WorldWideScience

Sample records for surface velocity field

  1. Visualizing 3D velocity fields near contour surfaces. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  2. Visualizing 3D velocity fields near contour surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  3. Trace projection transformation: a new method for measurement of debris flow surface velocity fields

    Science.gov (United States)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-12-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  4. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  5. Exploiting SENTINEL-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier

    Science.gov (United States)

    Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M.

    2016-06-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary coregistration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics.

  6. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    Science.gov (United States)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  7. Experimental study of the free surface velocity field in an asymmetrical confluence

    Science.gov (United States)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows

  8. Modeling of integrated sunlight velocity measurements: The effect of surface darkening by magnetic fields

    Science.gov (United States)

    Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.

    1993-01-01

    It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.

  9. The Influence Of Initial Velocity Distribution On Ionization Dynamics Of Rydberg Atoms Approaching Solid Surfaces In The Electric Field

    Science.gov (United States)

    Božnic, D. K.; Nedeljkovic, N. N.

    2010-07-01

    We analyze the ionization dynamics of slow hydrogenlike Rydberg atoms (principal quantum number n >> 1 ) approaching solid surface in a weak electric field. The recently obtained etalon-equation method results for the simulation of experimental signal are used to investigate the influence of the initial velocity distribution. It is demonstrated that an agreement with the experimental signal can be obtained with the broadened velocity distributions.

  10. Very low surface recombination velocity in n-type c-Si using extrinsic field effect passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Woodcock, Frederick; Wilshaw, Peter R.

    2014-08-01

    In this article, field-effect surface passivation is characterised as either intrinsic or extrinsic, depending on the origin of the charges present in passivation dielectric layers. The surface recombination velocity of float zone, 1 Ω cm, n-type silicon was reduced to 0.15 cm/s, the lowest ever observed for a passivating double layer consisting of thermally grown silicon dioxide and plasma enhanced chemical vapour deposited silicon nitride. This result was obtained by enhancing the intrinsic chemical and field-effect passivation of the dielectric layers with uniform, extrinsic field-effect passivation induced by corona discharge. The position and stability of charges, both intrinsic and extrinsic, were characterised and their passivation effect was seen stable for two months with surface recombination velocity field-effect passivation provided a further decrease by a factor of 3.

  11. EXPLOITING SENTINEL-1 AMPLITUDE DATA FOR GLACIER SURFACE VELOCITY FIELD MEASUREMENTS: FEASIBILITY DEMONSTRATION ON BALTORO GLACIER

    OpenAIRE

    A. Nascetti; Nocchi, F.; Camplani, A.; Rico, C.; Crespi, M.

    2016-01-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed ...

  12. Statistical properties of the surface velocity field in the northern Gulf of Mexico sampled by GLAD drifters

    Science.gov (United States)

    Mariano, A. J.; Ryan, E. H.; Huntley, H. S.; Laurindo, L. C.; Coelho, E.; Griffa, A.; Özgökmen, T. M.; Berta, M.; Bogucki, D.; Chen, S. S.; Curcic, M.; Drouin, K. L.; Gough, M.; Haus, B. K.; Haza, A. C.; Hogan, P.; Iskandarani, M.; Jacobs, G.; Kirwan, A. D.; Laxague, N.; Lipphardt, B.; Magaldi, M. G.; Novelli, G.; Reniers, A.; Restrepo, J. M.; Smith, C.; Valle-Levinson, A.; Wei, M.

    2016-07-01

    The Grand LAgrangian Deployment (GLAD) used multiscale sampling and GPS technology to observe time series of drifter positions with initial drifter separation of O(100 m) to O(10 km), and nominal 5 min sampling, during the summer and fall of 2012 in the northern Gulf of Mexico. Histograms of the velocity field and its statistical parameters are non-Gaussian; most are multimodal. The dominant periods for the surface velocity field are 1-2 days due to inertial oscillations, tides, and the sea breeze; 5-6 days due to wind forcing and submesoscale eddies; 9-10 days and two weeks or longer periods due to wind forcing and mesoscale variability, including the period of eddy rotation. The temporal e-folding scales of a fitted drifter velocity autocorrelation function are bimodal with time scales, 0.25-0.50 days and 0.9-1.4 days, and are the same order as the temporal e-folding scales of observed winds from nearby moored National Data Buoy Center stations. The Lagrangian integral time scales increase from coastal values of 8 h to offshore values of approximately 2 days with peak values of 3-4 days. The velocity variance is large, O>(1>) m2/s2, the surface velocity statistics are more anisotropic, and increased dispersion is observed at flow bifurcations. Horizontal diffusivity estimates are O>(103>) m2/s in coastal regions with weaker flow to O>(105>) m2/s in flow bifurcations, a strong jet, and during the passage of Hurricane Isaac. The Gulf of Mexico surface velocity statistics sampled by the GLAD drifters are a strong function of the feature sampled, topography, and wind forcing.

  13. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  14. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  15. Average velocity field of the air flow over the water surface in a laboratory modeling of storm and hurricane conditions in the ocean

    Science.gov (United States)

    Kandaurov, A. A.; Troitskaya, Yu. I.; Sergeev, D. A.; Vdovin, M. I.; Baidakov, G. A.

    2014-07-01

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Channel of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near-water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The measurements showed that the logarithmic part of the velocity profile of the air flow in the channel was observed in the immediate vicinity from the water surface (at a distance of 30 mm) and could be detected only using remote methods (PIV). According to the measured velocity profiles, dependences of aerodynamic drag factors of the water surface on the wind velocity at a height of 10 m were retrieved; they were compared with results of contact measurements carried out earlier on the same setup. It is shown that they agree with an accuracy of up to 20%; at moderate and strong wind velocities the coincidence falls within the experimental accuracy.

  16. Accurate Determination of Glacier Surface Velocity Fields with a DEM-Assisted Pixel-Tracking Technique from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Shiyong Yan

    2015-08-01

    Full Text Available We obtained accurate, detailed motion distribution of glaciers in Central Asia by applying digital elevation model (DEM assisted pixel-tracking method to L-band synthetic aperture radar imagery. The paper firstly introduces and analyzes each component of the offset field briefly, and then describes the method used to efficiently and precisely compensate the topography-related offset caused by the large spatial baseline and rugged terrain with the help of DEM. The results indicate that the rugged topography not only forms the complex shapes of glaciers, but also affects the glacier velocity estimation, especially with large spatial baseline. The maximum velocity, 0.85 m∙d−1, was observed in the middle part on the Fedchenko Glacier, which is the world’s longest mountain glacier. The motion fluctuation on its main trunk is apparently influenced by mass flowing in from tributaries, as well as angles between tributaries and the main stream. The approach presented in this paper was proved to be highly appropriate for monitoring glacier motion and will provide valuable sensitive indicators of current and future climate change for environmental analysis.

  17. Migration velocity modeling based on common reflection surface gather

    Institute of Scientific and Technical Information of China (English)

    李振春; 姚云霞; 马在田; 王华忠

    2003-01-01

    The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.

  18. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  19. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...

  20. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  1. Velocity Map Imaging the Scattering Plane of Gas Surface Collisions

    CERN Document Server

    Hadden, David J; Leng, Joseph G; Greaves, Stuart J

    2016-01-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D sacattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was demonstrated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the systems capabilities the velocity distributions of ammonia molecules scattered from a PTFE surface have been measured for multiple product rotational states.

  2. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...

  3. Velocity Field in a Vertical Foam Film

    Science.gov (United States)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  4. The velocity field in MOND cosmology

    CERN Document Server

    Candlish, G N

    2016-01-01

    The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...

  5. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    Recent studies have likened the seasonal observations of ice flow at the marginal regions of the Greenland Ice Sheet (GrIS) to those found on smaller alpine and valley counterparts. These similarities highlight the need for further small scale studies of seasonal evolution in the hydrological...... and dynamic structure of valley glaciers, to aid interpretation of observations from the margins of the GrIS. This thesis aims to collate a large suit of glacio-hydrological data from the outlet glacier Engabreen, Norway, in order to better understand the role the subglacial drainage configuration has...... on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...

