity. Although CARs have shown promising clinical results, the technology remains limited by the availability of specific cognate cell target antigens. To increase the repertoire of targetable tumor cell antigens we utilized the immune system of the sea lamprey to generate directed variable lymphocyte receptors (VLRs. VLRs serve as membrane bound and soluble immune effectors analogous but not homologous to immunoglobulins. They have a fundamentally different structure than immunoglobulin (Ig-based antibodies while still demonstrating high degrees of specificity and affinity. To test the functionality of VLRs as the antigen recognition domain of CARs, two VLR-CARs were created. One contained a VLR specific for a murine B cell leukemia and the other contained a VLR specific for the human T cell surface antigen, CD5. The CAR design consisted of the VLR sequence, myc-epitope tag, CD28 transmembrane domain, and intracellular CD3ζ signaling domain. We demonstrate proof of concept, including gene transfer, biosynthesis, cell surface localization, and effector cell activation for multiple VLR-CAR designs. Therefore, VLRs provide an alternative means of CAR-based cancer recognition.

  8. Recycling Endosomes and Viral Infection.

    Science.gov (United States)

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  9. Highly sensitive radioimmunoassay technique for subtyping the antibody to hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C T; Nath, N; Berberian, H; Dodd, R Y [American Red Cross, Blood Research Laboratory, Bethesda, MD, USA

    1978-12-01

    A highly sensitive technique for determining the subtype specificity of antibody to hepatitis B surface antigen (anti-HBs) is described. Immunoadsorbent consisting of controlled pore glass coated with subtype specific HBsAg was used to remove homologous antibody from the test samples before testing them for residual antibody by a commercially available radioimmunoassay (RIA). A total of 73 anti-HBs-positive samples from asymptomatic blood donors were tested. In nearly 80% of these samples the subtype reactivity could be determined by this technique. Only 67% could be typed by conventional liquid phase absorption RIA and 22% by passive hemagglutination inhibition techniques. Among the samples with low anti-HBs titer, ad and ay subtypes were found with equal frequency; however, with the increase in anti-HBs titer, considerably higher proportion of ad specificity was detected.

  10. Acute viral hepatitis in adults. Comparison of the radioimmunoassay and counterimmunoelectrophoresis methods of detecting HB/sub s/Ag

    International Nuclear Information System (INIS)

    Wenzel, R.P.; Teates, C.D.; Galapon, Q.; Barczak, R.; Ling, C.M.; Overby, L.R.

    1975-01-01

    The radioimmunoassay (RIA) and counterimmunoelectrophoretic (CIE) methods were compared in detecting hepatitis B antigen (HB/sub s/Ag) in 407 acute and 336 convalescent sera of adults with viral hepatitis. The CIE method demonstrated that 41 percent of acute and 28 percent of 14- to 17-day serum specimens were HB/sub s/Ag-positive. The RIA method demonstrated seropositivity in 60 percent of acute and 56 percent of convalescent specimens (P less than .001). Eighty-four percent of coded specimens initially positive for HB/sub s/Ag by RIA were found to have subtype antigenic determinants d or y; 92 percent of the HB/sub s/Ag-negative controls were negative for subtype antigens, confirming the specificity of the RIA test. RIA subtyping data corroborated earlier work with immunodiffusion techniques. (U.S.)

  11. Radioimmunoassay for hepatitis B core antigen

    International Nuclear Information System (INIS)

    Sagnelli, E.; Pereira, C.; Triolo, G.; Vernace, S.; Paronetto, F.

    1982-01-01

    Serum hepatitis B core antigen (HBcAg) is an important marker of hepatitis B virus replication. We describe an easy, sensitive radioimmunoassay for determination of HBcAg in detergent-treated serum pellets containing Dane particles. Components of a commercial kit for anticore determination are used, and HBcAG is measured by competitive inhibition of binding of 125 I-labeled antibodies to HBcAg with HBcAg-coated beads. We assayed for HBcAG in the sera of 49 patients with hepatitis B surface antigen (HBsAg)-positive chronic hepatitis, 50 patients with HBsAg-negative chronic hepatitis, and 30 healthy volunteers. HBcAg was detected in 41% of patients with HBsAg-positive chronic hepatitis but not in patients with HBsAg-negative chronic hepatitis. Hepatitis Be antigen (an antigen closely associated with the core of Dane particles) determined in the same sera by radioimmunoassay, was not detected in 50% of HBcAg-positive sera

  12. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories.

    Directory of Open Access Journals (Sweden)

    Jovan Nikolic

    2016-10-01

    Full Text Available Stress granules (SGs are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1, T-cell intracellular antigen 1 (TIA-1 and poly(A-binding protein (PABP in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs. Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection.

  13. Serum from Nipah Virus Patients Recognises Recombinant Viral Proteins Produced in Escherichia coli.

    Science.gov (United States)

    Tiong, Vunjia; Lam, Chui-Wan; Phoon, Wai-Hong; AbuBakar, Sazaly; Chang, Li-Yen

    2017-01-24

    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.

  14. Anti-pre-S responses and viral clearance in chronic hepatitis B virus infection.

    Science.gov (United States)

    Budkowska, A; Dubreuil, P; Poynard, T; Marcellin, P; Loriot, M A; Maillard, P; Pillot, J

    1992-01-01

    Serial sera were collected prospectively during the clinical course of 13 HBsAg carriers with chronic liver disease and analyzed for ALT levels, pre-S1 and pre-S2 antigens and corresponding antibodies and other serological hepatitis B virus markers. In five patients, anti-pre-S1 and anti-pre-S2 antibodies became detectable in multiple serum samples, whereas in eight patients anti-pre-S was never detected or only appeared transiently during the follow-up. The first pattern was associated with normalization of ALT levels and undetectable pre-S antigens and viral DNA by the polymerase chain reaction assay at final follow-up. HBsAg clearance occurred in two of the five patients. The second pattern was one of persistence of HBsAg and pre-S antigens, associated with the presence of serum HBV DNA detectable by spot hybridization or polymerase chain reaction regardless of clinical outcome. These findings demonstrate the occurrence of anti-pre-S antibodies in chronic hepatitis B virus-induced liver disease and associate anti-pre-S appearance with the clearance of hepatitis B virus from serum.

  15. Effect of cell culture system on the production of human viral antigens Efeito do sistema de cultura celular na produção de antígenos virais humanos

    Directory of Open Access Journals (Sweden)

    Ronaldo Zucatelli Mendonça

    2004-06-01

    Full Text Available A comparative study was performed in the production of different viral antigens by using microcarrier systems and traditional systems. Vero, BHK and MA 104 cells were cultivated in microcarriers (2mg/ml using a bioreactor with a working capacity of 3.7 liters, in parallel with conventional Roux bottles. After four days (BHK cells, and seven days of culture (Vero and MA-104 cells, the cells were infected with 0.1 MOI (multiplicity of infection of rabies virus, measles virus, poliovirus and rotavirus. The yields of the cells and virus in microcarriers and in the conventional system were determined. It was observed that in the microcarrier system, an average increase of twenty-fold more cells/ml was obtained in relation to the conventional monolayer culture, using Roux bottle. On the other hand, cells grown in Roux bottles presented 1.3 to 6.7 more viruses/ml culture than those in the microcarrier systems. However, the overall data showed that yieldings, in terms of viruses per batch, were statistically similar for both systems (p > 0.05. The amount of viral antigen production seems to depend not only on cell concentration, but also on other culture factors such as the characteristic of the cell-growth surface. Thus, the present findings provide a baseline for further improvements and strategies to be established for a scaling-up virus production since depending on the type of virus the optimal conditions found for a small-scale virus production seem unsuitable for large-scale production, requiring new standardization and evaluation.Foi realizado estudo comparativo na produção de diferentes antígenos virais usando sistema de microcarregador e sistema tradicional. Células Vero, BHK e MA-104 foram cultivadas em microcarregadores (2mg/ml utilizando-se biorreatores com capacidade de 3,7 litros e, em paralelo, no sistema convencional com garrafas Roux. Após quatro dias de cultura para as células BHK e sete dias para as células Vero e MA-104, as c

  16. Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses.

    Science.gov (United States)

    Chen, Yu-Wen; Huang, Yhu-Chering; Ho, Tai-Hua; Huang, Chung-Guei; Tsao, Kuo-Chien; Lin, Tzou-Yien

    2014-04-01

    Viral etiology of bronchiolitis in children in Taiwan has been fragmentary. We conducted a prospective study to figure out the viral epidemiology of bronchiolitis in Taiwan. From January 2009 to March 2011, a total of 113 children with bronchiolitis, aged culture, antigen test, and polymerase chain reaction. A total of 120 viruses were detected from 113 children. Positive viral etiology was identified in 86 (76%) children. Mixed viral pathogens were found in 28 cases (25%). Respiratory syncytial virus (RSV) was the most common pathogen and was identified in 43.4% of the cases. Human bocavirus (hBoV) was the second most common identified virus (in 19.5%), followed by human metapneumovirus (hMPV), rhinovirus, influenza viruses, and coronavirus OC43. In terms of clinical characteristics, no significant difference was found among the children with bronchiolitis either caused by different single or mixed viral infection. RSV was the most common etiologic agent for children with bronchiolitis in Taiwan. Newly identified viruses, including hMPV and hBoV, were also among the common causative agents. Clinical characteristics were not significantly different among the children with bronchiolitis caused by different viruses. Copyright © 2012. Published by Elsevier B.V.

  17. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    Directory of Open Access Journals (Sweden)

    Alexandra eIrrgang

    2015-09-01

    Full Text Available Microalgae of the genus Prototheca (P. are associated with rare but severe infections (protothecosis and represent a potential zoonotic risk. Genotype (GT 2 of P. zopfii has been established as pathogenic agent for humans, dogs and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1 and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analysed via MALDI- TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g. malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase but some antigens and potential virulence factors, known from other pathogens, have been found (e.g. phosphomannomutase, triosephosphate isomerase. One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70, a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  18. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis.

