WorldWideScience

Sample records for surface velocity measurements

  1. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  2. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  3. Measurement of surface recombination velocity on heavily doped indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  4. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...

  5. Glacier Surface Velocity Measurements from Radar Interferometry and the Principle of Mass Conservation

    OpenAIRE

    Mohr, Johan Jacob; Reeh, Niels

    2002-01-01

    Presents a relation between the three glacier surface velocity components, the surface flux-divergence, glacier thickness and bottom melt and displacement. The relation can be used as an extension to the surface parallel flow assumption often used with interferometric synthetic aperture measurements of glacier velocities. The assumptions for the derivation are described and important limitations high-lighted.

  6. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  7. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Trace projection transformation: a new method for measurement of debris flow surface velocity fields

    Science.gov (United States)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-12-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  9. Exploiting SENTINEL-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier

    Science.gov (United States)

    Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M.

    2016-06-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary coregistration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics.

  10. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  11. Direct velocity measurement and enhanced mixing in laminar flows over ultrahydrophobic surfaces

    Science.gov (United States)

    Ou, Jia

    2005-11-01

    A series of experiment are presented studying the kinematics of water flowing over drag-reducing ultrahydrophobic surfaces. The surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate patterns of microridges with precise spacing and alignment. These surfaces are reacted with an organosilane to achieve high hydrophobicity. Microridges with different widths, spacing and alignments are tested in a microchannel flow cell with rectangular cross-section. The velocity profile across the microchannel is measured with micro particle image velocimetry (μ-PIV) capable of resolving the flow down to length scales well below the size of the surface features. A maximum slip velocity of >60% of the average velocity in the flow is observed at the center of the air-water interface supported between these hydrophobic microridges, and the no-slip boundary condition is found at the hydrophobic microridges. The μ-PIV measurements demonstrate that slip along the shear-free air-water interface supported between the hydrophobic micron-sized ridges is the primary mechanism responsible for the drag reduction. The experiment velocity and pressure drop measurement are compared with the prediction of numerical simulation and an analytical model. By aligning the hydrophobic microridges at an acute angle to the flow direction a secondary flow is produced which can significantly enhance mixing in this laminar flow.

  12. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    Science.gov (United States)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  13. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils

    Institute of Scientific and Technical Information of China (English)

    Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE

    2008-01-01

    The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.

  14. Modeling of integrated sunlight velocity measurements: The effect of surface darkening by magnetic fields

    Science.gov (United States)

    Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.

    1993-01-01

    It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.

  15. Glacier Surface Velocity Measurements from Radar Interferometry and the Principle of Mass Conservation

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels

    2002-01-01

    Presents a relation between the three glacier surface velocity components, the surface flux-divergence, glacier thickness and bottom melt and displacement. The relation can be used as an extension to the surface parallel flow assumption often used with interferometric synthetic aperture...

  16. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  17. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    Science.gov (United States)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  18. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    Science.gov (United States)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  19. EXPLOITING SENTINEL-1 AMPLITUDE DATA FOR GLACIER SURFACE VELOCITY FIELD MEASUREMENTS: FEASIBILITY DEMONSTRATION ON BALTORO GLACIER

    OpenAIRE

    A. Nascetti; Nocchi, F.; Camplani, A.; Rico, C.; Crespi, M.

    2016-01-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed ...

  20. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  1. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  2. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...

  3. The Friction Law Stress Exponent under Pine Island Glacier from 15 Years of Surface Elevation and Velocity Measurements

    Science.gov (United States)

    Gillet-chaulet, F.; Durand, G.; Gagliardini, O.; Mosbeux, C.; Mouginot, J.; Remy, F.; Ritz, C.

    2015-12-01

    Polar the ice-sheets mass balance largely depends on the flow of ice-streams. Rapid basal motion generally accounts for most of the velocities. In flow models, the conditions at the base of the ice in contact with the bedrock are generally parameterised using a friction law that relates the sliding velocity to the basal shear stress. The most common law has two poorly constrained parameters, the basal slipperiness c and the stress exponent m. The basal slipperiness is expected to depend on local unobservable quantities and is routinely tuned from observed surface velocities using inverse methods. Different values for m are expected depending on the processes, from hard-bed sliding to soft bed deformation, and no consensus has emerged so far for its value that range from 1 to infinity. However, several studies have shown that the transient response of the ice-sheet models to external forcing is highly sensitive to m. Therefore, the uncertainty attached to the friction law is an important limit to our ability to evaluate future dynamical evolution of coastal regions. Calibrating m can be done only if either basal stresses and/or velocities have changed significantly while c can be assumed constant in time. Here, we use Elmer/Ice to model the flow of Pine Island Glacier (PIG), Antarctica, sufficiently far upstream of the grounding line so that we can assume no change in c. Observations show an increase of surface velocities by up to 50% between 1996 and 2010, associated with an important dynamical thinning. Using a control inverse method and different values of m, we tune a spatially varying basal slipperiness field that best fit, in the same time, observed surface velocities for years 1996, 2007, 2008, 2009 and 2010. These years correspond to the MeaSUREs project velocity datasets that have the best spatial coverage for our model domain. Surface elevations for the corresponding years are constructed using ERS and Envisat radar altimetry data. We show that the

  4. Simultaneous measurements of air-sea gas transfer velocity and near surface turbulence at low to moderate winds (Invited)

    Science.gov (United States)

    Wang, B.; Liao, Q.; Fillingham, J. H.; Bootsma, H. A.

    2013-12-01

    Parameterization of air-sea gas transfer velocity was routinely made with wind speed. Near surface turbulent dissipation rate has been shown to have better correlation with the gas transfer velocity in a variety of aquatic environments (i.e., the small eddy model) while wind speed is low to moderate. Wind speed model may underestimate gas transfer velocity at low to moderate winds when the near surface turbulence is produced by other environmental forcing. We performed a series of field experiments to measure the CO2 transfer velocity, and the statistics of turbulence immediately below the air-water interface using a novel floating PIV and chamber system. The small eddy model was evaluated and the model coefficient was found to be a non-constant, and it varies with the local turbulent level (figure 1). Measure results also suggested an appropriate scaling of the vertical dissipation profile immediately below the interface under non-breaking conditions, which can be parameterized by the wind shear, wave height and wave age (figure 2). Figure 1. Relation between the coefficient of the small eddy model and dissipation rate. The data also include Chu & Jirka (2003) and Vachon et al. (2010). The solid regression line: α = 0.188log(ɛ)+1.158 Figure 2. Non-dimensional dissipation profiles. Symbols: measured data with the floating PIV. Solid line: regression of measured data with a -0.79 decaying rate. Dash line with -2 slope: Terray et al. (1996) relation. Dash line with two layer structure: Siddiqui & Loewen (2007) relation.

  5. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m a(-1) exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrommen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results......) or more. This indicates that the SPF assumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrommen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  6. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    Science.gov (United States)

    Reeh, Niels; Mohr, Johan Jacob; Nørvang Madsen, Søren; Oerter, Hans; Gundestrup, Niels S.

    Non-steady-state vertical velocities of up to 5 m a-1 exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10m a-1 or more.This indicates that the SPFassumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrømmen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle are in better agreement with the GPS velocities than the previously calculated velocities derived with the SPFassumption.

  7. Techniques for Surface-Temperature Measurements and Transition Detection on Projectiles at Hypersonic Velocities--Status Report No. 2

    Science.gov (United States)

    Bogdanoff, D. W.; Wilder, M. C.

    2006-01-01

    The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.

  8. Three-dimensional glacier surface velocities of the Storstrømmen glacier, Greenland derived from radar interferometry and ice-sounding radar measurements

    OpenAIRE

    Reeh, N; Mohr, J. J.; Madsen, S.N.; Oerter, Hans; Gundestrup, N.

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m y-1 exceed the vertical surface-parallel-flow components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude, results in substantial errors (up to 20%) also on the south north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments t...

  9. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  10. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  11. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    Recent studies have likened the seasonal observations of ice flow at the marginal regions of the Greenland Ice Sheet (GrIS) to those found on smaller alpine and valley counterparts. These similarities highlight the need for further small scale studies of seasonal evolution in the hydrological...... and dynamic structure of valley glaciers, to aid interpretation of observations from the margins of the GrIS. This thesis aims to collate a large suit of glacio-hydrological data from the outlet glacier Engabreen, Norway, in order to better understand the role the subglacial drainage configuration has...... on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...

  12. Shear Wave Velocity Profiles Determined from Surface Wave Measurements at Sites Affected by the August 15th, 2007 Earthquake in Peru

    Science.gov (United States)

    Rosenblad, B. L.; Bay, J. A.

    2008-05-01

    The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed

  13. Spall measurements in shock-loaded hemispherical shells from free-surface velocity histories. [Dynamic fracture of hemishells of copper and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Cagliostro, D.J.; Warnes, R.H.; Johnson, N.L.; Fujita, R.K.

    1987-01-01

    Copper and tantalum hemishells are externally loaded by a hemishell of PBX 9501 detonated at its pole. Free-surface velocity histories of the metal hemishells are measured at the pole and at 50 from the pole with a Fabry-Perot interferometer. These histories are used to determine spall strengths and depths by simple wave-interaction analyses and are compared with hydro-code (CAVEAT) predictions using simple and void-growth spall models. 8 refs., 4 figs., 1 tab.

  14. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  15. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  16. Velocity Correction and Measurement Uncertainty Analysis of Light Screen Velocity Measuring Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Bin; ZUO Zhao-lu; HOU Wen

    2012-01-01

    Light screen velocity measuring method with unique advantages has been widely used in the velocity measurement of various moving bodies.For large air resistance and friction force which the big moving bodies are subjected to during the light screen velocity measuring,the principle of velocity correction was proposed and a velocity correction equation was derived.A light screen velocity measuring method was used to measure the velocity of big moving bodies which have complex velocity attenuation,and the better results were gained in practical tests.The measuring uncertainty after the velocity correction was calculated.

  17. Velocity Measurement Based on Laser Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Yan; HUO Yu-Jing; HE Shu-Fang; GONG Ke

    2010-01-01

    @@ A novel method for velocity measurement is presented.In this scheme,a parallel-linear-polarization dualfrequency laser is incident on the target and senses the target velocity with both the frequencies,which can increase the maximum measurable velocity significantly.The theoretical analysis and verification experiment of the novel method are presented,which show that high-velocity measurement can be achieved with high precision using this method.

  18. Velocity Map Imaging the Scattering Plane of Gas Surface Collisions

    CERN Document Server

    Hadden, David J; Leng, Joseph G; Greaves, Stuart J

    2016-01-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D sacattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was demonstrated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the systems capabilities the velocity distributions of ammonia molecules scattered from a PTFE surface have been measured for multiple product rotational states.

  19. Inexpensive Time-of-Flight Velocity Measurements.

    Science.gov (United States)

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  20. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  1. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  2. Influence of speckle effect on doppler velocity measurement

    Science.gov (United States)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  3. Low-Velocity Measurement in Water

    Science.gov (United States)

    Ellis, Christopher; Stefan, Heinz G.

    1986-09-01

    Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.

  4. Position and velocity estimation through acceleration measurements

    OpenAIRE

    Estrada, Antonio; Efimov, Denis; Perruquetti, Wilfrid

    2014-01-01

    International audience; This paper proposes a solution to the problem of velocity and position estimation for a class of oscillating systems whose position, velocity and acceleration are zero mean signals. The proposed scheme considers that the dynamic model of the system is unknown and only noisy acceleration measurements are available.

  5. Velocity Gradient Maps Directly Measured by PLF

    Science.gov (United States)

    Quintella, Cristina M.; Gonçalves, Cristiane C.; Lima, Angelo Mv; Pepe, Iuri M.

    2000-11-01

    Flows are macroscopically classified as laminar or turbulent due to their velocity distributions, nevertheless most chemical and biological phenomena are yield or enhanced by intermolecular orientation and microscopic turbulence. Here was studied a 100micra liquid sheet produced by a slit nozzle, both flowing freely into air and over a borosilicate surface (roughness bellow 5nm), ranging from 17 to 36Re (143 to 297cm/s, similar to muscles and brain blood flow). Mono ethylene glycol was used either pure, or with sodium alkyl benzene sulfated (ABS) surfactant (24.5mol/L, submicellar), or with poly(ethylene oxide) (PEO) (1409ppm, 4millions aw). Velocity gradients were directly measured by 514nm polarized laser induced fluorescence (PLF) with R6G as probe. Intermolecular alignment (IA) maps were obtained all over the flow (about 1,950 points, 0.02mm2 precision). The free jet average IA has increased 57% when flowing over borosilicate. With ABS, the IA increased, suggesting wall drag reduction. With PEO the IA decreases due to solvent intermolecular forces attenuation, generating wider turbulent areas. PLF proved to be an excellent method to evaluate IA within liquid thin flows. Chosen solute additions permits IA control over wide regions.

  6. Measuring Bullet Velocity with a PC Soundcard

    CERN Document Server

    Courtney, M; Courtney, Michael; Edwards, Brian

    2006-01-01

    This article describes a simple method for using a PC soundcard to accurately measure bullet velocity. The method involves placing the microphone within a foot of the muzzle and firing at a steel target between 50 and 100 yards away. The time of flight for the bullet is simply the recorded time between muzzle blast and sound of the bullet hitting the target minus the time it takes the sound to return from the target to the microphone. The average bullet velocity is simply the distance from the muzzle to the target divided by the time of flight of the bullet. This method can also be applied to measurement of paintball velocities.

  7. Velocity Diagnosis of Critical Surface at Microwave Band in Laser-Induced Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Ying; WANG Junyan; BAI Shunbo; CHEN Jianping; CHU Ran; YUN Xiaohua; NI Xiaowu

    2008-01-01

    The velocity of critical surface at microwave band in laser-induced plasma was mea-sured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.

  8. Estimating Stream Surface Flow Velocities from Video Clips

    Science.gov (United States)

    Weijs, S. V.; Brauchli, T.; Chen, Z.; Huwald, H.

    2014-12-01

    Measuring surface flow velocities in streams can provide important information on discharge. This information is independent of water level, the most commonly used proxy for discharge and therefore has significant potential to reduce uncertainties. Advances in cheap and commonly used imaging devices (e.g. smartphone cameras) and image processing techniques offer new opportunities to get velocity information. Short video clips of streams can be used in combination with optical flow algorithms to get proxies for stream surface velocities. Here some initial results are presented and the main challenges are discussed, especially in view of using these techniques in a citizen science context (specifically the "WeSenseIt" project, a citizen observatory of water), where we try to minimize the need for site preparation and additional equipment needed to take measurements.

  9. Monte Carlo search techniques applied to the measurement of higher mode phase velocities and anisotropic surface wave tomography. Geologica Ultraiectina (285)

    NARCIS (Netherlands)

    Visser, K.

    2008-01-01

    In this thesis we present all three stages of the inversion approach proposed by Kennett and Yoshizawa (2002). The three stage inversion approach consists of obtaining fundamental and higher mode Love and Rayleigh wave phase velocity measurements through waveform fitting in the first stage, combinin

  10. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  11. Acoustic measurement of potato cannon velocity

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  12. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity

    Science.gov (United States)

    Kakuma, Seiichi

    2017-02-01

    A frequency-modulated continuous-wave (FMCW) laser radar capable of real-time displaying the distance to a target object and its radial velocity as their corresponding frequency spectra is developed. The system employs a pair of oppositely frequency-swept vertical-cavity surface-emitting laser diodes (VCSELs). This makes possible simultaneous detection of beat signals induced by the increment (up-ramp) and decrement (down-ramp) in laser frequencies. By mixing these two beat signals, their sum and difference frequencies are directly obtained without arithmetic processing such as averaging and subtraction. Results of the test experiments adopting axially moving block gauges as target objects show that both the distance and given velocities are accurately determined from the spectrum of the frequency mixer.

  13. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  14. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  15. Migration velocity modeling based on common reflection surface gather

    Institute of Scientific and Technical Information of China (English)

    李振春; 姚云霞; 马在田; 王华忠

    2003-01-01

    The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.

  16. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  17. Device for measuring mechanical drilling velocity

    Energy Technology Data Exchange (ETDEWEB)

    Turchaninov, Y.N.; Ippolitova, L.G.; Khizgilov, A.I.; Rolik, V.A.

    1980-12-17

    A device is proposed for measuring the mechanical drilling velocity which includes a primary drilling tool supply transformer, control block, trigger, range switch; control block, block for determining motion direction, time counter and measurement instrument. In order to guarantee continuous measurement of the mechanical velocity and to improve the accuracy of measuring the average mechanical velocity during drilling at sea, it is equipped with a block for multiplying the number of pulses, four I circuits, supply counter, supply recorder, primary neutral transformer, two controllable frequency dividers, first frequency divider, generator of prime pulses consisting of a generatror of reference frequencies and second frequency divider, time recorder, counter and velocity recorder, time recorder and digital-analog transformer. In this case the outlet of the primary transformer for drilling tool supply is connected through a in-series connected block for determining the movement direction, block for multiplying the number of pulses, first circuit I and supply counter to one of the inlets of the supply counter. Its second inlet is connected through a block of control to the primary neutral transformer and one of the inlets of the time recorder. Its second inlet is connected through a in-series connected time counter, fourth I circuit, second frequency divider, generator of reference frequency, first frequency divider, third circuit I, second controllable frequency divider, counter and velocity recorder and digital-analog transformer of the measurement instrument. The outlet of the supply recorder is connected to one of the inlets of the first controllable divider. Its second inlet is connected to the second I circuit to the outlet of the first frequency divider, and the outlet is connected to one of the trigger inlets.

  18. Comparing dynamic surface tilt with velocity using an LDV

    Science.gov (United States)

    Bruce, Robert A.

    2004-06-01

    If a laser Doppler vibrometer (LDV) probe beam is normally incident on a resonating metal strip with a mirror-finish, the retro-reflected beam has corresponding dynamic deflections. These lateral beam offsets are proportional to the dynamic surface tilt and can be measured along with the LDV velocity using a separating beam-splitter and a two-dimensional position sensitive detector (PSD). On a thin unbound strip resonating with 'pure mode' deformation, these derivative motions, velocity and tilt, are completely complementary. On a thin unbound plate resonating with 'hybrid mode' deformation, velocity and now two orthogonal tilts are nearly complementary. Maximal tilt has zero velocity, and maximum deformation or velocity has zero tilt. Intermediate values range in complementary fashion except near 'cross-nodes' zones. Here both motion types drop to zero at these cross-node locations. Both velocity and tilt signals are compared simultaneously using a special test fixture. This fixture consists of a stainless steel strip supported on its edges in the center, which can be excited by small speakers at the ends. Two comparison/calibration approaches are demonstrated with a pure 3-0 mode. Significant modal details are also demonstrated by analyzing multiple modes from pulsed excitation, and mapping a 3-1 mode-shape using the combined sensing approaches.

  19. Shock wave velocity measuring system based on vernier VISAR-type interferometers

    Science.gov (United States)

    Gubskii, K. L.; Koshkin, D. S.; Antonov, A. S.; Mikhailuk, A. V.; Pirog, V. A.; Kuznetsov, A. P.

    2015-11-01

    The paper presents a multi-line diagnostic system for measuring the surface velocity in shock physics experiments. This system is designed for simultaneous measurement of surface velocity at multiple points. It is free from ambiguity caused by harmonic dependence of interference signals on the velocity and has a time resolution of 0.8 ns.

  20. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    Science.gov (United States)

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  1. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  2. Sensors for Using Times of Flight to Measure Flow Velocities

    Science.gov (United States)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  3. Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant

    CERN Document Server

    Sato, Toshiki

    2016-01-01

    We present the first direct ejecta velocity measurements of Tycho's supernova remnant (SNR). Chandra's high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We identified an annular region (~3.3'-3.5'), where the surface brightness in the Si, S, and Fe K lines reaches a peak while the line width reaches a minimum value. These minimum line widths correspond to ion temperatures of ~1 MeV for each of the three species, in excellent ...

  4. Measurement of the velocity of a quantum object: A role of phase and group velocities

    Science.gov (United States)

    Lapinski, Mikaila; Rostovtsev, Yuri V.

    2017-08-01

    We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.

  5. Signal processing method for shear wave velocity measurement

    Institute of Scientific and Technical Information of China (English)

    Hou Xingmin; Qu Shuying; Shi Xiangdong

    2007-01-01

    Soil shear wave velocity (SWV) is an important parameter in geotechnical engineering. To measure the soil SWV, three methods are generally used in China, including the single-hole method, cross-hole method and the surface-wave technique. An optimized approach based on a correlation function for single-hole SWV measurement is presented in this paper. In this approach, inherent inconsistencies of the artificial methods such as negative velocities, and too-large and too-small velocities, are eliminated from the single-hole method, and the efficiency of data processing is improved. In addition, verification using the cross-hole method of upper measuring points shows that the proposed optimized approach yields high precision in signal processing.

  6. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance...... pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward. © 2012 Acoustical Society of America....

  7. Fluorescent beeswax for surface flow velocity observations

    Science.gov (United States)

    Grimaldi, S.; Tauro, F.; Petroselli, A.; Mocio, G.; Capocci, I.; Rapiti, E.; Rapiti, R.; Cipollari, G.; Porfiri, M.

    2012-12-01

    Watershed surface processes control downstream runoff phenomena, waste and pollutant diffusion, erosion mechanics, and sediment transport. A quantitative understanding of the flow physics is currently limited by the lack of effective tracing techniques suitable for basin-scale observations. More specifically, field experiments require environmentally resilient, non-invasive, and low cost measurement systems that can potentially operate in remotely-controlled or unmanned conditions. Traditional tracing methodologies are largely not capable to cope with extreme in-situ conditions, including practical logistic challenges as well as inherent flow complexity. Specifically, most of available technologies need physical sampling to estimate the tracer concentration and do not allow for continuous-time measurements. In addition, commonly used tracers, such as isotopes, dyes, and chemicals, are not directly applicable to monitor surface hillslope processes and large-scale microchannel networks due to elaborate detection processes and dispersion issues. In this context, the feasibility of using buoyant fluorescent microspheres as particle tracers in natural water flows is investigated. Specifically, a novel fabrication methodology is designed to manufacture particles from natural beeswax and a highly diluted solution of a nontoxic fluorescent red dye. The fabrication procedure allows for adjusting the size of the particles from tens of microns up to a few millimeters and their density from positively to negatively-buoyant with respect to water. An array of experimental techniques is employed to conduct a thorough characterization of the fluorescence and morphology of the tracers. In addition, ad-hoc experiments are designed to assess the fluorescence response due to Ultra Violet (UV) exposure and thermal processes. Proof-of-concept laboratory analysis are conducted to illustrate the integration of the novel particle tracers in existing tracing methods for surface flow

  8. Tomographic Particle Localization and Velocity Measurement

    Science.gov (United States)

    Kirner, S.; Forster, G.; Schein, J.

    2015-01-01

    Wire arc spraying is one of the most common and elementary thermal spray processes. Due to its easy handling, high deposition rate, and relative low process costs, it is a frequently used coating technology for the production of wear and corrosion resistant coatings. In order to produce reliable and reproducible coatings, it is necessary to be able to control the coating process. This can be achieved by analyzing the parameters of the particles deposited. Essential for the coating quality are, for example, the velocity, the size, and the temperature of the particles. In this work, an innovative diagnostic for particle velocity and location determination is presented. By the use of several synchronized CMOS-Cameras positioned around the particle jet, a series of images from different directions is simultaneously taken. The images contain the information that is necessary to calculate the 3D-location-vector of the particles and finally with the help of the exposure time the trajectory can be determined. In this work, the experimental setup of the tomographic diagnostic is presented, the mathematical method of the reconstruction is explained, and first measured velocity distributions are shown.

  9. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  10. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  11. Selective measurement of digital nerve conduction velocity.

    Science.gov (United States)

    Terai, Y; Senda, M; Hashizume, H; Nagashima, H; Inoue, H

    2001-01-01

    We developed a new method to measure the nerve conduction velocity of a single digital nerve. In 27 volunteers (27 hands), we separately stimulated each digital nerve on the radial and ulnar sides of the middle and ring fingers. A double-peaked potential was recorded above the median nerve at the wrist joint when either the radial-side nerve or the ulnar-side nerve of the middle finger was stimulated. The first peak of this potential had disappeared after the digital nerve was blocked under the stimulating electrodes, and the peak appeared again coinciding with the decrease of anesthesia. Shifting the stimulating electrodes on the digital nerve resulted in no significant difference in the peak conduction velocity. It is possible that each peak of the potential was attributable to conduction of an action potential along one of the two digital nerves. This new method allows the assessment of a single digital nerve, and may be clinically useful for assessing the rupture of a digital nerve and the sensory nerve action potentials in carpal tunnel syndrome.

  12. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    Science.gov (United States)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  13. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    Science.gov (United States)

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  14. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  15. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material sample...... resistances decrease for increasing airflow velocity above the boundary layer of the material surface. The measured resistances are somewhat smaller than the ones esti-mated by use of the Lewis relation....

  16. Plasma flow velocity measurements using a modulated Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab.; Meijer, F.G. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Association Euratom-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)]|[Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)

    1997-03-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.) 1 refs.

  17. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  18. Notes on the Surface Velocity Profile and Horizontal Shear across the Width of the Gulf Stream

    OpenAIRE

    Arx, William S. Von

    2011-01-01

    During a cruise across the Gulf Stream in October 1950 measurements of surface velocity were made both with the Loran-space-dead method and the electromagnetic method. A short account of the results is given with special reference to the velocity profile and the horizontal shear across the Gulf Stream.DOI: 10.1111/j.2153-3490.1952.tb01006.x

  19. Note: Velocity map imaging the scattering plane of gas surface collisions

    Science.gov (United States)

    Hadden, D. J.; Messider, T. M.; Leng, J. G.; Greaves, S. J.

    2016-10-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D scattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a dielectric surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was validated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the system's capabilities, the velocity distributions of ammonia molecules scattered from a polytetrafluoroethylene surface have been measured for multiple product rotational states.

  20. Measuring Global Monopole Velocities, one by one

    CERN Document Server

    Lopez-Eiguren, Asier; Achúcarro, Ana

    2016-01-01

    We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics...

  1. Measuring global monopole velocities, one by one

    Science.gov (United States)

    Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana

    2017-01-01

    We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.

  2. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  3. ROSS: The Remotely-Operated Surface Sampler - A MediumEndurance, Precision-Navigated Platform Optimized for Uncontaminated Measurement of Upper-Ocean Velocity, Density and Turbulence

    Science.gov (United States)

    2015-09-30

    ROSS : The Remotely-­‐Operated Surface Sampler A medium-­‐endurance, precision-­‐navigated  platform optimized...coas.oregonstate.edu Award N00014-­‐14-­‐1-­‐0490 http://kai.coas.oregonstate.edu/ OVERVIEW The Remotely Operated Surface   Sampler ( ROSS )  is an  open...configuration,   ROSS cruises at 4 knots,  is equipped  with  300 kHz  and 2 MHz  ADCPs,  and tows a 20-­‐m  lon thermistor/CTD  chain. Its

  4. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    T N Singh; A K Verma; Tanmay Kumar; Avi Dutt

    2011-02-01

    Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed. Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of for shaly sandstone may be attributed to the fact that its surface had a greater number of pronounced asperities. Rubbing between the surfaces does not mean that surface becomes smoother. This is because of variation of friction between surfaces.