  6. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non

  7. The statistical properties of sea ice velocity fields

    CERN Document Server

    Agarwal, Sahil

    2016-01-01

    Thorndike (1982, 1986b) argued that the surface pressure field over the Arctic Ocean can be treated as an isotropic, stationary, homogeneous, Gaussian random field and thereby estimated a number of covariance functions from two years (1979 and 1980) of data. Given the active interest in changes of general circulation quantities and indices in the polar regions during the recent few decades, the spatial correlations in sea ice velocity fields are of particular interest. We ask how persistent are these correlations? To this end, we develop a stochastic model for Arctic sea ice velocity fields based on a multi-fractal analysis of observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et al. 2012), we assess the connection between EIE and ice motion. We demonstrate the long-term stationarity of the spatial correlation structure of the velocity ...

  8. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  9. VELOCITY FIELD IN SHIP WAVES ON THE VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    刘敏嘉; 陶明德

    2002-01-01

    From the Navier-Stokes equations, the integral expressions of the free-surface elevation and the velocity field in ship waves of a moving waterborne body are obtained.Next, Lighthill's two-stage scheme is employed to change the above-mentioned integral expressions to algebraic expressions.Compared with the results obtained when the seawater is idealized to an inviscid fluid, the singularities are dispelled or weakened, and the accuracy of the digit information of ship waves is improved.

  10. Radial Velocity Variability of Field Brown Dwarfs

    CERN Document Server

    Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S

    2015-01-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...

  11. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance...... pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward. © 2012 Acoustical Society of America....

  12. Personal Exposure to Contaminant Sources in a Uniform Velocity Field

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    The objective of this study has been to determine the personal exposure to a contaminant source in a uniform velocity field. This was done by full-scale measurements and computer simulations. The results showed a significant dependence on the velocity field both regarding the direction and the ma...... the usual operation range. Guidelines for personal exposure reduction in a uniform velocity field are discussed.......The objective of this study has been to determine the personal exposure to a contaminant source in a uniform velocity field. This was done by full-scale measurements and computer simulations. The results showed a significant dependence on the velocity field both regarding the direction...

  13. Velocity fields in and around sunspots at the highest resolution

    CERN Document Server

    Denker, Carsten

    2010-01-01

    The flows in and around sunspots are rich in detail. Starting with the Evershed flow along low-lying flow channels, which are cospatial with the horizontal penumbral magnetic fields, Evershed clouds may continue this motion at the periphery of the sunspot as moving magnetic features in the sunspot moat. Besides these well-ordered flows, peculiar motions are found in complex sunspots, where they contribute to the build-up or relaxation of magnetic shear. In principle, the three-dimensional structure of these velocity fields can be captured. The line-of-sight component of the velocity vector is accessible with spectroscopic measurements, whereas local correlation or feature tracking techniques provide the means to assess horizontal proper motions. The next generation of ground-based solar telescopes will provide spectropolarimetric data resolving solar fine structure with sizes below 50 km. Thus, these new telescopes with advanced post-focus instruments act as a "zoom lens" to study the intricate surface flows ...

  14. Optimal Moments for Velocity Fields Analysis

    CERN Document Server

    Feldman, H A; Melott, A; Feldman, Hume A; Watkins, Richard; Melott, Adrian; Proxy, Will Chambers; ccsd-00000954, ccsd

    2003-01-01

    We describe a new method of overcoming problems inherent in peculiar velocity surveys by using data compression as a filter with which to separate large-scale, linear flows from small-scale noise that biases the results systematically. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter $\\Gamma$ and amplitude $\\beta$, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.

  15. Velocity Fields as a Probe of Cosmology

    OpenAIRE

    Feldman, Hume

    2003-01-01

    Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that do...

  16. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  17. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  18. Fluorescent beeswax for surface flow velocity observations

    Science.gov (United States)

    Grimaldi, S.; Tauro, F.; Petroselli, A.; Mocio, G.; Capocci, I.; Rapiti, E.; Rapiti, R.; Cipollari, G.; Porfiri, M.

    2012-12-01

    Watershed surface processes control downstream runoff phenomena, waste and pollutant diffusion, erosion mechanics, and sediment transport. A quantitative understanding of the flow physics is currently limited by the lack of effective tracing techniques suitable for basin-scale observations. More specifically, field experiments require environmentally resilient, non-invasive, and low cost measurement systems that can potentially operate in remotely-controlled or unmanned conditions. Traditional tracing methodologies are largely not capable to cope with extreme in-situ conditions, including practical logistic challenges as well as inherent flow complexity. Specifically, most of available technologies need physical sampling to estimate the tracer concentration and do not allow for continuous-time measurements. In addition, commonly used tracers, such as isotopes, dyes, and chemicals, are not directly applicable to monitor surface hillslope processes and large-scale microchannel networks due to elaborate detection processes and dispersion issues. In this context, the feasibility of using buoyant fluorescent microspheres as particle tracers in natural water flows is investigated. Specifically, a novel fabrication methodology is designed to manufacture particles from natural beeswax and a highly diluted solution of a nontoxic fluorescent red dye. The fabrication procedure allows for adjusting the size of the particles from tens of microns up to a few millimeters and their density from positively to negatively-buoyant with respect to water. An array of experimental techniques is employed to conduct a thorough characterization of the fluorescence and morphology of the tracers. In addition, ad-hoc experiments are designed to assess the fluorescence response due to Ultra Violet (UV) exposure and thermal processes. Proof-of-concept laboratory analysis are conducted to illustrate the integration of the novel particle tracers in existing tracing methods for surface flow

  19. The velocity field induced by a helical vortex tube

    DEFF Research Database (Denmark)

    Fukumoto, Y.; Okulov, Valery

    2005-01-01

    The influence of finite-core thickness on the velocity field around a vortex tube is addressed. An asymptotic expansion of the Biot-Savart law is made to a higher order in a small parameter, the ratio of core radius to curvature radius, which consists of the velocity field due to lines of monopoles...

  20. Velocity field statistics and tessellation techniques : Unbiased estimators of Omega

    NARCIS (Netherlands)

    Van de Weygaert, R; Bernardeau, F; Muller,; Gottlober, S; Mucket, JP; Wambsganss, J

    1998-01-01

    We describe two new - stochastic-geometrical - methods to obtain reliable velocity field statistics from N-body simulations and from any general density and velocity fluctuation field sampled at a discrete set of locations. These methods, the Voronoi tessellation method and Delaunay tessellation met

  1. Velocity Fields as Probes of Cosmology

    CERN Document Server

    Feldman, H A

    2003-01-01

    Analyses of peculiar velocity surveys face several challenges, including low signal-to-noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that does not suffer from the usual problems and gives robust results that are galaxy-morphology and distance-estimator independent. The third introduces a formalism that allows for the accounting of most of the non-linear signal whereby the signal to noise is increased and small--scale aliasing is removed.

  2. Velocity Fields as a Probe of Cosmology

    CERN Document Server

    Feldman, H A

    2003-01-01

    Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that does not suffer from the usual problems and gives robust results that are galaxy--morphology and distance--estimator independent. The third introduces a formalism that allows for the accounting of most of the non--linear signal whereby the signal to noise is increased and small--scale aliasing is removed.

  3. Slipher, galaxies, and cosmological velocity fields

    CERN Document Server

    Peacock, John A

    2013-01-01

    By 1917, V.M. Slipher had singlehandedly established a tendency for 'spiral nebulae' to be redshifted (21 out of 25 cases). From a modern perspective, it could seem surprising that the expansion of the universe was not announced at this point. Examination of Slipher's papers shows that he reached a more subtle conclusion: the identification of cosmological peculiar velocities, including the bulk motion of the Milky Way, leading to a beautiful argument in favour of nebulae as distant stellar systems. Nevertheless, Slipher's data actually contain evidence at >8sigma for a positive mean velocity, even after subtracting the dipole owing to the motion of the observer. In 1929, Hubble estimated distances for a sample of no greater depth, using redshifts due almost entirely to Slipher. Hubble's distances were flawed in two distinct ways: in addition to an incorrect absolute calibration, the largest distances were systematically under-estimated. Nevertheless, he claimed the detection of a linear distance-redshift rel...

  4. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  5. Velocity fields as a tracer from magnetic fields in sub-alfv\\'enic regimes: The Velocity Gradient Technique

    CERN Document Server

    González-Casanova, Diego F

    2016-01-01

    Strong Alfv\\'enic turbulence develops eddy-like motions perpendicular to the local direction of magnetic fields. This local alignment induces velocity gradients perpendicular to the local direction of the magnetic field. We use this fact to propose a new technique of studying the direction of magnetic fields from observations, the Velocity Gradient Technique. We test our idea by employing the synthetic observations obtained via 3D MHD numerical simulations for different sonic and Alfv\\'en Mach numbers. We calculate the velocity gradient, $\\mathbf{\\Omega}$, using the velocity centroids. We find that $\\mathbf{\\Omega}$ traces the projected magnetic field best for the synthetic maps obtained with sub-Alfv\\'enic simulations providing good point-wise correspondence between the magnetic field direction and that of $\\mathbf{\\Omega}$. The reported alignment is much better than the alignment between the density gradients and the magnetic field and we demonstrated that it can be used to find the magnetic field strength ...