    Science.gov (United States)

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-02-04

    Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody--the serological marker of type 2 autoimmune hepatitis (AIH-2)--is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1)--either in association with anti-LKM1, or in isolation--and anti-soluble liver antigen antibodies (anti-SLA) have been considered as useful and specific diagnostic markers for AIH. However, their specificity for AIH has been questioned by some recent studies, which have shown the detection of anti-LC1 and anti-SLA by immunoprecipitation assays in HCV patients irrespective of their anti-LKM1 status. The aim of the present study was to test the anti-LC1 and anti-SLA presence by specific enzyme linked immunosorbent assays (ELISAs), in a large group of Greek HCV-infected patients with or without anti-LKM1 reactivity as firstly, immunoprecipitation assays are limited to few specialized laboratories worldwide and cannot be used routinely and secondly, to assess whether application of such tests has any relevance in the context of patients with viral hepatitis since antibody detection based on such ELISAs has not been described in detail in large groups of HCV patients. One hundred and thirty eight consecutive HCV patients (120 anti-LKM1 negative and 18 anti-LKM1 positive) were investigated for the presence of anti-LC1 and anti-SLA by commercial ELISAs. A similar number (120) of chronic hepatitis B virus (HBV) infected patients seronegative for anti-LKM1 was also tested as pathological controls. Six out of 18 (33%) anti-LKM(pos)/HCV(pos) patients tested positive for anti-LC1 compared to 1/120 (0.83%) anti-LKM(neg)/HCV(pos) patients and 0/120 (0%) of the anti-LKM1(neg)/HBV(pos) patients (p LKM1) or HBV-infected patients. We showed that anti-LC1 and anti-SLA autoantibodies are not detected by conventional assays in a large group of

  19. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  20. Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection

    Science.gov (United States)

    Cross, Robert W.; Boisen, Matthew L.; Millett, Molly M.; Nelson, Diana S.; Oottamasathien, Darin; Hartnett, Jessica N.; Jones, Abigal B.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shunichiro; Brown, Bethany L.; Pham, Ha; Rowland, Megan M.; Agans, Krystle N.; Geisbert, Joan B.; Heinrich, Megan L.; Kulakosky, Peter C.; Shaffer, Jeffrey G.; Schieffelin, John S.; Kargbo, Brima; Gbetuwa, Momoh; Gevao, Sahr M.; Wilson, Russell B.; Saphire, Erica Ollmann; Pitts, Kelly R.; Khan, Sheik Humarr; Grant, Donald S.; Geisbert, Thomas W.; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Background. Ebola virus disease (EVD) is a severe viral illness caused by Ebola virus (EBOV). The 2013–2016 EVD outbreak in West Africa is the largest recorded, with >11 000 deaths. Development of the ReEBOV Antigen Rapid Test (ReEBOV RDT) was expedited to provide a point-of-care test for suspected EVD cases. Methods. Recombinant EBOV viral protein 40 antigen was used to derive polyclonal antibodies for RDT and enzyme-linked immunosorbent assay development. ReEBOV RDT limits of detection (LOD), specificity, and interference were analytically validated on the basis of Food and Drug Administration (FDA) guidance. Results. The ReEBOV RDT specificity estimate was 95% for donor serum panels and 97% for donor whole-blood specimens. The RDT demonstrated sensitivity to 3 species of Ebolavirus (Zaire ebolavirus, Sudan ebolavirus, and Bundibugyo ebolavirus) associated with human disease, with no cross-reactivity by pathogens associated with non-EBOV febrile illness, including malaria parasites. Interference testing exhibited no reactivity by medications in common use. The LOD for antigen was 4.7 ng/test in serum and 9.4 ng/test in whole blood. Quantitative reverse transcription–polymerase chain reaction testing of nonhuman primate samples determined the range to be equivalent to 3.0 × 105–9.0 × 108 genomes/mL. Conclusions. The analytical validation presented here contributed to the ReEBOV RDT being the first antigen-based assay to receive FDA and World Health Organization emergency use authorization for this EVD outbreak, in February 2015. PMID:27587634

  1. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during

  2. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  3. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  4. The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major

    DEFF Research Database (Denmark)

    Kemp, M; Handman, E; Kemp, K

    1998-01-01

    The promastigote surface antigen-2 (PSA-2) is a Leishmania parasite antigen, which can induce Th1-mediated protection against murine leishmaniasis when used as a vaccine. To evaluate PSA-2 as a human vaccine candidate the specific T-cell response to PSA-2 was characterised in individuals immune...... to cutaneous leishmaniasis. Peripheral blood mononuclear cells from Sudanese individuals with a past history of self-healing cutaneous leishmaniasis proliferated vigorously in response to PSA-2 isolated from Leishmania major, whereas the antigen did not activate cells from presumably unexposed Danes....... Peripheral blood mononuclear cells from individuals with previous L. major infection had varying proliferative responses to PSA-2 derived from L. donovani promastigotes. Peripheral blood mononuclear cells activated by PSA-2 from L. major produced high amounts of interferon-gamma and tumour necrosis factor...

  5. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  6. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  7. Anthropogenic Viral Load on the Sources of Water in Kryvyi Rig

    Directory of Open Access Journals (Sweden)

    N.S. Prus

    2016-04-01

    Full Text Available The aim of the study was to determine the hepatropic viruses load on the natural sources of wastewater use of the industrial region. Methods. We investigated open water samples from places of water intake, which is later purified and used in consumer’s drinking purposes; river water samples in resting places and samples of sewage from discharge to the environment places. We used EUSA method using sets of reagents for the detection of antigen of hepatitis A virus (HAV HAV-antigen ELISA-Best (Russia, devices for the automatic washing of microplates and automatic record of the results using the immunoassay analyzer StatFax303 (Awareness Technology Inc., USA. Results. During 2000–2015 three peaks of the indication of HAV antigens’ rise in river water and sewage samples were noted. In 2002–2003 in average 34.4 and 32.3 % of the sewage and river water samples were positive, in 2008 26.7 and 27.1 %, respectively. The third peak of HAV antigen detection in open water was observed in 2012, only 17.8 %. Wastewater has been losing viral antigens since 2008, in fact to 0 % in 2013–2014. Conclusions. Aquatic ecosystem pollution by biological components occurs despite of primary treatment of wastewater. Drinking water contamination, which is used in everyday life, probably can be linked to an unsatisfactory condition of pipelines and laying of sewage supply.

  8. Cost-effectiveness of quantitative hepatitis B virus surface antigen testing in pregnancy in predicting vertical transmission risk.

    Science.gov (United States)

    Samadi Kochaksaraei, Golasa; Congly, Stephen E; Matwiy, Trudy; Castillo, Eliana; Martin, Steven R; Charlton, Carmen L; Coffin, Carla S

    2016-11-01

    Vertical transmission of hepatitis B virus (HBV) can occur despite immunoprophylaxis in mothers with high HBV DNA levels (>5-7 log 10 IU/ml). Quantitative hepatitis B surface antigen (qHBsAg) testing could be used as a surrogate marker to identify high viral load carriers, but there is limited data in pregnancy. We conducted a prospective observational study to determine the cost-effectiveness and utility of qHBsAg as a valid surrogate marker of HBV DNA. Pregnant patients with chronic hepatitis B were recruited from a tertiary referral centre. HBV DNA levels and qHBsAg were assessed in the second to third trimester. Statistical analysis was performed by Spearman's rank correlation and student's t-test. The cost-effectiveness of qHBsAg as compared to HBV DNA testing was calculated. Ninety nine women with 103 pregnancies, median age 32 years, 65% Asian, 23% African and 12% other [Hispanic, Caucasian] were enrolled. Overall, 23% (23/99) were HBV e Ag (HBeAg)-positive. A significant correlation between qHBsAg and HBV DNA levels was noted in HBeAg-positive patients (r = 0.79, P < 0.05) but not in HBeAg-negative patients (r = 0.17, P = 0.06). In receiver operating characteristic analysis, the optimal qHBsAg cut-off values for predicting maternal viraemia associated with immunoprophylaxis failure (i.e., HBV DNA ≥7 log 10 IU/ml) was 4.3 log 10 IU/ml (accuracy 98.7%, sensitivity 94.7%, specificity 94.4%) (95% CI, 97-100%, P < 0.05). Use of HBV DNA as compared to qHBsAg costs approximately $20 000 more per infection prevented. In resource poor regions, qHBsAg could be used as a more cost-effective marker for high maternal viraemia, and indicate when anti-HBV nucleos/tide analogue therapy should be used to prevent HBV immunoprophylaxis failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Molecular analysis of Toxoplasma gondii Surface Antigen 1 (SAG1) gene cloned from Toxoplasma gondii DNA isolated from Javanese acute toxoplasmosis

    Science.gov (United States)

    Haryati, Sri; Agung Prasetyo, Afiono; Sari, Yulia; Dharmawan, Ruben

    2018-05-01

    Toxoplasma gondii Surface Antigen 1 (SAG1) is often used as a diagnostic tool due to its immunodominant-specific as antigen. However, data of the Toxoplasma gondii SAG1 protein from Indonesian isolate is limited. To study the protein, genomic DNA was isolated from a Javanese acute toxoplasmosis blood samples patient. A complete coding sequence of Toxoplasma gondii SAG1 was cloned and inserted into an Escherichia coli expression plasmid and sequenced. The sequencing results were subjected to bioinformatics analysis. The Toxoplasma gondii SAG1 complete coding sequences were successfully cloned. Physicochemical analysis revealed the 336 aa of SAG1 had 34.7 kDa of weight. The isoelectric point and aliphatic index were 8.4 and 78.4, respectively. The N-terminal methionine half-life in Escherichia coli was more than 10 hours. The antigenicity, secondary structure, and identification of the HLA binding motifs also had been discussed. The results of this study would contribute information about Toxoplasma gondii SAG1 and benefits for further works willing to develop diagnostic and therapeutic strategies against the parasite.

  10. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  11. Hepatitis B virus_surface gene mutations and their clinical implications

    African Journals Online (AJOL)

    HBV). Factors associated with host immunity such as (HBV specific T- and/or Bcell) production and antigen presentation failure and viral determinants such as the HBV genotypes and their evolving variants, have largely contributed to and ...

  12. Determinants of variant surface antigen antibody response in severe Plasmodium falciparum malaria in an area of low and unstable malaria transmission

    DEFF Research Database (Denmark)

    A-Elgadir, T M E; Theander, T G; Elghazali, G

    2006-01-01

    The variant surface antigens (VSA) of infected erythrocytes are important pathogenic markers, a set of variants (VSA(SM)), were assumed to be associated with severe malaria (SM), while SM constitutes clinically diverse forms, such as, severe malarial anemia (SMA) and cerebral malaria (CM). This s...

  13. A rapid one-step radiometric assay for hepatitis B surface antigen utilising monoclonal antibodies

    International Nuclear Information System (INIS)

    Goodall, A.H.; Meek, F.L.; Waters, J.A.; Miescher, G.C.; Janossy, G.; Thomas, H.C.

    1982-01-01

    A two-site antigen assay for HBsAg has been developed that employs 3 monoclonal antibodies. The antibodies were selected for their high affinity and their particular epitope specificity to establish an assay with a sensitivity for the antigen comparable with that of a conventional assay with heterologous antisera. In addition, by selecting a monoclonal antibody for use as a tracer which does not compete for antigenic binding sites with the solid-phase monoclonal antibodies, it has been possible to perform a two-site assay in a single 1 h incubation step, achieving the same degree of sensitivity. This principle of using monoclonal antibodies in a one-step assay therefore gives advantages of speed and simplicity over assays using heterologous antisera and would be applicable to a variety of antigen assays for which appropriate monoclonal antibodies are available. (Auth.)

  14. CARBOHYDRATE MALABSORPTION SYNDROME IN CHILDREN WITH VIRAL GASTROENTERITIS

    Directory of Open Access Journals (Sweden)

    E. R. Meskina

    2015-01-01

    Full Text Available Background: Enteric viruses (mainly rotaviruses are the most common cause of infectious diarrhea in infants. One  of the  pathophysiologic mechanisms in rotaviral gastroenteritis is the  reduction of the  surface  activity of enterocyte disaccharidases  and  osmotic  diarrhea. Aim: To determine the clinical significance of metabolic activity of intestinal microbiota in the formation of the osmotic component of viral diarrhea in children of various ages. Materials and methods: The study involved 139 children aged  from 1 month  to 14 years admitted to the hospital in the first 24 to 72 hours of moderate-degree  viral gastroenteritis.  Rotaviral infection was the most prevalent  (90%. Viral etiology was confirmed  by the  reaction  of indirect hemagglutination and multiplex real-time PCR (in feces. Total carbohydrate content in the feces was measured and fecal microflora was investigated by two methods: bacteriological and gas liquid chromatography with the determination of short-chain fatty acids. Results: The mean carbohydrate content in the feces of children below 1.5 years of age was higher than  that  in older children (p = 0.014. There was an inverse correlation between the concentration of rotaviral antigens  and carbohydrate   contents (r = -0,43, p < 0.05 and the production of acetic and propionic acids (R = -0,35, p < 0.01. The carbohydrate content in acute stage of the disease was linearly associated with time to normalization of the stool (r = +0,47, p < 0.01. Previous acute  respiratory or intestinal  infections within 2 months (odds ratio [OR], 14.10; 95% confidence interval [CI] 3.86–51.53, previous  hospitalizations  (OR = 14.17; 95% CI 2.74–74.32 and  past  history of intestinal dysfunction (OR 5.68; 95% CI 1.67–19.76 were predictive of severe  carbohydrate malabsorption in children below 1.5 years of age. Conclusion: The lack of microbiota functional activity (assessed by production of short

  15. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  16. Induction of anti-HBs in HB vaccine nonresponders in vivo by hepatitis B surface antigen-pulsed blood dendritic cells.