  5. Multi Point Velocity, Density and Temperature Measurements using LITA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced thermal acoustics (LITA) is a nonintrusive, transient-grating optical technique that provides simultaneous high-accuracy measurements of velocity,...

  6. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  7. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  8. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  9. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    Science.gov (United States)

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  10. Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa

    Institute of Scientific and Technical Information of China (English)

    孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦

    2003-01-01

    Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.

  11. Accurate measurement of ultrasonic velocity by eliminating the diffraction effect

    Institute of Scientific and Technical Information of China (English)

    WEI Tingcun

    2003-01-01

    The accurate measurement method of ultrasonic velocity by the pulse interferencemethod with eliminating the diffraction effect has been investigated in VHF range experimen-tally. Two silicate glasses were taken as the specimens, their frequency dependences of longitu-dinal velocities were measured in the frequency range 50-350 MHz, and the phase advances ofultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoreticalexpression. For the frequency dependences of longitudinal velocities, the measurement resultswere in good agreement with the simulation ones in which the phase advances were included.It has been shown that the velocity error due to diffraction effect can be corrected very well bythis method.

  12. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  13. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.;

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  14. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    Science.gov (United States)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  15. Surface finish measurement studies

    Science.gov (United States)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  16. Inertial Measurements Based Velocity-free Attitude Stabilization

    CERN Document Server

    Tayebi, A; Benallegue, A

    2012-01-01

    The existing attitude controllers (without angular velocity measurements) involve explicitly the orientation (\\textit{e.g.,} the unit-quaternion) in the feedback. Unfortunately, there does not exist any sensor that directly measures the orientation of a rigid body, and hence, the attitude must be reconstructed using a set of inertial vector measurements as well as the angular velocity (which is assumed to be unavailable in velocity-free control schemes). To overcome this \\textit{circular reasoning}-like problem, we propose a velocity-free attitude stabilization control scheme relying solely on inertial vector measurements. The originality of this control strategy stems from the fact that the reconstruction of the attitude as well as the angular velocity measurements are not required at all. Moreover, as a byproduct of our design approach, the proposed controller does not lead to the unwinding phenomenon encountered in unit-quaternion based attitude controllers.

  17. Velocity model optimization for surface microseismic monitoring via amplitude stacking

    Science.gov (United States)

    Jiang, Haiyu; Wang, Zhongren; Zeng, Xiaoxian; Lü, Hao; Zhou, Xiaohua; Chen, Zubin

    2016-12-01

    A usable velocity model in microseismic projects plays a crucial role in achieving statistically reliable microseismic event locations. Existing methods for velocity model optimization rely mainly on picking arrival times at individual receivers. However, for microseismic monitoring with surface stations, seismograms of perforation shots have such low signal-to-noise ratios (S/N) that they do not yield sufficiently reliable picks. In this study, we develop a framework for constructing a 1-D flat-layered a priori velocity model using a non-linear optimization technique based on amplitude stacking. The energy focusing of the perforation shot is improved thanks to very fast simulated annealing (VFSA), and the accuracies of shot relocations are used to evaluate whether the resultant velocity model can be used for microseismic event location. Our method also includes a conventional migration-based location technique that utilizes successive grid subdivisions to improve computational efficiency and source location accuracy. Because unreasonable a priori velocity model information and interference due to additive noise are the major contributors to inaccuracies in perforation shot locations, we use velocity model optimization as a compensation scheme. Using synthetic tests, we show that accurate locations of perforation shots can be recovered to within 2 m, even with pre-stack S/N ratios as low as 0.1 at individual receivers. By applying the technique to a coal-bed gas reservoir in Western China, we demonstrate that perforation shot location can be recovered to within the tolerance of the well tip location.

  18. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  19. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  20. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  1. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  2. A new method of measuring the peculiar velocity power spectrum

    CERN Document Server

    Zhang, P; Juszkiewicz, R; Feldman, H A; Zhang, Pengjie; Stebbins, Albert; Juszkiewicz, Roman; Feldman, Hume

    2004-01-01

    We show that by directly correlating the cluster kinetic Sunyaev Zeldovich (KSZ) flux, the cluster peculiar velocity power spectrum can be measured to $\\sim 10%$ accuracy by future large sky coverage KSZ surveys. This method is almost free of systemics entangled in the usual velocity inversion method. The direct correlation brings extra information of density and velocity clustering. We utilize these information to construct two indicators of the Hubble constant and comoving angular distance and propose a novel method to constrain cosmology.

  3. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    Science.gov (United States)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-11-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures.

  4. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  5. Large Curved Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.

  6. Interferometric measurement of the angular velocity of moving humans

    Science.gov (United States)

    Nanzer, Jeffrey A.

    2012-06-01

    This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.

  7. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  8. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

    CERN Document Server

    Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F

    2015-01-01

    We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...

  9. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  10. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  11. Electron drift velocity measurements in liquid krypton-methane mixtures

    CERN Document Server

    Folegani, M; Magri, M; Piemontese, L

    1999-01-01

    Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.

  12. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  13. Laser Doppler anemometer measurements using nonorthogonal velocity components: error estimates.

    Science.gov (United States)

    Orloff, K L; Snyder, P K

    1982-01-15

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  14. Unsteady Pressure and Velocity Measurements in Pumps

    Science.gov (United States)

    2006-11-01

    to reproduce the data with controlled experiments . For example, the rotor exit flow measured by means of a stationary high response probe will be...Turbomachinery by Means of High-Frequency Pressure Transducers. ASME, J. of Turbomachinery, Vol. 114, pp. 100-107. [3] Castorph, D. (1975): Messung ...Dreiß, A.; Kosyna, G. (1997): Experimental Investigations of Cavitation-States in a Radial Pump Impeller. JSME CENTENNIAL GRAND CONGRESS Proceedings of

  15. Three Component Velocity and Acceleration Measurement Using FLEET

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  16. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  17. Near-wall velocity profile measurement for nanofluids

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2016-01-01

    We perform near-wall velocity measurements of a SiO2-water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  18. Near-wall velocity profile measurement for nanofluids

    Directory of Open Access Journals (Sweden)

    Anoop Kanjirakat

    2016-01-01

    Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  19. Visualizing 3D velocity fields near contour surfaces. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  20. Visualizing 3D velocity fields near contour surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  1. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  2. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  3. Multipoint Vernier VISAR Interferometer System for Measuring Mass Velocity in Shock Wave Experiments

    Science.gov (United States)

    Gubskii, K. L.; Koshkin, D. S.; Mikhaylyuk, A. V.; Korolev, A. M.; Pirog, V. A.; Kuznetsov, A. P.

    The results of development of a laser interferometer designed to measure the mass velocity of condensed substances in shock wave experiments in the field of high energy density physics are presented. The developed laser system allows measurements of the velocity of free surfaces of samples in shockwave experiments with accuracy no worse than 10 m/s for the entire range of velocities attained experimentally. The time resolution of measurements is limited by the response speed of the used PMTs and amounts to 2.5 ns.

  4. Maximum Velocity of a Boulder Ejected From an Impact Crater Formed on a Regolith Covered Surface

    Science.gov (United States)

    Bart, G. D.; Melosh, H. J.

    2007-12-01

    We investigate the effect of regolith depth on boulder ejection velocity. A "boulder" refers to an apparently intact rock or rock fragment lying on a planetary surface, regardless of emplacement mechanism. Boulders appear in planetary images as positive relief features --- bright, sun-facing pixels adjacent to dark, shadowed pixels. We studied 12 lunar craters in high resolution (1~m) photographs from Lunar Orbiter III and V. Local regolith depth was measured using the method of small crater morphology. Ejection velocities of boulders were calculated assuming a ballistic trajectory to the final boulder location. A plot of regolith depth/crater diameter vs. maximum boulder ejection velocity shows that craters formed in deeper regolith (with respect to crater size) eject boulders at lower velocities. When ejection velocity (EjV) is in m/s, and regolith depth (Dr) and crater diameter (Dc) are in meters, the data fit the relation Dr / Dc = 1053 × EjVmax-2.823. To explain the data, we turn to impact cratering theory. An ejected particle will follow a streamline from its place of origin to its ejection point (the Z-model), and then follow a ballistic trajectory. Material ejected along more shallow streamlines is ejected at greater velocities. If shallow regolith covers the surface, the most shallow (greatest velocity) streamlines will travel only through the regolith. Boulders, however, must be ejected from the bedrock below the regolith. Thus, the boulder ejected with the greatest velocity originates just below the regolith, along the most shallow streamline through the bedrock. If the regolith is deeper, the most shallow streamline through the bedrock will be deeper, and the maximum velocity of an ejected boulder will be lower. Hence, the regolith depth and maximum ejection velocity of a boulder are correlated: greater boulder ejection velocities correspond to thinner regolith. We observe this correlation in the data.

  5. Velocity measurement by coherent x-ray heterodyning

    Energy Technology Data Exchange (ETDEWEB)

    Lhermitte, Julien R. M.; Rogers, Michael C.; Manet, Sabine; Sutton, Mark

    2017-01-01

    We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.

  6. Velocity measurement by coherent x-ray heterodyning.

    Science.gov (United States)

    Lhermitte, Julien R M; Rogers, Michael C; Manet, Sabine; Sutton, Mark

    2017-01-01

    We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.

  7. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    Science.gov (United States)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  8. Near-wall velocity measurements by Particle-Shadow-Tracking

    CERN Document Server

    Lancien, Pierre; Métivier, François; 10.1007/s00348-007-0260-z

    2009-01-01

    We report a new method to measure the velocity of a fluid in the vicinity of a wall. The method, that we call Particle-Shadow Tracking (PST), simply consists in seeding the fluid with a small number of fine tracer particles of density close to that of the fluid. The position of each particle and of its shadow on the wall are then tracked simultaneously, allowing one to accurately determine the distance separating tracers from the wall and therefore to extract the velocity field. We present an application of the method to the determination of the velocity profile inside a laminar density current flowing along an inclined plane.

  9. Near-wall velocity profile measurement for nanofluids

    OpenAIRE

    Anoop Kanjirakat; Reza Sadr

    2016-01-01

    We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase ...

  10. Digital technique for the simultaneous measurement of velocity and temperature.

    Science.gov (United States)

    Keffer, J F; Budny, R S; Kawall, J G

    1978-09-01

    A computer-oriented, hot-wire anemometer technique for the simultaneous measurement of velocity and temperature in heated turbulent flows is described. This technique involves conversion of analogue anemometer voltage signals into digital forms and processing of these latter on a digital computer, in accordance with the anemometer response equations, to obtain instantaneous temperature and velocity. The technique was tested with a heated plane jet and found to be satisfactory.

  11. Measurements of electron drift velocity in pure isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  12. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct......The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium molecular dynamics. Unlike previous equilibrium molecular dynamics...

  13. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    Science.gov (United States)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  14. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    Science.gov (United States)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  15. Using embedded fibers to measure explosive detonation velocities

    Energy Technology Data Exchange (ETDEWEB)

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  16. Measurement of Critical Impact Velocity of Copper in Tension

    Institute of Scientific and Technical Information of China (English)

    HU Jin-Wei; JIN Yang-Hui; CHEN Da-Nian; WU Shan-Xing; WANG Huan-Ran; MA Dong-Fang

    2008-01-01

    @@ Critical impact velocity (CIV) of oxygen-free high-conductivity (OFHC) copper is experimentally measured with a novel facility in a gas gun system.The results are compared with the theoretical predictions using the typical constitutive relations,and the measured CIV value is much lower than the predictions.

  17. Estimating Radar Velocity using Direction of Arrival Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  18. Normalized velocity profiles of field-measured turbidity currents

    Science.gov (United States)

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  19. Laboratory Measurements of Velocity and Attenuation in Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M

    2004-06-08

    Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile

  20. Velocity of detonation (VOD measurement techniques - practical approach

    Directory of Open Access Journals (Sweden)

    Aruna Dhanraj Tete

    2013-06-01

    Full Text Available Velocity of Detonation (VOD is an important measure characteristics parameter of explosive material. The performance of explosive invariably depends on the velocity of detonation. The power/ strength of explosive to cause fragmentation of the solid structure determine the efficiency of the Blast performed. It is an established fact that measuring velocity of detonation gives a good indication of the strength and hence the performance of the explosive. In this survey various VOD measurement techniques such as electric, nonelectric and fibre optic have been discussed. To aid the discussion some commercially available VOD meter comparison are also presented. After review of the existing units available commercially and study of their respective merits and demerits, feature of an ideal system is proposed. 

  1. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper.It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/diffusion balance time scale,defined as the ratio between the kinematic viscosity and the square of the receding velocity.At a time much larger than the diffusion/recession balance time scale,the role of the surface receding is rather important:instead of being pushed into the liquid at the receding velocity,the development of the Stokes layer is effectively prohibited by surface receding.

  2. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper. It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/ditftmion balance time scale, defined as the ratio between the kinematic viscosity and the square of the receding velocity. At a time much larger than the diffusion/recession balance time scale, the role of the surface receding is rather important: instead of being pushed into the liquid at the receding velocity, the development of the Stokes layer is effectively prohibited by surface receding.

  3. Detailed Measurement of Horizontal Groundwater Velocities Without a Borehole

    Science.gov (United States)

    Bakker, M.; Calje, R.; Van der Made, K. J.; Schaars, F.

    2014-12-01

    A new methodology has been developed to measure horizontal groundwater velocities in unconsolidated aquifers. Groundwater velocities are measured with a heat tracer experiment. Temperature is measured along fiber optic cables using a Distributed Temperature Sensing (DTS) system. Fiber optic cables and a separate heating cable are pushed into the ground to depths of tens of meters. The groundwater is heated with the heating cable and the response is measured along several nearby fiber optic cables. The measured temperature responses are used to estimate the distribution of the magnitude and direction of the horizontal groundwater velocity over the entire depth of the cables. The methodology has been applied in a phreatic aquifer in the dune area along the Dutch coast. Significant variations of groundwater velocities with depth were observed even though the dune sand is relatively homogeneous. Major advantages of the new methodology are that the fiber optic cables are in direct contact with the groundwater and that the cables and installation are relatively cheap. No expensive boreholes are needed and consequently measurements are not affected by movement and mixing of water inside a borehole.

  4. Optic-microwave mixing velocimeter for superhigh velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua [Laboratory for Shock Waves and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan 621900 (China)

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  5. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    Science.gov (United States)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  6. Measurements of Spatially Resolved Velocity Variations in Shock Compressed Heterogeneous Materials Using a Line-Imaging Velocity Interferometer

    Energy Technology Data Exchange (ETDEWEB)

    ASAY,JAMES R.; CHHABILDAS,LALIT C.; KNUDSON,MARCUS D.; TROTT,WAYNE M.

    1999-09-01

    Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.

  7. Measurements of dust deposition velocity in a wind-tunnel experiment

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2014-04-01

    Full Text Available In this study, we present the results of a wind-tunnel experiment on dust deposition. A new method is proposed to derive dust deposition velocity from the PDA (Particle Dynamics Analysis particle-velocity and particle-size measurements. This method has the advantage that the motions of individual dust particles are directly observed and all relevant data for computing dust deposition velocity is collected using a single instrument, and therefore the measurement uncertainties are reduced. The method is used in the wind-tunnel experiment to measure the dust deposition velocities for different particle sizes, wind speeds and surface conditions. For a sticky-smooth wood surface and a water surface, the observed dust deposition velocities are compared with the predictions using a dust deposition scheme, and the entire dataset is compared with the data found in the literature. From the wind-tunnel experiments, a relatively reliable dataset of dust deposition velocity is obtained, which is of considerable value for the development and validation of dust deposition schemes.

  8. Measuring of the maximum measurable velocity for dual-frequency laser interferometer

    Institute of Scientific and Technical Information of China (English)

    Zhiping Zhang; Zhaogu Cheng; Zhaoyu Qin; Jianqiang Zhu

    2007-01-01

    There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration, and electronics bandwidth. An experimental setup based on free falling movement has been demonstrated to measure the maximum easurable velocity for interferometers. Measurement results show that the maximum measurable velocity is less than its theoretical value. Moreover, the effect of kinds of factors upon the measurement results is analyzed, and the results can offer a reference for industrial applications.

  9. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  10. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment.

    Science.gov (United States)

    Ma, Teng-Fei; Chen, You-Peng; Kang, Jia; Gao, Xu; Guo, Jin-Song; Fang, Fang; Zhang, Xiao-Tian

    2016-12-01

    Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).

  11. Extraction of bulk generation lifetime and surface generation velocity in high-resistivity silicon by means of gated diodes

    CERN Document Server

    Verzellesi, G; Bosisio, L; Dalla Betta, Gian Franco; Pignatel, Giogrio Umberto

    2002-01-01

    We show that the accuracy of the gated diode method for measuring bulk generation lifetime and surface generation velocity in high resistivity silicon depends critically on the gate length of the test device, as a result of nonidealities affecting the gated diode operation. Minimization of the surface generation velocity measurement error requires the gate length to be suitably decreased, while long gate length structures are needed for accurate bulk generation lifetime extraction.

  12. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  13. Wind Velocity Decreasing Effects of Windbreak Fence for Snowfall Measurement

    Directory of Open Access Journals (Sweden)

    Ki-Pyo You

    2014-01-01

    Full Text Available Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. In order to measure the amount of snowfall, areas unaffected by wind should be found. This study tried to determine the internal wind flow inside a windbreak fence, identifying an area unaffected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis and wind tunnel test, conducted field measurements of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for decreasing wind velocity. The double fence (width 4 m, height 60 cm, and fixed on the bottom has the greatest wind velocity decrease rate at the central part of octagonal windbreak.

  14. The critical velocity and 1500-m surface performances in Finswimming.

    Science.gov (United States)

    Oshita, K; Ross, M; Koizumi, K; Kashimoto, S; Yano, S; Takahashi, K; Kawakami, M

    2009-08-01

    The purpose of this investigation was to determine whether the concepts of critical velocity (CV) and anaerobic swimming capacity (ASC) could be used by coaches as a reliable index in order to monitor 1500-m Surface (SF) performances in Finswimming. Thirteen Finswimmers (6 males and 7 females, 24+/-6 years), members of the Japanese national team, were instructed to swim three different swimming distances (400-, 800-, and 1500-m) at maximal effort in a 50m long course swimming pool. CV and the ASC were calculated using 400-m and 800-m swim times. Mean height and body mass were 170.2 cm and 69.7 kg in male and 160.5 and 61.0 kg in female. A highly positive correlation was found between the CV and the mean velocity of 1500-m SF (V1500) (r=0.91, P<0.01), but no correlation was found between the ASC and V1500. (r=0.46, P=0.11). However, a high correlation was found between the ASC and the residual error of V1500, calculated from the relationship between V1500 and the CV (r=0.89, P<0.01). These results suggest that the CV is a useful method for evaluating 1500-m SF performance and an aerobic performance expressed as the CV contributes to 1500-m SF performance.

  15. Intraglottal velocity and pressure measurements in a hemilarynx model.

    Science.gov (United States)

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-02-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model.

  16. S-wave velocity structures of the Taipei Basin, Taiwan, using microtremor array measurements

    Science.gov (United States)

    Huang, Huey-Chu; Wu, Cheng-Feng; Lee, Feng-Mei; Hwang, Ruey-Der

    2015-04-01

    The S-wave velocity structures of the Taipei Basin in Taiwan are investigated using the array records of microtremors at 15 sites. Dispersion curves at these sites are calculated using the frequency-wavenumber (F-K) spectrum method. The S-wave velocity structures in the Taipei Basin are then estimated by employing surface wave inversion technique. Harder strata sites have higher phase velocities than softer sites. If the S-wave velocity of the Tertiary Basement is assumed to be 1000 m/s, then the Quaternary alluvial thicknesses in the Taipei Basin are between about 100 m and 650 m. The thickness of the alluvium gradually increases from the southeast to the northwest. The inversion results are also in good agreement with well-logging data and seismic reflection studies of the Taipei Basin. The study concludes that microtremor array measurement is a useful tool for estimating S-wave velocity structure.

  17. Precise Measurement of Drift Velocities in Active-Target Detectors

    Science.gov (United States)

    Jensen, Louis

    2016-09-01

    Nuclear experiments with radioactive beams are needed to improve our understanding of nuclei structure far from stability. Radioactive beams typically have low beam rates, but active-target detectors can compensate for these low beam rates. In active-target detectors that are also Time-Projection Chambers (TPC), ionized electrons drift through an electric fieldto a detection device to imagethe trajectory of charged-particle ionization tracks within the chamber's gas volume. The measurement of the ionized electrons' drift velocity is crucial for the accurate imaging of these tracks. In order to measure this drift velocity, we will use a UV laser and photo-sensitive foil in a the ND-Cubedetector we are developing, periodically releasingelectrons from the foil at a known timesand a known distance from the electron detector, thereby precisely measuring the drift velocity in situ. We have surveyed several materials to find a material that will work well with typical solid-state UV lasers on the market. We plan to determine the best material and thickness of the foil to maximize the number of photoelectrons. The precision that will be afforded by this measurement of the drift velocity will allow us to eliminate a source of systematic uncertainty.

  18. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  19. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    Science.gov (United States)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  20. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  1. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  2. Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1978-01-01

    The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity.

  3. Particle Velocity Measurement for Spherical Wave in Solid

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xue-feng; WANG Zhan-jiang; LIN Jun-de; SHEN Jun-yi

    2006-01-01

    An experimental technique for research on spherical divergent wave propagation in a solid has been developed,in which the source of generating spherical wave is a center initiating explosive charge designed in a mini-spherical shape with yield equivalent to 0.125 g and 0. 486 g TNT and a set of circular electromagnetic particle velocity gages is used to record the particle velocity histories. By using the circular electromagnetic particle velocity gages, the signal outputs not only are unattenuated due to the geometrical divergence, but also represent the average of the measured dynamic states of the medium over a circle on the wavefront. The distinctive features of this technique are very useful for the study of spherical divergent wave propagation in a solid, especially in an inhomogeneous solid, and the corresponding material dynamics.Many experimental measurements were conducted in polymethylmethacrylate (PMMA) and granite by means of the technique, and the reproducibility of tests was shown to be good. The measurement technique of the circular electromagnetic particle velocity gages is also suitable to the case of cylindrical wave.

  4. High resolved velocity measurements using Laser Cantilever Anemometry

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2016-11-01

    We have developed a new anemometer, namely the 2d-LCA (2d-Laser-Cantilever-Anemometer), that is capable of performing high resolved velocity measurements in fluids. The anemometer uses a micostructured cantilever made of silicon as a sensing element. The specific shape and the small dimensions (about 150µm) of the cantilever allow for precise measurements of two velocity component at a temporal resolution of about 150kHz. The angular acceptance range is 180° in total. The 2d-LCA is a simple to use alternative to x-wires and can be used in many areas of operation including measurements in liquids or in particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high-speed flows. In the recent past new cantilever designs were implemented with the goal to further improve the angular resolution and increase the stability. In addition, we have designed more robust cantilevers for measurements in rough environments such as offshore areas. Successful comparative measurements with hot-wires have been carried out in order to assess the performance of the 2d-LCA.

  5. Reconstruction of ocean velocities from the synergy between SSH and SST measurements

    Science.gov (United States)

    Isern-Fontanet, Jordi; Turiel, Antonio

    2013-04-01

    Recent advances in our understanding of the dynamics in the upper layers of the ocean have allowed us to develop methodologies to recover high resolution velocities from surface measurements such as Sea Surface Heights (SSH) and Sea Surface Temperatures (SST). These methods are based on the combined use of advanced signal processing techniques, such as wavelet analysis and singularity analysis, with dynamical approaches such as the Surface Quasi-Geostrophic (SQG) equations. Within the SQG framework, SSH and SST are closely related, which can be exploited to develop a synergetic approach that combines existing satellite measurements of these fields that can be used to recover subsurface buoyancy anomaly, surface and subsurface horizontal velocities and vertical velocities in the upper 300-500 m. Sentinel-3 satellite will follow its predecessors, ERS-1/2 and Envisat, and will provide simultaneous measurements of SST (SLSTR instrument) and SSH (SRAL and auxiliary instruments) that can be combined to produce high resolution surface currents. To test the feasibility of this approach for Sentinel-3 satellites we have reconstructed surface currents from AATSR and RA data provided by Envisat and compared results against independent SSH measurements provided Jason-1/2 platforms.

  6. Comparison of the terminal fall velocity, surface roughness and erosion threshold for volcanic particles.

    Science.gov (United States)

    Douillet, G. A.; Seybold, L.; Rasmussen, K. R.; Kueppers, U.,; Lo Castro, D.; Dingwell, D. B.

    2012-04-01

    Pyroclasts are particles emitted during explosive volcanic eruptions. They exhibit highly variable porosities, shapes, and densities. As such, their behaviors differ from the wind-blown and fluvial sand usually studied in clastic sedimentology. In order to better constrain the specificities of pyroclastic material, and gain insights into the flow and depositional processes within dilute pyroclastic density currents, the terminal fall velocity was experimentally measured in air and compared to surface roughness and saltation threshold data obtained from wind tunnel experiments as well as with shape parameters. Two types of particles were investigated (scoriaceous material and pumices), as well as different grain sizes (0.125-4mm for scoria and 0.125-16mm for pumices in half phi fractions). The terminal fall velocity corresponds to the velocity for which the drag exerted by air on a particle counteracts its weight, so that acceleration becomes null and the velocity constant. In order to measure the terminal fall velocity, particles were dropped in a closed and large vertical tube (to avoid any perturbation by air movement present in the lab) and the velocity derived from high speed video recorded near the bottom of the tube. By repeating the experiments from different heights, the velocity was seen to increase with increasing drop-height, until reaching a constant value, taken as the terminal fall velocity. The surface roughness is a value that defines how rough a bed of particles is seen by a wind. The saltation threshold corresponds to the near-bed shear-stress necessary for particles to leave the surface and begin to bounce on the bed. Both are derived from wind profiles experimentally measured in a wind tunnel in Aarhus (Denmark; see abstract 2128). Shape parameters were measured with a Camsizer (from Retsch) in Catania (Italy) and the sphericity, symmetry, aspect ratio, and convexity derived. Since the surface roughness, saltation threshold, and terminal fall

  7. Dwarf Galaxies in the Coma Cluster: I. Velocity Dispersion Measurements

    CERN Document Server

    Kourkchi, E; Carter, D; Karick, A M; Mármol-Queraltó, E; Chiboucas, K; Tully, R B; Mobasher, B; Guzmán, R; Matković, A; Gruel, N

    2011-01-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21measurement of the velocity dispersion and their error estimates. The measurements were performed using {\\it pPXF (penalised PiXel Fitting)} and using the Calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson...