  6. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  7. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  8. Using GIS for calculation and visualization of the velocity field

    Science.gov (United States)

    Grzempowski, P.; Kontny, B.,; Bogusz, J.; Kłos, A.

    2012-04-01

    In the paper structure of the system to collect data about the GPS permanent station velocities and velocity field modelling were described. The system includes modules for data managements, calculation and visualization. These modules were created in Visual Basic. Data management and visualization modules use ArcGIS .NET library for manage the data structure and drawing. This allows to visualize the velocity field and integrate spatial data and data (qualitative and quantitative) described the phenomenon and accompanying factors. This system allows to develop a model of the strain field in triangle network (TIN strain model) and model of the velocity field in regular grid. Some functions and procedures like spatial analysis are used to split points into separate sets, which are connected with tectonic units. Thus, it is possible to develop velocity fields in the sub-areas. System operation was described on the example of modeling the velocity field on the Poland area. Inputs to the model were velocities of the ASG-EUPOS stations.

  9. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México D.F., México (Mexico); Lazarian, A. [Astronomy Department, University of Wisconsin–Madison, 475 N. Charter Street, Madison, WI (United States); Pogosyan, D., E-mail: esquivel@nucleares.unam.mx, E-mail: lazarian@astro.wisc.edu, E-mail: pogosyan@ualberta.ca [Physics Department, University of Alberta, Edmonton, AB (Canada)

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  10. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  11. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  12. AN ASYMPTOTIC SOLUTION OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    WU Yun-gang; TAO Ming-de

    2006-01-01

    The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.

  13. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  14. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    Science.gov (United States)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  15. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  16. Measurement of surface recombination velocity on heavily doped indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  17. Note: Velocity map imaging the scattering plane of gas surface collisions

    Science.gov (United States)

    Hadden, D. J.; Messider, T. M.; Leng, J. G.; Greaves, S. J.

    2016-10-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D scattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a dielectric surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was validated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the system's capabilities, the velocity distributions of ammonia molecules scattered from a polytetrafluoroethylene surface have been measured for multiple product rotational states.

  18. Velocity statistics from spectral line data effects of density-velocity correlations, magnetic field, and shear

    CERN Document Server

    Esquivel, A; Pogosyan, D; Cho, J; Esquivel, Alejandro; Cho, Jungyeon

    2003-01-01

    In a previous work Lazarian and Pogosyan suggested a technique to extract velocity and density statistics, of interstellar turbulence, by means of analysing statistics of spectral line data cubes. In this paper we test that technique, by studying the effect of correlation between velocity and density fields, providing a systematic analysis of the noise, and exploring the effect of a linear shear. We make use of both compressible MHD simulations and synthetic data to emulate spectroscopic observations. With such synthetic spectroscopic data, we studied anisotropies of the two point statistics and related those anisotropies with the magnetic field direction. This presents a new technique for magnetic field studies. The results show that the velocity and density spectral indices measured are consistent with the analytical predictions. We identified the dominant source of error with the limited number of data points along a given line of sight. We argue that in real observations the number of emmiting elements is...

  19. 2D velocity fields of simulated interacting disc galaxies

    CERN Document Server

    Kronberger, T; Schindler, S; Ziegler, B L

    2007-01-01

    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for...

  20. Velocity Gradients as a Tracer for Magnetic Fields

    Science.gov (United States)

    González-Casanova, Diego F.; Lazarian, A.

    2017-01-01

    Strong Alfvénic turbulence develops eddy-like motions perpendicular to the local direction of magnetic fields. This local alignment induces velocity gradients perpendicular to the local direction of the magnetic field. We use this fact to propose a new technique of studying the direction of magnetic fields from observations, which we call the velocity gradient technique. We test our idea by employing the synthetic observations obtained via 3D magnetohydrodynamical (MHD) numerical simulations for different sonic and Alfvén Mach numbers. We calculate the velocity gradient, {\\boldsymbol{Ω }}, using the velocity centroids. We find that {\\boldsymbol{Ω }} traces the projected magnetic field best for the synthetic maps obtained with sub-Alfvénic simulations and provides good point-wise correspondence between the magnetic field direction and the direction of {\\boldsymbol{Ω }}. The reported alignment is much better than the alignment between the density gradients and the magnetic field, and we demonstrate that it can be used to find the magnetic field strength with an analog of the Chandrasekhar–Fermi method. This new technique does not require dust polarimetry, and our study opens up a new way of studying magnetic fields using spectroscopic data.

  1. Velocity Fields of Distant Galaxies with FORS2

    NARCIS (Netherlands)

    Ziegler, Bodo; Kutdemir, Elif; Da Rocha, Cristiano; Böhm, Asmus; Kapferer, Wolfgang; Kuntschner, Harald; Peletier, R.F.; Schindler, Sabine; Verdugo, Miguel

    2009-01-01

    We describe a method of obtaining two-dimensional velocity fields of distant, faint and small, emission-line galaxies efficiently with FORS2 at the VLT. The fields are examined for kinematic substructure to identify possible interaction processes. Numerical simulations of tidal interactions and ram

  2. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  3. Bayesian 3d velocity field reconstruction with VIRBIuS

    CERN Document Server

    Lavaux, G

    2015-01-01

    I describe a new Bayesian based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of, e.g., the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIuS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3,000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and d...

  4. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    T N Singh; A K Verma; Tanmay Kumar; Avi Dutt

    2011-02-01

    Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed. Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of for shaly sandstone may be attributed to the fact that its surface had a greater number of pronounced asperities. Rubbing between the surfaces does not mean that surface becomes smoother. This is because of variation of friction between surfaces.

  5. Cosmic magnetic fields from velocity perturbations in the early Universe

    CERN Document Server

    Betschart, G; Marklund, M; Betschart, Gerold; Dunsby, Peter K.S.; Marklund, Mattias

    2004-01-01

    We show, using a covariant and gauge-invariant charged multifluid perturbation scheme, that velocity perturbations of the matter-dominated dust Friedmann-Lemaitre-Robertson-Walker (FLRW) model can lead to the generation of cosmic magnetic fields. Moreover, using cosmic microwave background (CMB) constraints, it is argued that these fields can reach strengths of between 10^{-28} and 10^{-29} G at the time the dynamo mechanism sets in, making them plausible seed field candidates.

  6. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  7. Normalized velocity profiles of field-measured turbidity currents

    Science.gov (United States)

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  8. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    CERN Document Server

    Chapman, Christopher

    2016-01-01

    In this letter a new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. Unlike previous attempts to reconstruct deep velocities from surface data, our method makes no assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high--resolution velocity fields at a depth of 1000m. Validation reveals extremely promising results, with a speed root mean squared error of ~2.8cm/s, a factor more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees...

  9. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  10. Estimating Stream Surface Flow Velocities from Video Clips

    Science.gov (United States)

    Weijs, S. V.; Brauchli, T.; Chen, Z.; Huwald, H.

    2014-12-01

    Measuring surface flow velocities in streams can provide important information on discharge. This information is independent of water level, the most commonly used proxy for discharge and therefore has significant potential to reduce uncertainties. Advances in cheap and commonly used imaging devices (e.g. smartphone cameras) and image processing techniques offer new opportunities to get velocity information. Short video clips of streams can be used in combination with optical flow algorithms to get proxies for stream surface velocities. Here some initial results are presented and the main challenges are discussed, especially in view of using these techniques in a citizen science context (specifically the "WeSenseIt" project, a citizen observatory of water), where we try to minimize the need for site preparation and additional equipment needed to take measurements.

  11. A non-parametric model for the cosmic velocity field

    NARCIS (Netherlands)

    Branchini, E; Teodoro, L; Frenk, CS; Schmoldt, [No Value; Efstathiou, G; White, SDM; Saunders, W; Sutherland, W; Rowan-Robinson, M; Keeble, O; Tadros, H; Maddox, S; Oliver, S

    1999-01-01

    We present a self-consistent non-parametric model of the local cosmic velocity field derived from the distribution of IRAS galaxies in the PSCz redshift survey. The survey has been analysed using two independent methods, both based on the assumptions of gravitational instability and linear biasing.