    Science.gov (United States)

    Fazle Akbar, Sk Md; Furukawa, Shinya; Yoshida, Osamu; Hiasa, Yoichi; Horiike, Norio; Onji, Morikazu

    2007-07-01

    Antigen-pulsed dendritic cells (DCs) are now used for treatment of patients with cancers, however, the efficacy of these DCs has never been evaluated for prophylactic purposes. The aim of this study was (1) to prepare hepatitis B surface antigen (HBsAg)-pulsed human blood DCs, (2) to assess immunogenicity of HBsAg-pulsed DCs in vitro and (3) to evaluate the efficacy of HBsAg-pulsed DCs in hepatitis B (HB) vaccine nonresponders. Human peripheral blood DCs were cultured with HBsAg to prepare HBsAg-pulsed DCs. The expression of immunogenic epitopes of HBsAg on HBsAg-pulsed DCs was assessed in vitro. Finally, HBsAg-pulsed DCs were administered, intradermally to six HB vaccine nonresponders and the levels of antibody to HBsAg (anti-HBs) in the sera were assessed. HB vaccine nonresponders did not exhibit features of immediate, early or delayed adverse reactions due to administration of HBsAg-pulsed DCs. Anti-HBs were detected in the sera of all HB vaccine nonresponders within 28 days after administration of HBsAg-pulsed DCs. This study opens a new field of application of antigen-pulsed DCs for prophylactic purposes when adequate levels of protective antibody cannot be induced by traditional vaccination approaches.

  17. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway.

    Science.gov (United States)

    Hewitt, Rachel E; Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Powell, Jonathan J

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer's patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4 + T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4 + T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen-PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer's patch T cell responses.

  18. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    Science.gov (United States)

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  19. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea.

    Science.gov (United States)

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M K; Ghosh, Santanu; Ramamurthy, T; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook; Czerkinsky, Cecil; Nandy, Ranjan K

    2016-07-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7 (+)) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7 (+) IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7 (+) ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. The prevalence of hepatitis B virus E antigen among Ghanaian ...

    African Journals Online (AJOL)

    We studied the prevalence of hepatitis B virus 'e' antigen (HBeAg) among individuals determined to be hepatitis B virus (HBV) surface antigen- positive and analyzed the gender/age category associated with more active HBV infection and whether alteration in the levels of alanine aminotransferase could be associated with ...

  1. Short communication. Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV) isolates in Kosovo

    OpenAIRE

    Izedin Goga; Kristaq Berxholi; Beqe Hulaj; Driton Sylejmani; Boris Yakobson; Yehuda Stram

    2014-01-01

    Three serum samples positive in Antigen ELISA BVDV have been tested to characterise genetic diversity of bovine viral diarrhea virus (BVDV) in Kosovo. Samples were obtained in 2011 from heifers and were amplified by reverse transcription-polymerase chain reaction, sequenced and analysed by computer-assisted phylogenetic analysis. Amplified products and nucleotide sequence showed that all 3 isolates belonged to BVDV 1 genotype and 1b sub genotype. These results enrich the extant knowledge of B...

  2. Differences in viral load among human respiratory syncytial virus genotypes in hospitalized children with severe acute respiratory infections in the Philippines.

    Science.gov (United States)

    Kadji, Francois Marie Ngako; Okamoto, Michiko; Furuse, Yuki; Tamaki, Raita; Suzuki, Akira; Lirio, Irene; Dapat, Clyde; Malasao, Rungnapa; Saito, Mariko; Pedrera-Rico, Gay Anne Granada; Tallo, Veronica; Lupisan, Socorro; Saito, Mayuko; Oshitani, Hitoshi

    2016-06-27

    Human respiratory syncytial virus (HRSV) is a leading viral etiologic agent of pediatric lower respiratory infections, including bronchiolitis and pneumonia. Two antigenic subgroups, HRSV-A and B, each contain several genotypes. While viral load may vary among HRSV genotypes and affect the clinical course of disease, data are scarce regarding the actual differences among genotypes. Therefore, this study estimated and compared viral load among NA1 and ON1 genotypes of HRSV-A and BA9 of HRSV-B. ON1 is a newly emerged genotype with a 72-nucleotide duplication in the G gene as observed previously with BA genotypes in HRSV-B. Children <5 years of age with an initial diagnosis of severe or very severe pneumonia at a hospital in the Philippines from September 2012 to December 2013 were enrolled. HRSV genotypes were determined and the viral load measured from nasopharyngeal swabs (NPS). The viral load of HRSV genotype NA1 were significantly higher than those of ON1 and BA9. Regression analysis showed that both genotype NA1 and younger age were significantly associated with high HRSV viral load. The viral load of NA1 was higher than that of ON1 and BA9 in NPS samples. HRSV genotypes may be associated with HRSV viral load. The reasons and clinical impacts of these differences in viral load among HRSV genotypes require further evaluation.

  3. An immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Science.gov (United States)

    Ichthyophthirius multifiliis (Ich) is a severe fish parasite that causes ‘white spot’ disease in many freshwater fish and leads to high mortality. The antigens on the parasite surface are involved in the antibody-mediated immobilization and hence designated as immobilization antigens (i-antigens). ...

  4. Flow Cytometric Analysis of T, B, and NK Cells Antigens in Patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Serkan Yazıcı

    2015-01-01

    Full Text Available We retrospectively analyzed the clinicopathological correlation and prognostic value of cell surface antigens expressed by peripheral blood mononuclear cells in patients with mycosis fungoides (MF. 121 consecutive MF patients were included in this study. All patients had peripheral blood flow cytometry as part of their first visit. TNMB and histopathological staging of the cases were retrospectively performed in accordance with International Society for Cutaneous Lymphomas/European Organization of Research and Treatment of Cancer (ISCL/EORTC criteria at the time of flow cytometry sampling. To determine prognostic value of cell surface antigens, cases were divided into two groups as stable and progressive disease. 17 flow cytometric analyses of 17 parapsoriasis (PP and 11 analyses of 11 benign erythrodermic patients were included as control groups. Fluorescent labeled monoclonal antibodies were used to detect cell surface antigens: T cells (CD3+, CD4+, CD8+, TCRαβ+, TCRγδ+, CD7+, CD4+CD7+, CD4+CD7−, and CD71+, B cells (HLA-DR+, CD19+, and HLA-DR+CD19+, NKT cells (CD3+CD16+CD56+, and NK cells (CD3−CD16+CD56+. The mean value of all cell surface antigens was not statistically significant between parapsoriasis and MF groups. Along with an increase in cases of MF stage statistically significant difference was found between the mean values of cell surface antigens. Flow cytometric analysis of peripheral blood cell surface antigens in patients with mycosis fungoides may contribute to predicting disease stage and progression.

  5. Seroprevalence occurrence of viral hepatitis and HIV among hemodialysis patients

    Science.gov (United States)

    Kamal, Inass Mahmood; Mutar Mahdi, Batool

    2018-05-01

    Background: Patients with chronic renal failure (CRF) were on maintenance invasive haemodialysis (HD) procedure. This procedure by itself affects immunity of the patients and became more susceptible to viral infections. Aim of the study: to investigate the occurrence of HBV, HCV and HIV infections in patients with hemodialysis. Patients and methods: A retrospective study of 430 end-stage renal failure patients, referred to hemodialysis department at Al-Kindy Teaching Hospital, Baghdad-Iraq from Junuary-2015 to Junuary-2017. Patients were investigated for HBs-Ag using enzyme-labeled antigen test (Foresight-EIA-USA ), HCV- Abs (IgG) specific immunoglobulin using a HCV enzyme-labeled antigen test (Foresight-EIA-USA) and anti HIV Abs (IgG) using enzyme-labeled antigen test (Foresight-EIA-USA). Results: The frequency of HBV infection in the first year was not significant between males (1.11%) and females (0.00%)(P = 0.295). About HCV also there are no significant differences between males (12.63%) and females (9.31%)(P = 0.347). After one year of follow up the frequencies of HBV and HCV were not significant between two sexes. Additionally, no any one of the patients had HIV infection. Conclusions: This study brings a light on that HBV and HCV were having the same frequencies in both genders and lower occurrence with time. Furthermore, HIV was not detected in those patients.

  6. Seroprevalence occurrence of viral hepatitis and HIV among hemodialysis patients.

    Science.gov (United States)

    Kamal, Inass Mahmood Abid; Mahdi, Batool Mutar

    2018-05-01

    Patients with chronic renal failure (CRF) were on maintenance invasive hemodialysis (HD) procedure. This procedure by itself affects immunity of the patients and became more susceptible to viral infections. to investigate the occurrence of HBV, HCV and HIV infections in patients with hemodialysis. A retrospective study of 430 end-stage renal failure patients, referred to hemodialysis department at XXXX Teaching Hospital, Baghdad-Iraq from January-2015 to January-2017. Patients were investigated for HBs-Ag using enzyme-labeled antigen test (Foresight-EIA-USA), HCV- Abs (IgG) specific immunoglobulin using an HCV enzyme-labeled antigen test (Foresight-EIA-USA)and anti - HIV Abs (IgG) using enzyme-labeled antigen test (Foresight-EIA-USA). The frequency of HBV infection in the first year was not significant between males (1.11%) and females (0.00%) (P = 0.295). About HCV also there are no significant differences between males (12.63%) and females (9.31%) (P = 0.347). After one year of follow up the frequencies of HBV and HCV were not significant between two sexes. Additionally, no any one of the patients had HIV infection. This study brings a light on that HBV and HCV were having the same frequencies in both genders and lower occurrence with time. Furthermore, HIV was not detected in those patients.

  7. Longitudinal evaluation of humoral immune response and merozoite surface antigen diversity in calves naturally infected with Babesia bovis, in São Paulo, Brazil.

    Science.gov (United States)

    Matos, Carlos António; Gonçalves, Luiz Ricardo; Alvarez, Dasiel Obregón; Freschi, Carla Roberta; Silva, Jenevaldo Barbosa da; Val-Moraes, Silvana Pompeia; Mendes, Natalia Serra; André, Marcos Rogério; Machado, Rosangela Zacarias

    2017-01-01

    Babesiosis is an economically important infectious disease affecting cattle worldwide. In order to longitudinally evaluate the humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis among naturally infected calves in Taiaçu, Brazil, serum and DNA samples from 15 calves were obtained quarterly, from their birth to 12 months of age. Anti-B. bovis IgG antibodies were detected by means of the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) was used to investigate the genetic diversity of B. bovis, based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 2, 4 and 5 sequences of the genes msa-1, msa-2b and msa-2c were obtained. The present study demonstrated that the msa-1 and msa-2b genes sequences amplified from blood DNA of calves positive to B. bovis from Taiaçu were genetically distinct, and that msa-2c was conserved. All animals were serologically positive to ELISA and IFAT, which used full repertoire of parasite antigens in despite of the genetic diversity of MSAs.