  8. Research on the photoelectric measuring method of warhead fragment velocity

    Science.gov (United States)

    Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan

    2016-09-01

    The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.

  9. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-06-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of a pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g. horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  10. Velocity measurements in jets with application to noise source modeling

    Science.gov (United States)

    Morris, Philip J.; Zaman, K. B. M. Q.

    2010-02-01

    This paper describes an experimental investigation of the statistical properties of turbulent velocity fluctuations in an axisymmetric jet. The focus is on those properties that are relevant to the prediction of noise. Measurements are performed using two single hot-wire anemometers as well as a two-component anemometer. Two-point cross correlations of the axial velocity fluctuations and of the fluctuations in the square of the axial velocity fluctuations are presented. Several reference locations in the jet are used including points on the jet lip and centerline. The scales of the turbulence and the convection velocity are determined, both in an overall sense as well as a function of frequency. The relationship between the second and fourth order correlations is developed and compared with the experimental data. The implications of the use of dimensional as well as non-dimensional correlations are considered. Finally, a comparison is made between the length scales deduced from the flow measurements and a RANS CFD calculation.

  11. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Science.gov (United States)

    Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.

    2013-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  12. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-10-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  13. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  14. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  15. Measuring melt and velocity of Alaskan mountain glaciers using phase-sensitive radar and differential GPS

    Science.gov (United States)

    Neuhaus, S.; Tulaczyk, S. M.

    2015-12-01

    Alaskan glaciers show some of the highest rates of retreat worldwide, contributing to sea level rise. This retreat is due to both increased velocity and increased melt. We seek to understand the role of glacial meltwater on velocity. Matanuska glacier, a land terminating glacier in Alaska, has been well-studied using traditional glaciological techniques, but new technology has emerged that allows us to measure melt and velocity more accurately. We employed high-resolution differential GPS to create surface velocity profiles across flow in the ablation zone during the summer of 2015. We also measured surface ablation using stakes and measured basal melt using phase-sensitive radar designed by the British Antarctic Survey. The positions acquired by differential GPS are obtained to a resolution of less than 0.5m, while feature tracking using time-lapse photography for the same time period yields positions with greater and more variable uncertainty. The phase-sensitive radar provides ice thinning rates. Phase-sensitive radar together with ground penetrating radar provides us with an understanding of the internal structure of the glacier. This suite of data allows us to determine the relative importance of surface melt, basal melt, and internal deformation on ice velocity in warm mountain glaciers.

  16. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  17. Comparison of sprinkler droplet size and velocity measurements using a laser precipitation meter and photographic method

    Science.gov (United States)

    Kinetic energy of water droplets has a substantial effect on development of a soil surface seal and infiltration rate of bare soil. Methods for measuring sprinkler droplet size and velocity needed to calculate droplet kinetic energy have been developed and tested over the past 50 years, each with ad...

  18. Topographic Influence on Near-Surface Seismic Velocity in southern California

    Science.gov (United States)

    Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.

    2016-12-01

    Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment

  19. Coseismic and postseismic velocity changes measured by repeating earthquakes

    Science.gov (United States)

    Schaff, David P.; Beroza, Gregory C.

    2004-10-01

    Repeating earthquakes that rupture approximately the same fault patch and have nearly identical waveforms are a useful tool for measuring temporal changes in wave propagation in the Earth's crust. Since source and path effects are common to all earthquakes in a repeating earthquake sequence (multiplet), differences in their waveforms can be attributed to changes in the characteristics of the medium. We have identified over 20 multiplets containing between 5 and 40 repeating events in the aftershock zones of the 1989 Loma Prieta and 1984 Morgan Hill, California, earthquakes. Postmain shock events reveal delays of phases in the early S wave coda of as much as 0.2 s relative to premain shock events. The delay amounts to a path-averaged coseismic velocity decrease of about 1.5% for P waves and 3.5% for S waves. Since most of the multiplets are aftershocks and follow Omori's law, we have excellent temporal sampling in the immediate postmain shock period. We find that the amplitude of the velocity decrease decays logarithmically in time following the main shock. In some cases it returns to the premain shock values, while in others it does not. Similar results are obtained for the Morgan Hill main shock. Because the fractional change in S wave velocity is greater than the fractional change in P wave velocity, it suggests that the opening or connection of fluid-filled fractures is the underlying cause. The magnitude of the velocity change implies that low effective pressures are present in the source region of the velocity change. Our results suggest that the changes are predominantly near the stations and shallow, but we cannot exclude the possibility that changes occur at greater depth as well. If the variations are shallow, we may be detecting the lingering effects of nonlinearity during main shock strong ground motion. If the variations are deep, it suggests that pore pressures at seismogenic depths are high, which would likely play a key role in the earthquake process.

  20. Measuring In-Situ Mdf Velocity Of Detonation

    Science.gov (United States)

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  1. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-10-01

    Full Text Available surface current velocities for oceanographic research are assessed. ASAR surface current velocities are compared to surface drifter data and merged altimetry observations. Maps of sea surface temperature are used to establish the ASAR’s capacity to capture...

  2. Surface wave group velocity tomography of East Asia, part 1

    Science.gov (United States)

    Wu, Francis T.

    1993-07-01

    Group velocities of both Rayleigh and Love waves are used in a tomographic inversion to obtain group velocity maps of East Asia (60 deg E-140 deg E and 20 deg N-50 deg N). The period range studied is 30-70 seconds. For periods longer than 40 seconds, a high group velocity gradient clearly exists along longitude 105 deg E; the velocities are noticeably higher east of this longitude than west of this longitude. The Tibetan Plateau appears as a prominent low velocity (about 15%) structure in this area; central Tibet appears as the area with the lowest velocity. The North China Plain is an area of high velocities, probably as a result of thin crust. The variability of deep crustal and upper mantle structures underneath the different tectonic provinces in the study can clearly be seen. In a separate study, using the dataset above and that from the former Soviet Union, we have derived the Rayleigh tomographic images of a larger area (40 deg E-160 deg E and 20 deg N-70 deg N). While the Tibetan plateau still remains to be the most prominent low velocity features, two other features are also clear, a very high velocity Siberian platform and a high velocity ridge extending from Lake Baikal to Central Mongolia. These studies are useful in delineating tectonics.

  3. A potential issue for the OPERA neutrino velocity measurement

    CERN Document Server

    Palazzo, Antonio

    2011-01-01

    We discuss what we think may be a potential issue for the OPERA neutrino velocity measurement, in connection with the statistical procedure employed for the extraction of the neutrino time of flight. We show that such a potential problem may have eluded the Monte Carlo tests performed by the collaboration. Only the collaboration has the information necessary to clarify the issue, make quantitative estimates and trace definitive conclusions.

  4. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    Science.gov (United States)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  5. Instantaneous velocity profile measurements in a turbulent boundary layer

    Science.gov (United States)

    Robinson, S. K.

    1986-01-01

    Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat-plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained using a buried-wire, wall shear gage and a hot-wire rake positioned in the log region of the flow. Fluctuations of the instantaneous U(+) versus Y(+) profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high, and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events), and to estimate their mean frequency of occurrence. Events characterized by large aand sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.

  6. Seeing-Induced Errors in Solar Doppler Velocity Measurements

    CERN Document Server

    Padinhatteeri, Sreejith; Sankarasubramanian, K; 10.1007/s11207-010-9597-1

    2010-01-01

    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocitie...

  7. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    Science.gov (United States)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  8. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen [Shanghai Institute of Laser Plasma, P.O. BOX 800-229, Shanghai 201800 (China)

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  9. Dynamic contact angle measurements on superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  10. Deriving glacier surface velocities from repeat optical images

    OpenAIRE

    Heid, Torborg

    2011-01-01

    The velocity of glaciers is important for many aspects in glaciology. Mass accumulated in the accumulation area is transported down to the ablation area by deformation and sliding due to the gravitational force, and hence gla­cier velocity is connected to the mass balance of glaciers. It also contributes directly to the mass balance of calving glaciers because it is an important control of the ice discharge rate for such glaciers. Changing glacier velocities is an indicator of instable glacie...

  11. Coherent Laser Instrument Would Measure Range and Velocity

    Science.gov (United States)

    Chang, Daniel; Cardell, Greg; San Martin, Alejandro; Spiers, Gary

    2005-01-01

    A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic

  12. Measurement of the velocity field behind the automotive vent

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2012-04-01

    Full Text Available Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  13. Measurement of the velocity field behind the automotive vent

    Science.gov (United States)

    Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav

    2012-04-01

    Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  14. Measurement of Damage Velocities in Bullet Impacts of Transparent Armor

    Science.gov (United States)

    Anderson, Charles; Bigger, Rory; Weiss, Carl

    2013-06-01

    A series of impact experiments have been conducted to examine the response of transparent material to ballistic impact. The experiments consisted of impacting 15 mm of borosilicate glass back by 9.5 mm of Lexan. The projectile was a 0.30-cal hard steel bullet designed specifically for the experiments. Residual velocities and the residual length of the bullets (which were soft-recovered in a catch box) were measured as a function of impact velocity. High-speed imaging of the impact event and post-test analysis has permitted quantification of damage propagation and the rate of propagation. The results of several experiments are presented and compared to edge-on impact experiments that have been conducted by Strassburger et al..

  15. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika

    2009-01-01

    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  16. Unsteady velocity measurements in a realistic intracranial aneurysm model

    Science.gov (United States)

    Ugron, Ádám; Farinas, Marie-Isabelle; Kiss, László; Paál, György

    2012-01-01

    The initiation, growth and rupture of intracranial aneurysms are intensively studied by computational fluid dynamics. To gain confidence in the results of numerical simulations, validation of the results is necessary. To this end the unsteady flow was measured in a silicone phantom of a realistic intracranial aneurysm. A flow circuit was built with a novel unsteady flow rate generating method, used to model the idealised shape of the heartbeat. This allowed the measurement of the complex three-dimensional velocity distribution by means of laser-optical methods such as laser doppler anemometry (LDA) and particle image velocimetry (PIV). The PIV measurements, available with high temporal and spatial distribution, were found to have good agreement with the control LDA measurements. Furthermore, excellent agreement was found with the numerical results.

  17. Precision measurement of the carrier drift velocities in <100> silicon

    CERN Document Server

    Scharf, C

    2015-01-01

    Measurements of the drift velocities of electrons and holes as functions of electric field and temperature in high-purity n- and p-type silicon with crystal orientation are presented. The measurements cover electric field values between 2.4 and 50 kV/cm and temperatures between 233 and 333 K. Two methods have been used for extracting the drift velocities from current transient measurements: A time-of-flight (tof) method and fits of simulated transients to the measured transients, with the parameters describing the field and temperature dependence of the electron and hole mobilities as free parameters. A new mobility parametrization, which also provides a better description of existing data than previous ones, allowed an extension of the classical tof method to the situation of non-uniform fields. For the fit method, the use of the convolution theorem of Fourier transforms enabled us to precisely determine the electronics transfer function of the complete set-up, including the sensor properties. The agreement...

  18. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  19. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  20. Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis

    Science.gov (United States)

    Pillet, R.; Rouland, D.; Roult, G.; Wiens, D. A.

    1999-02-01

    with most of previous studies: the tomographic imaging shows a large contrast between low and high phase velocities along the Solomon, New Hebrides and Fiji-Tonga trenches. The lowest phase velocity anomalies are distributed beneath northern and southern Fiji basins and the Lau basin (corresponding to the volume situated just above the dipping slabs), whereas the highest values are displayed beneath the Pacific plate and the eastern part of Indian plate downgoing under the North Fiji basin. At shorter periods, our results show that the phase velocity distributions are well correlated with the large structural crustal domains. The use of local temporary broadband stations in the central part of the studied area gives us the opportunity to observe surface waves showing well-dispersed trains, allowing extended velocity measurements down to 8 s although aliasing due to multipaths become important. The continental regions (Eastern Australia, New Guinea, Fiji islands and New Zealand) show low velocities which are likely due to thick continental crust, whereas the Tasmanian, D'Entrecasteaux, and the Northern and Southern Fiji basins are characterized by higher velocities suggesting thinner oceanic crust. Additional analysis including the anisotropic case and S-wave velocity inversion with depth is in progress.

  1. Measurements of parallel electron velocity distributions using whistler wave absorption.

    Science.gov (United States)

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  2. Velocity-selective EIT measurement of potassium Rydberg states

    CERN Document Server

    Xu, Wenchao

    2016-01-01

    We demonstrate a velocity selection scheme that mitigates suppression of electromagnetically induced transparency (EIT) by Doppler shifts for low--high EIT probe--coupling wavelength ordering. An optical pumping beam counter-propagating with the EIT probe beam transfers atoms between hyperfine states in a velocity selective fashion. Measurement of the transmitted probe beam synchronous with chopping of the optical pumping beam enables a Doppler-free EIT signal to be detected. Transition frequencies between 5P$_{1/2}$ and $n$S$_{1/2}$ states for $n=$26, 27, and 28 in $^{39}$K are obtained via EIT spectroscopy in a heated vapor cell with a probe beam stabilized to the 4S$_{1/2}\\rightarrow$5P$_{1/2}$ transition. Using previous high-resolution measurements of the 4S$_{1/2}\\rightarrow$nS$_{1/2}$ transitions, we make a determination of the absolute frequency of the 4S$_{1/2}\\rightarrow$5P$_{1/2}$ transition. Our measurement is shifted by 560 MHz from the currently accepted value with a two-fold improvement in uncer...

  3. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.;

    1999-01-01

    at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...

  4. Low-cost optoelectronic devices to measure velocity of detonation

    Science.gov (United States)

    Chan, Edwin M.; Lee, Vivian; Mickan, Samuel P.; Davies, Phil J.

    2005-02-01

    Velocity of Detonation (VoD) is an important measured characteristic parameter of explosive materials. When new explosives are developed, their VoD must be determined. Devices used to measure VoD are always destroyed in the process, however replacing these devices represents a considerable cost in the characterisation of new explosives. This paper reports the design and performance of three low-cost implementations of a point-to-point VoD measurement system, two using optical fibre and a third using piezoelectric polymers (PolyVinyliDine Flouride, PVDF). The devices were designed for short charges used under controlled laboratory conditions and were tested using the common explosive 'Composition B'. These new devices are a fraction of the cost of currently available VoD sensors and show promise in achieving comparable accuracy. Their future development will dramatically reduce the cost of testing and aid the characterisation of new explosives.

  5. Measurement of surface roughness

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with two 3 hours laboratory exercises that are part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratories include a demonstration of the function of roughness measuring instruments plus a series of exercises illustrating roughness measurement...

  6. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  7. Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities

    Science.gov (United States)

    Kavanaugh, J. L.; Cuffey, K. M.; Morse, D. L.; Conway, H.; Rignot, E.

    2009-11-01

    Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a “cascade” it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.

  8. Surface Ice Velocity Retrieval From MOA Based On NCC Feature Tracking

    Science.gov (United States)

    Li, T.; Liu, Y.; Cheng, X.

    2016-12-01

    The velocity of glacier in Antarctica is a fundamental parameter to ice dynamics and projection of sea level rise, and it is as well the key indicator of global climate change. COSI-Corr, an extension of ENVI software, was employed to acquire the horizontal velocity of ice flows throughout the whole Antarctica continent from 2003-2004 and 2008-2009 MOA (MODIS Mosaic of Antarctica) compiled by NSIDC. However, conventional tracking methods severely suffer from spurious matching resulting from ice surface's variation, illumination condition, inappropriate window size etc. So it is indispensable to correct the initial output field contaminated by noises before extracting valuable information. Usually, the low-SNR areas, which denote quite poor quality, are filtered out directly based on some roles of thumb. Here we have some experiments to test performance of FFT (Fast Fourier Transform) and SVD (Singularity Value Decomposition) of optimizing the estimation by cutting image into overlapped tiles. Validation was conducted by comparing the final result with respect to MEaSUREs in typical flow areas including inland stream and ice shelves. The primitive results shows that both methods can reduce RMSE to an extent of 20% 40% but FFT performs more robust. Our result shows that MOA datasets, which highlight true surface morphology, have potential for continental ice surface velocity's retrieval.

  9. A geomorphic and morphometric analysis of surface ice velocity variation of different valley type glaciers

    Science.gov (United States)

    Tiwari, R. K.; Garg, P. K.; Shukla, A.; Ahluwalia, R. S.; Singh, N.; Chauhan, P.

    2016-05-01

    Glacier surface ice velocity is one of the important parameters which determine the glacier dynamics. If the surface ice velocity is high in upper zone (accumulation zone) of the glacier, more ice is brought to the lower zone (ablation zone) of the glacier where it melts more rapidly. The surface ice velocity depends on multiple factors like geomorphology of a glacier and glacier valley, ice load, orientation of the glacier, slope and debris cover. In this study, we have used latest multi-temporal Landsat-8 satellite images to calculate the surface ice velocity of different glaciers from the Himalayan region and a relationship of velocity and geomorphology and geo-morphometry of the glacier has been studied. The standard procedure has been implied to estimate the glacial velocity using image to image correlation technique. The geo-morphometric parameters of the glacier surface have been derived using SRTM 90 m global DEM. It has been observed that the slope of the glacier is one of the main factors on which the velocity is dependent i.e. higher the slope higher is the velocity and more ice is brought by the glacier to the ablation zone. The debris cover over the glacier and at the terminus also affects the velocity of the glacier by restricting ice flow. Thus, observations suggest that the geomorphology and geo-morphometry of the glacier has a considerable control on the surface ice velocity of the glacier.

  10. Spatiotemporal variations in the surface velocities of Antarctic Peninsula glaciers

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-11-01

    Full Text Available Velocity is an important parameter for the estimation of glacier mass balance, which directly signals the response of glaciers to climate change. Antarctic ice sheet movement and the associated spatiotemporal velocity variations are of great significance to global sea level rise. In this study, we estimate Antarctic Peninsula glacier velocities using the co-registration of optically sensed images and correlation (hereafter referred to as COSI-Corr based on moderate-resolution imaging spectroradiometer Level 1B data (hereafter referred to as MODIS L1B. The results show that the glaciers of Graham Land and the Larsen Ice Shelf have substantially different velocity features. The Graham Land glaciers primarily flow from the peninsula ridge towards the Weddell Sea and Bellingshausen Sea on the east and west sides, respectively. There are very large velocity variations among the different ice streams, with a minimum of −1 and a maximum of 1500 m a−1 (with an average of 100–150 m a−1. Over the period 2000–2012, the glaciers of Graham Land accelerated in the south but slowed down in the north. In contrast, the Larsen Ice Shelf flows in a relatively uniform direction, mainly towards the northeast into the Weddell Sea. Its average velocity is 750–800 m a−1 and the maximum is > 1500 m a−1. During the period 2000–2012, the Larsen Ice Shelf experienced significant acceleration. The use of COSI-Corr based on MODIS L1B data is suitable for glacier velocity monitoring on the Antarctic Peninsula over long time series and large spatial scales. This method is clearly advantageous for analysing macro-scale spatiotemporal variations in glacier movement.

  11. Estimation of pressure-particle velocity impedance measurement uncertainty using the Monte Carlo method.

    Science.gov (United States)

    Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A

    2011-07-01

    The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.

  12. Absolute velocity measurements in the solar transition region and corona

    Science.gov (United States)

    Hassler, D. M.; Rottman, G. J.; Orrall, F. Q.

    An experimental technique is presented to measure absolute velocities of minor ions formed in the solar transition region and corona. A sounding rocket experiment July 27 1987 obtained high resolution EUV spectra along a solar diameter with spatial resolution of 20 x 20 arcsec. The wavelengths of the 1533 Si II, 1548 C IV, and 770 Ne VIII emission lines were directly compared with wavelengths of known platinum lines generated by an inflight calibration lamp. On the assumption that horisontal motions cancel statistically so that the line-of-sight velocity approaches zero at the limb, a net radial downflow of approximately 7.5 + or - 1.0 km/s was found for C IV and upper limits were found on the radial flow for Si II and Ne VIII. This assumption was tested by direct comparison to the on-board wavelength reference using recently published laboratory rest wavelengths of the solar emission lines. Agreement was found within the published uncertainties of the laboratory wavelengths + or - 2 km/s in the case of C IV. It is suggested that improved laboratory wavelength measurements (+ or - 1 km/s) in conjunction with inflight wavelength calibration would improve constraints on models of transition region and coronal dynamics.

  13. Comprehensive spatiotemporal glacier and ice sheet velocity measurements from Landsat 8

    Science.gov (United States)

    Moon, Twila; Fahnestock, Mark; Scambos, Ted; Klinger, Marin; Haran, Terry

    2015-04-01

    Combining newly developed software with Landsat 8 image returns, we are now producing broad-coverage ice velocity measurements on weekly to monthly scales across ice sheets and glaciers. Using new image-to-image cross correlation software, named PyCorr, we take advantage of the improved radiometric resolution of the Landsat 8 panchromatic band to create velocity maps with sub-pixel accuracy. Landsat 8's 12-bit radiometric resolution supports measurement of ice flow in uncrevassed regions based on persistent sastrugi patterns lasting weeks to a few months. We also leverage these improvements to allow for ice sheet surface roughness measurements. Landsat 8's 16-day repeat orbit and increased image acquisition across the Greenland and Antarctic ice sheets supports development of seasonal to annual ice sheet velocity mosaics with full coverage of coastal regions. We also create time series for examining sub-seasonal change with near real time processing in areas such as the Amundsen Sea Embayment and fast flowing Greenland outlet glaciers. In addition, excellent geolocation accuracy enables velocity mapping of smaller ice caps and glaciers, which we have already applied in Alaska and Patagonia. Finally, PyCorr can be used for velocity mapping with other remote sensing imagery, including high resolution WorldView satellite data.

  14. Improved technique for blood flow velocity measurement using Doppler effect

    Science.gov (United States)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  15. The Characteristics of Near-surface Velocity During the Upwelling Season on the Northern Portugal Shelf

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Observations made on the northern Portugal mid-shelf between May 13 and June 15, 2002 were used to characterise the near-surface velocity during one upwelling season. It was found that in the surface mixed layer, the 'tidal current' was diurnal, but the tidal elevation was semi-diurnal. Both the residual current and the major axes of all tidal constituents were nearly perpendicular to the isobaths and the tidal current ellipses rotated clockwise; the major axis of the major tidal ellipse was about 3 cm s-1. The extremely strong diurnal current in the surface layer was probably due to diurnal heating, cooling, and wind mixing that induced diurnal oscillations, including the diurnal oscillation of wind stress. This is a case different from the results measured in the other layers in this area. The near-inertial spectral peaks occurred with periods ranging from 1 047 min to 1 170 min, the longest periods being observed in deeper layers, and the shortest in the surface layer. Weak inertial events appeared during strong upwelling events, while strong inertial events appeared during downwelling or weak subinertial events. The near-inertial currents were out of phase between 5 m and 35 m layers for almost the entire measurement period, but such relationship was very weak during periods of irregular weak wind. Strong persistent southerly wind blew from May 12 to 17 and forced a significant water transport onshore and established a strong barotropic poleward jet with a surface speed exceeding 20 cm s-1. The subinertial current was related to wind variation, especially in the middle layers of 15 m and 35 m, the maximum correlation between alongshore current and alongshore wind was about 0.5 at the 5 m layer and 0.8 at the 35 m layer. The alongshore current reacted more rapidly than the cross-shore current. The strongest correlation was found at a time lag of 20 h in the upper layer and of 30 h in the deeper layer. The wind-driven surface velocity obtained from the PWP model

  16. INCREASING MEASUREMENT ACCURACY IN ELECTRO-OPTICAL METHOD FOR MEASURING VELOCITY OF DETONATION

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2014-12-01

    Full Text Available In addition to other detonation parameters detonation velocity is a value that provides indirect information on the strength i.e. brisance of an explosive and explosive performance. In addition to that, detonation velocity is a value which can be measured in a relatively simpler and more precise manner, by developed and accessible methods when compared to other detonation parameters Due to its simple use, compact instruments and satisfactory accuracy, electro-optical method of detonation velocity measurement is widely used. The paper describes the electro-optical measurement method and points out the factors that affect its accuracy. The accuracy of measurement is increased and measurement uncertainty is reduced by the measurement result analysis with the application of different measurement setups.

  17. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  18. Automated inter-station phase velocity measurements across the eastern Mediterranean and Middle East

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Soomro, Riaz; Lebedev, Sergi; Meier, Thomas

    2016-04-01

    The structure of the lithosphere in northeastern Africa, eastern Mediterranean and the Middle East is highly variable. It ranges from young oceanic lithosphere in the Red Sea to what is considered the oldest oceanic lithosphere on Earth in the Mediterranean Sea north of Libya, and from highly deformed continental lithosphere at the east-Mediterranean margins to more stable continental lithosphere of Phanerozoic origin and to cratonic lithosphere beneath the Arabian Peninsula. Details of the lithospheric structure are, however, poorly known. Surface waves are ideally suited for studies of the lithosphere and the sublithospheric mantle. Our goal is to better define the 3D lithospheric shear-wave velocity structure within this region by surface wave tomography. Using regional to teleseismic Rayleigh and Love waves that traverse the area we can obtain information about its seismic structure by examining phase velocities as a function of frequency. A newly developed algorithm for automated inter-station phase velocity measurements (Soomro et al. 2016) is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 3800 regional and teleseismic earthquakes recorded by more than 1850 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, is also included in the analysis. For each station pair approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the weighted cross correlation functions. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. Parameters tests and preliminary results of automatically measured phase velocities are

  19. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    Science.gov (United States)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117

  20. Detailed documentation of dynamic changes in flow depth and surface velocity during a large flood in a steep mountain stream

    Science.gov (United States)

    Asano, Yuko; Uchida, Taro

    2016-10-01

    Understanding the discharge capacity of channels and changes in hydraulic properties during large storms is essential for prediction of flash floods. However, such information is limited for steep mountain channels because of their complex nature and the lack of measured data. Thus, we obtained detailed water-level and surface-velocity data during large floods of a steep mountain channel, and documented how complex channel morphology affected water flow during large storms. We installed water-level and surface-velocity sensors at a cascade and at a pool that was 10 m downstream at the Aono Research Forest of the Arboricultural Research Institute of the University of Tokyo Forests in Japan. We successfully obtained 1-min interval data for a major storm with total precipitation of 288 mm that fell over 59 h and a maximum rainfall intensity of 25 mm/h. During the storm, height of the water surface from the deepest point of each cross section ranged from 0.35 to 1.57 m and surface velocity ranged from 0.35 to 4.15 m/s. As expected, the changes in flow depth, surface velocity, and velocity profiles were complex and differed even between the cascade and adjacent pool cross sections. Dramatic changes in flow conditions first occurred at the cascade when discharge increased to a certain point, when water suddenly stagnated at the foot of the cascade and submerged flow might have occurred. Thereafter, the water level increased remarkably but surface velocity and the velocity profile stayed almost constant at the cascade cross section. At the downstream pool, where most rocks were submerged at a mean water depth of 0.7 m, surface velocity suddenly increased dramatically and the velocity profile changed as very slow flow developed in the lower portion of the profile, while water levels increased only slightly. When the rainfall diminished, first, the surface velocity markedly declined, then the velocity profile returned to its original state at the pool, and then submerged

  1. Velocity field measurements in the wake of a propeller model

    Science.gov (United States)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  2. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  3. Force-Velocity Measurements of a Few Growing Actin Filaments

    Science.gov (United States)

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  4. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  5. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  6. Measurement of rectangular surface mobility of an infinite plate

    Institute of Scientific and Technical Information of China (English)

    DAI Jue

    2001-01-01

    A measuring method of surface mobility for an infinite plate subject to a uniform conphase velocity excitation is investigated. In the measurement, a finite plate is employed to simulate an infinite plate and a rigid cone is used to make a uniform conphase velocity excitation. A method to deduct the affect of additional mass is derived: The results of the measurement agree with that calculated theoretically.