  12. Variational multi-valued velocity field estimation for transparent sequences

    DEFF Research Database (Denmark)

    Ramirez-Manzanares, Alonso; Rivera, Mariano; Kornprobst, Pierre;

    2011-01-01

    Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose a variational approach for estimating multi-valued velocity fields in transparent sequences. Starting from existing local motion estimators, we derive a...

  13. Numerical simulation of temperature and velocity fields in plasma spray

    Institute of Scientific and Technical Information of China (English)

    FAN Qun-bo; WANG Lu; WANG Fu-chi

    2007-01-01

    Based on the turbulence jet model, with respect to Ar-He mixture plasma gas injecting to ambient atmosphere, the temperature filed and velocity field under typical working conditions were investigated. Given the conditions of I=900 A, FAr=1.98 m3/h, FHe=0.85 m3/h, it is found that both the temperature and the velocity undergo a plateau region near the nozzle exit (0-10 mm) at the very first stage, then decrease abruptly from initial 13 543 K and 778.2 m/s to 4 000 K and 260.0 m/s, and finally decrease slowly again. Meanwhile, the radial temperature and radial velocity change relatively slow. The inner mechanism for such phenomena is due to the complex violent interaction between the high-temperature and high-velocity turbulent plasma jet and the ambient atmosphere. Compared with traditional methods, the initial working conditions can be directly related to the temperature and velocity fields of the plasma jet by deriving basic boundary conditions.

  14. Comparing dynamic surface tilt with velocity using an LDV

    Science.gov (United States)

    Bruce, Robert A.

    2004-06-01

    If a laser Doppler vibrometer (LDV) probe beam is normally incident on a resonating metal strip with a mirror-finish, the retro-reflected beam has corresponding dynamic deflections. These lateral beam offsets are proportional to the dynamic surface tilt and can be measured along with the LDV velocity using a separating beam-splitter and a two-dimensional position sensitive detector (PSD). On a thin unbound strip resonating with 'pure mode' deformation, these derivative motions, velocity and tilt, are completely complementary. On a thin unbound plate resonating with 'hybrid mode' deformation, velocity and now two orthogonal tilts are nearly complementary. Maximal tilt has zero velocity, and maximum deformation or velocity has zero tilt. Intermediate values range in complementary fashion except near 'cross-nodes' zones. Here both motion types drop to zero at these cross-node locations. Both velocity and tilt signals are compared simultaneously using a special test fixture. This fixture consists of a stainless steel strip supported on its edges in the center, which can be excited by small speakers at the ends. Two comparison/calibration approaches are demonstrated with a pure 3-0 mode. Significant modal details are also demonstrated by analyzing multiple modes from pulsed excitation, and mapping a 3-1 mode-shape using the combined sensing approaches.

  15. Velocity model optimization for surface microseismic monitoring via amplitude stacking

    Science.gov (United States)

    Jiang, Haiyu; Wang, Zhongren; Zeng, Xiaoxian; Lü, Hao; Zhou, Xiaohua; Chen, Zubin

    2016-12-01

    A usable velocity model in microseismic projects plays a crucial role in achieving statistically reliable microseismic event locations. Existing methods for velocity model optimization rely mainly on picking arrival times at individual receivers. However, for microseismic monitoring with surface stations, seismograms of perforation shots have such low signal-to-noise ratios (S/N) that they do not yield sufficiently reliable picks. In this study, we develop a framework for constructing a 1-D flat-layered a priori velocity model using a non-linear optimization technique based on amplitude stacking. The energy focusing of the perforation shot is improved thanks to very fast simulated annealing (VFSA), and the accuracies of shot relocations are used to evaluate whether the resultant velocity model can be used for microseismic event location. Our method also includes a conventional migration-based location technique that utilizes successive grid subdivisions to improve computational efficiency and source location accuracy. Because unreasonable a priori velocity model information and interference due to additive noise are the major contributors to inaccuracies in perforation shot locations, we use velocity model optimization as a compensation scheme. Using synthetic tests, we show that accurate locations of perforation shots can be recovered to within 2 m, even with pre-stack S/N ratios as low as 0.1 at individual receivers. By applying the technique to a coal-bed gas reservoir in Western China, we demonstrate that perforation shot location can be recovered to within the tolerance of the well tip location.

  16. The galloping chromosphere. [H alpha observation of oscillating velocity fields

    Science.gov (United States)

    Sawyer, C.

    1974-01-01

    Oscillating velocity fields can be observed on H-alpha filtergrams as a shifting pattern of intensity fluctuations known as 'the galloping chromosphere'. The characteristics of this activity are those of horizontal running waves of typical period of about 300 sec and long wavelength (about 20,000 km) that can be interpreted as acoustic-gravity waves propagating in the acoustic domain. Periods are longer in dark, structured regions, and in fibrils, and the change is quantitatively consistent with the reduction of resonance frequency in a magnetic field of 1 to 10 gauss. These easily observed fluctuations thus offer a means of estimating magnetic-field strength at specific locations in the chromosphere. Phase velocities are high, ranging upward from typical values between 50 and 100 km per sec, and tending to be lower in active regions and toward the limb.

  17. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica

    1995-06-01

    Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.

  19. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    Science.gov (United States)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  20. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  1. A dissipative random velocity field for fully developed fluid turbulence

    CERN Document Server

    Pereira, Rodrigo M; Chevillard, Laurent

    2015-01-01

    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $\\gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free...

  2. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-Yun; WANG Peng-Ye

    2008-01-01

    We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration

  3. Longitudinal and transverse velocity fields in parsec-scale jets

    CERN Document Server

    Mertens, Florent

    2015-01-01

    Radio-loud AGN typically manifest powerful relativistic jets extending up to millions of light years and often showing superluminal motions organised in a complex kinematic pattern. A number of physical models are still competing to explain the jet structure and kinematics revealed by radio images using the VLBI technique. Robust measurements of longitudinal and transverse velocity field in the jets would provide crucial information for these models. This is a difficult task, particularly for transversely resolved jets in objects like 3C 273 and M87. To address this task, we have developed a new technique for identifying significant structural patterns (SSP) of smooth, transversely resolved flows and obtaining a velocity field from cross-correlation of these regions in multi-epoch observations. Detection of individual SSP is performed using the wavelet decomposition and multiscale segmentation of the observed structure. The cross-correlation algorithm combines structural information on different scales of the...

  4. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  5. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  6. Intraplate Deformation of Asia Derived from ITRF2000 Velocity Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The definition of an "intraplate fixed" frame remains a significant error source for crustal motion studies at a few millimeters per year level. An appropriate implementation of such a frame is very important to avoid biased velocities and to confirm a valid geophysical interpretation. Here, we establish the newest global plate motion model of ITRF2000VEL and research the definition of an Asian-fixed frame in Asia using the ITRF2000 velocity field. By X2 and F ratio tests, we find a subset site in Asia that satisfies a rigid rap rotation with residual velocities <0. 95 mm/a and provide a stable Asia reference frame (SARF). In this reference frame, we find residual velocities at Asiatic ITRF2000 sites that are consistent with known active tectonic feature. An important result of this study is the identification of internal deformation of the order of 1-2 mm/a in an area usually interpreted as "stable" Asia. These results should be further checked as newer, denser and more accurate space geodetic data sets with longer observation time span, which become available for Asia.

  7. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  8. A dissipative random velocity field for fully developed fluid turbulence

    Science.gov (United States)

    Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe

    2016-11-01

    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.

  9. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    Science.gov (United States)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  10. Shear velocity of the Rotokawa geothermal field using ambient noise

    Science.gov (United States)

    Civilini, F.; Savage, M. K.; Townend, J.

    2014-12-01

    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  11. Current Status Of Velocity Field Surveys: A Consistency Check

    CERN Document Server

    Sarkar, D; Watkins, R; Sarkar, Devdeep; Feldman, Hume A.

    2006-01-01

    We present a statistical analysis comparing the bulk--flow measurements for six recent peculiar velocity surveys, namely, ENEAR, SFI, RFGC, SBF and the Mark III singles and group catalogs. We study whether the bulk--flow estimates are consistent with each other and construct the full three dimensional bulk--flow vectors. The method we discuss could be used to test the consistency of all velocity field surveys. We show that although these surveys differ in their geometry and measurement errors, their bulk flow vectors are expected to be highly correlated and in fact show impressive agreement in all cases. Our results suggest that even though the surveys we study target galaxies of different morphology and use different distance measures, they all reliably reflect the same underlying large-scale flow.