  8. Specificity Characterization of SLA Class I Molecules Binding to Swine-Origin Viral Cytotoxic T Lymphocyte Epitope Peptides in Vitro

    Directory of Open Access Journals (Sweden)

    Caixia Gao

    2017-12-01

    Full Text Available Swine leukocyte antigen (SLA class I molecules play a crucial role in generating specific cellular immune responses against viruses and other intracellular pathogens. They mainly bind and present antigens of intracellular origin to circulating MHC I-restricted cytotoxic T lymphocytes (CTLs. Binding of an appropriate epitope to an SLA class I molecule is the single most selective event in antigen presentation and the first step in the killing of infected cells by CD8+ CTLs. Moreover, the antigen epitopes are strictly restricted to specific SLA molecules. In this study, we constructed SLA class I complexes in vitro comprising viral epitope peptides, the extracellular region of the SLA-1 molecules, and β2-microglobulin (β2m using splicing overlap extension polymerase chain reaction (SOE-PCR. The protein complexes were induced and expressed in an Escherichia coli prokaryotic expression system and subsequently purified and refolded. Specific binding of seven SLA-1 proteins to one classical swine fever virus (CSFV and four porcine reproductive and respiratory syndrome virus (PRRSV epitope peptides was detected by enzyme-linked immunosorbent assay (ELISA-based method. The SLA-1∗13:01, SLA-1∗11:10, and SLA-1∗11:01:02 proteins were able to bind specifically to different CTL epitopes of CSFV and PRRSV and the MHC restrictions of the five epitopes were identified. The fixed combination of Asn151Val152 residues was identified as the potentially key amino acid residues influencing the binding of viral several CTL epitope peptides to SLA-1∗13:01 and SLA-1∗04:01:01 proteins. The more flexible pocket E in the SLA-1∗13:01 protein might have fewer steric limitations and therefore be able to accommodate more residues of viral CTL epitope peptides, and may thus play a critical biochemical role in determining the peptide-binding motif of SLA-1∗13:01. Characterization of the binding specificity of peptides to SLA class I molecules provides an

  9. A highly sensitive radioimmunoassay technique for subtyping the antibody to hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Fang, C.T.; Nath, N.; Berberian, H.; Dodd, R.Y.

    1978-01-01

    A highly sensitive technique for determining the subtype specificity of antibody to hepatitis B surface antigen (anti-HBs) is described. Immunoadsorbent consisting of controlled pore glass coated with subtype specific HBsAg was used to remove homologous antibody from the test samples before testing them for residual antibody by a commercially available radioimmunoassay (RIA). A total of 73 anti-HBs-positive samples from asymptomatic blood donors were tested. In nearly 80% of these samples the subtype reactivity could be determined by this technique. Only 67% could be typed by conventional liquid phase absorption RIA and 22% by passive hemagglutination inhibition techniques. Among the samples with low anti-HBs titer, ad and ay subtypes were found with equal frequency; however, with the increase in anti-HBs titer, considerably higher proportion of ad specificity was detected. (Auth.)

  10. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  11. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    Science.gov (United States)

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  12. Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection.

    Science.gov (United States)

    Cross, Robert W; Boisen, Matthew L; Millett, Molly M; Nelson, Diana S; Oottamasathien, Darin; Hartnett, Jessica N; Jones, Abigal B; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Bornholdt, Zachary A; Fusco, Marnie L; Abelson, Dafna M; Oda, Shunichiro; Brown, Bethany L; Pham, Ha; Rowland, Megan M; Agans, Krystle N; Geisbert, Joan B; Heinrich, Megan L; Kulakosky, Peter C; Shaffer, Jeffrey G; Schieffelin, John S; Kargbo, Brima; Gbetuwa, Momoh; Gevao, Sahr M; Wilson, Russell B; Saphire, Erica Ollmann; Pitts, Kelly R; Khan, Sheik Humarr; Grant, Donald S; Geisbert, Thomas W; Branco, Luis M; Garry, Robert F

    2016-10-15

     Ebola virus disease (EVD) is a severe viral illness caused by Ebola virus (EBOV). The 2013-2016 EVD outbreak in West Africa is the largest recorded, with >11 000 deaths. Development of the ReEBOV Antigen Rapid Test (ReEBOV RDT) was expedited to provide a point-of-care test for suspected EVD cases.  Recombinant EBOV viral protein 40 antigen was used to derive polyclonal antibodies for RDT and enzyme-linked immunosorbent assay development. ReEBOV RDT limits of detection (LOD), specificity, and interference were analytically validated on the basis of Food and Drug Administration (FDA) guidance.  The ReEBOV RDT specificity estimate was 95% for donor serum panels and 97% for donor whole-blood specimens. The RDT demonstrated sensitivity to 3 species of Ebolavirus (Zaire ebolavirus, Sudan ebolavirus, and Bundibugyo ebolavirus) associated with human disease, with no cross-reactivity by pathogens associated with non-EBOV febrile illness, including malaria parasites. Interference testing exhibited no reactivity by medications in common use. The LOD for antigen was 4.7 ng/test in serum and 9.4 ng/test in whole blood. Quantitative reverse transcription-polymerase chain reaction testing of nonhuman primate samples determined the range to be equivalent to 3.0 × 10 5 -9.0 × 10 8 genomes/mL.  The analytical validation presented here contributed to the ReEBOV RDT being the first antigen-based assay to receive FDA and World Health Organization emergency use authorization for this EVD outbreak, in February 2015. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  14. Production of neutralizing antisera against viral hemorrhagic septicemia (VHS) virus by intravenous injections of rabbits

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Lorenzen, Niels; LaPatra, S.E.

    1999-01-01

    Rabbit antisera against viral hemorrhagic septicemia virus (VHSV) produced by two immunization procedures were compared for neutralization and immunochemical properties against homologous and heterologous strains. The VHSV isolate used as the immunogen was a member of a serogroup not neutralized...... by previously available antisera. The results from this study suggested that frequent intravenous (IV) injections of rabbits with viral antigens were superior to adjuvant-mediated, combined subcutaneous and intraperitoneal (SC/IP) injections for the production of neutralizing antisera. All IV injected rabbits...... produced high neutralization titers against the homologous VHSV isolate but not against an isolate from a different serogroup. The SC/IP injected rabbits had no significant neutralization titers against either the homologous VHSV strain or two isolates of a heterologous VHSV strain. Sera from all injected...

  15. The antigenic property of the H5N1 avian influenza viruses isolated in central China

    Directory of Open Access Journals (Sweden)

    Zou Wei

    2012-08-01

    Full Text Available Abstract Background Three influenza pandemics outbroke in the last century accompanied the viral antigen shift and drift, resulting in the change of antigenic property and the low cross protective ability of the existed antibody to the newly emerged pandemic virus, and eventually the death of millions of people. The antigenic characterizations of the viruses isolated in central China in 2004 and 2006–2007 were investigated in the present study. Results Hemagglutinin inhibition assay and neutralization assay displayed differential antigenic characteristics of the viruses isolated in central China in two periods (2004 and 2006–2007. HA genes of the viruses mainly located in two branches in phylogeny analysis. 53 mutations of the deduced amino acids of the HA genes were divided into 4 patterns. Mutations in pattern 2 and 3 showed the main difference between viruses isolated in 2004 and 2006–2007. Meanwhile, most amino acids in pattern 2 and 3 located in the globular head of the HA protein, and some of the mutations evenly distributed at the epitope sites. Conclusions The study demonstrated that a major antigenic drift had occurred in the viruses isolated in central China. And monitoring the antigenic property should be the priority in preventing the potential pandemic of H5N1 avian influenza virus.

  16. Preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens and their use for bacterial detection.

    Science.gov (United States)

    Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L

    2012-01-01

    This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.

  17. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B

    International Nuclear Information System (INIS)

    Stoop, Jeroen N.; Molen, Renate G. van der; Kuipers, Ernst J.; Kusters, Johannes G.; Janssen, Harry L.A.

    2007-01-01

    Regulatory T cells (Treg) play a key role in the impaired immune response that is typical for a chronic Hepatitis B virus (HBV) infection. To gain more insight in the mechanism that is responsible for this impaired immune response, the effect of viral load reduction resulting from treatment with the nucleotide analogue adefovir dipivoxil on the percentages of Treg and HBV-specific T-cell responses was analyzed. Peripheral blood mononuclear cells (PBMC) of 12 patients were collected at baseline and during treatment. In parallel to the decline in viral load, we found a decline in circulating Treg, combined with an increase in HBV core antigen-specific IFN-γ production and proliferation. The production of IL10 did not decrease during therapy. In conclusion, adefovir induced viral load reduction results in a decline of circulating Treg together with a partial recovery of the immune response

  18. Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.

  19. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  20. Effect of radiation on the expression of tumor-associated antigens of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Hareyama, Masato

    1988-01-01

    We studied the effects of irradiation on the expression of a tumor-associated antigen (YH206 antigen) of cultured human lung adenocarcinoma A549 cells by using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. YH206 antigen is preferentially expressed on adenocarcinoma cells. Irradiation of A549 cells remarkably increased the expression of YH206 antigen on the cell surface and the level of the antigen in the culture supernatant as well as in the cell lysate, whereas it significantly affected the expression of HLA (MHC-class I) antigen on the same cells. The expression of HLA antigen on the cell was also increased after treatment of the cells with interferon-γ. In an additional experiment, cells were stained simultaneously for surface antigens (fluorescein coupled antibodies) and for DNA content (propidium iodide), and then dual parameter measurements were performed by flow cytometry to analyse the relationship between antigen levels and the cell cycle. YH206 antigen and HLA antigen increased more in the S and G 2 /M phases of the cell cycle than in G 0 /G 1 . The expression of YH206 antigen was enhanced in the S and G 2 /M phases by irradiation, whereas the expression of HLA antigen was enhanced in each phase of the cell cycle with irradiation or IFN. These results suggest that irradiation plays a key role in the change of the expression of certain tumor-associated antigens. (author)

  1. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  2. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia

    Science.gov (United States)

    Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas

    2004-01-01

    Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307

  3. Assessment of cancer and virus antigens for cross-reactivity in human tissues.

    Science.gov (United States)

    Jaravine, Victor; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij

    2017-01-01

    Cross-reactivity (CR) or invocation of autoimmune side effects in various tissues has important safety implications in adoptive immunotherapy directed against selected antigens. The ability to predict CR (on-target and off-target toxicities) may help in the early selection of safer therapeutically relevant target antigens. We developed a methodology for the calculation of quantitative CR for any defined peptide epitope. Using this approach, we performed assessment of 4 groups of 283 currently known human MHC-class-I epitopes including differentiation antigens, overexpressed proteins, cancer-testis antigens and mutations displayed by tumor cells. In addition, 89 epitopes originating from viral sources were investigated. The natural occurrence of these epitopes in human tissues was assessed based on proteomics abundance data, while the probability of their presentation by MHC-class-I molecules was modelled by the method of Keşmir et al. which combines proteasomal cleavage, TAP affinity and MHC-binding predictions. The results of these analyses for many previously defined peptides are presented as CR indices and tissue profiles. The methodology thus allows for quantitative comparisons of epitopes and is suggested to be suited for the assessment of epitopes of candidate antigens in an early stage of development of adoptive immunotherapy. Our method is implemented as a Java program, with curated datasets stored in a MySQL database. It predicts all naturally possible self-antigens for a given sequence of a therapeutic antigen (or epitope) and after filtering for predicted immunogenicity outputs results as an index and profile of CR to the self-antigens in 22 human tissues. The program is implemented as part of the iCrossR webserver, which is publicly available at http://webclu.bio.wzw.tum.de/icrossr/ CONTACT: d.frishman@wzw.tum.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press

  4. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    Science.gov (United States)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  5. Comparison of three techniques for production goat lentivirus antigen used in the agar gel immunodifusion test

    Directory of Open Access Journals (Sweden)

    Raymundo Rizaldo Pinheiro

    2005-12-01

    Full Text Available The Caprine Arthritis Encephalitis (CAE is a disease who cause considerable economic losses, including loss in the milk production and reduction of the useful life of the animal. In the diagnosis of this disease the agar gel immunodifusion test (AGID is used worldwide as the selection test. The objective of thid work was to test three different concentrations of bovine fetal serum (BFS in the production of the antigen (Ag for the diagnosis of the CAE virus (CAEV, to verify amongst the three methods the most efficient concentration and which the antigen concentration of the antigen produced is appropriate for the test. The method of the AMICON and the concentration of the Ag for dialysis was indicated, however the system AMICON, despite the implantation costs, promoted minor loss of antigen, little time expense in the processing and greater simplicity. With relation to the amount of BFS placed after the viral inoculation it was verified that 5% of BFS the amount that presented better resulted. The antigen concentration 100 times was more indicated, therefore it allowed the diagnosis of the CAEV for two proteins (gp 135 and p28. The concentration of the Ag for precipitation/ultracentrifugation, used for imunoenzimatic tests, did not present resulted satisfactory used in the AGID.