  7. Wind velocity measurements under turbulent conditions using a sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Heisselmann, Hendrik; Hoelling, Michael; Schulte, Bianca; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    A well known problem of cup anemometry is the so-called overspeeding due to its momentum of inertia. As in nature turbulent flow conditions are predominant, cup anemometry leads to a wrong estimation of wind speeds. While cup anemometers do not provide the necessary time resolution to measure high frequency wind fluctuations, hot-wire anemometers are easily damaged under rough weather conditions. Therefore a robust, fast responding sphere anemometer was developed. The anemometer uses the thrust generated by the drag force on a sphere mounted on a flexible rod to detect wind velocities in two dimensions. The deflection of the rod is proportional to the drag force and can be measured either by means of a light pointer or by use of strain gauges. The two different measurement techniques were compared. The dynamic behaviour of the thrust anemometer was studied under laboratory conditions using a wind gust generator. The characteristics of different sphere-types and different rod materials were evaluated in order to optimize the setup. Results of open air measurements with hot-wire anemometer, sonic anemometer and sphere anemometer were compared by statistical methods.

  8. Monolithic interferometer for high precision radial velocity measurements

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian

    2009-08-01

    In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.

  9. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  10. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    Science.gov (United States)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  11. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  12. Experimental study of the free surface velocity field in an asymmetrical confluence

    Science.gov (United States)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows

  13. Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules.

    Science.gov (United States)

    Gai, Hongwei; Li, Ying; Silber-Li, Zhanhua; Ma, Yinfa; Lin, Bingcheng

    2005-04-01

    A laser-induced fluorescence imaging method was developed to simultaneously measure flow velocities in the middle and near wall of a channel with particles or single molecules, by selectively switching from the wide field excitation mode to the evanescent wave excitation mode. Fluorescent microbeads with a diameter of 175 nm were used to calibrate the system, and the collisions of microbeads with channel walls were directly observed. The 175 nm microbeads velocities in the main flow and at 275 nm from the bottom of the channel were measured. The measured velocities of particles or single molecules in two positions in a microchannel were consistent with the calculated value based on Poiseuille flow theory when the diameter of a microbead was considered. The errors caused by Brownian diffusion in our measurement were negligible compared to the flow velocity. Single lambda DNA molecules were then used as a flowing tracer to measure the velocities. The velocity can be obtained at a distance of 309.0 +/- 82.6 nm away from bottom surface of the channel. The technique may be potentially useful for studying molecular transportation both in the center and at the bottom of the channel, and interactions between molecules and microchannel surfaces. It is especially important that the technique can be permitted to measure both velocities in the same experiment to eliminate possible experimental inconsistencies.

  14. An experimental study on low-velocity low-gravity collisions into granular surfaces

    Science.gov (United States)

    Sunday, C.; Murdoch, N.; Mimoun, D.

    2014-07-01

    The Japanese Space Agency (JAXA) is scheduled to launch the asteroid sample-return mission, Hayabusa-2, to target body 1999 JU_3 in December 2014 [1]. The spacecraft will arrive at the C-type near-Earth asteroid in mid-2018 and deploy several science payloads to its surface. Among these payloads is a 10-kg lander, the Mobile Asteroid Surface Scout (MASCOT), provided by the German Space Agency (DLR) with cooperation from the Centre National d'Etudes Spatiales (CNES). MASCOT will reach the asteroid's surface with an anticipated impact speed of 10--20 cm/s. In addition to housing four instruments for in-situ science investigation, MASCOT contains a mobility mechanism that will correct its orientation and enable it to ''hop'' to various measurement sites [2]. Based on thermal infrared observations [3,4,5] and previous space missions [6,7], it is strongly believed that 1999 JU_3 is covered by loose regolith. The asteroid's granular surface, in combination with the low surface gravity, makes it difficult to predict the lander's collision behavior from existing theoretical models. However, to ensure that MASCOT can successfully fulfill its mission, it is vital to understand the rebound dynamics of the lander in the asteroid surface environment. The objective of this work, derived from the needs of current and future asteroid missions, is to present an experiment designed to study low-velocity, low-gravity collisions into granular surfaces. The experiment measures the amount of energy lost during impact via a projectile's coefficient of restitution and also the acceleration profile of the projectile during collision. The key challenge to designing an asteroid collision experiment is finding a way to simulate reduced gravity conditions on the Earth so that the prevailing forces in micro-gravity collisions can be reflected in the experimental results. The proposed way to achieve this goal is to let a free-falling projectile impact a surface with a constant downward

  15. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year

    Science.gov (United States)

    Krimmel, R.M.

    1994-01-01

    Winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, Wash., to determine the winter and net balance for the 1993 balance year. The 1993 winter balance, averaged over the glacier, was 1.98 meters, and the net balance was -1.23 meters. This negative valance continued a trend of negative balance years beginning in 1977. Air temperature, barometric pressure, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. Surface ice velocity was measured over an annual period. This report makes all these data available to users throughout the glaciological and climato1ogical community.

  16. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  17. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    Science.gov (United States)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  18. Comparing radial velocities of atmospheric lines with radiosonde measurements

    CERN Document Server

    Figueira, P; Chacon, A; Lovis, C; Santos, N C; Curto, G Lo; Sarazin, M; Pepe, F

    2011-01-01

    The precision of radial velocity (RV) measurements depends on the precision attained on the wavelength calibration. One of the available options is using atmospheric lines as a natural, freely available wavelength reference. Figueira et al. (2010) measured the RV of O2 lines using HARPS and showed that the scatter was only of ~10 m/s over a timescale of 6 yr. Using a simple but physically motivated empirical model, they demonstrated a precision of 2 m/s, roughly twice the average photon noise contribution. In this paper we take advantage of a unique opportunity to confirm the sensitivity of the telluric absorption lines RV to different atmospheric and observing conditions: by means of contemporaneous in-situ wind measurements by radiosondes. The RV model fitting yielded similar results to that of Figueira et al. (2010), with lower wind magnitude values and varied wind direction. The probes confirmed the average low wind magnitude and suggested that the average wind direction is a function of time as well. The...

  19. Ultrasonic laboratory measurements of the seismic velocity changes due to CO2 injection

    Science.gov (United States)

    Park, K. G.; Choi, H.; Park, Y. C.; Hwang, S.

    2009-04-01

    Monitoring the behavior and movement of carbon dioxide (CO2) in the subsurface is a quite important in sequestration of CO2 in geological formation because such information provides a basis for demonstrating the safety of CO2 sequestration. Recent several applications in many commercial and pilot scale projects and researches show that 4D surface or borehole seismic methods are among the most promising techniques for this purpose. However, such information interpreted from the seismic velocity changes can be quite subjective and qualitative without petrophysical characterization for the effect of CO2 saturation on the seismic changes since seismic wave velocity depends on various factors and parameters like mineralogical composition, hydrogeological factors, in-situ conditions. In this respect, we have developed an ultrasonic laboratory measurement system and have carried out measurements for a porous sandstone sample to characterize the effects of CO2 injection to seismic velocity and amplitude. Measurements are done by ultrasonic piezoelectric transducer mounted on both ends of cylindrical core sample under various pressure, temperature, and saturation conditions. According to our fundamental experiments, injected CO2 introduces the decrease of seismic velocity and amplitude. We identified that the velocity decreases about 6% or more until fully saturated by CO2, but the attenuation of seismic amplitude is more drastically than the velocity decrease. We also identified that Vs/Vp or elastic modulus is more sensitive to CO2 saturation. We note that this means seismic amplitude and elastic modulus change can be an alternative target anomaly of seismic techniques in CO2 sequestration monitoring. Thus, we expect that we can estimate more quantitative petrophysical relationships between the changes of seismic attributes and CO2 concentration, which can provide basic relation for the quantitative assessment of CO2 sequestration by further researches.

  20. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  1. Photonic systems for high precision radial velocity measurements

    Science.gov (United States)

    Halverson, Samuel

    2016-01-01

    I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.

  2. Seismic structure beneath the Gulf of California: a contribution from group velocity measurements

    Science.gov (United States)

    Di Luccio, F.; Persaud, P.; Clayton, R. W.

    2014-12-01

    Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broad-band stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ˜28ºN which extends east-south-eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California. We also observe a high-velocity anomaly at 50-km depth extending down to ˜130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.

  3. Linear stability analysis in a liquid layer with a surface velocity gradient.

    Science.gov (United States)

    Białecki, Jarosław; Hołyst, Janusz A

    2003-06-01

    A case of combined planar Couette-Poiseuille flow corresponding to vanishing horizontal flux has been generalized by the introduction of a model for the surface velocity gradient. A relation corresponding to the Orr-Sommerfeld equation has been derived for this model. The critical value of the surface velocity gradient has been obtained. At the critical point, the corresponding critical Reynolds number equals infinity. Using an approximated method we estimated the behavior of the critical Reynolds number for a slightly overcritical surface velocity gradient.

  4. Group and phase velocities from deterministic and ambient sources measured during the AlpArray-EASI experiment

    Science.gov (United States)

    Kolínský, Petr; Zigone, Dimitri; Fuchs, Florian; Bianchi, Irene; Qorbani, Ehsan; Apoloner, Maria-Theresia; Bokelmann, Götz; AlpArray-EASI Working Group

    2016-04-01

    The Eastern Alpine Seismic Investigation (EASI) was a complementary experiment to the AlpArray project. EASI was composed of 55 broadband seismic stations deployed in a winding swath of 540 km length along longitude 13.350 E from the Czech-German border to the Adriatic Sea. Average north-south inter-station distance was 10 km, the distance of each station to either side of the central line was 6 km. Such a dense linear network allows for surface wave dispersion measurements by both deterministic and ambient noise sources along the same paths. During the experiment (July 2014 - August 2015), three earthquakes ML = 2.6, 2.9 and 4.2 occurred in Austria and Northern Italy only several kilometers off the swath. We measure Rayleigh and Love wave group velocities between the source and a single station for the recorded earthquakes, as well as phase velocities between selected pairs of stations using the standard two-station method. We also calculate cross-correlations of ambient noise between selected pairs of stations and we determine the corresponding group velocity dispersion curves. We propose a comparison of phase velocities between two stations measured from earthquakes with group velocities obtained from cross-correlations for the same station pairs. We also compare group velocities measured at single station using earthquakes, which occurred along the swath, with group velocities measured from cross-correlations. That way we analyze velocities of both deterministic and ambient noise reconstructed surface waves propagating along the same path. We invert the resulting dispersion curves for 1D shear wave velocity profiles with depth and we compile a quasi-2D velocity model along the EASI swath.

  5. Estimation of Elastic Constants from Surface Acoustic Wave Velocity by Inverse Analysis using the Downhill Simplex Method

    Science.gov (United States)

    Sato, Harumichi; Nishino, Hideo; Cho, Hideo; Ogiso, Hisato; Yamanaka, Kazushi

    1998-05-01

    The measurement of surface acoustic wave (SAW) velocity is used to estimate the surface properties because the velocity depends on the elastic properties near the surface.To estimate the elastic constants, we developed a new inverse method combining the Monte Carlo method and the downhill simplex method.The initial values are determined using many random numbers, instead of an arbitrarily chosen several sets of values, in order to reduce the risk of trapping by the local pseudo minima.We confirm that the estimated elastic constants agree well with the reported elastic constants of Si and the experimental SAW velocity is quite well reproduced.We estimate the elastic constants of quartz for application purposes.

  6. Measurements of an expanding surface flashover plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R., E-mail: john.harris@colostate.edu [Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  7. Video Measurement of the Muzzle Velocity of a Potato Gun

    Science.gov (United States)

    Jasperson, Christopher; Pollman, Anthony

    2011-01-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…

  8. Video Measurement of the Muzzle Velocity of a Potato Gun

    Science.gov (United States)

    Jasperson, Christopher; Pollman, Anthony

    2011-01-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…

  9. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Achim, E-mail: achim-kimmerle@gmx.de; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany); Haug, Halvard [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway)

    2016-01-14

    We investigate the surface recombination velocity S{sub p} at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased S{sub p} at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].

  10. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    Science.gov (United States)

    Kimmerle, Achim; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin; Haug, Halvard

    2016-01-01

    We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1-14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953-959 (1992); 35, 961-967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598-1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684-3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1-6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30-36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181-1183 (1993)].

  11. Modelling Solar Oscillation Power Spectra: II. Parametric Model of Spectral Lines Observed in Doppler Velocity Measurements

    CERN Document Server

    Vorontsov, Sergei V

    2013-01-01

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements and extends naturally to the analysis of high-frequency pseudo modes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  12. Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity

    Directory of Open Access Journals (Sweden)

    O. J. Marsh

    2013-09-01

    Full Text Available Ocean tides close to the grounding line of outlet glaciers around Antarctica have been shown to directly influence ice velocity, both linearly and non-linearly. These fluctuations can be significant and have the potential to affect satellite measurements of ice discharge, which assume displacement between satellite passes to be consistent and representative of annual means. Satellite observations of horizontal velocity variation in the grounding zone are also contaminated by vertical tidal effects, the importance of which is highlighted here in speckle tracking measurements. Eight TerraSAR-X scenes from the grounding zone of the Beardmore Glacier are analysed in conjunction with GPS measurements to determine short-term and decadal trends in ice velocity. Diurnal tides produce horizontal velocity fluctuations of >50% on the ice shelf, recorded in the GPS data 4 km downstream of the grounding line. This variability decreases rapidly to <5% only 15 km upstream of the grounding line. Daily fluctuations are smoothed to <1% in the 11-day repeat pass TerraSAR-X imagery, but fortnightly variations over this period are still visible and show that satellite-velocity measurements can be affected by tides over longer periods. The measured tidal displacement observed in radar look direction over floating ice also allows the grounding line to be identified, using differential speckle tracking where phase information cannot be easily unwrapped.

  13. Methods of Measurement of High Air Velocities by the Hot-wire Method

    Science.gov (United States)

    Weske, John R.

    1943-01-01

    Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.

  14. Electric probe measurements of the poloidal velocity in the scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mehlmann, F.; Costea, S.; Schrittwieser, R.; Lux, C.; Ionita, C. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OeAW (Austria); Naulin, V.; Rasmussen, J.J.; Nielsen, A.H. [Association EURATOM-DTU, Dept. of Physics, Technical University of Denmark, Lyngby (Denmark); Mueller, H.W.; Carralero, D.; Rohde, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Vianello, N. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Collaboration: ASDEX Upgrade Team

    2014-04-15

    A reciprocating probe head with six pins was used for localized measurements of electric fields and densities in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) up to the edge shear layer (SL) near the Last Closed Flux Surface (LCFS). The edge SL is characterized by a strong sudden change in the poloidal velocity vθ close to the separatrix. The probes were used to determine this velocity by different methods which are critically compared to each other concerning their reliability. By the first method the poloidal velocity was deduced from the radial electric field E{sub r} measured by two radially staggered probe pins, with vθ being due to the E{sub r} x B{sub φ}-drift (B{sub φ} is the toroidal field). The two other methods utilized the cross correlation of two poloidally staggered ion-biased probes and two poloidally staggered floating probes, respectively. In this case the time lags with maximum cross correlation were used to determine the poloidal velocity and its jump, yielding comparable results to the first method. Also the method of conditional averaging was applied to the latter signals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Microscale Controls on Ultrasonic Velocity Dispersion in Near-Surface Marine Sediments

    Science.gov (United States)

    Gettemy, G. L.

    2006-05-01

    This effort demonstrates a technique to measure poroelastic and petrophysical parameters that can be monitored over time to document diagenetic and consolidation alterations in the shallow biogeosphere. The signatures of these process effects are revealed largely through scale-dependent estimates of porosity, permeability, and the effective framework moduli that describe particle-particle mechanical interactions. Near- surface marine sediments of the Peru margin (ODP Leg 201) provide a unique dataset with which to study such near-surface processes, especially those associated with depositional, tectonic, and biogeochemical dynamics. Scanning electron microscope (SEM) image analysis and broadband (100-1000 kHz) ultrasonic compressional wave experiments are combined to interpret the microscale parameters revealed through velocity dispersion analysis. In particular, (i) back-scattered electron (BSE) images are processed to estimate the local porosity, tortuosity, and resultant permeability of the characteristic topology of each sample; and (ii) bounds for complex-valued grain and frame moduli, following an amended Biot formulation, are estimated by using the microscale imaging parameters and observed velocity dispersion. Several key results are highlighted, with regard to BSE imaging and velocity dispersion analysis, beyond the imaging and Biot parameter inversion. For example, microscale permeabilities are typically an order-of- magnitude larger than core (~2 cm) measurements. This discrepancy is critical to understanding spatial and temporal scale differences between, for example, diffusion and advection of nutrients supplying microbial communities versus tectonic dewatering and the resulting transient meter-scale pore pressure modulation. Broadband velocity dispersion analysis proves to be a powerful tool for detecting sub-wavelength sedimentological heterogeneity. Negative velocity dispersion, for example, can be used to estimate scatterer dimensions, consistent

  16. A new surface electromyography analysis method to determine spread of muscle fiber conduction velocities

    NARCIS (Netherlands)

    Lange, F; Van Weerden, TW; Van der Hoeven, JH

    2002-01-01

    Muscle fiber conduction velocity (MFCV) estimation from surface signals is widely used to study muscle function, e. g., in neuromuscular disease and in fatigue studies. However, most analysis methods do not yield information about the velocity distribution of the various motor unit action potentials

  17. Sound velocity measurement methods for porous sandstone. Measurements, finite element modelling, and diffraction correction

    CERN Document Server

    Sæther, Mathias; Ersland, Geir

    2016-01-01

    Acoustic material parameters of gas hydrate bearing porous rocks are important for evaluation of methods to exploit the vast methane gas resources present in the earth's subsurface, potentially combined with CO2 injection. A solid buffer method for measuring changes of the compressional wave velocity in porous rocks with changing methane hydrate contents under high-pressure hydrate-forming conditions, is tested and evaluated with respect to effects influencing on the measurement accuracy. The limited space available in the pressure chamber represents a challenge for the measurement method. Several effects affect the measured compressional wave velocity, such as interference from sidewall reflections, diffraction effects, the amount of torque (force) used to achieve acoustic coupling, and water draining of the watersaturated rock specimen. Test measurements using the solid buffer method in the pressure chamber at atmospheric conditions are compared to independent measurements using a water-bath immersion measu...

  18. Near-Surface Attenuation and Velocity Structures in Taiwan from Wellhead and Borehole Recordings Comparisons

    National Research Council Canada - National Science Library

    Wang, Yu-Ju; Ma, Kuo-Fong; Wu, Shao-Kai; Hsu, Hsuan-Jui; Hsiao, Wen-Chi

    2016-01-01

    By analyzing the data from 28 seismic borehole stations deployed by the Central Weather Bureau Seismic Network throughout Taiwan from 2007 to 2014, we estimated the near-surface velocity (Vp and Vs) and attenuation (Qp and Qs...

  19. Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity

    OpenAIRE

    1999-01-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant pot...

  20. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  1. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials.

    Science.gov (United States)

    Bossy, Emmanuel; Talmant, Maryline; Defontaine, Marielle; Patat, Frédéric; Laugier, Pascal

    2004-01-01

    The axial transmission technique uses a linear arrangement of ultrasonic emitters and receivers placed on a same side of a cortical bone site in contact with the skin, involving ultrasonic propagation along the axis of bone. The velocity of the waves radiated from bone has been shown to reflect bone status. The thickness and composition of soft tissue may vary along the length of the bone, between different skeletal sites, or between subjects. Hence, accurate estimates of velocity require first to eliminate the effect of the overlying soft tissue that is traversed by the ultrasound wave. To correct for such bias without measuring soft tissue properties, we designed new ultrasonic probes in the 1-2 MHz frequency range. It is based on propagation along the bone surface in two opposite directions from two sources placed on both sides of a unique group of receivers. The aim is to obtain an unbiased estimate of the velocity without any intermediate calculation of soft tissue properties, such as thickness variation or velocity. Validation tests were performed on academic material such as Perspex or aluminum. We found that head wave velocity values could be biased by more than 10% for inclination of a few degrees between the test specimen surface and the probe. On test materials, the compensation procedure implemented in our probe led to a relative precision error on velocity measurement lower than 0.2 to 0.3%. These results suggest that the correction procedure allows measuring in vivo velocities independently of soft tissue properties.

  2. Quantitative measurement of high flow velocities by a spin echo MR technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yigun (First Military Medical Coll., Quangzhou, FJ (China)); Kojima, Akihiro; Shinzato, Jintetsu; Sakamoto, Yuji; Ueno, Sukeyoshi; Takahashi, Mutsumasa; Higashida, Yoshiharu

    A new method of flow measurement using a spin echo (SE) technique has been developed on the basis of the flow effect that at high velocities signal intensity decreases linearly with increasing flow velocity. Flow velocity is calculated from the signal intensity ratio of the flowing material in two images with the same imaging parameters but different echo times. The linear relationship between the signal intensity and flow velocity was examined with a steady flow phantom. When assessed with steady flows in the phantom, flow velocities calculated by this method were in good agreement with velocities measured by a flow meter. This method was used with ECG gating to measure the blood flow of the right common carotid artery of a healthy volunteer. The measured peak flow velocity and the pattern of flow velocities during systole correlated well with the results obtained by Doppler ultrasound. (author).

  3. Video measurements of fluid velocities and water levels in breaking waves

    CSIR Research Space (South Africa)

    Govender, K

    2002-01-01

    Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...

  4. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment.

    Science.gov (United States)

    Berthon, P; Fellmann, N

    2002-09-01

    The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.

  5. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Science.gov (United States)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  6. Calibration of Instruments for Measuring Wind Velocity and Direction

    Science.gov (United States)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  7. Integral Length and Time Scales of Velocity, Heat and Mass At and Near a Turbulent Free Surface

    Science.gov (United States)

    Curtis, G. M.; Zappa, C. J.; Variano, E. A.

    2010-12-01

    Turbulence enhances both heat and CO2 gas exchange at a free surface. At the air-water interface, heat and mass transport is controlled by a thin thermal/diffusive boundary layer. Turbulence in the flow acts to thin the heat and mass boundary layers, thereby increasing the rate at which surface water is mixed into the bulk. Surface water is typically cool, and mixing replaces it with warmer water from the bulk. In our experiment, and in many environmental cases, the surface has a higher concentration of dissolved CO2 and carbonate species. . The dissolved gas is transported between the surface and bulk in a similar way to the heat. Because of this similarity, attempts are often made to find and exploit a relationship between the heat and mass transfer. Using a laboratory tank, which generates turbulence with very low mean shear flow, we measured heat and mass transfer by using infrared imagery to map the two-dimensional surface temperature field and by using planar laser-induced fluorescence (PLIF) to map the two-dimensional subsurface CO2 flux. In addition, particle image velocimetry (PIV) was used to measure subsurface velocity fields. A comparative analysis of these results allows us to determine the similarities and differences between heat, mass, and momentum transport at a free surface. This will contribute to the use of one quantity to predict transport of the others. The setup used here, i.e., turbulence with very low mean shear at the surface, allows us to evaluate the turbulent components of interfacial flux in a way that can be applied equally well to flows created by wind, waves, or current. Here, we quantify the integral length and time scales of the surface temperature and sub-surface CO2 and velocity measurements. Initial analysis shows that the integral length scales of temperature at the surface are significantly smaller than the sub-surface velocity scales. However, the integral scale of sub-surface velocity decreases approaching the surface. The

  8. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain)); Pitarke, J.M. (Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain))

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  9. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  10. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    CERN Document Server

    Chapman, Christopher

    2016-01-01

    In this letter a new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. Unlike previous attempts to reconstruct deep velocities from surface data, our method makes no assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high--resolution velocity fields at a depth of 1000m. Validation reveals extremely promising results, with a speed root mean squared error of ~2.8cm/s, a factor more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees...

  11. Measuring 3D Velocity Vectors using the Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2012-01-01

    Experimentally obtained estimates of threedimensional (3D) velocity vectors using the 3D Transverse Oscillation (TO) method are presented. The method employs a 2D transducer and synthesizes two double-oscillating fields in receive to obtain the axial, transverse, and elevation velocity components...... simultaneously. Experimental data are acquired using the ultrasound research scanner SARUS. The double-oscillating TO fields are investigated in an experimental scanning tank setup. The results demonstrate that the created fields only oscillate in the axial plus either the transverse or the elevation direction...

  12. Velocity measurement technique for high-speed targets based on digital fine spectral line tracking

    Institute of Scientific and Technical Information of China (English)

    Wen Shuliang; Yuan Qi

    2006-01-01

    Target velocity and acceleration are two of the most important features for identification of warheads and decoys in ballistic missile defense phased array radar systems. Velocity compensation is also the necessary step for one-dimensional range profile imaging. According to the high-velocity characteristics of ballistic objects and the low data rate of phased array radars with multiple target tracking, a fine spectral line digital velocity tracking frame is presented and a new method is developed to extract velocity error and resolve the velocity ambiguity in the measurement loop. Simulation results demonstrate the effectiveness of the proposed technique.

  13. Measure Fly off Velocity of the Ion by Time of Flight Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Primary detector is the charge collector, i.e. Faraday cup to measure fly off velocity of the ion by time of flight method. It is simple and applied set up,When it irradiates on the solid plane targets that laser beam of high power is focused, a thin layer of the high temperature and tight density plasma is produced on the target surface. As this plasma expands in the vacuum, it has of its energy in from of directed kinetic energy of the ion. The ion current signals observed by the charge collector at a large distance will correspond to high

  14. The measurement of tremor using a velocity transducer: comparison to simultaneous recordings using transducers of displacement, acceleration and muscle activity.