  12. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    Science.gov (United States)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  13. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Science.gov (United States)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  14. Investigation of the Velocity Field and Flow Regime of David Glacier and Drygalski Ice Tongue, Antarctica

    Science.gov (United States)

    Wuite, J.; Jezek, K. C.

    2005-12-01

    Recent observations of outlet glaciers in both Greenland and Antarctica show surprising and unexpectedly rapid changes in flow velocities. Outlet glaciers drain the majority of the polar ice sheets and consequently these changes threaten their stability and can lead to rising sea levels. It is therefore important to investigate their flow governing processes and document changes. We measured surface velocity over large portions of David Glacier and its floating seaward extension Drygalski Ice Tongue. This is the largest outlet glacier on the Scott Coast draining a section of the East Antarctic Ice Sheet into the Ross Sea. Giant iceberg B15-A recently collided with the ice tongue and broke off a significant section. To obtain velocities we used combinations of intensity feature tracking, interferometric speckle tracking and phase interferometry using RADARSAT-1 images acquired during the AMM-1 and MAMM missions. We compare short term velocities, 3-year averaged velocities and earlier studies to analyze spatial and temporal variability of the surface velocity field. We use obtained velocities, in combination with isostatically derived ice thickness from ICESat data, to estimate basal melting along the glacier. Also we investigate the role of lateral drag through force-budget theory and determine the equilibrium profile of the ice tongue. Unlike for example the West Antarctic Ice Streams and Jakobshavn Isbrae, our data suggests that the David Glacier velocity field has remained relatively constant from about 1991 - 2000 and likely much longer. The pattern of melting and freezing along the base of the glacier is consistent with an ice pump mechanism. In the fjord lateral drag opposes approximately 90% of the driving stress; this gradually drops to the point where most resistance comes from longitudinal stress gradients. We find the modeled and ICESat derived profile agree favorably suggesting steady state conditions

  15. Using thermal tracers to estimate flow velocities of shallow flows: laboratory and field experiments

    Directory of Open Access Journals (Sweden)

    Lima Rui L.P. de

    2015-09-01

    Full Text Available Accurate measurement of shallow flows is important for hydraulics, hydrology and water resources management. The objective of this paper is to discuss a technique for shallow flow and overland flow velocity estimation that uses infrared thermography. Laboratory flumes and different bare, vegetated and paved field surfaces were used to test the technique. Results show that shallow flow surface velocities estimated using thermal tracers and infrared technology are similar to estimates obtained using the Acoustic Doppler Velocimeter; similar results were also obtained for overland flow velocity estimates using thermography, here comparing with the dye tracer technique. The thermographic approach revealed some potential as a flow visualization technique, and leaves space for future studies and research.

  16. Markov Random Field Surface Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    ) and knowledge about data (the observation model) in an orthogonal fashion. Local models that account for both scene-specific knowledge and physical properties of the scanning device are described. Furthermore, how the optimal distance field can be computed is demonstrated using conjugate gradients, sparse......A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of surface we wish to reconstruct (the prior...

  17. Herrmann Method of Analyzing Structure Design Velocity Field

    Institute of Scientific and Technical Information of China (English)

    邹文胜; 左正兴; 冯慧华; 廖日东; 张红光

    2001-01-01

    探讨了基于变分法的敏度分析在形状优化设计中的应用,提出敏度分析过程中提高速度场求解效率和有限元网格质量的新方法.在形状优化设计中采用基于变分法的敏度分析方法,设计速度场采用Hermann网格均匀化法进行求解.算例表明优化过程中采用Herrmann网格均匀化法求解设计速度场,可以提高优化过程中网格的质量,速度场的求解效率也得到极大的提高从而优化的效果和效率都有明显提高.在形状优化过程中,采用基于变分法的敏度分析,可以使敏度分析成为单独模块,在进行设计速度场求解时采用Herrmann法,使速度场求解的效率和优化过程的质量得到保证.%The shape optimization is studied by adopting the domainintegrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.

  18. Electromagnetic Hydrophone with Tomographic System for Absolute Velocity Field Mapping

    CERN Document Server

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Chapelon, Jean-Yves; Lafon, Cyril; 10.1063/1.4726178

    2012-01-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  19. Patterns and velocity field in vertically vibrated granular materials

    Science.gov (United States)

    Ansari, Istafaul H.; Alam, Meheboob

    2013-06-01

    We report experimental results on pattern formation in vertically vibrated granular materials confined in a quasitwo-dimensional container. For a deep bed of mono-disperse particles, we uncovered a new transition from the bouncing bed to an f/4-wave (f is the frequency of shaking) which eventually gives birth to an f/2-undulation wave, with increasing shaking intensity. Other patterned states for mono-disperse particles and their transition-route are compared with previous experiments. The coarse-grained velocity field for each patterned state has been obtained which helped to characterize convective rolls as well as synchronous and sub-harmonic waves in this system.

  20. Kinematics of the crustal velocity field in the western US

    Science.gov (United States)

    Pollitz, F. F.

    2008-12-01

    GPS measurements embodied in PBO and PBO Nucleus allow the crustal velocity field of the western US to be constructed in unprecedented detail. Velocity and strain fields span the entire San Andreas fault system and Cascadia subduction zone from Baja California to northern Washington as well as the continental interior including the Great Basin and Wasatch Front. Rationalizing the GPS velocity field over the several tectonic regimes provides key tests of prevailing notions of interseismic crustal deformation. In our interpretation, we begin with the premise that the load-carrying portion of the lithosphere coincides with the (seismogenic) upper crust with an effective elastic thickness of ~20 km at the time scales of interseimic motions (Thatcher and Pollitz, 2008). End member kinematic models include (1) viscoelastic relaxation of the ductile lower crust and upper mantle following large earthquakes, and (2) slip in the lower elastic lithosphere, each of which serves to localize strain around major faults during interseismic periods. More detailed kinematic models emphasize the roles of lateral variations in rigidity and/or effective elastic plate thickness as well as distributed deformation. Our modeling of western US kinematics shows that the GPS velocity field is well explained with a range of models involving a combination of all of the above components; no single endmember suffices. Zones of inferred distributed deformation in the continental interior coincide with well-known seismic belts (Eastern California Shear Zone; Walker Lane; Interseismic Mountain Belt). Continued acquisition of vector constraints on crustal motions and study of available geodetic data are needed to clarify active deformation patterns in several areas. Some outstanding issues are: The nature of distributed faulting at the margins of the Great Basin (southern Nevada Transverse Zone, northern Walker Lane); understanding how dextral shear from the eastern boundary of the Sierra Nevada

  1. Comparison of solar horizontal velocity fields from SDO/HMI and Hinode data

    CERN Document Server

    Roudier, Th; Prat, V; Malherbe, J M; Renon, N; Frank, Z; Svanda, M; Berger, T; Burston, R; Gizon, L

    2013-01-01

    The measurement of the Sun's surface motions with a high spatial and temporal resolution is still a challenge. We wish to validate horizontal velocity measurements all over the visible disk of the Sun from Solar Dynamics Observatory/ Helioseismic and Magnetic Imager (SDO/HMI) data. Horizontal velocity fields are measured by following the proper motions of solar granules using a newly developed version of the Coherent Structure Tracking (CST) code. The comparison of the surface flows measured at high spatial resolution (Hinode, 0.1 arcsec) and low resolution (SDO/HMI, 0.5 arcsec) allows us to determine corrections to be applied to the horizontal velocity measured from HMI white light data. We derive horizontal velocity maps with spatial and temporal resolutions of respectively 2.5 Mm and 30 min. From the two components of the horizontal velocity Vx and Vy measured in the sky plane and the simultaneous line of sight component from SDO/HMI dopplergrams v_D, we derive the spherical velocity components (Vr, Vtheta...

  2. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct......The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium molecular dynamics. Unlike previous equilibrium molecular dynamics...

  3. Measurement of the velocity field behind the automotive vent

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2012-04-01

    Full Text Available Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  4. Measurement of the velocity field behind the automotive vent

    Science.gov (United States)

    Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav

    2012-04-01

    Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  5. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    Science.gov (United States)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration

  6. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper.It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/diffusion balance time scale,defined as the ratio between the kinematic viscosity and the square of the receding velocity.At a time much larger than the diffusion/recession balance time scale,the role of the surface receding is rather important:instead of being pushed into the liquid at the receding velocity,the development of the Stokes layer is effectively prohibited by surface receding.