  6. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation.

    Science.gov (United States)

    Heilingloh, Christiane S; Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander

    2015-11-01

    Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human

  7. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral–Antigen Pathway

    Science.gov (United States)

    Hewitt, Rachel E.; Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Powell, Jonathan J.

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses. PMID:28367148

  8. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  9. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    Science.gov (United States)

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  11. Improved detection of equine antibodies against Sarcocystis neurona using polyvalent ELISAs based on the parasite SnSAG surface antigens.

    Science.gov (United States)

    Yeargan, Michelle R; Howe, Daniel K

    2011-02-28

    Equine protozoal myeloencephalitis (EPM) is a common neurologic disease of horses that is caused by the apicomplexan pathogen Sarcocystis neurona. To help improve serologic diagnosis of S. neurona infection, we have modified existing enzyme-linked immunosorbent assays (ELISAs) based on the immunogenic parasite surface antigens SnSAG2, SnSAG3, and SnSAG4 to make the assays polyvalent, thereby circumventing difficulties associated with parasite antigenic variants and diversity in equine immune responses. Two approaches were utilized to achieve polyvalence: (1) mixtures of the individual recombinant SnSAGs (rSnSAGs) were included in single ELISAs; (2) a collection of unique SnSAG chimeras that fused protein domains from different SnSAG surface antigens into a single recombinant protein were generated for use in the ELISAs. These new assays were assessed using a defined sample set of equine sera and cerebrospinal fluids (CSFs) that had been characterized by Western blot and/or were from confirmed EPM horses. While all of the polyvalent ELISAs performed relatively well, the highest sensitivity and specificity (100%/100%) were achieved with assays containing the rSnSAG4/2 chimera (Domain 1 of SnSAG4 fused to SnSAG2) or using a mixture of rSnSAG3 and rSnSAG4. The rSnSAG4 antigen alone and the rSnSAG4/3 chimera (Domain 1 of SnSAG4 fused to Domain 2 of SnSAG3) exhibited the next best accuracy at 95.2% sensitivity and 100% specificity. Binding ratios and percent positivity (PP) ratios, determined by comparing the mean values for positive versus negative samples, showed that the most advantageous signal to noise ratios were provided by rSnSAG4 and the rSnSAG4/3 chimera. Collectively, our results imply that a polyvalent ELISA based on SnSAG4 and SnSAG3, whether as a cocktail of two proteins or as a single chimeric protein, can give optimal results in serologic testing of serum or CSF for the presence of antibodies against S. neurona. The use of polyvalent SnSAG ELISAs will

  12. Characterization of foot- and mouth disease virus antigen by surface-enhanced laser desorption ionization-time of flight-mass spectrometry in aqueous and oil-emulsion formulations

    NARCIS (Netherlands)

    Harmsen, M.M.; Jansen, J.; Westra, D.F.; Coco-Martin, J.M.

    2010-01-01

    We have used a novel method, surface-enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS), to characterize foot-and-mouth disease virus (FMDV) vaccine antigens. Using specific capture with FMDV binding recombinant antibody fragments and tryptic digestion of FMDV

  13. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    International Nuclear Information System (INIS)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-01-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  14. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    Energy Technology Data Exchange (ETDEWEB)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-07-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  15. Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.

    Science.gov (United States)

    Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M

    1981-01-01

    When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.

  16. A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B.

    Directory of Open Access Journals (Sweden)

    Aniuska Becerra-Artiles

    Full Text Available Most of humanity is chronically infected with human herpesvirus 6 (HHV-6, with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48 and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune

  17. Temporal relation of antigenaemia and loss of antibodies to core antigens to development of clinical disease in HIV infection

    DEFF Research Database (Denmark)

    Pedersen, C; Nielsen, C M; Vestergaard, B F

    1987-01-01

    and 16 months after the estimated time of seroconversion. These results show that the late stages of HIV infection are characterised by increased production of antigen and a decrease in antibodies directed against the core protein. Antigenaemia indicates a poor prognosis; and as the antigen test......A total of 276 sequential serum samples from 34 men with antibodies to the human immunodeficiency virus (HIV) followed up for two to seven years were analysed for HIV antigen and antibodies to the viral core and envelope proteins. Results were correlated with clinical outcome and CD4 T lymphocyte...... count. Both antigenaemia and the disappearance of antibodies to the core protein were associated with development of the acquired immune deficiency syndrome (AIDS) or AIDS related complex and depletion of CD4 cells. Thus AIDS or AIDS related complex developed in eight out of 16 patients...

  18. Viral entry pathways: the example of common cold viruses.

    Science.gov (United States)

    Blaas, Dieter

    2016-05-01

    For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.

  19. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.

    Science.gov (United States)

    Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J

    2013-10-01

    Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  1. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs.

    Directory of Open Access Journals (Sweden)

    Varun Dwivedi

    Full Text Available Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV. We entrapped PLGA [poly (lactide-co-glycolides] nanoparticles with killed PRRSV antigens (Nano-KAg and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

  2. Dynamics of Viremia in Primary HIV-1 infection in Africans: Insights from Analyses of Host and Viral Correlates

    Science.gov (United States)

    Prentice, Heather A.; Price, Matthew A.; Porter, Travis R.; Cormier, Emmanuel; Mugavero, Michael J.; Kamali, Anatoli; Karita, Etienne; Lakhi, Shabir; Sanders, Eduard J.; Anzala, Omu; Amornkul, Pauli N.; Allen, Susan; Hunter, Eric; Kaslow, Richard A.; Gilmour, Jill; Tang, Jianming

    2014-01-01

    In HIV-1 infection, plasma viral load (VL) has dual implications for pathogenesis and public health. Based on well-known patterns of HIV-1 evolution and immune escape, we hypothesized that VL is an evolving quantitative trait that depends heavily on duration of infection (DOI), demographic features, human leukocyte antigen (HLA) genotypes and viral characteristics. Prospective data from 421 African seroconverters with at least four eligible visits did show relatively steady VL beyond 3 months of untreated infection, but host and viral factors independently associated with cross-sectional and longitudinal VL often varied by analytical approaches and sliding time windows. Specifically, the effects of age, HLA-B*53 and infecting HIV-1 subtypes (A1, C and others) on VL were either sporadic or highly sensitive to time windows. These observations were strengthened by the addition of 111 seroconverters with 2–3 eligible VL results, suggesting that DOI should be a critical parameter in epidemiological and clinical studies. PMID:24418560

  3. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  4. Seroprevalence of Hepatitis B surface antigen, antibodies to the Hepatitis C virus, and human immunodeficiency virus in a hospital-based population in Jaipur, Rajasthan

    Directory of Open Access Journals (Sweden)

    Sood Smita

    2010-01-01

    Full Text Available Background: Hepatitis B, hepatitis C, and HIV infections are a serious global and public health problem. To assess the magnitude and dynamics of disease transmission and for its prevention and control, the study of its seroprevalence is important. A private hospital catering to the needs of a large population represents an important center for serological surveys. Available data, at Rajasthan state level, on the seroprevalence of these bloodborne pathogens is also very limited. Objective: A study was undertaken to estimate the seroprevalence of hepatitis B surface antigen (HBsAg and antibodies to hepatitis C (anti-HCV Ab and human immunodeficiency virus (anti-HIV Ab in both the sexes and different age groups in a hospital-based population in Jaipur, Rajasthan. Materials and Methods: Serum samples collected over a period of 14 months from patients attending OPDs and admitted to various IPDs of Fortis Escorts Hospital, Jaipur, were subjected within the hospital-based lab for the detection of HBsAg and anti-HCV Ab and anti-HIV Ab using rapid card tests. This was followed by further confirmation of all reactive samples by a microparticle enzyme immunoassay (Abbott AxSYM at Super Religare Laboratories (formerly SRL Ranbaxy Reference Lab, Mumbai. Results: The seroprevalence of HBsAg was found to be 0.87%, of anti-HCV Ab as 0.28%, and of anti-HIV Ab as 0.35%. Conclusion: The study throws light on the magnitude of viral transmission in the community in the state of Rajasthan and provides a reference for future studies.

  5. Surface gene variants of hepatitis B Virus in Saudi Patients.

    Science.gov (United States)

    Al-Qudari, Ahmed Y; Amer, Haitham M; Abdo, Ayman A; Hussain, Zahid; Al-Hamoudi, Waleed; Alswat, Khalid; Almajhdi, Fahad N

    2016-01-01

    Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. Surface (S) protein is the major HBV antigen that mediates virus attachment and entry and determines the virus subtype. Mutations in S gene, particularly in the "a" determinant, can influence virus detection by ELISA and may generate escape mutants. Since no records have documented the S gene mutations in HBV strains circulating in Saudi Arabia, the current study was designed to study sequence variation of S gene in strains circulating in Saudi Arabia and its correlation with clinical and risk factors. A total of 123 HBV-infected patients were recruited for this study. Clinical and biochemical parameters, serological markers, and viral load were determined in all patients. The entire S gene sequence of samples with viral load exceeding 2000 IU/mL was retrieved and exploited in sequence and phylogenetic analysis. A total of 48 mutations (21 unique) were recorded in viral strains in Saudi Arabia, among which 24 (11 unique) changed their respective amino acids. Two amino acid changes were recorded in "a" determinant, including F130L and S135F with no evidence of the vaccine escape mutant G145R in any of the samples. No specific relationship was recognized between the mutation/amino acid change record of HBsAg in strains in Saudi Arabia and clinical or laboratory data. Phylogenetic analysis categorized HBV viral strains in Saudi Arabia as members of subgenotypes D1 and D3. The present report is the first that describes mutation analysis of HBsAg in strains in Saudi Arabia on both nucleotide and amino acid levels. Different substitutions, particularly in major hydrophilic region, may have a potential influence on disease diagnosis, vaccination strategy, and antiviral chemotherapy.

  6. Higher baseline viral diversity correlates with lower HBsAg decline following PEGylated interferon-alpha therapy in patients with HBeAg-positive chronic hepatitis B.