    Science.gov (United States)

    Norman, K E; Edwards, R; Beuter, A

    1999-10-15

    Precise kinematic measurements of tremor have historically been obtained using accelerometers. However, current technology permits precise measurements in velocity and displacement. The primary advantage of velocity recording is that only one step of integration or differentiation is required for either displacement or acceleration. A method is presented of measuring finger tremor using a laser system that transduces velocity precisely. Measurements of postural finger tremor thus obtained were compared to those simultaneously obtained from a laser system that transduces displacement, from an accelerometer and from surface electromyography (EMG) of the extensor digitorum communis. A range of amplitude and frequency content was obtained by testing control subjects and subjects with Parkinson's disease. The velocity transducer showed excellent correspondence of amplitude and frequency measurement with the displacement transducer. Measures of absolute and relative amplitude correlated well (r > or = 0.96 in amplitude measures in displacement, velocity and acceleration), and high coherence was found throughout the frequency range of interest. Measurements by the accelerometer generally showed poorer correspondence with those of the other instruments. EMG measurements showed good correspondence in some trials but poorer correspondence in others, attributed to the low level of muscle activity required in the task. Precise kinematic measurements appear to be highly sensitive to neuromotor impairment.

  15. Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity

    Science.gov (United States)

    Dravins, Dainis; Lindegren, Lennart; Madsen, Søren

    1999-08-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (accuracy limit is set by uncertainties in the cluster expansion rate. Based (in part) on observations by the ESA Hipparcos satellite

  16. Astrometric radial velocities; 1, Non-spectroscopic methods for measuring stellar radial velocity

    CERN Document Server

    Dravins, D; Madsen, S; Dravins, Dainis; Lindegren, Lennart; Madsen, Soren

    1999-01-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (<1 km/s) already with present data, although for some clusters an accuracy limit is set by uncertainties in the cluster expansion rate.

  17. Aortic pulse wave velocity measurement in systemic sclerosis patients

    Directory of Open Access Journals (Sweden)

    M. Sebastiani

    2012-12-01

    Full Text Available Background. Systemic sclerosis (SSc is characterized by endothelial dysfunction and widespread microangiopathy. However, a macrovascular damage could be also associated. Aortic pulse wave velocity (aPWV is known to be a reliable indicator of arterial stiffness and a useful prognostic predictor of cardiovascular events. Moreover, aPWV may be easily measured by non-invasive, user-friendly tool. Aim of our study was to evaluate aPWV alterations in a series of SSc patients. Methods. The aPWV was evaluated in 35 consecutive female SSc patients and 26 sex- and age-matched healthy controls. aPWV alterations were correlated with cardiopulmonary involvement. Results. A significant increase of aPWV was observed in SSc patients compared to controls (9.4±3.2 m/s vs 7.3±1 m/s; P=0.002. In particular, 14/35 (40% SSc patients and only 1/26 (4% controls (P=0.0009 showed increased aPWV (>9 m/s cut-off value. Moreover, echocardiography evaluation showed an increased prevalence of right atrial and ventricular dilatation (atrial volume: 23.6±6.2 mL vs 20.3±4.3 mL, P=0.026; ventricular diameter 19.5±4.9 mm vs 15.9±1.6 mm; P=0.001 associated to higher values of pulmonary arterial systolic pressure (PAPs in SSc patients (31.5±10.4 mmHg vs 21.6±2.9 mmHg; P50 years old. Furthermore, altered aPWV was more frequently associated with limited cutaneous pattern, longer disease duration (≥5 years, and/or presence of anticentromere antibody (ACA. Conclusions. A significantly higher prevalence of abnormally increased aPWV was evidenced in SSc patients compared to healthy controls. The possibility of more pronounced and diffuse vascular damage in a particular SSc subset (ACA-positive subjects with limited cutaneous scleroderma and longer disease duration might be raised.

  18. Fabrication of four-path remote outdoor wind velocity measurement system and its performance evaluation

    Science.gov (United States)

    Yamada, Akira; Oba, Kensyo; Shimizu, Masato

    2017-01-01

    A method is proposed for the remote measurement of the outdoor ground-surface two-dimensional (2D) vector wind velocity field averaged over a region of 10-50 m size. To this end, four-channel (4ch) sound wave transmitters and receivers were placed at the corners of a rectangular monitoring site. From the four-path travel time data, the wind velocity and direction averaged over the region were estimated under the uniform-wind-field assumption. By this method, misestimation due to the local turbulence wind field, which is encountered in conventional in situ-type anemometers, can be avoided. To achieve a satisfying speed data collection that keeps up with the rapid changes in real wind field, coded modulation signals were transmitted and received simultaneously between all the 4ch speaker/microphone pairs. Test experiments demonstrated that time variations of vector wind velocities spatially averaged over the area were successively measured with satisfying speed and accuracy.

  19. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  20. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  1. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...

  2. Influence of Rough Flow over Sea Surface on Dry Atmospheric Deposition Velocities

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available A Meteorological model and a dry deposition module were used to estimate the effects of sea surface rough flow (SSRF over the sea surface on dry deposition velocities. The dry deposition turbulence resistance, Ra, and sub-layer resistance, Rb, decreased more than 10% and 5% due to SSRF, respectively. For example, for HNO3, the mean dry deposition velocities (Vd were 0.51 cm s-1 in January, 0.58 in April, 0.65 cm s-1 in July and 0.79 cm s-1 in October with only smooth flow over the sea surface. However, the SSRF increased the Vd of HNO3 by 5 - 20% in the east China seas. These results show that SSRF is an important factor in estimating surface roughness to further improve calculation of the dry deposition velocities over the ocean. Improvements in parameterization of sea roughness length will be a worthwhile effort in related future studies.

  3. Mathematical Relationships Between Two Sets of Laser Anemometer Measurements for Resolving the Total Velocity Vector

    Science.gov (United States)

    Owen, Albert K.

    1993-01-01

    The mathematical relations between the measured velocity fields for the same compressor rotor flow field resolved by two fringe type laser anemometers at different observational locations are developed in this report. The relations allow the two sets of velocity measurements to be combined to produce a total velocity vector field for the compressor rotor. This report presents the derivation of the mathematical relations, beginning with the specification of the coordinate systems and the velocity projections in those coordinate systems. The vector projections are then transformed into a common coordinate system. The transformed vector coordinates are then combined to determine the total velocity vector. A numerical example showing the solution procedure is included.

  4. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    Science.gov (United States)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  5. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle...... spatial filters designed to measure the three components of the object’s translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement....

  6. Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Indian Academy of Sciences (India)

    J S Prasad; A S Rajawat; Yaswant Pradhan; O S Chauhan; S R Nayak

    2002-09-01

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has been applied. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on a pair of atmospherically corrected and geo-referenced sequential images by Maximum Cross-Correlation (MCC) technique. The MCC technique involves computing matrices of cross-correlation coe#cients and identifying correlation peaks. The movement of the pattern can be calculated knowing the displacement of windows required to match patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along the east coast during the GSI cruise ST-133 of R.V. Samudra Kaustubh in January 2000. The current data were measured using the ocean current meter supplied by the Environmental Measurement and CONtrol (EMCON), Kochi available with the Geological Survey of India, Marine Wing. This current meter can measure direction and magnitude with an accuracy of ± 5° and 2% respectively. The measurement accuracies with coefficient of determination (2) of 0.99, for both magnitude (cm.s-1) and direction (deg.) were achieved.

  7. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines

    Science.gov (United States)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.

    2014-12-01

    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  8. Friction velocity u* and roughness length z0 of atmospheric surface boundary layer in sparse-tree land

    Institute of Scientific and Technical Information of China (English)

    Guan Dexin; Zhu Tingyao; Han Shijie

    1999-01-01

    Sparse-tree land is one of the typical lands and can be considered as one typical rough surface in boundary layer meteorology. Many lands can be classified into the kind surface in the view of scale and distribution feature of the roughness elements such as agroforest, scatter planted or growing trees, savanna and so on. The structure of surface boundary layer in sparse-tree land is analyzed and the parameters, friction velocity u* and roughness length z0 are deduced based on energy balance law and other physical hypothesis. The models agree well with data of wind tunnel experiments and field measurements.

  9. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... measurements may provide comprehensive information about retinal metabolism....

  10. Near Surface Shear Wave Velocity Model of the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Shuler, S.; Craig, M. S.; Hayashi, K.; Galvin, J. L.; Deqiang, C.; Jones, M. G.

    2015-12-01

    Multichannel analysis of surface wave measurements (MASW) and microtremor array measurements (MAM) were performed at twelve sites across the Sacramento-San Joaquin Delta to obtain high resolution shear wave velocity (VS) models. Deeper surveys were performed at four of the sites using the two station spatial autocorrelation (SPAC) method. For the MASW and MAM surveys, a 48-channel seismic system with 4.5 Hz geophones was used with a 10-lb sledgehammer and a metal plate as a source. Surveys were conducted at various locations on the crest of levees, the toe of the levees, and off of the levees. For MASW surveys, we used a record length of 2.048 s, a sample interval of 1 ms, and 1 m geophone spacing. For MAM, ambient noise was recorded for 65.536 s with a sampling interval of 4 ms and 1 m geophone spacing. VS was determined to depths of ~ 20 m using the MASW method and ~ 40 m using the MAM method. Maximum separation between stations in the two-station SPAC surveys was typically 1600 m to 1800 m, providing coherent signal with wavelengths in excess of 5 km and depth penetration of as much as 2000 m. Measured values of VS30 in the study area ranged from 97 m/s to 257 m/s, corresponding to NEHRP site classifications D and E. Comparison of our measured velocity profiles with available geotechnical logs, including soil type, SPT, and CPT, reveals the existence of a small number of characteristic horizons within the upper 40m in the Delta: levee fill material, peat, transitional silty sand, and eolian sand at depth. Sites with a peat layer at the surface exhibited extremely low values of VS. Based on soil borings, the thickness of peat layers were approximately 0 m to 8 m. The VS for the peat layers ranged from 42 m/s to 150 m/s while the eolian sand layer exhibited VS ranging from of 220 m/s to 370 m/s. Soft near surface soils present in the region pose an increased earthquake hazard risk due to the potential for high ground accelerations.

  11. Technical Note: Surface water velocity observations from a camera: a case study on the Tiber River

    Directory of Open Access Journals (Sweden)

    F. Tauro

    2014-10-01

    Full Text Available Monitoring surface water velocity during flood events is a challenging task. Techniques based on deploying instruments in the flow are often unfeasible due to high velocity and abundant sediment transport. A low-cost and versatile technology that provides continuous and automatic observations is still not available. LSPIV (large scale particle imaging velocimetry is a promising approach to tackle these issues. Such technique consists of developing surface water velocity maps analyzing video frame sequences recorded with a camera. In this technical brief, we implement a novel LSPIV experimental apparatus to observe a flood event in the Tiber river at a cross-section located in the center of Rome, Italy. We illustrate results from three tests performed during the hydrograph flood peak and recession limb for different illumination and weather conditions. The obtained surface velocity maps are compared to the rating curve velocity and to benchmark velocity values. Experimental findings confirm the potential of the proposed LSPIV implementation in aiding research in natural flow monitoring.

  12. Seismic tomography of Yunnan region using short-period surface wave phase velocity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 苏伟; 叶太兰

    2004-01-01

    The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.

  13. Mechanical muscle fibre conduction velocity of the biceps as measured by a new seismic technique.

    Science.gov (United States)

    Journée, H L; de Jonge, A B; van Calker, R; Gräler, G

    1995-01-01

    A recently-developed technique, called seismic myography (SMG) has the characteristic of recording fast micro-mechanical response times. These times can be determined with sub-millisecond accuracy. The response times can be compared to response times of EMG recordings. The "muscular electro-seismic response" (MESR) latencies, due to direct electrical stimulation of the biceps muscle, are used for explorative measurements of the mechanical conduction velocity of the muscle fibres. The measurements are performed by means of a general-purpose physiological multimeter which is equiped with the micro-seismic function. Measurements are performed on two healthy subjects, aged 22 years. The MESR-latencies are measured along a medial and a lateral trajectory on their biceps muscles. The MESR-latencies at stimulus-cathodal to seismic transducer distances of 2,0-3,5 cm, are in the range of 2.0-3.8 ms, while at distances in the range of 7.5-8.9 cm the MESR-latencies varied between 3.4 and 4.7 ms. The calculated mechanical muscle fibre conduction velocities (MMFCV) are in the range between 36 and 89 m/s. There is a reproducability error of maximum 20%. The MMFCV's of the lateral and medial trajectory do not differ within the accuracy of the present method. However, the MMFCV's are considerably higher than the electrical muscle fibre conduction velocities of MUAPS ((E)MFCV). Some aspects of the MMFCV and possible consequences to surface EMG recordings are discussed. It is concluded that this seismic method for measuring MMFCV is a new accessible and simple to handle tool for the description of muscle function, and offers an interesting new contribution in experimental muscular research.

  14. Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hare, D E; Holtkamp, D B; Strand, O T

    2010-03-02

    Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.

  15. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    Science.gov (United States)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    Science.gov (United States)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    Science.gov (United States)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  18. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  19. Effect of Ion Escape Velocity and Conversion Surface Material on H- Production

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Olli [University of Jyvaskyla; Kalvas, T. [University of Jyvaskyla; Komppula, J. [University of Jyvaskyla; Koivisto, H. [University of Jyvaskyla; Geros, E. [Los Alamos National Laboratory (LANL); Stelzer, J. [Los Alamos National Laboratory (LANL); Rouleau, G. [Los Alamos National Laboratory (LANL); Johnson, K.F. [Los Alamos National Laboratory (LANL); Carmichael, Justin R [ORNL

    2011-01-01

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H- production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was affected by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H- no direct gain of extracted beam current can be achieved by increasing the converter voltage. The conversion efficiency of H- was observed to vary with converter voltage and follow the existing theories in qualitative manner. We present calculations predicting relative H- yields from different cesiated surfaces with comparison to experimental observations from different types of H- ion sources. Utilizing materials exhibiting negative electron affinity and exposed to UV-light is considered for Cesium-free H-/D- production.

  20. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  1. Velocity statistics and spectra over a forested site measured with a tall mast

    Science.gov (United States)

    Segalini, Antonio; Alfredsson, Henrik; Dellwik, Ebba; Arnqvist, Johan; Bergström, Hans

    2012-11-01

    In the large expansion of wind power it becomes necessary to use also non-ideal sites for the placement of turbines. Such sites may have a complex terrain in terms of surface elevation as well as being forested. The atmospheric boundary layer is assumed to be severely different as compared to the one over flat, low-vegetation areas, which changes the mean velocity distribution as well as the turbulence intensity, thereby negatively affecting both the power production and loads on the turbines. In this study we use data from a 140 m tall mast in a forest in South-Eastern Sweden, where a unique measurement campaign with sonic anemometers has been running since November 2010 for 16 months. The sonic anemometers give the three velocity components with a frequency resolution of about 10 Hz. The site is covered by approximately 20 m high trees and a 40 degree sector, representative of an approximately homogeneous forest flow, is selected for the analysis of the velocity statistics. The screening of the results indicates the presence of a constant stress layer up to 3-5 canopy heights from the ground. An evaluation of the turbulence statistics in this layer and the levels above is presented. In addition, the spectra are evaluated and compared with the commonly used turbulence models.

  2. Measurement of velocity of air flow in the sinus maxillaris.

    Science.gov (United States)

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  3. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  4. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows

    OpenAIRE

    Li, Fei; Yu, XiLong; Cai, Weiwei; Ma, Lin

    2012-01-01

    This work investigates the error caused by nonuniformities along the line-of-sight in velocity measurement using tunable diode-laser absorption spectroscopy (TDLAS). Past work has demonstrated TDLAS as an attractive diagnostic technique for measuring velocity, which is inferred from the Doppler shift of two absorption features using two crossing laser beams. However, because TDLAS is line-of-sight in nature, the obtained velocity is a spatially averaged value along the probing laser beams. As...

  5. Precision measurement of transverse velocity distribution of a strontium atomic beam

    OpenAIRE

    Gao, F.; H. Liu; Xu, P.; X. Tian; Y. Wang; Ren, J; Haibin Wu; Hong Chang

    2014-01-01

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90$\\mu K$ in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques use...

  6. Application of image cross-correlation to the measurement of glacier velocity using satellite image data

    Science.gov (United States)

    Scambos, Theodore A.; Dutkiewicz, Melanie J.; Wison, Jeremy C.; Bindschadler, Robert A.

    1992-01-01

    A high-resolution map of the velocity field of the central portion of Ice Stream E in West Antarctica, generated by the displacement-measuring technique, is presented. The use of cross-correlation software is found to be a significant improvement over previous manually based photogrammetric methods for velocity measurement, and is far more cost-effective than in situ methods in remote polar areas. A hue-intensity-saturation image of Ice Stream E and its velocity field is shown.

  7. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  8. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, J. Christopher [Univ. of Vermont, Burlington, VT (United States)

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  9. Velocity dependence of vestibular information for postural control on tilting surfaces.

    Science.gov (United States)

    Horak, Fay B; Kluzik, JoAnn; Hlavacka, Frantisek

    2016-09-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25-1 deg/s) and fell only very rarely during faster tilts (16-32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia.

  10. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  11. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    Science.gov (United States)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  12. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  13. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  14. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  15. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography

    Science.gov (United States)

    Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa

    2017-01-01

    The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.

  16. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)

    Science.gov (United States)

    Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.

    2016-03-01

    Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  17. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA

    Directory of Open Access Journals (Sweden)

    Sayeed-Bin-Asad S.M.

    2016-01-01

    Full Text Available Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  18. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    Science.gov (United States)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  19. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4 ms while the spatial resolution is similar to 10 cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution...

  20. A Raman anemometer for component-selective velocity measurements of particles in a flow

    NARCIS (Netherlands)

    Florisson, O.; Mul, de F.F.M.; Winter, de H.G.

    1981-01-01

    An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to t

  1. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    DEFF Research Database (Denmark)

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously dev...

  2. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  3. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  4. LASER ULTRASONIC FOR MEASUREMENTS OF VELOCITY DISTRIBUTION IN PIPES

    Directory of Open Access Journals (Sweden)

    M. Navarrete

    2004-12-01

    Full Text Available The present work describes the development of a photoacoustic flowmeter with probe-beam deflection. A pulsedlaser beam produces an acoustic pulse, whose propagation is registered by its deflection effects on two cw probebeams. The acoustic pulse in a flowing fluid is produced by absorption of a laser pulse (30 ns, 1.1 mJ focused overa path flow line. The acoustic propagations, along and against the flow, are monitored by two cw probe beams. Inthe interaction, the probe beam undergoes a transient deflection that is detected by a fast response photodiode.The velocity distribution data profile of a square pipe is obtained by means of the acoustic pulse arrival timemeasured through its cross section applying the cylindrical shockwave model developed by Vlasses. The profilesdetermined with this experimental technique are compared with two turbulent pipe flow models.

  5. Precise Measurement of Subsurface Seismic Velocity Variation by Coda Wave Interferometry

    Institute of Scientific and Technical Information of China (English)

    Xia Yu; Wang Baoshan; Ge Hongkui; Chen Yong

    2008-01-01

    A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the theoretical error.The velocity variation during this period is up to 10-3.The relationship between velocity variation and changes in air temperature,barometric pressure and solid earth tide was analyzed with linear least square fitting.The velocity has no dependence on air temperature,but displayed change of the order of 10-6~10-7 when the barometer or earth tide changed one Pa.

  6. A Device for Measuring Sonic Velocity and Compressor Mach Number

    Science.gov (United States)

    1948-07-01

    resonator (the only 4 NACA TN No. 1664 accurate measurement required) is measured, as shomn in figure 1, by means of a mercury manometer . The compressor Mach...tube vs not connected to the ccmpressor inlet until after calibration. The pressure in the device was measured by means of the mercury manometer . Fram

  7. A hidden state space modeling approach for improving glacier surface velocity estimates using remotely sensed data

    Science.gov (United States)

    Henke, D.; Schubert, A.; Small, D.; Meier, E.; Lüthi, M. P.; Vieli, A.

    2014-12-01

    A new method for glacier surface velocity (GSV) estimates is proposed here which combines ground- and space-based measurements with hidden state space modeling (HSSM). Examples of such a fusion of physical models with remote sensing (RS) observations were described in (Henke & Meier, Hidden State Space Models for Improved Remote Sensing Applications, ITISE 2014, p. 1242-1255) and are currently adapted for GSV estimation. GSV can be estimated using in situ measurements, RS methods or numerical simulations based on ice-flow models. In situ measurements ensure high accuracy but limited coverage and time consuming field work, while RS methods offer regular observations with high spatial coverage generally not possible with in situ methods. In particular, spaceborne Synthetic Aperture Radar (SAR) can obtain useful images independent of daytime and cloud cover. A ground portable radar interferometer (GPRI) is useful for investigating a particular area in more detail than is possible from space, but provides local coverage only. Several processing methods for deriving GSV from radar sensors have been established, including interferometry and offset tracking (Schubert et al, Glacier surface velocity estimation using repeat TerraSAR-X images. ISPRS Journal of P&RS, p. 49-62, 2013). On the other hand, it is also possible to derive glacier parameters from numerical ice-flow modeling alone. Given a well-parameterized model, GSV can in theory be derived and propagated continuously in time. However, uncertainties in the glacier flow dynamics and model errors increase with excessive propagation. All of these methods have been studied independently, but attempts to combine them have only rarely been made. The HSSM we propose recursively estimates the GSV based on 1) a process model making use of temporal and spatial interdependencies between adjacent states, and 2) observations (RS and optional in situ). The in situ and GPRI images currently being processed were acquired in the

  8. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  9. Combining flow routing modelling and direct velocity measurement for optimal discharge estimation

    Directory of Open Access Journals (Sweden)

    G. Corato

    2011-03-01

    Full Text Available A new procedure is proposed for estimating river discharge hydrographs during flood events, using only water level data measured at a gauged site, as well as 1-D shallow water modelling and sporadic maximum surface flow velocity measurements. During flood, the piezometric level is surmised constant in the vertical plane of the river section, where the top of the banks is always above the river level, and is well represented by the recorded stage hydrograph. The river is modelled along the reach directly located downstream the upstream gauged section, where discharge hydrograph is sought after. For the stability with respect to the topographic error, as well as for the simplicity of the data required to satisfy the boundary conditions, a diffusive hydraulic model is adopted for flow routing. Assigned boundary conditions are: (1 the recorded stage hydrograph at the upstream river site and (2 the zero diffusion condition at the downstream end of the reach. The MAST algorithm is used for the numerical solution of the flow routing problem, which is embedded in the Brent algorithm used for the computation of the optimum Manning coefficient. Based on synthetic tests concerning a broad prismatic channel, the optimal reach length is chosen so that the approximated downstream boundary condition effects on discharge hydrograph assessment at upstream end are negligible. The roughness Manning coefficient is calibrated by using sporadic instantaneous surface velocity measurements during the rising limb of flood that are turned into instantaneous discharges through the solid of velocity estimated by a two-dimensional entropic model. Several historical events, occurring in three gauged sites along the upper Tiber River wherein a reliable rating curve is available, have been used for the validation. The analysis outcomes can be so summarized: (1 criteria adopted for selecting the optimal channel length and based on synthetic tests have been proved reliable by

  10. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-10-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  11. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    Science.gov (United States)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  12. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  13. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    Science.gov (United States)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  14. The velocity distribution of pickup He{sup +} measured at 0.3 AU by MESSENGER

    Energy Technology Data Exchange (ETDEWEB)

    Gershman, Daniel J. [Geospace Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Solomon, Sean C., E-mail: djgersh@umich.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2014-06-20

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He{sup +} interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He{sup +} as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He{sup +} may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ {sub ||} ∼ 0.1 AU and a He{sup +} production rate of ∼0.05 m{sup –3} s{sup –1} within 0.3 AU.

  15. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Directory of Open Access Journals (Sweden)

    J. Wuite

    2014-12-01

    Full Text Available We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a−1 in 2007 to 1.72 Gt a−1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38%, respectively 45%, higher than in 1995.

  16. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Science.gov (United States)

    Wuite, J.; Rott, H.; Hetzenecker, M.; Floricioiu, D.; De Rydt, J.; Gudmundsson, G. H.; Nagler, T.; Kern, M.

    2015-05-01

    We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B Ice Shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of most of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a-1 in 2007 to 1.72 Gt a-1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased 2-3-fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38% and 46% higher than in 1995.

  17. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    Science.gov (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  18. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  19. Surface Acoustic Wave Velocity and Electromechanical Coupling Coefficient of GaN Grown on (0001) Sapphire by Metal-Organic Vapour Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; LI Hong-Lang; YAN Li; CHEN Xiao-Yang; LU Da-Cheng; WANG Xiao-Hui; LIU Xiang-Lin; HAN Pei-De; YUAN Hai-Rong; WANG Du; WANG Zhan-Guo; HE Shi-Tang

    2001-01-01

    High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital trans ducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667m/s and 1.9% by the pulse method.

  20. Predicting stroke outcome using DCE-CT measured blood velocity

    Science.gov (United States)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  1. A bio-inspired, computational model suggests velocity gradients of optic flow locally encode ordinal depth at surface borders and globally they encode self-motion.

    Science.gov (United States)

    Raudies, Florian; Ringbauer, Stefan; Neumann, Heiko

    2013-09-01

    Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.

  2. Average velocity field of the air flow over the water surface in a laboratory modeling of storm and hurricane conditions in the ocean

    Science.gov (United States)

    Kandaurov, A. A.; Troitskaya, Yu. I.; Sergeev, D. A.; Vdovin, M. I.; Baidakov, G. A.

    2014-07-01

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Channel of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near-water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The measurements showed that the logarithmic part of the velocity profile of the air flow in the channel was observed in the immediate vicinity from the water surface (at a distance of 30 mm) and could be detected only using remote methods (PIV). According to the measured velocity profiles, dependences of aerodynamic drag factors of the water surface on the wind velocity at a height of 10 m were retrieved; they were compared with results of contact measurements carried out earlier on the same setup. It is shown that they agree with an accuracy of up to 20%; at moderate and strong wind velocities the coincidence falls within the experimental accuracy.

  3. Effect of diffraction on the ultrasonic velocity measured by the pulse interference method in VHF range

    Institute of Scientific and Technical Information of China (English)

    WEI Tingcun

    2002-01-01

    The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to d θ21 (f)/df, where θ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.

  4. Validation of Doppler ultrasound and magnetic resonance imaging velocity measurements by means of a test object

    NARCIS (Netherlands)

    Oostayen, J.A. van; Bezemer, R.A.; Wasser, M.N.J.M.; Teirlinck, C.J.P.M.

    1996-01-01

    Objective: To validate Doppler ultrasound and MRI mean velocity measurements in a test object in which mean velocities are known and can be chosen within a range of 10-100 cm/s in tubes of 4 and 8 mm. This validation was carried out to check the performance of a duplex Doppler ultrasound system that

  5. Measuring of Settling Velocity of Fine Sediment Using a Recirculated Settling Column

    DEFF Research Database (Denmark)

    Johansen, Claus; Larsen, Torben

    1998-01-01

    The paper describes a new experimental method for the measurement of the settling velocity of fine sediments. The method includes determination of the influence of turbulence and concentration. The paper also illustrates the method by giving results of the settling velocity of kaolinite for varyi...