  7. VELOCITY IN A LIQUID SUBJECTED TO A SHEAR FORCE AT THE LIQUID SURFACE WITH A RECEDING VELOCITY

    Institute of Scientific and Technical Information of China (English)

    吴子牛

    2003-01-01

    The development of the Stokes layer in a liquid subjected to a constant shear force at the liquid surface with mass erosion is studied in this paper. It is shown that the velocity in the Stokes layer is weakened by surface receding and the relative decrease of the maximal liquid velocity due to surface recession is a unique function of the time normalized by the recession/ditftmion balance time scale, defined as the ratio between the kinematic viscosity and the square of the receding velocity. At a time much larger than the diffusion/recession balance time scale, the role of the surface receding is rather important: instead of being pushed into the liquid at the receding velocity, the development of the Stokes layer is effectively prohibited by surface receding.

  8. Velocity Diagnosis of Critical Surface at Microwave Band in Laser-Induced Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Ying; WANG Junyan; BAI Shunbo; CHEN Jianping; CHU Ran; YUN Xiaohua; NI Xiaowu

    2008-01-01

    The velocity of critical surface at microwave band in laser-induced plasma was mea-sured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.

  9. Effect of a magnetic field on massive-star winds - I. Mass-loss and velocity for a dipole field

    Science.gov (United States)

    Bard, Christopher; Townsend, Richard H. D.

    2016-11-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field Hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically thin correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a central assumption of the previously developed XADM model of X-ray emission from magnetospheres.

  10. Effect of a magnetic field on massive star winds I: mass-loss and velocity for a dipole field

    CERN Document Server

    Bard, Christopher

    2016-01-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically-thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically-thin-correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a ...

  11. Acoustic reconstruction of the velocity field in a furnace using a characteristic flow model.

    Science.gov (United States)

    Li, Yanqin; Zhou, Huaichun; Chen, Shiying; Zhang, Yindi; Wei, Xinli; Zhao, Jinhui

    2012-06-01

    An acoustic method can provide a noninvasive, efficient and full-field reconstruction of aerodynamic fields in a furnace. A simple yet reasonable model is devised for reconstruction of a velocity field in a cross section of a tangential furnace from acoustic measurements based on typical physical characteristics of the field. The solenoidal component of the velocity field is modeled by a curved surface, derived by rotating a curve of Gaussian distribution, determined by six characteristic parameters, while the nonrotational component is governed by a priori knowledge. Thus the inverse problem is translated into determination of the characteristic parameters using a set of acoustic projection data. First numerical experiments were undertaken to simulate the acoustic measurement, so as to preliminarily validate the effectiveness of the model. Based on this, physical experiments under different operating conditions were performed in a pilot-scale setup to provide a further test. Hot-wire anemometry and strip floating were applied to compare with acoustic measurements. The acoustic measurements provided satisfactory consistency with both of these approaches. Nevertheless, for a field with a relatively large magnitude of air velocities, the acoustic measurement can give more reliable reconstructions. Extension of the model to measurements of hot tangential furnaces is also discussed.

  12. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  13. Velocity field measurements in the wake of a propeller model

    Science.gov (United States)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  14. Modeling of velocity field for vacuum induction melting process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi

    2005-01-01

    The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.

  15. The critical velocity and 1500-m surface performances in Finswimming.

    Science.gov (United States)

    Oshita, K; Ross, M; Koizumi, K; Kashimoto, S; Yano, S; Takahashi, K; Kawakami, M

    2009-08-01

    The purpose of this investigation was to determine whether the concepts of critical velocity (CV) and anaerobic swimming capacity (ASC) could be used by coaches as a reliable index in order to monitor 1500-m Surface (SF) performances in Finswimming. Thirteen Finswimmers (6 males and 7 females, 24+/-6 years), members of the Japanese national team, were instructed to swim three different swimming distances (400-, 800-, and 1500-m) at maximal effort in a 50m long course swimming pool. CV and the ASC were calculated using 400-m and 800-m swim times. Mean height and body mass were 170.2 cm and 69.7 kg in male and 160.5 and 61.0 kg in female. A highly positive correlation was found between the CV and the mean velocity of 1500-m SF (V1500) (r=0.91, P<0.01), but no correlation was found between the ASC and V1500. (r=0.46, P=0.11). However, a high correlation was found between the ASC and the residual error of V1500, calculated from the relationship between V1500 and the CV (r=0.89, P<0.01). These results suggest that the CV is a useful method for evaluating 1500-m SF performance and an aerobic performance expressed as the CV contributes to 1500-m SF performance.

  16. The Convergence Depth of the Local Peculiar Velocity Field

    CERN Document Server

    Dale, D A; Dale, Daniel A.; Giovanelli, Riccardo

    1999-01-01

    We have obtained Tully-Fisher (TF) measurements for some 3000 late-type galaxies in the field and in 76 clusters distributed throughout the sky between 10 and 200\\h Mpc. The cluster data are applied to the construction of an I band TF template, resulting in a relation with a scatter of 0.35 magnitudes and a zero-point accurate to 0.02 magnitudes. Peculiar motions are computed by referral to the template relation, and the distribution of line-of-sight cluster peculiar motions is presented. The dipole of the reflex motion of the Local Group of galaxies with respect to galaxies with measured peculiar velocity converges to the CMB dipole within less than 6000 km/s. The progression of this convergence is well illustrated when the reflex motion is referred to a well-distributed sample of field galaxies, and it is maintained when the reflex motion is referred to the reference frame constituted by the distant clusters in our sample. The field and cluster samples exhibit bulk motion amplitudes of order 200 km/s or sma...

  17. Molecular Strong Field Ionization viewed with Photoelectron Velocity Map Imaging

    Science.gov (United States)

    Sandor, Peter

    In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. 'Strong' refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization--dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data.

  18. Estimation of real ship propelling performance by the surface velocity lattice method using model ship flow field data; Mokeisen ryujo data wo mochiita hyomen uzu koshiho ni yoru jissen suishin seino no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Kai, H.; Ikehata, M.; Sakai, S. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1997-10-01

    This is basically a technique wherein the wing element method is replaced by a surface vortex lattice method. A horseshoe vortex of unknown intensity and source surface of known intensity are distributed on the wing surface and, under conditions that the fluid will not cross the boundary, the intensity of horseshoe vortex circulation is calculated for the solution of the fluid field. For the simulation of a real ship in navigation, the required propeller revolution thrust is determined using the real ship resistance value and real ship thrust reduction factor estimated from a model ship resistance test by extrapolation. The calculation of propeller performance is conducted in the quasi-steady condition using the force of fluid working on one wing for each wing angle (with the wing rotated at the increment of 6 degrees), and the thrust and torque are determined using the averages of values obtained in one cycle. It is found that the torque value is overestimated in a considerable degree in the wing element theory. In the surface vortex lattice method, both thrust and torque values agree with experimental values mostly, and this method is found to be accurate enough as a navigation element calculation tool when many panels are considered. 4 refs., 5 figs., 1 tab.

  19. 3D photospheric velocity field of a Supergranular cell

    CERN Document Server

    Del Moro, Dario; Berrilli, Francesco

    2007-01-01

    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the TST to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of costant up-flow close to the...

  20. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils

    Institute of Scientific and Technical Information of China (English)

    Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE

    2008-01-01

    The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.

  1. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-10-01

    Full Text Available surface current velocities for oceanographic research are assessed. ASAR surface current velocities are compared to surface drifter data and merged altimetry observations. Maps of sea surface temperature are used to establish the ASAR’s capacity to capture...

  2. Cosmological Parameters from the Comparison of the 2MASS Gravity Field with Peculiar Velocity Surveys

    CERN Document Server

    Pike, R W; Hudson, Michael J.

    2005-01-01

    We compare the peculiar velocity field within 65 $h^{-1}$ Mpc predicted from 2MASS photometry and public redshift data to three independent peculiar velocity surveys based on type Ia supernovae, surface brightness fluctuations in ellipticals, and Tully-Fisher distances to spirals. The three peculiar velocity samples are each in good agreement with the predicted velocities and produce consistent results for $\\beta_{K}=\\Omega\\sbr{m}^{0.6}/b_{K}$. Taken together the best fit $\\beta_{K} = 0.49 \\pm 0.04$. We explore the effects of morphology on the determination of $\\beta$ by splitting the 2MASS sample into E+S0 and S+Irr density fields and find both samples are equally good tracers of the underlying dark matter distribution, but that early-types are more clustered by a relative factor $b\\sbr{E}/b\\sbr{S} \\sim 1.6$. The density fluctuations of 2MASS galaxies in $8 h^{-1}$ Mpc spheres in the local volume is found to be $\\sigma\\sbr{8,K} = 0.9$. From this result and our value of $\\beta_{K}$, we find $\\sigma_8 (\\Omega\\...