    Science.gov (United States)

    Li, Hu; Zhang, Li; Ren, Hong; Hu, Peng

    2018-01-01

    Viral diversity seems to predict treatment outcomes in certain viral infections. The aim of this study was to evaluate the association between baseline intra-patient viral diversity and hepatitis B surface antigen (HBsAg) decline following PEGylated interferon-alpha (Peg-IFN-α) therapy. Twenty-six HBeAg-positive patients who were treated with Peg-IFN-α were enrolled. Nested polymerase chain reaction (PCR), cloning, and sequencing of the hepatitis B virus S gene were performed on baseline samples, and normalized Shannon entropy (Sn) was calculated as a measure of small hepatitis B surface protein (SHBs) diversity. Multiple regression analysis was used to estimate the association between baseline Sn and HBsAg decline. Of the 26 patients enrolled in the study, 65.4% were male and 61.5% were infected with hepatitis B virus genotype B. The median HBsAg level at baseline was 4.5 log 10 IU/mL (interquartile range: 4.1-4.9) and declined to 3.0 log 10 IU/mL (interquartile range: 1.7-3.9) after 48 weeks of Peg-IFN-α treatment. In models adjusted for baseline alanine aminotransferase (ALT) and HBsAg, the adjusted coefficients (95% CI) for ΔHBsAg and relative percentage HBsAg decrease were -1.3 (-2.5, -0.2) log 10 IU/mL for higher SHBs diversity (Sn≥0.58) patients and -26.4% (-50.2%, -2.5%) for lower diversity (Sndiversity. Baseline intra-patient SHBs diversity was inverse to HBsAg decline in HBeAg-positive chronic hepatitis B (CHB) patients receiving Peg-IFN-α monotherapy. Also, more sequence variations within the "a" determinant upstream flanking region and the first loop of the "a" determinant were the main sources of the higher SHBs diversity.

  7. Keratin, luminal epithelial antigen and carcinoembryonic antigen in human urinary bladder carcinomas. An immunohistochemical study.

    Science.gov (United States)

    Nathrath, W B; Arnholdt, H; Wilson, P D

    1982-01-01

    14 urinary bladder carcinomas of all main types were investigated with antisera to "broad spectrum keratin" (aK), "luminal epithelial antigen" (aLEA) and carcinoembryonic antigen (aCEA), using an indirect immunoperoxidase method on formalin fixed paraffin embedded sections. Keratin and LEA were both present in normal transitional epithelium, papilloma and carcinoma in situ whereas CEA was absent. Transitional cell carcinomas reacted with both aK and aLEA whereas CEA was seen only in a few foci. In squamous metaplasia and squamous carcinoma reaction with aK was particularly strong, while LEA was almost lacking and CEA was present in necrotic centres. In adenocarcinomas aK and aLEA reacted equally while aCEA reacted only on the surface.

  8. Seroprevalence occurrence of viral hepatitis and HIV among hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Inass Mahmood Abid Kamal

    2018-05-01

    Full Text Available Background: Patients with chronic renal failure (CRF were on maintenance invasive hemodialysis (HD procedure. This procedure by itself affects immunity of the patients and became more susceptible to viral infections. Aim of the study: to investigate the occurrence of HBV, HCV and HIV infections in patients with hemodialysis. Patients and methods: A retrospective study of 430 end-stage renal failure patients, referred to hemodialysis department at XXXX Teaching Hospital, Baghdad-Iraq from January-2015 to January-2017. Patients were investigated for HBs-Ag using enzyme-labeled antigen test (Foresight-EIA-USA, HCV- Abs (IgG specific immunoglobulin using an HCV enzyme-labeled antigen test (Foresight-EIA-USAand anti - HIV Abs (IgG using enzyme-labeled antigen test (Foresight-EIA-USA. Results: The frequency of HBV infection in the first year was not significant between males (1.11% and females (0.00% (P = 0.295. About HCV also there are no significant differences between males (12.63% and females (9.31% (P = 0.347. After one year of follow up the frequencies of HBV and HCV were not significant between two sexes. Additionally, no any one of the patients had HIV infection. Conclusions: This study brings a light on that HBV and HCV were having the same frequencies in both genders and lower occurrence with time. Furthermore, HIV was not detected in those patients. Keywords: Virus, Hemodialysis, Infection

  9. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel

    The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine i...

  10. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    Full Text Available Kaposi's sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi's sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA. LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs. We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET to demonstrate their association.

  11. Inclusion bodies of recombinant Epstein-Barr virus capsid antigen p18 as potential immobilized antigens in enzyme immunoassays for detection of nasopharyngeal carcinoma.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Kariapper, Leena; Krishnan, Gopala; Lim, Yat-Yuen; Ng, Ching Ching

    2015-08-25

    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC). Thioredoxin fusion VCA p18 (VCA-Trx) and IBs of VCA p18 without fusion tags (VCA-IBs) were purified from E. coli. The diagnostic performances of IgG/VCA-IBs, IgG/VCA-Denat-IBs (using VCA-IBs coated in 8mol/l urea), IgG/VCA-Trx, and IgG/VCA-Peptide assays were compared by screening 100 NPC case-control pairs. The IgG/VCA-Denat-IBs assay showed the best area under the receiver operating characteristic curve (AUC: 0.802; p<0.05), while the AUCs for the IgG/VCA-IBs, IgG/VCA-Trx, and IgG/VCA-Peptide assays were comparable (AUC: 0.740, 0.727, and 0.741, respectively). We improved the diagnostic performance of the ELISA significantly using IBs of recombinant VCA p18. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hepatitis B surface antigen quantity positively correlates with plasma levels of microRNAs differentially expressed in immunological phases of chronic hepatitis B in children

    DEFF Research Database (Denmark)

    Winther, Thilde Nordmann; Heiberg, Ida Louise; Bang-Berthelsen, Claus Heiner

    2013-01-01

    Children with chronic hepatitis B (CHB) are at high risk of progressive liver disease. It is suggested that a newly-identified panel of 16 microRNAs is important in the pathogenesis of CHB in children. Subviral hepatitis B surface antigen (HBsAg) particles are produced in large excess over infect...

  13. Emergence of CD4+ and CD8+ Polyfunctional T Cell Responses Against Immunodominant Lytic and Latent EBV Antigens in Children With Primary EBV Infection

    Directory of Open Access Journals (Sweden)

    Janice K. P. Lam

    2018-03-01

    Full Text Available Long term carriers were shown to generate robust polyfunctional T cell (PFC responses against lytic and latent antigens of Epstein-Barr virus (EBV. However, the time of emergence of PFC responses against EBV antigens, pattern of immunodominance and difference between CD4+ and CD8+ T cell responses during various stages of EBV infection are not clearly understood. A longitudinal study was performed to assess the development of antigen-specific PFC responses in children diagnosed to have primary symptomatic (infectious mononucleosis [IM] and asymptomatic (AS EBV infection. Evaluation of IFN-γ secreting CD8+ T cell responses upon stimulation by HLA class I-specific peptides of EBV lytic and latent proteins by ELISPOT assay followed by assessment of CD4+ and CD8+ PFC responses upon stimulation by a panel of overlapping EBV peptides for co-expression of IFN-γ, TNF-α, IL-2, perforin and CD107a by flow cytometry were performed. Cytotoxicity of T cells against autologous lymphoblastoid cell lines (LCLs as well as EBV loads in PBMC and plasma were also determined. Both IM and AS patients had elevated PBMC and plasma viral loads which declined steadily during a 12-month period from the time of diagnosis whilst decrease in the magnitude of CD8+ T cell responses toward EBV lytic peptides in contrast to increase toward latent peptides was shown with no significant difference between those of IM and AS patients. Both lytic and latent antigen-specific CD4+ and CD8+ T cells demonstrated polyfunctionality (defined as greater or equal to three functions concurrent with enhanced cytotoxicity against autologous LCLs and steady decrease in plasma and PBMC viral loads over time. Immunodominant peptides derived from BZLF1, BRLF1, BMLF1 and EBNA3A-C proteins induced the highest proportion of CD8+ as well as CD4+ PFC responses. Diverse functional subtypes of both CD4+ and CD8+ PFCs were shown to emerge at 6–12 months. In conclusion, EBV antigen-specific CD4+ and CD

  14. Expression of antigens coded in murine leukemia viruses on thymocytes of allogeneic donor origin in AKR mice following syngeneic or allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Wustrow, T.P.; Good, R.A.

    1985-01-01

    Removal of T-lymphocytes from marrow inoculum with monoclonal antibody plus complement permitted establishment of long-lived allogeneic chimeras between C57BL/6 and AKR/J mice. Development of leukemia was prevented for 15 mo. Protection from leukemia occurred with both young (4 wk) and older (4 mo) recipients. AKR mice reconstituted with syngeneic marrow or control AKR mice all developed leukemia-lymphoma before 1 yr of age. During spontaneous lymphomagenesis in AKR mice, amplified expression of gag or env gene-coded virus antigens on the surface of thymocytes preceded leukemia development and evidence for amplification of other virus genes. These changes generally appeared before 6 mo. Similar viral gene expression and viral gene amplification occurred in the thymus and spleen cells of leukemia-resistant chimeric mice. Using monoclonal antibodies to Mr 70,000 glycoprotein epitopes characteristic of ecotropic, xenotropic, or dualtropic viruses, antigens marking each virus form were found on thymocytes of allogeneic 4-wk and 4-mo chimeras as well as on the cells of AKR mice and of AKR mice reconstituted with syngeneic marrow. Flow cytometric analysis showed amplification of the virus genes in mice protected from leukemia-lymphoma by allogeneic bone marrow transplantation from leukemia-resistant mice. Allogeneic chimeras and syngeneically transplanted mice both showed evidence of accelerated viremia and of recombinant virus formation. The findings suggest that an event essential to leukemogenesis which occurs within the AKR lymphoid cells or their environment is lacking in the allogeneic chimeras. The nature of this influence of a resistance gene or genes introduced into AKR mice by allogeneic bone marrow transplantation deserves further study

  15. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  16. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii gp...... response to gp95. These patients also showed an increase in IgG antibodies to gp95 and had microbiologically proven PCP. Prior to the development of the IgM response, IgG antibodies to gp95 were detectable in all 3 patients. Thus, HIV-infected patients with PCP seldom produce IgM antibodies to the major...

  17. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  18. Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification

    International Nuclear Information System (INIS)

    Becher, Paul; Avalos Ramirez, Ramiro; Orlich, Michaela; Cedillo Rosales, Sibilina; Koenig, Matthias; Schweizer, Matthias; Stalder, Hanspeter; Schirrmeier, Horst; Thiel, Heinz-Juergen

    2003-01-01

    Currently, the genus Pestivirus comprises the four approved species Bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, Classical swine fever virus (CSFV), and Border disease virus (BDV) and one tentative fifth species represented by a single strain (H138) isolated from a giraffe in Kenya more than 30 years ago. To further address the issue of heterogeneity of pestiviruses we have determined the entire N pro and E2 coding sequences for several new pestivirus isolates. Interestingly, phylogenetic analysis revealed that one pestivirus isolated in the 1990s in Africa is closely related to strain H138. Moreover, several novel pestiviruses isolated from sheep group together with the previously described strain V60 (Reindeer-1) isolated from a reindeer, whereas one ovine pestivirus strain (Gifhorn) significantly differs from all previously described pestiviruses, including BDV. We propose to term these mainly sheep-derived pestiviruses BDV-2 (V60-like isolates) and BDV-3 (Gifhorn); consequently, the 'classical' BDV isolates should be termed BDV-1. As an additional criterion for segregation of pestiviruses, the antigenic relatedness of pestivirus isolates covering all observed major genotypes was studied by cross-neutralization assays. Analysis of the antigenic similarities indicated the presence of seven major antigenic groups corresponding to BVDV-1, BVDV-2, CSFV, BDV-1, BDV-2, BDV-3, and 'giraffe'. Taking into account the host origin, the lack of differences concerning the course of disease, and the results of our genetic and antigenic analyses, we suggest that BDV-1, BDV-2, and BDV-3 should be considered as major genotypes within the species BDV

  19. Pharyngitis - viral

    Science.gov (United States)

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  20. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV and foot-and-mouth disease virus (FMDV mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP. PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of

  1. Adult T-cell leukemia-associated antigen (ATLA) and anti-ATLA antibodies in patients with Hodgkin's disease in the Nagasaki District.