  6. Measurement of Settling Velocity of Fine Sediment using a Recirculated Settling Column

    DEFF Research Database (Denmark)

    Johansen, C.; Larsen, Torben

    1997-01-01

    The paper describes a new experimental method for the measurement of the settling velocity of fine sediments. The method includes determination of the influence of turbulence and concentration. The paper also illustrates the method by giving results of the settling velocity of kaolinite for varyi...

  7. Measurement of Settling Velocity of Fine Sediment using a Recirculated Settling Column

    DEFF Research Database (Denmark)

    Johansen, C.; Larsen, Torben

    1997-01-01

    The paper describes a new experimental method for the measurement of the settling velocity of fine sediments. The method includes determination of the influence of turbulence and concentration. The paper also illustrates the method by giving results of the settling velocity of kaolinite for varying...

  8. Precision measurement of transverse velocity distribution of a Strontium atomic beam

    CERN Document Server

    Gao, F; Xu, P; Tian, X; Wang, Y; Ren, J; Wu, Haibin; Chang, Hong

    2013-01-01

    We measure precisely the transverse velocity distribution in a thermal Sr atomic beam with a velocity selective saturated fluorescence spectroscopy. By using the ultrastable laser system and narrow intercombination transition line of Sr atoms, the resolution of the velocity measured can be reached 0.13m/s, corresponding to 90$\\mu K$ in energy unit. The experimental results are agreement very well with a theoretical calculation. With the spectroscopic techniques, the absolute frequency of the intercombination transition of $^{88}$Sr is measured by an optical-frequency comb generator referenced to the SI second through an H maser, which is given by 434 829 121 318(10)kHz.

  9. Smart Laser Interferometer with Electrically Tunable Lenses for Flow Velocity Measurements through Disturbing Interfaces

    Directory of Open Access Journals (Sweden)

    Jürgen W. Czarske

    2015-01-01

    Full Text Available Interferometric velocity measurements are of great importance at flow investigations. However, the laser beams can be distorted at the interfaces between optical media of different refractive indices. Temporal fluctuations of these distortions will cause a deterioration of the laser interferometer signals. We have harnessed the power of programmable photonics devices to eliminate this signal deterioration. Non-invasive flow velocity measurements through a rapidly fluctuating media interface with large strokes of about 100 microns are presented. Our work represents a paradigm shift for interferometric velocity measurement techniques from using static to dynamic optical elements.

  10. Point Measurements of Fermi Velocities by a Time-of-Flight Method

    DEFF Research Database (Denmark)

    Falk, David S.; Henningsen, J. O.; Skriver, Hans Lomholt;

    1972-01-01

    The present paper describes in detail a new method of obtaining information about the Fermi velocity of electrons in metals, point by point, along certain contours on the Fermi surface. It is based on transmission of microwaves through thin metal slabs in the presence of a static magnetic field...... obtained one component of the velocity along half the circumference of the centrally symmetric orbit for B→∥[100]. The results are in agreement with current models for the Fermi surface. For B→∥[011], the electrons involved are not moving in a symmetry plane of the Fermi surface. In such cases one cannot...... immediately derive the velocity components, but the method can still be used to provide a comparison of different Fermi surface models. Such a comparison has been made of an augmented-plane-wave model (Christensen) and a Fourier model (Halse), both yielding the experimentally determined areas and cyclotron...

  11. Measurement of the Velocity of the Neutrino with MINOS

    CERN Document Server

    Adamson, P; Bumgarner, R

    2014-01-01

    The MINOS experiment uses a beam of predominantly muon-type neutrinos generated using protons from the Main Injector at Fermilab in Batavia, IL, and travelling 735 km through the Earth to a disused iron mine in Soudan, MN. The 10{\\mu}s-long beam pulse contains fine time structure which allows a precise measurement of the neutrino time of flight to be made. The time structure of the parent proton pulse is measured in the beamline after extraction from the Main Injector, and neutrino interactions are timestamped at the Fermilab site in the Near Detector (ND), and at the Soudan site in the Far Detector (FD). Small, transportable auxiliary detectors, consisting of scintillator planes and associated readout electronics, are used to measure the relative latency between the two large detectors. Time at each location is measured with respect to HP5071A Cesium clocks, and time is transferred using GPS Precise Point Positioning (PPP) solutions for the clock offset at each location. We describe the timing calibration of...

  12. Photon trajectories, anomalous velocities, and weak measurements: A classical interpretation

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2013-01-01

    Recently, Kocsis et al. reported the observation of "average trajectories of single photons" in a two-slit interference experiment [Science 332, 1170 (2011)]. This was possible by using the quantum weak-measurements method, which implies averaging over many events, i.e., in fact, a multi-photon limit of classical optics. We give a classical-optics interpretation to this experiment and other related problems. It appears that weak measurements of the local momentum of photons made by Kocsis et al. represent measurements of the Poynting vector in an optical field. We consider both the real and imaginary parts of the local momentum, and show that their measurements have been realized in classical optics using small probe particles. We also examine the appearance of "anomalous" values of the local momentum: either negative (backflow) or exceeding the wavenumber (superluminal propagation). These features appear to be closely related to vortices and evanescent waves. Finally, we revisit a number of older works and f...

  13. Method for Measuring Velocity of Warhead Fragments Based on Photoelectric Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For measuring velocity and impacting position of single fragment of warhead, a non-contact measuring method is proposed, in which a six-light-screen array, a position indicator, a multi-channel chronograph and a computer are used.The principle of measurement is described. The key device of the system is a light screen array sensor which consists of six light screens allocated with certain geometrical parameters. When the fragment flies through the light screen array, the time of passing through each of the screens is recorded by the multi-channel chronograph. According to the time data and the geometrical parameters of the array, the velocity vector and the location of the fragment can be calculated immediately. The presented method can be used to locate the fragment and to measure the real velocity on its flying direction. It can also be used to measure the velocity of a fragment swarm after the system is engineered further.

  14. Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, K.; Pfister, T.; Buettner, L.; Czarske, J. [Dresden University of Technology (TU Dresden), Department of Electrical Engineering and Information Technology, Chair for Measurement and Testing Techniques, Dresden (Germany); Mueller, H. [Physikalisch-Technische Bundesanstalt Braunschweig (PTB), Department 1.4 Gas Flow, Braunschweig (Germany); Becker, S.; Lienhart, H.; Durst, F. [Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen (Germany)

    2006-03-15

    Velocity measurements with a high spatial resolution are important in turbulent flow research. In this paper, we report on the development of a new fiber-optic laser-Doppler velocity-profile sensor exhibiting a spatial resolution of up to 5 {mu}m and its application to turbulent boundary layers. The sensor developed in the present work employs a frequency-division-multiplexing technique in order to separate two measurement signals from the two fringe systems. Velocity measurements close to zero at the solid wall were realized using heterodyne technique. The use of fiber optics improved a robustness of the sensor. The measurement accuracy of the sensor was experimentally investigated with respect to the spatial resolution and velocity. Universal velocity profile of a turbulent flow was obtained in a fully developed channel flow. Mean and fluctuating velocity are presented with a high spatial resolution. (orig.)

  15. Liquefaction assessment based on combined use of CPT and shear wave velocity measurements

    Science.gov (United States)

    Bán, Zoltán; Mahler, András; Győri, Erzsébet

    2017-04-01

    Soil liquefaction is one of the most devastating secondary effects of earthquakes and can cause significant damage in built infrastructure. For this reason liquefaction hazard shall be considered in all regions where moderate-to-high seismic activity encounters with saturated, loose, granular soil deposits. Several approaches exist to take into account this hazard, from which the in-situ test based empirical methods are the most commonly used in practice. These methods are generally based on the results of CPT, SPT or shear wave velocity measurements. In more complex or high risk projects CPT and VS measurement are often performed at the same location commonly in the form of seismic CPT. Furthermore, VS profile determined by surface wave methods can also supplement the standard CPT measurement. However, combined use of both in-situ indices in one single empirical method is limited. For this reason, the goal of this research was to develop such an empirical method within the framework of simplified empirical procedures where the results of CPT and VS measurements are used in parallel and can supplement each other. The combination of two in-situ indices, a small strain property measurement with a large strain measurement, can reduce uncertainty of empirical methods. In the first step by careful reviewing of the already existing liquefaction case history databases, sites were selected where the records of both CPT and VS measurement are available. After implementing the necessary corrections on the gathered 98 case histories with respect to fines content, overburden pressure and magnitude, a logistic regression was performed to obtain the probability contours of liquefaction occurrence. Logistic regression is often used to explore the relationship between a binary response and a set of explanatory variables. The occurrence or absence of liquefaction can be considered as binary outcome and the equivalent clean sand value of normalized overburden corrected cone tip

  16. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Science.gov (United States)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  17. Determination of wave intensity in flexible tubes using measured diameter and velocity.

    Science.gov (United States)

    Feng, J; Khir, A W

    2007-01-01

    Wave intensity (WI) is a hemodynamics index, which is the product of changes in pressure and velocity across the wave-front. Wave Intensity Analysis, which is a time domain technique allows for the separation of running waves into their forward and backward directions and traditionally uses the measured pressure and velocity waveforms. However, due to the possible difficulty in obtaining reliable pressure waveforms non-invasively, investigating the use of wall displacement instead of pressure signals in calculating WI may have clinical merits. In this paper, we developed an algorithm in which we use the measured diameter of flexible tube's wall and flow velocity to separate the velocity waveform into its forward and backward directions. The new algorithm is also used to separate wave intensity into its forward and backward directions. In vitro experiments were carried out in two sized flexible tubes, 12mm and 16mm in diameters, each is of 2 m in length. Pressure, velocity and diameter were taken at three measuring sites. A semi-sinusoidal wave was generated using a piston pump, which ejected 40cc water into each tube. The results show that separated wave intensity into the forward and backward directions of the new algorithm using the measured diameter and velocity are almost identical in shape to those traditionally using the measured pressure and velocity. We conclude that the new algorithm presented in this work, could have clinical advantages since the required information can be obtained non-invasively.

  18. Measuring the velocity field from type Ia supernovae in an LSST-like sky survey

    CERN Document Server

    Odderskov, Io

    2016-01-01

    With the upcoming sky survey with the Large Synoptic Survey Telescope a great sample of type Ia supernovae will be observed, allowing for a precise mapping of the velocity structure of the universe. Since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with no information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary different aspects of the analysis, such as the ...

  19. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  20. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  1. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    CERN Document Server

    McGaugh, Stacy S

    2015-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For $R_0 = 8$ kpc, the models have stellar mass $5 < M_* < 6 \\times 10^{10}$ M$_{\\odot}$, scale length $2.0 \\le R_d \\le 2.9$ kpc, LSR circular velocity $222 \\le \\Theta_0 \\le 233$ km s$^{-1}$, and solar circle stellar surface density $34 \\le \\Sigma_d(R_0) \\le 61$ M$_{\\odot}$ pc$^{-2}$. The present inter-arm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus A...

  2. Effect of ion excape velocity and conversion surface material on H- production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kenneth F [Los Alamos National Laboratory; Tarvainen, Olli A [Los Alamos National Laboratory; Geros, E. [Los Alamos National Laboratory; Stelzer, J. [Los Alamos National Laboratory; Rouleau, G. [Los Alamos National Laboratory; Kalvas, T. [UNIV OF JYVASKYLA; Komppula, J. [UNIV OF JYASKYLA; Carmichael, J. [ORNL

    2010-10-05

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  3. EFFECTS OF A SAND RUNNING SURFACE ON THE KINEMATICS OF SPRINTING AT MAXIMUM VELOCITY

    Directory of Open Access Journals (Sweden)

    P E Alcaraz

    2011-05-01

    Full Text Available Performing sprints on a sand surface is a common training method for improving sprint-specific strength. For maximum specificity of training the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The aim of this study was to compare the kinematics of sprinting at maximum velocity on a dry sand surface to the kinematics of sprinting on an athletics track. Five men and five women participated in the study, and flying sprints over 30 m were recorded by video and digitized using biomechanical analysis software. We found that sprinting on a sand surface was substantially different to sprinting on an athletics track. When sprinting on sand the athletes tended to ‘sit’ during the ground contact phase of the stride. This action was characterized by a lower centre of mass, a greater forward lean in the trunk, and an incomplete extension of the hip joint at take-off. We conclude that sprinting on a dry sand surface may not be an appropriate method for training the maximum velocity phase in sprinting. Although this training method exerts a substantial overload on the athlete, as indicated by reductions in running velocity and stride length, it also induces detrimental changes to the athlete’s running technique which may transfer to competition sprinting.

  4. The impact of Surface Wind Velocity Data Assimilation on the Predictability of Plume Advection in the Lower Troposphere

    Science.gov (United States)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2017-04-01

    The authors investigated the impact of surface wind velocity data assimilation on the predictability of plume advection in the lower troposphere exploiting the radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. It was because the radioactive cesium plume was dispersed from the sole point source exactly placed at the Fukushima Daiichi Nuclear Power Plant and its surface concentration was measured at many locations with a high frequency and high accuracy. We used a non-hydrostatic regional weather prediction model with a horizontal resolution of 3 km, which was coupled with an ensemble Kalman filter data assimilation system in this study, to simulate the wind velocity and plume advection. The main module of this weather prediction model has been developed and used operationally by the Japan Meteorological Agency (JMA) since before March 2011. The weather observation data assimilated into the model simulation were provided from two data resources; [#1] the JMA observation archives collected for numerical weather predictions (NWPs) and [#2] the land-surface wind velocity data archived by the JMA surface weather observation network. The former dataset [#1] does not contain land-surface wind velocity observations because their spatial representativeness is relatively small and therefore the land-surface wind velocity data assimilation normally deteriorates the more than one day NWP performance. The latter dataset [#2] is usually used for real-time weather monitoring and never used for the data assimilation of more than one day NWPs. We conducted two experiments (STD and TEST) to reproduce the radioactive cesium plume behavior for 48 hours from 12UTC 14 March to 12UTC 16 March 2011 over the land area of western Japan. The STD experiment was performed to replicate the operational NWP using only the #1 dataset, not assimilating land-surface wind observations. In contrast, the TEST experiment was performed assimilating both

  5. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    Science.gov (United States)

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  6. Use of hot wire anemometry to measure velocity of the limb during human movement.

    Science.gov (United States)

    Sun, S C; Mote, C D; Skinner, H B

    1992-09-01

    Hot film anemometry, x-configuration probes were used in two experiments to evaluate their effectiveness at measurement of limb velocity. Data from tests with a probe attached to the end of a pendulum establish that the hot films measure velocity in the swing phase within 0.098 ms-1. The kinetic energy per unit mass of the pendulum was predicted within +/- 0.005 m2 s-2, from the measured velocity. In gait experiments with one human subject at speeds greater than 0.25 ms-1, the hot film anemometer and a video system predicted speeds within 0.083 ms-1. The hot film data are electronic signals that are easily stored and processed. The results from these experiments demonstrate that hot film anemometry is an effective and efficient method for direct measurement and analysis of the limb velocity.

  7. Correlation of Spherical Thermistor for the Measurement of Low Velocity Air Flow

    Institute of Scientific and Technical Information of China (English)

    Xin-GangLiang; Ying-PingZhang; 等

    1998-01-01

    A spherical thermistor,an accurate temperature sensor is employed as an air velocity sensor in this work.The measuring principle is derived and the effects of the insulation layer,air temperature,netural convection and thermal radiation are discussed.Two different correlation relations for velocity measurements are proposed based on theoretical analyses and experimental calibrations,Experiments have shown that spherical thermistor is a good velocity sensor for speed between 0.1-2.5m/s at room temperature and the insulation layer hardly influences the accuracy of the thermistor used in the present work,Modification of correlation can even further imporve measurement accuracy.Since the thermistor is small and cheap,it is possible to apply this method to multi-Point velocity measurement with a low disturbance to the flow field.

  8. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    Science.gov (United States)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  9. Computer signal processing for ultrasonic attenuation and velocity measurements for material property characterizations

    Science.gov (United States)

    Vary, A.

    1979-01-01

    This report deals with instrumentation and computer programming concepts that have been developed for ultrasonic materials characterization. Methods that facilitate velocity and attenuation measurements are described. The apparatus described is based on a broadband, buffered contact probe using a pulse-echo approach for simultaneously measuring velocity and attenuation. Instrumentation, specimen condition, and signal acquisition and acceptance criteria are discussed. Typical results with some representative materials are presented.

  10. Comparative study of electrostatic sensors with circular and probe electrodes for velocity measurement of pulverised coal

    Institute of Scientific and Technical Information of China (English)

    Shao Jiaqing; Krabicka Jan; Yah Yong

    2007-01-01

    This paper presents recent progress on the velocity measurement of pulverised coal in pneumatic pipelines using electrostatic sensors in combination with correlation signal processing techniques. A comparative study of electrostatic sensors with circular and probe electrodes was conducted on a 94 mm bore horizontal pipeline in a 4 MW furnace. The advantages and limitations of both sensors are discussed. Experimental results demonstrate that both sensors are capable of providing pulverised coal velocity measurement with excellent repeatability and dynamic response.

  11. Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.

    Science.gov (United States)

    Kiełbasa, Jan

    2007-08-01

    The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.

  12. Use of the Hot Wire Anemometry for Velocity and Temperature Measurements in a Turbomachine

    OpenAIRE

    Blidi, Sami; Miton, Hubert

    1995-01-01

    The hot film anemometry in a highly heterogeneous unsteady flow is a quite complex measurement technique. The velocity is determined from the heat flux measurement. The part of the signal related to velocity must be kept apart from one related to temperature and to pressure of flow. After a brief return to the principle of hot wire anemometry and the different heat transfer models between hot wire and flow, an experimentally established heat flux expression is presented. This study was achiev...

  13. Experimental determination of the onset of turbulence on inclined plates using hot wire velocity measurements

    OpenAIRE

    Rodríguez Sevillano, Angel; Pérez Grande, María Isabel; Meseguer Ruiz, José

    2010-01-01

    The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the distance to the plate edge where the onset begins depends both on the plate inclinatio...

  14. 3D velocity measurement by a single camera using Doppler phase-shifting holography

    Science.gov (United States)

    Ninomiya, Nao; Kubo, Yamato; Barada, Daisuke; Kiire, Tomohiro

    2016-10-01

    In order to understand the details of the flow field in micro- and nano-fluidic devices, it is necessary to measure the 3D velocities under a microscopy. Thus, there is a strong need for the development of a new measuring technique for 3D velocity by a single camera. One solution is the use of holography, but it is well known that the accuracy in the depth direction is very poor for the commonly used in-line holography. At present, the Doppler phase-shifting holography is used for the 3D measurement of an object. This method extracts the signal of a fixed frequency caused by the Doppler beat between the object light and the reference light. It can measure the 3D shape precisely. Here, the frequency of the Doppler beat is determined by the velocity difference between the object light and the reference light. This implies that the velocity of an object can be calculated by the Doppler frequency. In this study, a Japanese 5 yen coin was traversed at a constant speed and its holography has been observed by a high-speed camera. By extracting only the first order diffraction signal at the Doppler frequency, a precise measurement of the shape and the position of a 5 yen coin has been achieved. At the same time, the longitudinal velocity of a 5 yen coin can be measured by the Doppler frequency. Furthermore, the lateral velocities are obtained by particle image velocimetry (PIV) method. A 5 yen coin has been traversed at different angles and its shapes and the 3D velocities have been measured accurately. This method can be applied to the particle flows in the micro- or nano-devices, and the 3D velocities will be measured under microscopes.

  15. Laser and acoustic Doppler techniques for the measurement of fluid velocities

    Science.gov (United States)

    Cliff, W. C.

    1975-01-01

    An overview of current laser and acoustic Doppler techniques is presented. Results obtained by Doppler anemometry and conventional sensors are compared. Comparisons include simultaneous velocity measurements by hot wire and a three-dimensional laser anemometer made in a gaseous pipe flow as well as direct comparisons of atmospheric velocities measured with propeller and cup anemometry. Scanning techniques are also discussed. Conclusions and recommendations for future work are presented.

  16. Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.

  17. Penetrative convection in stratified fluids: velocity and temperature measurements

    Directory of Open Access Journals (Sweden)

    M. Moroni

    2006-01-01

    Full Text Available The flux through the interface between a mixing layer and a stable layer plays a fundamental role in characterizing and forecasting the quality of water in stratified lakes and in the oceans, and the quality of air in the atmosphere. The evolution of the mixing layer in a stably stratified fluid body is simulated in the laboratory when "Penetrative Convection" occurs. The laboratory model consists of a tank filled with water and subjected to heating from below. The methods employed to detect the mixing layer growth were thermocouples for temperature data and two image analysis techniques, namely Laser Induced Fluorescence (LIF and Feature Tracking (FT. LIF allows the mixing layer evolution to be visualized. Feature Tracking is used to detect tracer particle trajectories moving within the measurement volume. Pollutant dispersion phenomena are naturally described in the Lagrangian approach as the pollutant acts as a tag of the fluid particles. The transilient matrix represents one of the possible tools available for quantifying particle dispersion during the evolution of the phenomenon.

  18. a Global Shear Velocity Model of the Upper Mantle from New Fundamental and Higher Rayleigh Mode Measurements

    Science.gov (United States)

    Debayle, E.; Ricard, Y. R.

    2011-12-01

    We present a global SV-wave tomographic model of the upper mantle, built from a new dataset of fundamental and higher mode Rayleigh waveforms. We use an extension of the automated waveform inversion approach of Debayle (1999) designed to improve the extraction of fundamental and higher mode information from a single surface wave seismogram. The improvement is shown to be significant in the transition zone structure which is constrained by the higher modes. The new approach is fully automated and can be run on a Beowulf computer to process massive surface wave dataset. It has been used to match successfully over 350 000 fundamental and higher mode Rayleigh waveforms, corresponding to about 20 millions of new measurements extracted from the seismograms. For each seismogram, we obtain a path average shear velocity and quality factor model, and a set of fundamental and higher mode dispersion and attenuation curves compatible with the recorded waveform. The set of dispersion curves provides a global database for future finite frequency inversion. Our new 3D SV-wave tomographic model takes into account the effect of azimuthal anisotropy and is constrained with a lateral resolution of several hundred kilometers and a vertical resolution of a few tens of kilometers. In the uppermost 200 km, our model shows a very strong correlation with surface tectonics. The slow velocity signature of mid-oceanic ridges extend down to ~100 km depth while the high velocity signature of cratons vanishes below 200 km depth. At depth greater than 400 km, the pattern of seismic velocities appear relatively homogeneous at large scale, except for high velocity slabs which produce broad high velocity regions within the transition zone. Although resolution is still good, the region between 200 and 400 km is associated with a complex pattern of seismic heterogeneities showing no simple correlation with the shallower or deeper structure.

  19. The measurement of surface gravity.

    Science.gov (United States)

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  20. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  1. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  2. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  3. A Vector Measurement-based Angular Velocity Estimation Scheme for Maneuvering Spacecraft

    Science.gov (United States)

    Jo, Sujang; Bang, Hyochoong; Leeghim, Henzeh

    2017-09-01

    A new practical approach to estimate the body angular velocity of maneuvering spacecraft using only vector measurements is presented. Several algorithms have been introduced in previous studies to estimate the angular velocity directly from vector measurements at two time instants. However, these direct methods are based on the constant angular velocity assumption, and estimation results may be invalid for attitude maneuvers. In this paper, an estimation scheme to consider attitude disturbances and control torques is proposed. The effects of angular velocity variation on estimation results are quantitatively evaluated, and an algorithm to minimize estimation errors is designed by selecting the optimal time interval between vector measurements. Without losing the simplicity of direct methods, the design parameters of the algorithm are restricted to the expected covariance of disturbances and the maximum angular acceleration. By applying the proposed estimation scheme, gyroscopes can be directly replaced by attitude sensors such as star trackers.

  4. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Kamiar Aminian

    2012-09-01

    Full Text Available Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer’s natural technique.

  5. Measurement of Turbulence Energy Balance in a Two-Dimensional Wall Jet along a Plane Surface

    OpenAIRE

    藤沢, 延行; 白井, 紘行

    1987-01-01

    The sructure of turbulence in a wall jet along a plane surface is investigated by measuring the balance of turbulence energy. With the aid of a hot-wire anemometer system, convection velocities of small-scale turbulent motion are measured as well as other time-averaged flow properties and turbulence characteristics. It is found that the convection velocity of small-scale turbulence deviates significantly from the mean flow velocity, that is, Taylor's hypothesis is not valid for the present wa...

  6. In vivo lateral blood flow velocity measurement using speckle size estimation.

    Science.gov (United States)

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  7. Reliability of the Measured Velocity Anisotropy of the Milky Way Stellar Halo

    Science.gov (United States)

    Hattori, Kohei; Valluri, Monica; Loebman, Sarah R.; Bell, Eric F.

    2017-06-01

    Determining the velocity distribution of halo stars is essential for estimating the mass of the Milky Way and for inferring its formation history. Since the stellar halo is a dynamically hot system, the velocity distribution of halo stars is well described by the three-dimensional velocity dispersions ({σ }r,{σ }θ ,{σ }φ ) or by the velocity anisotropy parameter β =1-({σ }θ 2+{σ }φ 2)/(2{σ }r2). Direct measurements of ({σ }r,{σ }θ ,{σ }φ ) consistently suggest β = 0.5-0.7 for nearby halo stars. In contrast, the value of β at large Galactocentric radius r is still controversial, since reliable proper motion data are available for only a handful of stars. In the last decade, several authors have tried to estimate β for distant halo stars by fitting the observed line-of-sight velocities at each radius with simple velocity distribution models (local fitting methods). Some results of local fitting methods imply β < 0 at r≳ 20 {kpc}, which is inconsistent with recent predictions from cosmological simulations. Here we perform mock-catalog analyses to show that the estimates of β based on local fitting methods are reliable only at r≤slant 15 {kpc} with the current sample size (˜103 stars at a given radius). As r increases, the line-of-sight velocity (corrected for the solar reflex motion) becomes increasingly closer to the Galactocentric radial velocity, so it becomes increasingly more difficult to estimate the tangential velocity dispersion ({σ }θ ,{σ }φ ) from the line-of-sight velocity distribution. Our results suggest that the forthcoming Gaia data will be crucial for understanding the velocity distribution of halo stars at r≥slant 20 {kpc}.