  3. The velocity fields of gas and stars within five KPC of the sun

    Science.gov (United States)

    Ovenden, M. W.; Pryce, M. H. L.; Shuter, W. L. H.

    A mathematical expression is considered for the most probable value of the line of sight velocity, Vr, of an element at a certain galactic longitude and a certain distance projected onto the plane of the galactic disk. Attention is given to the velocity field of O and B stars, the velocity field for idealized circular motion, the velocity field of 112 kinematically distinct H II regions, and the velocity field of nearby 21 cm emission. It is found that the velocity field describing the O and B stars is very close to pure circular motion. On the basis of plots presented in the investigation and an extensive statistical error analysis conducted by Pryce (1983), it is seen that the velocity fields for the nearby gas and H II regions and that of the stars are different.

  4. Surface wave group velocity tomography of East Asia, part 1

    Science.gov (United States)

    Wu, Francis T.

    1993-07-01

    Group velocities of both Rayleigh and Love waves are used in a tomographic inversion to obtain group velocity maps of East Asia (60 deg E-140 deg E and 20 deg N-50 deg N). The period range studied is 30-70 seconds. For periods longer than 40 seconds, a high group velocity gradient clearly exists along longitude 105 deg E; the velocities are noticeably higher east of this longitude than west of this longitude. The Tibetan Plateau appears as a prominent low velocity (about 15%) structure in this area; central Tibet appears as the area with the lowest velocity. The North China Plain is an area of high velocities, probably as a result of thin crust. The variability of deep crustal and upper mantle structures underneath the different tectonic provinces in the study can clearly be seen. In a separate study, using the dataset above and that from the former Soviet Union, we have derived the Rayleigh tomographic images of a larger area (40 deg E-160 deg E and 20 deg N-70 deg N). While the Tibetan plateau still remains to be the most prominent low velocity features, two other features are also clear, a very high velocity Siberian platform and a high velocity ridge extending from Lake Baikal to Central Mongolia. These studies are useful in delineating tectonics.

  5. Vortex Tubes in Turbulence Velocity Fields at High Reynolds Numbers

    CERN Document Server

    Mouri, H

    2008-01-01

    The elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in laboratory experiments for boundary layers and duct flows at microscale Reynolds numbers 332-1934. While past experimental studies focused on intense vortex tubes, the present study focuses on all vortex tubes with various intensities. We obtain the mean velocity profile. The radius scales with the Kolmogorov length. The circulation velocity scales with the Kolmogorov velocity, in contrast to the case of intense vortex tubes alone where the circulation velocity scales with the rms velocity fluctuation. Since these scaling laws are independent of the configuration for turbulence production, they appear to be universal at high Reynolds numbers.

  6. Mean and fluctuating velocity fields of a diamond turbulent jet

    Institute of Scientific and Technical Information of China (English)

    Xu Min-Yi; Zhang Jian-Peng; Mi Jian-Chun; Nathan G.J.; Kalt P.A.M.

    2013-01-01

    The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice (hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transitional region,and the exit Reynolds number of the jet was 50000.For comparison,a round jet with identical normalized boundary conditions was also measured.It is shown that the diamond jet decays and spreads faster than the round jet does over the measured flow region.The axis-switching phenomenon is observed in the diamond jet.Although both jets display primary coherent structures in the near field,these structures are found to break down more rapidly in the diamond jet,due to the higher three-dimensionality of the flow.Moreover,the streamwise components of the Reynolds normal stress and all the shear stresses reach their maxima around the location of the maximal mean shear while the maxima of the lateral components of the Reynolds normal stresses occur around the centreline of the jet.

  7. A new present-day velocity field for eastern Iran

    Science.gov (United States)

    Walpersdorf, A.; Tavakoli, F.; Hatzfeld, D.; Jadidi, A.; Vergnolle, M.; Djamour, Y.; Nankali, H. R.; Sedighi, M.; Bellier, O.; Shabanian, E.

    2009-04-01

    Since 2004, extensive GPS campaigns and the upcoming Iranian permanent GPS network are monitoring the present-day deformation in eastern Iran. We present a new GPS velocity field that extends from Central Iran to the Turkmen shield and the Hellmand block on the Eurasian plate. It permits to monitor the right lateral shear across the aseismic Lut block between Central Iran and the Hellmand block, and the resulting shortening across the Kopeh Dagh mountain belt limiting NE Iran towards Turkmenistan. The present-day deformation pattern is used to verify existing tectonic models. Individual instantaneous fault slip rates are compared to short term and long term geological estimates. We find that GPS slip rates are generally coherent with short term geologic determinations (from dating of geomorphologic offsets over some 10-100 ka). Some differences with respect to long term estimates (from total geologic fault offsets and onset ages of several Ma) indicate non-constant slip rates over different time scales or that the onset of the present-day deformation presumed to 3-7 Ma in eastern Iran has to be revised.

  8. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge

    Energy Technology Data Exchange (ETDEWEB)

    Agostinelli, G.; Delabie, A.; Dekkers, H.F.W.; De Wolf, S.; Beaucarne, G. [IMEC vzw, Kapeldreef 75, Leuven (Belgium); Vitanov, P.; Alexieva, Z. [CL SENES, Sofia (Bulgaria)

    2006-11-23

    Surface recombination velocities as low as 10cm/s have been obtained by treated atomic layer deposition (ALD) of Al{sub 2}O{sub 3} layers on p-type CZ silicon wafers. Low surface recombination is achieved by means of field induced surface passivation due to a high density of negative charges stored at the interface. In comparison to a diffused back surface field, an external field source allows for higher band bending, that is, a better performance. While this process yields state of the art results, it is not suited for large-scale production. Preliminary results on an industrially viable, alternative process based on a pseudo-binary system containing Al{sub 2}O{sub 3} are presented, too. With this process, surface recombination velocities of 500-1000cm/s have been attained on mc-Si wafers. (author)

  9. Deriving glacier surface velocities from repeat optical images

    OpenAIRE

    Heid, Torborg

    2011-01-01

    The velocity of glaciers is important for many aspects in glaciology. Mass accumulated in the accumulation area is transported down to the ablation area by deformation and sliding due to the gravitational force, and hence gla­cier velocity is connected to the mass balance of glaciers. It also contributes directly to the mass balance of calving glaciers because it is an important control of the ice discharge rate for such glaciers. Changing glacier velocities is an indicator of instable glacie...

  10. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  11. A STUDY OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Searching ships on the ocean with the technique of the oceanic remote sensing, one must be requensted to know not only the amplitude of ship waves, but also horizontal velocities. In this article Lighthill’s two-stage scheme was employed to change the integral expressions into algebraic expressions for the velocity components, so the obtained results are very succinct.

  12. Using electric fields for pulse compression and group velocity control

    CERN Document Server

    Li, Qian; Thuresson, Axel; Rippe, Lars; Kröll, Stefan

    2016-01-01

    In this article, we experimentally demonstrate a new way of controlling the group velocity of an optical pulse by using a combination of spectral hole burning, slow light effect and linear Stark effect in a rare-earth-ion-doped crystal. The group velocity can be changed continuously by a factor of 20 without significant pulse distortion or absorption of the pulse energy. With a similar technique, an optical pulse can also be compressed in time. Theoretical simulations were developed to simulate the group velocity control and the pulse compression processes. The group velocity as well as the pulse reshaping are solely controlled by external voltages which makes it promising in quantum information and quantum communication processes. It is also proposed that the group velocity can be changed even more in an Er doped crystal while at the same time having a transmission band matching the telecommunication wavelength.

  13. Surface Ice Velocity Retrieval From MOA Based On NCC Feature Tracking

    Science.gov (United States)

    Li, T.; Liu, Y.; Cheng, X.