    Science.gov (United States)

    Kinoshita, K; Amagasaki, T; Yamada, Y; Ikeda, S; Momita, S; Toriya, K; Kamihira, S; Ichimaru, M

    1983-01-01

    Seven patients with Hodgkin's disease in the Nagasaki district were examined for adult T-cell leukemia-associated antigen (ATLA), a human retrovirus-associated antigen, and anti-ATLA antibodies. Anti-ATLA antibody reactivity with the ATLA-positive cultured cells from an ATL patient was demonstrated in four (57.1%) of seven patients. This suggests that infection by a human retrovirus may be closely associated with Hodgkin's disease in the Nagasaki district. However, ATLA could not be induced in the cultured mononuclear cells taken from biopsied lymph nodes of the three patients examined. Hence, it is necessary to collect more direct evidence in the search for a viral etiology of Hodgkin's disease.

  2. Detection and quantification of Duffy antigen on bovine red blood cell membranes using a polyclonal antibody

    Directory of Open Access Journals (Sweden)

    Ana Teresa B.F. Antonangelo

    2012-09-01

    Full Text Available Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC. The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.

  3. Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens

    International Nuclear Information System (INIS)

    Thierry, F.; Heard, J.M.; Dartmann, K.; Yaniv, M.

    1987-01-01

    RNA present in cells derived from cervical carcinoma that contained human papillomavirus 18 genomes was initiated in the 1.053-kilobase BamHI fragment that covered the complete noncoding region of this virus. When cloned upstream of the chloramphenicol acetyltransferase gene, this viral fragment directed the expression of the bacterial enzyme only in the sense orientation. Initiation sites were mapped around the ATG of open reading frame E6. This promoter was active in some human and simian cell lines, and its expression was modulated positively by simian virus 40 large T antigen and negatively by adenovirus type 5 E1a antigen

  4. The distribution of blood group antigens in experimentally produced carcinomas of rat palate

    DEFF Research Database (Denmark)

    Reibel, J; Philipsen, H P; Fisker, A V

    1986-01-01

    palate induced by a chemical carcinogen (4NQO). The H antigen, normally expressed on spinous cells in rats, was absent in malignant epithelium, whereas staining for the B antigen, normally expressed on basal cells, was variable. These changes are equivalent to those seen in human squamous cell carcinomas....... The blood group antigen staining pattern in experimentally produced verrucous carcinomas showed an almost normal blood group antigen expression. This may have diagnostic significance. Localized areas of hyperplastic palatal epithelium with slight dysplasia revealed loss of H antigen and the presence of B...... antigen in suprabasal strata equivalent to the pattern seen in human premalignant epithelium. We conclude from these findings, that the rat model is well suited to study changes in cell surface carbohydrates during chemical carcinogenesis....

  5. Correlation of hepatospleno-scintigraphic findings with HBe antigenicity in chronic hepatitis B

    Energy Technology Data Exchange (ETDEWEB)

    Song, K S; Chun, K S; Chung, S K; Bahk, Y W [Catholic Medical College, Seoul (Korea, Republic of)

    1983-12-15

    Radioimmunoassay plays an important role in diagnosing the hepatitis B and in clinical assessment of the course of the disease as well. Among a number of antigens, antibodies and enzymes related with hepatitis, HBe Ag, DNA polymerase, IgM-HBc-antibody, {delta} Ag have been known as useful indicators of ongoing infectivity of hepatitis B. The present study has been undertaken to correlate the HBe antigenicity with hepatospleno-scintigraphic findings in hepatitis. The study covered a 10 month period from September 1982 through to July 1983. We reviewed and analyzed the hepatospeno-scintgraphic findings and the results of radioimmuassays in 32 patients of chronic hepatitis seen at St. Mary Hospital, Catholic Medical College. Hepatitis B was diagnosed either when HBs Ag was positive or Anti-HBc wa positive even if HBs Ag was negative. We classified the HBe antigenicity into two groups of HBe Ag(+) and HBe(-) and analyzed the scintgraphic findings in terms of liver size, motting, splenomegaly and splenic shift. From the present study, it is concluded that the activity of hepatitis B can not be assessed by the findings of hepatospleno-scintigram so far as the activity is determined on the basis of the positive HBe Ag, which has been believed to indicated continuing viral replication.

  6. Correlation of hepatospleno-scintigraphic findings with HBe antigenicity in chronic hepatitis B

    International Nuclear Information System (INIS)

    Song, K. S.; Chun, K. S.; Chung, S. K.; Bahk, Y. W.

    1983-01-01

    Radioimmunoassay plays an important role in diagnosing the hepatitis B and in clinical assessment of the course of the disease as well. Among a number of antigens, antibodies and enzymes related with hepatitis, HBe Ag, DNA polymerase, IgM-HBc-antibody, δ Ag have been known as useful indicators of ongoing infectivity of hepatitis B. The present study has been undertaken to correlate the HBe antigenicity with hepatospleno-scintigraphic findings in hepatitis. The study covered a 10 month period from September 1982 through to July 1983. We reviewed and analyzed the hepatospeno-scintgraphic findings and the results of radioimmuassays in 32 patients of chronic hepatitis seen at St. Mary Hospital, Catholic Medical College. Hepatitis B was diagnosed either when HBs Ag was positive or Anti-HBc wa positive even if HBs Ag was negative. We classified the HBe antigenicity into two groups of HBe Ag(+) and HBe(-) and analyzed the scintgraphic findings in terms of liver size, motting, splenomegaly and splenic shift. From the present study, it is concluded that the activity of hepatitis B can not be assessed by the findings of hepatospleno-scintigram so far as the activity is determined on the basis of the positive HBe Ag, which has been believed to indicated continuing viral replication

  7. Selective elution of HLA antigens and beta 2-microglobulin from human platelets by chloroquine diphosphate

    International Nuclear Information System (INIS)

    Kao, K.J.

    1988-01-01

    To determine whether chloroquine can specifically elute HLA antigens and beta 2-microglobulin (beta 2-M) from the platelet surface, quantitative immunofluorescence flow cytometry and monoclonal antibodies were used to show that HLA antigens and beta 2-M were proportionally eluted from the platelet surface without affecting the membrane glycoproteins IIb and IIIa. Second, an autoradiogram of electrophoresed I-125-labeled platelets showed that only beta 2-M but not other I-125-labeled membrane proteins could be eluted. Although HLA antigens were poorly labeled by I-125 and could not be detected on the autoradiogram, the eluted HLA antigens could be detected by anti-HLA monoclonal antibody and immunoblotting techniques. No loss of plasma membrane integrity was observed by transmission electron microscopy after chloroquine treatment of platelets. The results indicate that chloroquine selectively elutes HLA antigens and their noncovalently associated beta 2-M without affecting other integral platelet membrane proteins

  8. Benefit of hepatitis C virus core antigen assay in prediction of therapeutic response to interferon and ribavirin combination therapy.

    Science.gov (United States)

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay.

  9. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment

    Directory of Open Access Journals (Sweden)

    Wen-Fan Shen

    2017-04-01

    Conclusion: Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection.

  10. Viral Meningitis

    Science.gov (United States)

    ... better from treatment such as an antiviral medicine. Antibiotics do not help viral infections, so they are not useful in the treatment of viral meningitis. However, antibiotics do fight bacteria, so they are very important ...

  11. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    International Nuclear Information System (INIS)

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-01-01

    A radioimmunoassay that makes use of whole Schistosomula and 125 I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000

  12. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  13. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  14. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel

    2013-01-01

    In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

  15. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases.

    Directory of Open Access Journals (Sweden)

    Elena Lorente

    Full Text Available In the classical human leukocyte antigen (HLA class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases and transported to the endoplasmic reticulum (ER lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

  16. The Length of N-Glycans of Recombinant H5N1 Hemagglutinin Influences the Oligomerization and Immunogenicity of Vaccine Antigen

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    2017-04-01

    Full Text Available Hemagglutinin glycoprotein (HA is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm and with low-mannose glycosylation (H5Man5 were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

  17. Mechanism of action and application of virocids in health care-associated viral infections

    Directory of Open Access Journals (Sweden)

    Babak Shahbaz

    2016-03-01

    Full Text Available Viruses are important causes of acute and chronic diseases in humans. Newer viruses are still being discovered. Apart from frequently causing infections in the general community, many types of viruses are significant nosocomial pathogens that with emerging viruses has become a real issue in medical field. There are specific treatments, vaccine and physical barrier to fight some of these infections. Health care-associated viral infections are an important source of patient’s morbidity and mortality. The method of sterilization or disinfection depends on the intended use of the medical devices (comprising critical, semicritical and noncritical items and failure to perform proper sterilization or disinfection of these items may leads to introduction of viruses, resulting in infection. Disinfection is an essential way in reducing or disruption of transmission of viruses by environmental surfaces, instruments and hands which achieves by chemical disinfectants and antiseptics, respectively. This review discusses about chemical agents with virocids properties (e.g. alcohols, chlorine compounds, formaldehyde, phenolic compounds, glutaraldehyde, ortho-phthaldehyde, hydrogen peroxide, peracetic acid, iodophor, ammonium compounds quaternary, bigunides and so on., mechanisms of action and their applications in health care-associated viral infection control. As well as, we described an overview for hierarchy of viruses in challenge with disinfantans, effective agents on viral inactivation, i.e.targect viruses, viral stability or survival duration time in enviromental surfaces and hands. We explained disinfection of surfaces, challenges in emerging viral pathogens inactivation, viral resistance to chemical disinfectants and antiseptics. Because, there are laboratory studies and clinical evidences for some viruses which viral resistance to biocide or failure to perform proper disinfection can lead to infection outbreaks. Also, we described virucidal

  18. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation.

    Directory of Open Access Journals (Sweden)

    James P J Hall

    Full Text Available A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.

  19. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients

    Science.gov (United States)

    Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie; Mortensen, Shila; Larsen, Janni Lisander; Houen, Gunnar; Duus, Karen

    2014-01-01

    Objective Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. Methods T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay. Results SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients. Conclusions These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed. PMID:25396062

  20. Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases.

    Science.gov (United States)

    Higgins, Melanie A; Whitworth, Garrett E; El Warry, Nahida; Randriantsoa, Mialy; Samain, Eric; Burke, Robert D; Vocadlo, David J; Boraston, Alisdair B

    2009-09-18

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-beta-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-beta-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  1. Molecular characteristics of an immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Science.gov (United States)

    Ichthyophthirius multifiliis, a ciliated protozoan parasite of fish, expresses surface antigens (i-antigens), which react with host antibodies that render them immobile. The nucleotide sequence of an i-antigen gene of Ichthyophthirius multifiliis strain ARS-6 was deduced. The predicted protein of 47...