  8. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  9. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  10. Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization

    Science.gov (United States)

    Rahman, Md. Zillur; Siddiqua, Sumi; Kamal, A. S. M. Maksud

    2016-11-01

    The average shear wave velocity of the near-surface materials down to a depth of 30 m (Vs30) is essential for seismic site characterization to estimate the local amplification factor of the seismic waves during an earthquake. Chittagong City is one of the highest risk cities of Bangladesh for its seismic vulnerability. In the present study, the Vs30 is estimated for Chittagong City using the multichannel analysis of surface waves (MASW), small scale microtremor measurement (SSMM), downhole seismic (DS), and correlation between the shear wave velocity (Vs) and standard penetration test blow count (SPT-N). The Vs30 of the near-surface materials of the city varies from 123 m/s to 420 m/s. A Vs30 map is prepared from the Vs30 of each 30 m grid using the relationship between the Holocene soil thickness and the Vs30. Based on the Vs30, the near-surface materials of Chittagong City are classified as site classes C, D, and E according to the National Earthquake Hazards Reduction Program (NEHRP), USA and as site classes B, C, and D according to the Eurocode 8. The Vs30 map can be used for seismic microzonation, future planning, and development of the city to improve the earthquake resiliency of the city.

  11. Characterization of length and velocity scales of free stream turbulence and investigation of their effects on surface heat transfer

    Science.gov (United States)

    Yavuzkurt, Savash

    1991-01-01

    The main objective of this research is to address two important but unresolved problems: (1) the measurement of vertical and transverse length scales via space correlations for all Reynolds stress components and velocity-temperature correlations, both in the free stream and within the boundary layer using the existing triple and quad-wire probes; and (2) to relate the character of the free stream turbulence to the character of the turbulence within the boundary layer in order to determine the effect on surface heat transfer.

  12. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  13. 3D Surface Morphology Measurement and Auto-focusing System

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; ZANG Huai-pei

    2005-01-01

    When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.

  14. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  15. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  16. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations

    Science.gov (United States)

    Kästle, Emanuel D.; Soomro, Riaz; Weemstra, Cornelis; Boschi, Lapo; Meier, Thomas

    2016-12-01

    Phase velocities derived from ambient-noise cross-correlation are compared with phase velocities calculated from cross-correlations of waveform recordings of teleseismic earthquakes whose epicentres are approximately on the station-station great circle. The comparison is conducted both for Rayleigh and Love waves using over 1000 station pairs in central Europe. We describe in detail our signal-processing method which allows for automated processing of large amounts of data. Ambient-noise data are collected in the 5-80 s period range, whereas teleseismic data are available between about 8 and 250 s, resulting in a broad common period range between 8 and 80 s. At intermediate periods around 30 s and for shorter interstation distances, phase velocities measured from ambient noise are on average between 0.5 per cent and 1.5 per cent lower than those observed via the earthquake-based method. This discrepancy is small compared to typical phase-velocity heterogeneities (10 per cent peak-to-peak or more) observed in this period range.We nevertheless conduct a suite of synthetic tests to evaluate whether known biases in ambient-noise cross-correlation measurements could account for this discrepancy; we specifically evaluate the effects of heterogeneities in source distribution, of azimuthal anisotropy in surface-wave velocity and of the presence of near-field, rather than far-field only, sources of seismic noise. We find that these effects can be quite important comparing individual station pairs. The systematic discrepancy is presumably due to a combination of factors, related to differences in sensitivity of earthquake versus noise data to lateral heterogeneity. The data sets from both methods are used to create some preliminary tomographic maps that are characterized by velocity heterogeneities of similar amplitude and pattern, confirming the overall agreement between the two measurement methods.

  17. Measurement of the electron drift velocity for directional dark matter detectors

    CERN Document Server

    Mayet, F; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Richer, J P; Riffard, Q; Santos, D; Iguaz, F J; Lebreton, L; Maire, D

    2014-01-01

    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : $\\rm CF_4$ and $\\rm CF_4+CHF_3$. We also show that adding $\\rm CHF_3$ allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.

  18. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  19. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    Science.gov (United States)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  20. Radial velocity measurements of the pulsating zirconium star: LS IV -14 116

    CERN Document Server

    Jeffery, C Simon; Neelamkodan, Naslim; Kerzendorf, Wolfgang

    2014-01-01

    The helium-rich hot subdwarf LS IV -14 116 shows remarkably high surface abundances of zirconium, yttrium, strontium, and germanium, indicative of strong chemical stratification in the photosphere. It also shows photometric behaviour indicative of non-radial g-mode pulsations, despite having surface properties inconsistent with any known pulsational instability zone. We have conducted a search for radial velocity variability. This has demonstrated that at least one photometric period is observable in several absorption lines as a radial velocity variation with a semi-amplitude in excess of 5 km s$^{-1}$. A correlation between line strength and pulsation amplitude provides evidence that the photosphere pulsates differentially. The ratio of light to velocity amplitude is too small to permit the largest amplitude oscillation to be radial.

  1. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    Energy Technology Data Exchange (ETDEWEB)

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  2. 信息动态%Sound Velocity Measurement of Mesoscale Objects Using Laser Ultrasonics Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A laser-based ultrasound system was designed and built to measure the sound velocity of mesoscale (tens of micrometer to millimeter-sized) objects. The system uses a Q-switch laser with 6.3 ns pulse width for excitation of broadband ultrasonic waves,and an optical fiber displacement interferometer for detection. The longitudinal acoustic wave velocities of the copper foils with different thicknesses were presented, which exhibit a relatively high degree of accuracy.

  3. Adaptive method for quantifying uncertainty in discharge measurements using velocity-area method.

    Science.gov (United States)

    Despax, Aurélien; Favre, Anne-Catherine; Belleville, Arnaud

    2015-04-01

    Streamflow information provided by hydrometric services such as EDF-DTG allow real time monitoring of rivers, streamflow forecasting, paramount hydrological studies and engineering design. In open channels, the traditional approach to measure flow uses a rating curve, which is an indirect method to estimate the discharge in rivers based on water level and punctual discharge measurements. A large proportion of these discharge measurements are performed using the velocity-area method; it consists in integrating flow velocities and depths through the cross-section [1]. The velocity field is estimated by choosing a number m of verticals, distributed across the river, where vertical velocity profile is sampled by a current-meter at ni different depths. Uncertainties coming from several sources are related to the measurement process. To date, the framework for assessing uncertainty in velocity-area discharge measurements is the method presented in the ISO 748 standard [2] which follows the GUM [3] approach. The equation for the combined uncertainty in measured discharge u(Q), at 68% level of confidence, proposed by the ISO 748 standard is expressed as: Σ 2 2 2 -q2i[u2(Bi)+-u2(Di)+-u2p(Vi)+-(1ni) ×-[u2c(Vi)+-u2exp(Vi)

  4. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  5. Velocity and Vorticity Measurements of Jupiter's Great Red Spot Using Automated Cloud Feature Tracking

    CERN Document Server

    Choi, David S; Gierasch, Peter J; Showman, Adam P; 10.1016/j.icarus.2006.10.037

    2013-01-01

    We have produced mosaics of the Great Red Spot (GRS) using images taken by the Galileo spacecraft in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen from our velocity vector map, and highest wind velocities are measured to be around 170 m/s. The high resolution of the mosaics have also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. (1996) and Vasavada et al. (1998). Using the wind velocity measurements, we computed particle trajectories around the GRS as well as maps of relative and absolute vorticities. We have discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow rin...

  6. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  7. Assimilation of Sonic Velocity and Thin Section Measurements from the NEEM Ice Core

    Science.gov (United States)

    Hay, Michael; Pettit, Erin; Kluskiewicz, Dan; Waddington, Edwin

    2016-04-01

    We examine the measurement of crystal orientation fabric (COF) in ice cores using thin sections and sound-wave velocities, focusing on the NEEM core in Greenland. Ice crystals have substantial plastic anisotropy, with shear orthogonal to the crystallographic c-axis occuring far more easily than deformation in other orientations. Due to strain-induced grain-rotation, COFs can become highly anisotropic, resulting in bulk anisotropic flow. Thin-section measurements taken from ice cores allow sampling of the crystal fabric distribution. Thin-section measurements, however, suffer from sampling error, as they sample a small amount of ice, usually on the order of a hundred grans. They are typically only taken at intervals of several meters, which means that meter-scale variations in crystal fabric are difficult to capture. Measuring sonic velocities in ice cores provides an alternate method of determining crystal fabric. The speed of vertical compression waves is affected by the vertical clustering of c-axes, but is insensitive to azimuthal fabric anisotropy. By measuring splitting between the fast and slow shear-wave directions, information on the azimuthal distribution of orientations can be captured. Sonic-velocity measurements cannot capture detailed information on the orientation distribution of the COF, but they complement thin-section measurements with several advantages. Sonic-logging measurements can be taken at very short intervals, eliminating spatial gaps. In addition, sonic logging samples a large volume of ice with each measurement, reducing sampling error. Our logging tool has a depth resolution of around 3m/s, and can measure velocity features on the order of 1m/s. Here, we show the results of compression-wave measurements at NEEM. We also combine sonic-velocity measurements and thin-section measurements to produce a more accurate and spatially-complete representation of ice-crystal orientations in the vicinity of the NEEM core.

  8. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Science.gov (United States)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  9. The Enhanced-model Ladar Wind Sensor and Its Application in Planetary Wind Velocity Measurements

    Science.gov (United States)

    Soreide, D. C.; Mcgann, R. L.; Erwin, L. L.; Morris, D. J.

    1993-01-01

    For several years we have been developing an optical air-speed sensor that has a clear application as a meteorological wind-speed sensor for the Mars landers. This sensor has been developed for aircraft use to replace the familiar, pressure-based Pitot probe. Our approach utilizes a new concept in the laser-based optical measurement of air velocity (the Enhanced-Mode Ladar), which allows us to make velocity measurements with significantly lower laser power than conventional methods. The application of the Enhanced-Mode Ladar to measuring wind speeds in the martian atmosphere is discussed.

  10. Deep S-wave velocity structure at Hawaii Islands obtained by microtremor array measurements

    Science.gov (United States)

    Hayashi, K.

    2015-12-01

    Microtremor array measurements and three-component microtremor measurements have been performed at the west coast of Hawaii Island (Figure.1). Two seismographs with three-component accelerometers were used for data acquisition. At each site, one seismograph was fixed in one place and data was acquired at that location for the entire survey. Data was acquired by a second seismograph at larger separations ranging from 5 to 3403m from the fixed seismograph. Data acquisition was repeated at each new separation. In each measurement, 10 to 60 minutes of ambient noise was recorded. As the separations of seismographs increased, the record length of ambient noise was increased. The sampling interval used was 10msec. An entire measurement took several hours. Data acquisition was performed in the day-time and the seismographs were placed in relatively quiet places such as in parks or residential areas. A spatial autocorrelation was used for calculating phase velocity and a clear dispersion curve (Figure 2a) was obtained in frequency range from 0.2 to 30 Hz. A joint inversion was applied to the observed dispersion curve, and H/V spectrum, and S-wave velocity model was analyzed for the site. In the inversion, phase velocities of the dispersion curve and the absolute value and peak frequencies of the H/V spectra were used as observation data. The unknown parameters were layer thickness and S-wave velocity. A Genetic Algorithm was used for optimization. Theoretical H/V spectra and phase velocities are generated by calculating the weighted average of the fundamental mode and higher modes (up to the 5th mode) based on medium response. Figure 2b shows an S-wave velocity model obtained by the inversion. We can see that a low velocity layer with S-wave velocity from 250 to 700 m/s exists to a depth of 90 m. A velocity layer with S-wave velocity from 900 to 1500 m/s exists at a depth range of 90 to 1300 m. Bedrock with S-wave velocity about 3000 m/s exists at a depth of 2200 m.

  11. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  12. Measurement of bubble velocity using Capacitively Coupled Contactless Conductivity Detection (C4D) technique

    Institute of Scientific and Technical Information of China (English)

    Baoliang Wang; Ying Zhou; Haifeng Ji; Zhiyao Huang; Haiqing Li

    2013-01-01

    The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated.And,a new method,which combines the C4D technique and the principle of cross-correlation velocity measurement,is proposed for the measurement of bubble velocity.This research includes two parts.First,based on the principle of C4D,a new five-electrode C4D sensor is developed.Then,with two conductivity signals obtained by the C4D sensor,the velocity measurement of bubble is implemented according to the principle of cross-correlation.The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow.Experimental results show that the fiveelectrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.

  13. Study of Influence of Experimental Technique on Measured Particle Velocity Distributions in Fluidized Bed

    Science.gov (United States)

    Gopalan, Balaji; Shaffer, Frank

    2013-11-01

    Fluid flows that are loaded with high concentration of solid particles are common in oil and chemical processing industries. However, the opaque nature of the flow fields and the complex nature of the flow have hampered the experimental and computational study of these processes. This has led to the development of a number of customized experimental techniques for high concentration particle flows for evaluation and improvement of CFD models. This includes techniques that track few individual particles, measures average particle velocity over a small sample volume and those over a large sample volume. In this work novel high speed PIV (HsPIV), with individual particle tracking, was utilized to measure velocities of individual particles in gas-particle flow fields at the walls circulating and bubbling fluidized bed. The HsPIV measurement technique has the ability to simultaneously recognize and track thousands of individual particles in flows of high particle concentration. To determine the effect of the size of the sample volume on particle velocity measurements, the PDF of Lagrangian particle velocity was compared with the PDF of Eulerian for different domain sizes over a range of flow conditions. The results will show that measured particle velocity distribution can vary from technique to technique and this bias has to be accounted in comparison with CFD simulations.

  14. Simultaneous measurement of droplet size and velocity field by an interferometric imaging technique in spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Hosokawa, A.; Tomimatsu, S. [Niigata Univ. (Japan). Dept. of Mechanical and Production Engineering

    2003-08-01

    The present paper describes an experimental technique of droplet sizing and velocity measurement for application to a luminous flame in spray combustion. The size measurement of unburnt fuel droplets in combustion is carried out by using an interferometric imaging method, while the corresponding velocity field is measured by particle tracking velocimetry (PTV) in combination with the rotary shutter to avoid the high intensity noise of the luminous flame in spray combustion. The measurements are successfully applied to the spray flow from a gun-type burner with and without combustion. The experimental results in spray combustion indicate that the smaller size of fuel droplets are almost burnt in the centre of the flame and the unburnt droplets of larger size remain in the outer region of the burner flow. It was found that the mean droplet velocity measured by the present PTV technique in combustion is almost independent of the droplet size and agrees closely with the gas velocity. However, the velocity magnitude with combustion is increased in comparison with the case without combustion, which suggests the influence of gas expansion at high temperatures. (author)

  15. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  16. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  17. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  18. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    Science.gov (United States)

    Liu, Bo; Peng, Zhangxian

    2016-06-01

    A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV) objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  19. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2016-01-01

    Full Text Available A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  20. Feasibility of Velocity Measurements by a Drifter in the Yangon River

    NARCIS (Netherlands)

    Janssen, M.P.J.; Koning, R.J.

    2016-01-01

    Myanmar is dealing with a large data deficit, which is in contrast with the substantial need for it. The implementation of measuring techniques to obtain hydro- and morphodynamic data is an upcoming process. Measuring velocities can be valuable for calibrating models or giving estimates of sediment

  1. Measuring the Phase Velocity of Light in a Magnetic Field with the PVLAS Detector

    OpenAIRE

    Melissinos, A. C.

    2002-01-01

    A method is suggested for measuring the velocity of light in a magnetic field using the PVLAS detector. It is proposed to modulate the linear polarization of the input light. In that case the feedback signal necessary to keep the high finesse Fabry-Perot cavity on resonance is a measure of the change in the speed of light for the two orthogonal polarizations.

  2. Profiling river surface velocities and volume flow estimation with bistatic UHF RiverSonde radar

    Science.gov (United States)

    Barrick, D.; Teague, C.; Lilleboe, P.; Cheng, R.; Gartner, J.; ,

    2003-01-01

    From the velocity profiles across the river, estimates of total volume flow for the four methods were calculated based on a knowledge of the bottom depth vs position across the river. It was found that the flow comparisons for the American River were much closer, within 2% of each other among all of the methods. Sources of positional biases and anomalies in the RiverSonde measurement patterns along the river were identified and discussed.

  3. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan;

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...

  4. A first comparison of irregularity and ion drift velocity measurements in the E-region

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2006-09-01

    Full Text Available E-region irregularity velocity measurements at large flow angles with the STARE Finland coherent VHF radar are considered in context of the ion and electron velocity data provided by the EISCAT tristatic radar system, CUTLASS Finland coherent HF radar, and IMAGE fluxgate magnetometers. The data have been collected during a special experiment on 27 March 2004 during which EISCAT was scanning between several E- and one F-region altitudes along the magnetic field line. Within the E-region, the EISCAT measurements at two altitudes of 110 and 115 km are considered while the electron velocity is inferred from the EISCAT ion velocity measurements at 278 km. The line-of-sight (l-o-s VHF velocity measured by STARE VHF los is compared to the ion and electron velocity components (Vi0 comp and Ve0 comp along the STARE l-o-s direction. The comparison with Ve0 comp for the entire event shows that the measurements exhibit large scatter and small positive correlation. The correlation with Ve0 comp was substantial in the first half of the interval under study when Ve0 comp was larger in magnitude. The comparison with Vi0 comp at 110 and 115 km shows a considerable positive correlation, with VHF velocity being typically larger (smaller in magnitude than Vi0 comp at 110 km (115 km so that VVHF los appears to be bounded by the ion velocity components at two altitudes. It is also demonstrated that the difference between VVHF los and Vi0 comp at 110 km can be treated, in the first approximation, as a linear function of the effective backscatter height heff also counted from 110 km; heff varies in the range 108–114 km due to the altitude integration effects in the scattering cross-section. Our results are consistent with the notion that VHF

  5. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  6. Turbulence Measurements with the CIRES Tethered Lifting System during CASES-99: Calibration and Spectral Analysis of Temperature and Velocity.

    Science.gov (United States)

    Frehlich, Rod; Meillier, Yannick; Jensen, Michael L.; Balsley, Ben

    2003-10-01

    Finescale temperature and velocity measurements with multiple vertically spaced cold-wire and hot-wire sensors on the Cooperative Institute for Research in the Environmental Sciences (CIRES) tethered lifting system (TLS) were produced during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99). The various calibration methods are presented as well as algorithms to extract high-resolution estimates of the energy dissipation rate and the temperature structure constant C2T. The instrumentation is capable of measurements of 10-7 m2 s-3 and C2T 10-6 K2 m-2/3.

  7. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  8. The influence of surface on the running velocities of elite and amateur orienteer athletes.

    Science.gov (United States)

    Hébert-Losier, K; Jensen, K; Mourot, L; Holmberg, H-C

    2014-12-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic power. In the forest, the elites ran at a slightly higher percentage of their 2-km (∼3%) and 20-m (∼4%) road velocities. Although these differences did not exhibit traditional statistical significance, magnitude-based inferences suggested likely meaningful differences, particularly during 20-m sprinting. Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist in tailoring training and identifying individual strengths and/or weaknesses in an orienteer.

  9. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  10. Measurements of Dendritic Growth Velocities in Undercooled Melts of Pure Nickel Under Static Magnetic Fields

    Science.gov (United States)

    Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie

    2012-01-01

    Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.

  11. Ice Velocity Measurement from SAR: Comparison of Sentinel-1A and RADARSAT-2

    DEFF Research Database (Denmark)

    Kusk, Anders; Dall, Jørgen

    Mapping the velocity fields of the continental ice sheets and their outlet glaciers is important in order to monitor and model the response of the cryosphere to global climate change. Since the mid 1990s, space-based SAR data have enabled measurement of ice velocities on a continental scale...... fields. Two Greenland-wide RADARSAT-2 campaigns were carried out during January-March 2014, and a smaller one in December 2014-February 2015. Ice velocity maps from both campaigns will be presented. A preliminary ice velocity map from the former campaign is attached with this abstract, while the latter...... with this abstract. The overlapping temporal coverage of the second RADARSAT-2 campaign and the first Sentinel-1 campaign allows a comparison of the two sensors in terms of: Impact of differing imaging modes (stripmap vs TOPS). The better coverage of Sentinel-1 is at the cost of a reduced azimuth resolution, however...

  12. Planar Velocity Distribution of Viscous Debris Flow at Jiangjia Ravine, Yunnan, China: A Field Measurement Using Two Radar Velocimeters

    Institute of Scientific and Technical Information of China (English)

    FU Xudong; WANG Guangqian; KANG Zhicheng; FEI Xiangjun

    2007-01-01

    Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.

  13. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  14. Measuring short term velocity changes of Kangilerngata Sermia, west Greenland using a Gamma Portable Radar Interferometer

    Science.gov (United States)

    Kane, E.; Rignot, E. J.; Mouginot, J.; Li, X.; Millan, R.; Fahnestock, M. A.; Nakayama, Y.; Scheuchl, B.

    2016-12-01

    Kangilerngata Sermia, west Greenland, is a 4 km wide marine terminating glacier that experienced rapid retreat from 2005-2010, withdrawing from a stabilizing sill at 150 m depth to its current state, grounded 350 m below sea level. The ice front retreated 2.3 km over a 5 year period with ice speeds increasing to 3x the average rate as the front retreated into deeper water. With a bed that is continuously 200-450 m below sea level for 30 km upstream, this glacier might continue to retreat rapidly for decades to come. We conducted a 16-day field campaign in July 2016 aimed to increase the temporal resolution of ice flow velocity measurements during the peak calving season by using a Gamma Portable Radar Interferometer (GPRI) deployed at 100m elevation about 3 km from the glacier front, scanning the glacier every 3 minutes. In addition we conducted an hydrography survey, collecting a set of 11 CTDs (conductivity, temperature, depth plus dissolved oxygen) about 1 km from the calving front, to estimate the amount of ice melted by the ocean. We compare these results to simulations of ice melt of a calving face using the MITgcm ocean model to help evaluate the model results on one glacier. With the GPRI we form a time series of radar images that show the dynamics of the ocean surface in front of the glacier as a result of wind, sub-glacial water discharge and calving events. We form time series of radar interferograms to analyze the time evolution of glacier speed, especially in relation to calving events, both small and large. Velocity records are used to detect changes in speed, prior, during and post-calving and to determine how long these changes persisted. These results are then analyzed in relation to bed topography (mapped with multi-beam) and tidal cycle. We also compare our results with TerraSAR-X ice velocity maps. We conclude on the impacts of calving events on short-term ice dynamics and implications for the future of this glacier. This work was preformed at

  15. Stiffness matrix determination of composite materials using lamb wave group velocity measurements

    Science.gov (United States)

    Putkis, O.; Croxford, A. J.

    2013-04-01

    The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.

  16. System identification of velocity mechanomyogram measured with a capacitor microphone for muscle stiffness estimation.

    Science.gov (United States)

    Uchiyama, Takanori; Tomoshige, Taiki

    2017-04-01

    A mechanomyogram (MMG) measured with a displacement sensor (displacement MMG) can provide a better estimation of longitudinal muscle stiffness than that measured with an acceleration sensor (acceleration MMG), but the displacement MMG cannot provide transverse muscle stiffness. We propose a method to estimate both longitudinal and transverse muscle stiffness from a velocity MMG using a system identification technique. The aims of this study are to show the advantages of the proposed method. The velocity MMG was measured using a capacitor microphone and a differential circuit, and the MMG, evoked by electrical stimulation, of the tibialis anterior muscle was measured five times in seven healthy young male volunteers. The evoked MMG system was identified using the singular value decomposition method and was approximated with a fourth-order model, which provides two undamped natural frequencies corresponding to the longitudinal and transverse muscle stiffness. The fluctuation of the undamped natural frequencies estimated from the velocity MMG was significantly smaller than that from the acceleration MMG. There was no significant difference between the fluctuations of the undamped natural frequencies estimated from the velocity MMG and that from the displacement MMG. The proposed method using the velocity MMG is thus more advantageous for muscle stiffness estimation.

  17. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  18. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  19. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Science.gov (United States)

    Gao, F.; Liu, H.; Xu, P.; Tian, X.; Wang, Y.; Ren, J.; Wu, Haibin; Chang, Hong

    2014-02-01

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of 88Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10) kHz.

  20. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Directory of Open Access Journals (Sweden)

    F. Gao

    2014-02-01

    Full Text Available We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of 88Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10 kHz.

  1. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single......-particle orbit picture is valid for the discharge period under investigation, except for the first few microseconds during breakdown when a strong interaction between plasma and remaining neutral gas takes place by Alfvens critical velocity mechanism. A simple relation is given between the measured half......-width and shift of the Doppler profile and the macroscopic quantities of ion velocity and energy. Several Doppler-broadened profiles are shown for different plasma parameters....

  2. Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The gray of two images of a same particle taken by a digital camera with different exposure times is different too. Based on the gray difference of particle images in a double-exposed photo and autocorrelation processing of digital images,this paper proposes a method for measuring particle velocities and sizes simultaneously. This paper also introduces the theoretical foundation of this method,the process of particle imaging and image processing,and the simultaneous measurement of velocity and size of a low speed flow field with 35 μm and 75 μm standard particles. The graphical measurement results can really reflect the flow characteristics of the flow field. In addition,although the measured velocity and size histograms of these two kinds of standard particles are slightly wider than the theoretical ones,they are all still similar to the normal distribution,and the peak velocities and diameters of the histograms are consistent with the default values. Therefore,this measurement method is capable of providing moderate measurement accuracy,and it can be further developed for high-speed flow field measurements.

  3. A molecular model of proton neutralization at solid surface: the intermediate velocity region

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Nedeljkovic, L.D. (Faculty of Physics, Belgrade Univ. (Yugoslavia)); Janev, R.K. (Inst. of Physics, Belgrade (Yugoslavia)); Miskovic, Z.L. (Boris Kidric Inst. of Nuclear Sciences, Belgrade (Yugoslavia))

    1991-06-01

    The proton neutralization (into ground hydrogen state) at solid surface is treated in the normal emergence geometry. For the intermediate proton velocity region (between v{approx equal}1 and 4 a.u.) a new, molecular-type dynamic model of the process is proposed. Evaluation of the electron transition amplitude is based on an elaboration of the Demkov-Ostrovsky method. The calculation showed that the electron transitions have a nonresonant character. Comparison with experiments leads to the conclusion that the electron capture into ground state is almost sufficient to explain the experiment data. (orig.).

  4. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  5. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    Science.gov (United States)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  6. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  7. Estimation of the p-wave velocity profile of elastic real data based on surface wave inversion

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Recently, we proposed an analytical approach to invert for a smoothly varying near-surface P-wave velocity profile that has a squared slowness linearly decreasing with depth. The exact solution for such a velocity profile in the acoustic approximation can be expressed in terms of Airy functions and

  8. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...... using the stereoscopic PIV setup. The concentration measurement method is developed in the present study and the accuracy of the technique is investigated. The resulting data are two dimensional concentration fields taken at 4Hz. The combination of velocity, turbulence and concentration fields give...

  9. A technique for measuring velocity and attenuation of ultrasound in liquid foams

    CERN Document Server

    Pierre, Juliette; Leroy, Valentin

    2012-01-01

    We describe an experimental setup specifically designed for measuring the ultrasonic transmission through liquid foams, over a broad range of frequencies (60-600 kHz). The question of determining the ultrasonic properties of the foam (density, phase velocity and attenuation) from the transmission measurements is addressed. An inversion method is proposed, tested on synthetic data, and applied to a liquid foam at different times during the coarsening. The ultrasonic velocity and attenuation are found to be very sensitive to the foam bubble sizes, suggesting that a spectroscopy technique could be developed for liquid foams.

  10. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function

    DEFF Research Database (Denmark)

    Cortsen, M; Petersen, L.J.; Stahlberg, F

    1996-01-01

    Renal blood flow (RBF) was measured in 9 patients with chronic impaired kidney function using MR velocity mapping and compared to PAH clearance and 99mTc-DTPA scintigraphy. An image plane suitable for flow measurement perpendicular to the renal arteries was chosen from 2-dimensional MR angiography...... by 99mTc-DTPA scintigraphy. A reduction of RBF was found, and there was a significant correlation between PAH clearance multiplied by 1/(1-hematocrit) and RBF determined by MR velocity mapping. Furthermore, a significant correlation between the distribution of renal function and the percent distribution...

  11. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    Science.gov (United States)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  12. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    Science.gov (United States)

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    2014-08-01

    An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.

  13. Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence Photobleaching

    DEFF Research Database (Denmark)

    Carroll, Nick J.; Jensen, Kaare Hartvig; Parsa, Shima

    2014-01-01

    We present a simple, noninvasive method for simultaneous measurement of flow velocity and inference of liquid viscosity in a microfluidic channel. We track the dynamics of a sharp front of photobleached fluorescent dye using a confocal microscope and measure the intensity at a single point...... downstream of the initial front position. We fit an exact solution of the advection diffusion equation to the fluorescence intensity recovery curve to determine the average flow velocity and the diffusion coefficient of the tracer dye. The dye diffusivity is correlated to solute concentration to infer...

  14. Laser-strophometry high-resolution technique for velocity gradient measurements in fluid flows

    CERN Document Server

    Staude, Wilfried

    2001-01-01

    This book describes techniques that allow the measurement of arbitrary velocity gradient components in fluids with high spatial and temporal resolution, e.g. turbulent fluids. The techniques are based on the properties of scattered laser light. The book gives a detailed and rigorous treatment of the physical and mathematical background in a pedagogical presentation accessible to students in physics and engineering. From both the theoretical and experimental points of view, four different schemes are discussed in detail; the schemes differ in the way the velocity of the moving pattern of the scattered laser light is measured.

  15. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  16. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    Science.gov (United States)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  17. An improved near-surface velocity climatology for the global ocean from drifter observations

    Science.gov (United States)

    Laurindo, Lucas C.; Mariano, Arthur J.; Lumpkin, Rick

    2017-06-01

    This work updates the methods of Lumpkin and Johnson (2013) to obtain an improved near-surface velocity climatology for the global ocean using observations from undrogued and 15-m drogued Global Drifter Program (GDP) drifters. The proposed procedure includes the correction of the slip bias of undrogued drifters, thus recovering about half of the GDP dataset; and a new approach for decomposing Lagrangian data into mean, seasonal and eddy components, which reduces the smoothing of spatial gradients inherent in data binning methods. The sensitivity of the results to method parameters, the method performance relative to other techniques, and the associated estimation errors, are evaluated using statistics calculated for a test dataset consisting of altimeter-derived geostrophic velocities subsampled at the drifter locations, and for the full altimeter-derived geostrophic velocity fields. It is demonstrated that (1) the correction of drifter slip bias produces statistically similar mean velocities for both drogued and undrogued drifter datasets at most latitudes and reduces differences between their variance estimates, (2) the proposed decomposition method produces pseudo-Eulerian mean fields with magnitudes and horizontal scales closer to time-averaged Eulerian observations than other methods, and (3) standard errors calculated for pseudo-Eulerian quantities underestimate the real errors by a factor of almost two. The improved decomposition method and the inclusion of undrogued drifters in the analysis allows resolving details of the time-mean circulation not well defined in the previous version of the climatology, such as the cross-stream structure of western boundary currents, recirculation cells, and zonally-elongated mid-ocean striations.

  18. Assimilation of Sonic Velocity and Thin-Section Measurements from the NEEM Ice-Core

    Science.gov (United States)

    Hay, M.; Pettit, E. C.; Waddington, E. D.

    2016-12-01

    We examine the measurement of crystal orientation fabric (COF) in ice cores using thin sections and sound-wave velocities, focusing on the NEEM core in Greenland. Ice crystals have substantial plastic anisotropy, with shear orthogonal to the crystallographic c-axis occurring far more easily than deformation in other orientations. Due to strain-induced grain-rotation, COFs can become highly anisotropic, resulting in bulk anisotropic flow. Thin-section measurements taken from ice cores allow sampling of the crystal fabric distribution. Thin-section measurements, however, suffer from sampling error, as they sample a small amount of ice, usually on the order of a hundred grans. They are typically only taken at intervals of several meters, which means that meter-scale variations in crystal fabric are difficult to capture. Measuring sonic velocities in ice cores provides an alternate method of determining crystal fabric. The speed of vertical compression waves is affected by the vertical clustering of c-axes, but is insensitive to azimuthal fabric anisotropy. By measuring splitting between the fast and slow shear-wave directions, information on the azimuthal distribution of orientations can be captured. Sonic-velocity measurements cannot capture detailed information on the orientation distribution of the COF, but they complement thin-section measurements with several advantages. Sonic-logging measurements can be taken at very short intervals, eliminating spatial gaps. In addition, sonic logging samples a large volume of ice with each measurement, reducing sampling error. Our logging tool has a depth resolution of around 3m/s, and can measure velocity features on the order of 1m/s. Here, we show the results of compression-wave measurements at NEEM. We also assimilate the sonic measurements with the thin-section data using a Bayesian inference procedure. This procedure allows us to combine the respective strengths of the two fabric measurement methods, to produce a more

  19. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-02-15

    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  20. Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements

    Science.gov (United States)

    Müller-Huber, Edith; Schön, Jürgen; Börner, Frank

    2016-04-01

    Pore space features influence petrophysical parameters such as porosity, permeability, elastic wave velocity or nuclear magnetic resonance (NMR). Therefore they are essential to describe the spatial distribution of petrophysical parameters in the subsurface, which is crucial for efficient reservoir characterization especially in carbonate rocks. While elastic wave velocity measurements respond to the properties of the solid rock matrix including pores or fractures, NMR measurements are sensitive to the distribution of pore-filling fluids controlled by rock properties such as the pore-surface-to-pore-volume ratio. Therefore a combination of both measurement principles helps to investigate carbonate pore space using complementary information. In this study, a workflow is presented that delivers a representative average semi-axis length of ellipsoidal pores in carbonate rocks based on the pore aspect ratio received from velocity interpretation and the pore-surface-to-pore-volume ratio Spor as input parameters combined with theoretical calculations for ellipsoidal inclusions. A novel method to calculate Spor from NMR data based on the ratio of capillary-bound to movable fluids and the thickness of the capillary-bound water film is used. To test the workflow, a comprehensive petrophysical database was compiled using micritic and oomoldic Lower Muschelkalk carbonates from Germany. The experimental data indicate that both mud-dominated and grain-dominated carbonates possess distinct ranges of petrophysical parameters. The agreement between the predicted and measured surface-to-volume ratio is satisfying for oomoldic and most micritic samples, while pyrite or significant sample heterogeneity may lead to deviations. Selected photo-micrographs and scanning electron microscope images support the validity of the estimated representative pore dimensions.

  1. Measurements of temperature and velocity fluctuations in oscillating flows using thermal anemometry – application to thermoacoustic refrigerators

    OpenAIRE

    Berson, Arganthaël; Poignand, Gaelle; Jondeau, Emmanuel; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2012-01-01

    International audience; This paper summarizes our recent work on the development of thermal anemometry to measure velocity and temperature fluctuations in oscillating flows. First, we demonstrate that velocity cannot be measured accurately by hot-wire anemometry in oscillating flows when the flow reverses its direction. Indeed, there is no unique and well-defined correlation between the flow velocity and heat transfer near flow reversal, which prevents the recovery of velocity fluctuations fr...

  2. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  3. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    Science.gov (United States)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes

  4. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Velocity Barb (knots) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind velocity forecasts from the National Digital Forecast Database...

  5. MUSCLE-FIBER CONDUCTION-VELOCITY IN THE DIAGNOSIS OF FAMILIAL HYPOKALEMIC PERIODIC PARALYSIS - INVASIVE VERSUS SURFACE DETERMINATION

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; LINKS, TP; ZWARTS, MJ; VANWEERDEN, TW

    1994-01-01

    Muscle fiber conduction velocity (MFCV) in the brachial biceps muscle was determined in a large family of patients with hypokalemic periodic paralysis (HOPP) by both a surface and an invasive method. Other surface EMG parameters and the muscle force were also determined. Both the surface and the inv

  6. Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence

    CERN Document Server

    Ni, Rui; Ouellette, Nicholas T; Voth, Greg A

    2014-01-01

    We present simultaneous experimental measurements of the dynamics of anisotropic particles transported by a turbulent flow and the velocity gradient tensor of the flow surrounding them. We track both rod-shaped particles and small spherical flow tracers using stereoscopic particle tracking. By using scanned illumination, we are able to obtain a high enough seeding density of tracers to measure the full velocity gradient tensor near the rod. The alignment of rods with the vorticity and the eigenvectors of the strain rate show agreement with numerical simulations. A full description of the tumbling of rods in turbulence requires specifying a seven-dimensional joint probability density function (PDF) of five scalars characterizing the velocity gradient tensor and two scalars describing the relative orientation of the rod. If these seven parameters are known, then Jeffery's equation specifies the rod tumbling rate and any statistic of rod rotations can be obtained as a weighted average over the joint PDF. To look...

  7. Determination and sensitivity analysis of the seismic velocity of a shallow layer from refraction traveltimes measures

    Directory of Open Access Journals (Sweden)

    S Zein

    2016-03-01

    Full Text Available In this paper, we are interested in determining the seismic velocity of ashallow under-ground layer from refraction traveltimes measures. Wepresent a study case taken from an experimental seismic survey. The studycase is a wide-angle seismic inversion using experimental traveltimesmeasures and based on ray tracing technique and genetic algorithms. Thehypothesis on the velocity distribution, coming from the seismicexperiment, makes the computation of some seismic rays expensive intime. We propose to reduce the computations time by introducing aformulation of the inverse problem that avoids such costly rays, hence theinversion becomes feasible.Also we present a sensitivity analysis based on a singular valuedecomposition of the jacobian of the traveltimes with respect to velocity.We give the relationship between the traveltimes measure errors and thevelocity estimation error. We discuss the advantages of this method overthe classical one based on the resolution matrix.

  8. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  9. Velocity measurement in life combustion systems with high temperature anemometer - HTA

    Energy Technology Data Exchange (ETDEWEB)

    Staudinger, G.; Mory, A.; Pilz, R.; Zimmel, M. [Technische Universitaet Graz, Graz (Austria). Inst. fuer Verfahrenstechnik, Abt. fuer Apparatebau und Mechanische Verfahrenstechnik

    1998-12-31

    An anemometer was developed which allows to measure velocities in dusty atmospheres at temperatures up to 1200{degree}C in a range between 1 and 40 m/s. The most important features of this vane-anemometer are its frictionless aerostatic bearing and the internal air cooling. The frequency of rotation is detected with a high temperature resistant optical fibre. In the project velocities and velocity-fields were measured in the combustion chambers of a 300 MW{sub el} power plant, a 27 MW{sub th} waste incinerator and in different pilot- and semi-industrial plants. The fuels used were coal, biomass, and municipal waste. 11 figs., 2 tabs.

  10. Temperature, Pressure and Velocity measurements on the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michałek, W. R.

    2012-11-01

    Temperatures, pressures and velocities were measured in a Ranque-Hilsch vortex tube. Results show that the cooling power is larger than the heating power due to a heat loss to the surroundings. This heat loss became the more dominant thermodynamic process at large cold fractions (the ratio of cold mass flow over total mass flow). The velocities were obtained by means of Laser Doppler Anemometry. By this method, the three dimensional velocities of the gas and their standard deviations in the vortex tube are revealed by an non-intrusive measurement method. The turbulent fluctuations, characterized by the standard deviations, show that the turbulence is isotropic in the core region of the vortex tube.

  11. Measurement of velocity profiles of nanofluids in laminar channel flow using Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun K.; Kulkarni, Parimal P.; Singh, R.K.; Verma, Pumendra [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Engineering Div.; Gandhi, Mayur [University Institute of Chemical Technology, Mumbai (India). Dept. of Chemical Engineering

    2014-06-15

    The objective of the paper is to measure the velocity profiles of water based nanofluids for flow through channels in order to understand whether the nanofluids behave Newtonian. For this purpose, experiments were carried for flow through a rectangular channel in laminar regime. Four different nanofluids were used, i.e. Al{sub 2}O{sub 3}, CuO, TiO{sub 2} and SiO{sub 2} with base fluid as water. Experiments were conducted at low concentration of these particles. The velocity profiles were measured using Particle Image Velocimetry. The results indicate that the velocity profiles are similar for all the fluids indicating the flows to be Newtonian. (orig.)

  12. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  13. PRESSURE-VELOCITY JOINT MEASUREMENTS OF A WALL-BOUNDED TURBULENT SHEAR FLOW

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-zheng; KE Feng; WANG Wei-zhe; CAO Zhao-min

    2006-01-01

    The unsteady behavior of the large-scale vortical structures buried in a wall-bounded turbulent shear layer flow was extensively investigated using pressure-velocity joint measurements. The wall pressure fluctuations and flow field velocity fluctuations were measured simultaneously by using a microphone and an X-type hotwire, respectively. The spatially and temporally strong coupling between the convecting flow structures and the wall pressure fluctuations were meticulously investigated in terms of the continuous wavelet transform, cross-correlation and coherence of the wall pressure and flow field. The characteristics of the large-scale vortical structures, e.g., the shedding frequency, averaged convection velocity, convective motion, and structure pattern were revealed.

  14. The equilibrium velocity of spherical particles in rectangular microfluidic channels for size measurement.

    Science.gov (United States)

    Sommer, Christian; Quint, Stephan; Spang, Peter; Walther, Thomas; Bassler, Michael

    2014-07-01

    According to the Segré-Silberberg effect, spherical particles migrate to a lateral equilibrium position in parabolic flow profiles. Here, for the first time, the corresponding equilibrium velocity is studied experimentally for micro particles in channels with rectangular cross section. Micro channels are fabricated in PMMA substrate based on a hot embossing process. To measure individual particle velocities at very high precision, the technique of spatially modulated emission is applied. It is found that the equilibrium velocity is size-dependent and the method offers a new way to measure particle size in microfluidic systems. The method is of particular interest for microfluidic flow cytometry as it delivers an alternative to the scatter signal for cell size determination.

  15. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  16. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    Science.gov (United States)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  17. Unsteady Velocity Measurements Taken Behind a Model Helicopter Rotor Hub in Forward Flight

    Science.gov (United States)

    Berry, John D.

    1997-01-01

    Drag caused by separated flow behind the hub of a helicopter has an adverse effect on aerodynamic performance of the aircraft. To determine the effect of separated flow on a configuration used extensively for helicopter aerodynamic investigations, an experiment was conducted using a laser velocimeter to measure velocities in the wake of a model helicopter hub operating at Mach-scaled conditions in forward flight. Velocity measurements were taken using a laser velocimeter with components in the vertical and downstream directions. Measurements were taken at 13 stations downstream from the rotor hub. At each station, measurements were taken in both a horizontal and vertical row of locations. These measurements were analyzed for harmonic content based on the rotor period of revolution. After accounting for these periodic velocities, the remaining unsteady velocities were treated as turbulence. Turbulence intensity distributions are presented. Average turbulent intensities ranged from approximately 2 percent of free stream to over 15 percent of free stream at specific locations and azimuths. The maximum average value of turbulence was located near the rear-facing region of the fuselage.

  18. Influence of air velocity on droplet's wetting and evaporation conditions on a flat surface

    Energy Technology Data Exchange (ETDEWEB)

    Zapalowicz, Z. (Technical Univ. of Szczecin (Poland). Dept. of Mechanical Engineering)

    The paper presents results of experimental research on influence of air velocity on characteristic dimensions, spreading ratio and evaporation time of a droplet. The relation between the velocity that initiates droplet's motion and the temperature of the surface has been under research, too, and is presented in the paper as well. The research allows determination of the droplet's rest and motion areas on the wall surface.

  19. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    Science.gov (United States)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  20. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  1. Inertial Navigation System/Doppler Velocity Log (INS/DVL) Fusion with Partial DVL Measurements

    Science.gov (United States)

    Tal, Asaf; Klein, Itzik; Katz, Reuven

    2017-01-01

    The Technion autonomous underwater vehicle (TAUV) is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS) aided by a Doppler velocity log (DVL), magnetometer, and pressure sensor (PS). In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL) can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC) approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF) simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown. PMID:28241410

  2. Inertial Navigation System/Doppler Velocity Log (INS/DVL) Fusion with Partial DVL Measurements.

    Science.gov (United States)

    Tal, Asaf; Klein, Itzik; Katz, Reuven

    2017-02-22

    The Technion autonomous underwater vehicle (TAUV) is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS) aided by a Doppler velocity log (DVL), magnetometer, and pressure sensor (PS). In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL) can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC) approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF) simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  3. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    Science.gov (United States)

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  4. An Inexpensive Field-Widened Monolithic Michelson Interferometer for Precision Radial Velocity Measurements

    Science.gov (United States)

    Mahadevan, Suvrath; Ge, Jian; Fleming, Scott W.; Wan, Xiaoke; DeWitt, Curtis; van Eyken, Julian C.; McDavitt, Dan

    2008-09-01

    We have constructed a thermally compensated field-widened monolithic Michelson interferometer that can be used with a medium-resolution spectrograph to measure precise Doppler radial velocities of stars. Our prototype monolithic fixed-delay interferometer is constructed with off-the-shelf components and assembled using a hydrolysis bonding technique. We installed and tested this interferometer in the Exoplanet Tracker (ET) instrument at the Kitt Peak 2.1 m telescope, an instrument built to demonstrate the principles of dispersed fixed-delay interferometry. An iodine cell allows the interferometer drift to be accurately calibrated, relaxing the stability requirements on the interferometer itself. When using our monolithic interferometer, the ET instrument has no moving parts (except the iodine cell), greatly simplifying its operation. We demonstrate differential radial velocity precision of a few m s-1 on well known radial velocity standards and planet bearing stars when using this interferometer. Such monolithic interferometers will make it possible to build relatively inexpensive instruments that are easy to operate and capable of precision radial velocity measurements. A larger multiobject version of the Exoplanet Tracker will be used to conduct a large scale survey for planetary systems as part of the Sloan Digital Sky Survey III (SDSS III). Variants of the techniques and principles discussed in this paper can be directly applied to build large monolithic interferometers for such applications, enabling the construction of instruments capable of efficiently observing many stars simultaneously at high velocity precision.

  5. Measurement of ion and electron drift velocity and electronic attachment in air for ionization chambers

    CERN Document Server

    Boissonnat, Guillaume; Colin, Jean; Remadi, Aurelien; Salvador, Samuel

    2016-01-01

    Air-ionization chambers have been used in radiotherapy and particle therapy for decades. However, fundamental parameters in action in the detector responses are sparsely studied. In this work we aimed to measure the electronic attachment, electrons and ions mobilities of an ionization chamber (IC) in air. The main idea is to extract these from the actual response of the IC to a single ionizing particle in order to insure that they were measured in the same condition they are to be used while neglecting undesired phenomena: recombination and space charge effect. The non-standard signal shape analysis performed here were also confronted to a more standard drift chamber measurements using time-of-flight. It was found that both detectors displayed compatible results concerning positive and negative ions drift velocities where literature data is well spread out. In the same time, electron attachment measurements sit in the middle of known measurements while electron drift velocities seemed to show an offset compar...

  6. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics.

    Science.gov (United States)

    Büttner, Lars; Leithold, Christoph; Czarske, Jürgen

    2013-12-16

    Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

  7. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  8. A Layer-Stripping Method for 3D Near-Surface Velocity Model Building Using Seismic First-Arrival Times

    Institute of Scientific and Technical Information of China (English)

    Taikun Shi; Jianzhong Zhang; Zhonglai Huang; Changkun Jin

    2015-01-01

    In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var-ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is ap-proximately hundred times faster than that of grid tomography.

  9. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  10. A comparison of measured and modeled velocity fields for a laminar flow in a porous medium

    Science.gov (United States)

    Wood, B. D.; Apte, S. V.; Liburdy, J. A.; Ziazi, R. M.; He, X.; Finn, J. R.; Patil, V. A.

    2015-11-01

    Obtaining highly-resolved velocity data from experimental measurements in porous media is a significant challenge. The goal of this work is to compare the velocity fields measured in a randomly-packed porous medium obtained from particle image velocimetry (PIV) with corresponding fields predicted from direct numerical simulation (DNS). Experimentally, the porous medium was comprised of 15 mm diameter spherical beads made of optical glass placed in a glass flow cell to create the packed bed. A solution of ammonium thiocyanate was refractive-index matched to the glass creating a medium that could be illuminated with a laser sheet without distortion. The bead center locations were quantified using the imaging system so that the geometry of the porous medium was known very accurately. Two-dimensional PIV data were collected and processed to provide high-resolution velocity fields at a single plane within the porous medium. A Cartesian-grid-based fictitious domain approach was adopted for the direct numerical simulation of flow through the same geometry as the experimental measurements and without any adjustable parameters. The uncertainties associated with characterization of the pore geometry, PIV measurements, and DNS predictions were all systematically quantified. Although uncertainties in bead position measurements led to minor discrepancies in the comparison of the velocity fields, the axial and normal velocity deviations exhibited normalized root mean squared deviations (NRMSD) of only 11.32% and 4.74%, respectively. The high fidelity of both the experimental and numerical methods have significant implications for understanding and even for engineering the micro-macro relationship in porous materials. The ability to measure and model sub-pore-scale flow features also has relevance to the development of upscaled models for flow in porous media, where physically reasonable closure models must be developed at the sub-pore scale. These results provide valuable data

  11. Measurement and analysis of angular velocity variations of twelve-cylinder diesel engine crankshaft

    Science.gov (United States)

    Bulatović, Ž. M.; Štavljanin, M. S.; Tomić, M. V.; Knežević, D. M.; Biočanin, S. Lj.

    2011-11-01

    This paper presents the procedures for measuring and analyzing the angular velocity variation of twelve-cylinder diesel engine crankshaft on its free end and on the power-output end. In addition, the paper deals with important aspects of the measurement of crankshaft torsional oscillations. The method is based on digital encoders placed at two distances, and one of them is a sensor not inserted directly on the shaft, i.e. a non-contact method with a toothed disc is used. The principle based on toothed disc is also used to measure the actual camshaft angular velocity of in-line compact high-pressure pump the engine is equipped with, and this paper aims to demonstrate the possibility of measuring the actual angular velocity of any rotating shaft in the engine, on which it is physically possible to mount a toothed disc. The method was created completely independently during long-range development and research tests of V46 family engines. This method is specific for its particular adaptability for use on larger engines with extensive vibrations and torsional oscillations. The main purpose of this paper is a practical contribution to all the more interesting research of the use of engine crankshaft angular velocity as a diagnostic tool for identifying the engine irregular running.

  12. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.

    2013-01-01

    We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is

  13. Velocity field measurements in an evaporating sessile droplet by means of micro-PIV technique

    Directory of Open Access Journals (Sweden)

    Yagodnitsyna Anna

    2016-01-01

    Full Text Available Velocity fields are measured in evaporating sessile droplets on two substrates with different contact angles and contact angle hysteresis using micro resolution particle image velocimetry technique. Different flow patterns are observed in different stages of droplet evaporation: a flow with vortices and a radial flow. Flow structure is found to be similar for droplets on different substrates.

  14. In Vivo Three-Dimensional Velocity Vector Imaging and Volumetric Flow Rate Measurements

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    scanner SARUS. Measurements are conducted on a carotid artery flow phantom from Danish Phantom Design, and 20 frames are acquired with a constant flow rate of 16.7±0.17 mL/s provided by a Shelley Medical Imaging Technologies CompuFlow 1000 system. The peak velocity magnitude in the vessel is found...

  15. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows.

    Science.gov (United States)

    Li, Fei; Yu, Xilong; Cai, Weiwei; Ma, Lin

    2012-07-10

    This work investigates the error caused by nonuniformities along the line-of-sight in velocity measurement using tunable diode-laser absorption spectroscopy (TDLAS). Past work has demonstrated TDLAS as an attractive diagnostic technique for measuring velocity, which is inferred from the Doppler shift of two absorption features using two crossing laser beams. However, because TDLAS is line-of-sight in nature, the obtained velocity is a spatially averaged value along the probing laser beams. As a result, nonuniformities in the flow can cause uncertainty in the velocity measurement. Therefore, it is the goal of this work to quantify the uncertainty caused by various nonuniformities typically encountered in practice, including boundary layer effects, the divergence/convergence of the flow, and the methods used to fit the Doppler shift. Systematic analyses are performed to quantify the uncertainty under various conditions, and case studies are reported to illustrate the usefulness of such analysis in interpreting experimental data obtained from a scramjet facility. We expect this work to be valuable for the design and optimization of TDLAS-based velocimetry, and also for the quantitative interpretation of the measurements.

  16. Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Nielsen, Stefan Kragh;

    2012-01-01

    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to...

  17. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  18. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    Science.gov (United States)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  19. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  20. Persistent small-scale features in maps of the anisotropy of ocean surface velocities

    Science.gov (United States)

    Sen, A.; Arbic, B. K.; Scott, R. B.; Holland, C. L.; Logan, E.; Qiu, B.

    2006-12-01

    Much of the stirring and mixing in the upper ocean is due to geostrophically balanced mesoscale eddies. Ocean general circulation models commonly parameterize eddy effects and can aid in predicting dispersal of materials throughout the ocean or in predicting long-term climate change. Parameterizations of eddy mixing depend on the isotropy of the eddies. Motivated by this, we investigate the isotropy of oceanic mesoscale eddies with seven years of sea surface height data recorded by satellite altimeters. From these data, we determined a sea surface height anomaly, and surface geostrophic velocities u and v in the zonal (east-west) and meridional (north-south) directions, respectively. From the latter two quantities we can calculate zonal and meridional kinetic energies u2 and v2. Integrals of u2 and v2 around latitude bands 10 degrees wide are nearly equal, in contrast with the results of simple beta-plane geostrophic turbulence models, which suggest that zonal motions should predominate. Maps of the quantity u2-v2 (normalized by standard error) show fine-scale structures that persist over times longer than the lifespan of turbulent eddies. Thus the mesoscale eddy field is locally anisotropic almost everywhere. Further investigation into the causes of these small-scale structures is needed and may take advantage of animations of sea surface height, in which quasi- circular, westward-propagating eddies can easily be seen.