  2. Natural Killer Cells in Viral HepatitisSummary

    Directory of Open Access Journals (Sweden)

    Barbara Rehermann

    2015-11-01

    Full Text Available Natural killer (NK cells are traditionally regarded as first-line effectors of the innate immune response, but they also have a distinct role in chronic infection. Here, we review the role of NK cells against hepatitis C virus (HCV and hepatitis B virus (HBV, two agents that cause acute and chronic hepatitis in humans. Interest in NK cells was initially sparked by genetic studies that demonstrated an association between NK cell–related genes and the outcome of HCV infection. Viral hepatitis also provides a model to study the NK cell response to both endogenous and exogenous type I interferon (IFN. Levels of IFN-stimulated genes increase in both acute and chronic HCV infection and pegylated IFNα has been the mainstay of HCV and HBV treatment for decades. In chronic viral hepatitis, NK cells display decreased production of antiviral cytokines. This phenotype is found in both HCV and HBV infection but is induced by different mechanisms. Potent antivirals now provide the opportunity to study the reversibility of the suppressed cytokine production of NK cells in comparison with the antigen-induced defect in IFNγ and tumor necrosis factor-α production of virus-specific T cells. This has implications for immune reconstitution in other conditions of chronic inflammation and immune exhaustion, such as human immunodeficiency virus infection and cancer. Keywords: HBV, HCV, Infection, Interferon, T Cell

  3. Liver cancer: expression features of hepatitis B antigens

    Directory of Open Access Journals (Sweden)

    V. A. Tumanskiy

    2013-12-01

    Full Text Available Introduction. Hepatocellular carcinoma (HCC is currently the fifth most common malignancy in men and the eighth in women worldwide. According to the latest European Union countries’ statistics the incidence of HC cancer is about 8,29 per 100000 accidents, cholangiocellular (CC cancer – 0,9-1,3 per 100 thousand of population per year[10,14]. Hepatitis B virus (HBV is the major etiologic factor for the development of HCC [18]. People chronically infected with HBV are 20 times more likely to develop liver cancer than uninfected people [1,22,28]. Many studies have shown the association between Hepatitis B virus (HBV and hepatitis C virus (HCV infections and the development of cholangiocarcinoma (CCA [4,6,9,11,12]. At the same time, the expression features of HBsAg, HBcAg in HCC and CCA have not been studied clearly yet. Aim of investigation: to study the expression features of hepatitis B antigens in tumor tissue from patients with hepatocellular carcinoma and cholangiocarcinoma. Materials and methods. The complex pathomorphological research was performed using liver biopsies of 87 patients aged from 33 up to 83 years, where 50 (57,47% of them had HCC carcinoma and 37 (42,53% had cholangiocellular cancer. 15 patients among examined 87 ones were ill with chronic viral hepatitis (11 were ill with HCV, 3 – HBV B, 1 – HBV + HCV before, 72 cancer patients, corresponding to the clinical data, never had this one in their past medical history. The localization of hepatitis B surface antigen (HBsAg and core antigen (HBcAg was investigated by an indirect immunoperoxidase method in formalin-fixed, paraffin-embedded liver specimens obtained from 50 (57,47% patients with hepatocellular carcinoma and 37 (42,53% patients with cholangiocarcinoma. using antibodies Rb a-Hu Primary Hepatitis B Virus Core Antigen (HBcAg and Mo a-Hu Primary Hepatitis B Virus Surface Antigen (HBsAg, Сlone 3E7, and visualization system DAKO EnVision+ with diaminobenzidine. Liver

  4. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere.

    Science.gov (United States)

    Whon, Tae Woong; Kim, Min-Soo; Roh, Seong Woon; Shin, Na-Ri; Lee, Hae-Won; Bae, Jin-Woo

    2012-08-01

    Airborne viruses are expected to be ubiquitous in the atmosphere but they still remain poorly understood. This study investigated the temporal and spatial dynamics of airborne viruses and their genotypic characteristics in air samples collected from three distinct land use types (a residential district [RD], a forest [FR], and an industrial complex [IC]) and from rainwater samples freshly precipitated at the RD site (RD-rain). Viral abundance exhibited a seasonal fluctuation in the range between 1.7 × 10(6) and 4.0 × 10(7) viruses m(-3), which increased from autumn to winter and decreased toward spring, but no significant spatial differences were observed. Temporal variations in viral abundance were inversely correlated with seasonal changes in temperature and absolute humidity. Metagenomic analysis of air viromes amplified by rolling-circle phi29 polymerase-based random hexamer priming indicated the dominance of plant-associated single-stranded DNA (ssDNA) geminivirus-related viruses, followed by animal-infecting circovirus-related sequences, with low numbers of nanoviruses and microphages-related genomes. Particularly, the majority of the geminivirus-related viruses were closely related to ssDNA mycoviruses that infect plant-pathogenic fungi. Phylogenetic analysis based on the replication initiator protein sequence indicated that the airborne ssDNA viruses were distantly related to known ssDNA viruses, suggesting that a high diversity of viruses were newly discovered. This research is the first to report the seasonality of airborne viruses and their genetic diversity, which enhances our understanding of viral ecology in temperate regions.

  5. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Kurtzhals, J A

    1994-01-01

    of skin lesions, and in Danes without known exposure to Leishmania parasites. Proliferation and production of interferon-gamma (IFN-gamma) and IL-4 in antigen-stimulated cultures was measured. Lymphocytes from individuals with a history of CL proliferated vigorously and produced IFN-gamma after...... the unexposed Danes were not activated by gp63. The cells from Danish donors produced either IFN-gamma or IL-4, but not both cytokines after incubation with the crude preparation of L. major antigens. The data show that the T cell response to Leishmania antigens in humans who have had uncomplicated CL...... stimulation with either a crude preparation of L. major antigens or the major surface protease gp63. These cultures produced no or only little IL-4. Also cells from leishmanin skin test-positive donors with no history of CL produced IFN-gamma and no IL-4 in response to L. major antigens. Cells from...

  6. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  7. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors.

    Science.gov (United States)

    Brostoff, Terza; Dela Cruz, Florante N; Church, Molly E; Woolard, Kevin D; Pesavento, Patricia A

    2014-11-01

    Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in

  8. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  9. Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes.

    Science.gov (United States)

    Pajon, Rolando; Yero, Daniel; Niebla, Olivia; Climent, Yanet; Sardiñas, Gretel; García, Darién; Perera, Yasser; Llanes, Alejandro; Delgado, Maité; Cobas, Karem; Caballero, Evelin; Taylor, Stephen; Brookes, Charlotte; Gorringe, Andrew

    2009-12-11

    The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.

  10. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D; Herzog, Roland; Daniell, Henry

    2013-06-15

    Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Viral hepatitis as an occupational disease in Poland.

    Science.gov (United States)

    Bilski, Bartosz

    2011-07-01

    involved in reducing the number of cases of occupational viral hepatitis. Socioeconomic and financial factors affected the epidemiological data on cases of hepatitis certified as an occupational disease in Poland. An additional problem associated with the diagnosis of occupational diseases is the lack of obligatory testing for anti-hepatitis C virus (HCV) and anti-hepatitis B surface antigen (HBsAg) antibodies and examinations to ensure the efficacy of HBV vaccination among medical staff before and during employment.

  12. Bacteria and viruses modulate FcεRI-dependent mast cell activity 

    Directory of Open Access Journals (Sweden)

    Aleksandra Słodka

    2013-03-01

    Full Text Available Undoubtedly, mast cells play a central role in allergic processes. Specific allergen cross-linking of IgE bound to the high affinity receptors (FcεRI on the mast cell surface leads to the release of preformed mediators and newly synthesized mediators, i.e. metabolites of arachidonic acid and cytokines. More and more data indicate that bacteria and viruses can influence FcεRI-dependent mast cell activation. Some bacterial and viral components can reduce the surface expression of FcεRI. There are also findings that ligation of Toll-like receptors (TLRs by bacterial or viral antigens can affect IgE-dependent mast cell degranulation and preformed mediator release as well as eicosanoid production. The synergistic interaction of TLR ligands and allergen can also modify cytokine synthesis by mast cells stimulated via FcεRI. Moreover, data suggest that specific IgE for bacterial or viral antigens can influence mast cell activity. What is more, some bacterial and viral components or some endogenous proteins produced during viral infection can act as superantigens by interacting with the VH3 domain of IgE. All these observations indicate that bacterial and viral infections modify the course of allergic diseases by affecting FcεRI-dependent mast cell activation. 

  13. Short communication. Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV isolates in Kosovo

    Directory of Open Access Journals (Sweden)

    Izedin Goga

    2014-03-01

    Full Text Available Three serum samples positive in Antigen ELISA BVDV have been tested to characterise genetic diversity of bovine viral diarrhea virus (BVDV in Kosovo. Samples were obtained in 2011 from heifers and were amplified by reverse transcription-polymerase chain reaction, sequenced and analysed by computer-assisted phylogenetic analysis. Amplified products and nucleotide sequence showed that all 3 isolates belonged to BVDV 1 genotype and 1b sub genotype. These results enrich the extant knowledge of BVDV and represent the first documented data about Kosovo BVDV isolates.

  14. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Science.gov (United States)

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  15. Characterization of a 14,000 dalton antigen of Dirofilaria immitis infective third stage larvae

    International Nuclear Information System (INIS)

    Fuller, S.A.; Cachia, P.J.; Wong, M.M.; Hurrell, J.G.R.

    1986-01-01

    Immunogenic proteins of Dirofilaria immitis (canine heartworm) were identified by probing extracts of adult worms or their excretory-secretory proteins (ESP) blotted to nitrocellulose following SDS-PAGE with control or infected dog sera. A 14,000 dalton antigen (a prominent component of ESP by protein staining) was consistently recognized both in extracts and ESP by dog sera as early as three months post infection. This indicates a larval origin for the antigen since no adult worms are present until approximately five months post infection. Monoclonal antibodies (MAbs) prepared against the 14,000 dalton antigen confirmed by immunoblotting that this antigen is expressed by infective third stage larvae, adults and microfilariae and is present intact in the sera of infected dogs. Surface-labelling of whole adult D. immitis with Na 125 I produced radiolabelled antigens closely corresponding to those of ESP. An anti-14,000 dalton MAb was able to immunoprecipitate radiolabelled antigen which strongly suggest a surface or membrane location in the intact organism. Gel filtration data suggests that the protein is a native monomer. A MAb-affinity column has been used to purify the 14,000 dalton antigen to at least 98% homogeneity in one step from crude worm extracts. Further fractionation by HPLC yields a homogeneous preparation. Amino acid analysis and the N-terminal amino acid sequence data will be presented

  16. Bovine viral diarrhea virus (BVDV genetic diversity in Spain: A review

    Directory of Open Access Journals (Sweden)

    Francisco J. Diéguez

    2017-07-01

    Full Text Available Bovine viral diarrhea virus (BVDV, a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  17. [Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].

    Science.gov (United States)

    Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I

    2009-01-01

    The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.

  18. A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control

    Directory of Open Access Journals (Sweden)

    Gang Xin

    2015-11-01

    Full Text Available Control of chronic viral infections by CD8 T cells is critically dependent on CD4 help. In particular, helper-derived IL-21 plays a key role in sustaining the CD8 T cell response; however, the molecular pathways by which IL-21 sustains CD8 T cell immunity remain unclear. We demonstrate that IL-21 causes a phenotypic switch of transcription factor expression in CD8 T cells during chronic viral infection characterized by sustained BATF expression. Importantly, BATF expression during chronic infection is both required for optimal CD8 T cell persistence and anti-viral effector function and sufficient to rescue “unhelped” CD8 T cells. Mechanistically, BATF sustains the response by cooperating with IRF4, an antigen-induced transcription factor that is also critically required for CD8 T cell maintenance, to preserve Blimp-1 expression and thereby sustain CD8 T cell effector function. Collectively, these data suggest that CD4 T cells “help” the CD8 response during chronic infection via IL-21-induced BATF expression.

  19. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.

    2015-01-01

    Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often...... target diverse regions in highly variable viral pathogens and this diversity may need to be addressed through redefinition of suitable peptide targets. Methods: We have developed a method for antigen assessment and target selection for polyvalent vaccines, with which we identified immune epitopes from...... variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. Results: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased...

  20. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...