    2016-12-01

    The velocity of glacier in Antarctica is a fundamental parameter to ice dynamics and projection of sea level rise, and it is as well the key indicator of global climate change. COSI-Corr, an extension of ENVI software, was employed to acquire the horizontal velocity of ice flows throughout the whole Antarctica continent from 2003-2004 and 2008-2009 MOA (MODIS Mosaic of Antarctica) compiled by NSIDC. However, conventional tracking methods severely suffer from spurious matching resulting from ice surface's variation, illumination condition, inappropriate window size etc. So it is indispensable to correct the initial output field contaminated by noises before extracting valuable information. Usually, the low-SNR areas, which denote quite poor quality, are filtered out directly based on some roles of thumb. Here we have some experiments to test performance of FFT (Fast Fourier Transform) and SVD (Singularity Value Decomposition) of optimizing the estimation by cutting image into overlapped tiles. Validation was conducted by comparing the final result with respect to MEaSUREs in typical flow areas including inland stream and ice shelves. The primitive results shows that both methods can reduce RMSE to an extent of 20% 40% but FFT performs more robust. Our result shows that MOA datasets, which highlight true surface morphology, have potential for continental ice surface velocity's retrieval.

  14. On the Lightning Electromagnetic Fields due to Channel with Variable Return Stroke Velocity

    Directory of Open Access Journals (Sweden)

    M. Izadi

    2015-01-01

    Full Text Available Numerical field expressions are proposed to evaluate the electromagnetic fields due to the lightning channel with variable values of return stroke velocity. Previous calculation methods generally use an average value for the return stroke velocity along a lightning channel. The proposed method can support different velocity profiles along a lightning channel in addition to the widely used channel-base current functions and also the general form of the engineering current models directly in the time domain without the need to apply any extra conversions. Moreover, a sample of the measured lightning current is used to validate the proposed method while the velocity profile is simulated by the general velocity function. The simulated fields based on constant and variable values of velocity are compared to the corresponding measured fields. The results show that the simulated fields based on the proposed method are in good agreement with the corresponding measured fields.

  15. Glacier Surface Velocity Measurements from Radar Interferometry and the Principle of Mass Conservation

    OpenAIRE

    Mohr, Johan Jacob; Reeh, Niels

    2002-01-01

    Presents a relation between the three glacier surface velocity components, the surface flux-divergence, glacier thickness and bottom melt and displacement. The relation can be used as an extension to the surface parallel flow assumption often used with interferometric synthetic aperture measurements of glacier velocities. The assumptions for the derivation are described and important limitations high-lighted.

  16. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    Science.gov (United States)

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  17. Velocity field of streams in nonuniform constant magnetic fields. Part 1: numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gel' fgat, Yu.M.; Peterson, D.Ye.; Shcherbinin, E.V.

    1978-01-01

    Steady flow of a conducting fluid through a rectangular pipe in nonuniform magnetic fields of various configurations is analyzed and the results are found to depend on whether the magnetic field is assumed to have only a transverse or also a longitudinal component. Velocity and potential profiles are calculated numerically for each case, according to grids with various step sizes, also for an asymmetrically nonuniform and for a periodically nonuniform magnetic field. The feasibility of establishing practically any desired flow pattern by tailoring the magnetic field has thus been established, but the success of this procedure depends largely on the choice of the computation scheme and on the accuracy of computations, as well as on the assumptions made concerning the distribution of the magnetic field. 9 references, 6 figures.

  18. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  19. The field-dependent interface recombination velocity for organic-inorganic heterojunction

    Science.gov (United States)

    Szmytkowski, Jędrzej

    2016-10-01

    We have derived an analytical formula which describes the field-dependent interface recombination velocity for the boundary of two materials characterized by different permittivities. The interface recombination of charge carriers has been considered in the presence of image force Schottky barrier. We suggest that this effect may play an important role in the loss of current for organic-inorganic hybrid heterojunctions. It has been proved that the presented method is a generalization of the Scott-Malliaras model of surface recombination at the organic/metal interface. We also discuss that this model is intuitively similar but not analogous to the Langevin mechanism of bulk recombination.

  20. State of the Field: Extreme Precision Radial Velocities

    CERN Document Server

    Fischer, Debra; Arriagada, Pamela; Baluev, Roman V; Bean, Jacob L; Bouchy, Francois; Buchhave, Lars A; Carroll, Thorsten; Chakraborty, Abhijit; Dawson, Rebekah I; Diddams, Scott A; Dumusque, Xavier; Eastman, Jason D; Endl, Michael; Figueira, Pedro; Ford, Eric B; Foreman-Mackey, Daniel; Fournier, Paul; Furesz, Gabor; Gaudi, B Scott; Gregory, Philip C; Grundahl, Frank; Hatzes, Artie P; Hebrard, Guillaume; Herrero, Enrique; Hogg, David W; Howard, Andrew W; Johnson, John A; Jorden, Paul; Jurgenson, Colby A; Latham, David W; Laughlin, Greg; Loredo, Thomas J; Lovis, Christophe; Mahadevan, Suvrath; McCracken, Tyler M; Pepe, Francesco; Perez, Mario; Phillips, David F; Plavchan, Peter P; Prato, Lisa; Quirrenbach, Andreas; Reiners, Ansgar; Robertson, Paul; Santos, Nuno C; Sawyer, David; Segransan, Damien; Sozzetti, Alessandro; Steinmetz, Tilo; Szentgyorgyi, Andrew; Udry, Stephane; Valenti, Jeff A; Wang, Sharon X; Wittenmyer, Robert A; Wright, Jason T

    2016-01-01

    The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm/s measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this precision are summarized here. Beginning with the HARPS spectrograph, technological advances for precision radial velocity measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to produce even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision radial velocity community include distinguishing center of mass Keplerian motion from photospheric velocities, and the proper ...

  1. The Smoothest Velocity Field and Token Matching Schemes.

    Science.gov (United States)

    1983-08-01

    photoreceptors or sensors is a suprisingly difficult computational problem, which has attracted much attention in recent years [for example, Fennema ...initial motion measurement only one component of velocity can be obtained directly from the changing image [ Fennema & Thompson (197P), Horn & Schunk...M.J.. Computational Geometry for Design and Manufacture, Ellis Horwood Limited, Chichester, England, 1979. Fennema , C.1. & Thompson, W.B. "Velocity

  2. Velocity Field Statistics in Star-Forming Regions, 1 Centroid Velocity Observations

    CERN Document Server

    Miesch, M S; Bally, J

    1998-01-01

    The probability density functions (pdfs) of molecular line centroid velocity fluctuations and fluctuation differences at different spatial lags are estimated for several nearby molecular clouds with active internal star formation. The data consist of over 75,000 $^{13}$CO line profiles divided among twelve spatially and/or kinematically distinct regions. Although three regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly with power law contributions in the far tails. Evidence for nearly exponential centroid pdfs in the neutral HI component of the ISM is also presented, based on older optical and radio observations. These results are in striking contrast to pdfs found in isotropic incompressible turbulence experiments and simulations. Furthermore, no evidence is found for the scaling of difference pdf kurtosis with Reynolds number which is seen in incompressible turbulence, and the spatial distribution of hi...

  3. The peculiar velocity field: constraining the tilt of the Universe

    CERN Document Server

    Ma, Yin-Zhe; Feldman, Hume A

    2010-01-01

    A large bulk flow, which is in tension with the Lambda Cold Dark Matter cosmological model, has been observed \\cite{Watkins08,Feldman09}. In this letter, we provide a physical explanation for this very large bulk flow, based on the assumption that the cosmic microwave background (CMB) rest frame does not coincide with the matter rest frame, resulting in a "tilted Universe". We propose a model that takes into account the relative velocity of CMB frame with respect to to the matter rest frame (hereafter tilted velocity), and use Type Ia Supernovae (SN), ENEAR, SFI++, SMAC, and COMPOSITE galaxy catalogues to constrain this tilted velocity. We find that: (1) the magnitude of the tilted velocity $u$ is around 400 km/s, and its direction is close to what is found by \\cite{Watkins08}; for SN, SMAC and COMPOSITE catalogues, $u=0$ is excluded at the two to three sigma level; (2) the constraints on the magnitude of the tilted velocity can result in the constraints on the duration of inflation, due to the fact that infl...

  4. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-08-25

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.

  5. A geomorphic and morphometric analysis of surface ice velocity variation of different valley type glaciers

    Science.gov (United States)

    Tiwari, R. K.; Garg, P. K.; Shukla, A.; Ahluwalia, R. S.; Singh, N.; Chauhan, P.

    2016-05-01

    Glacier surface ice velocity is one of the important parameters which determine the glacier dynamics. If the surface ice velocity is high in upper zone (accumulation zone) of the glacier, more ice is brought to the lower zone (ablation zone) of the glacier where it melts more rapidly. The surface ice velocity depends on multiple factors like geomorphology of a glacier and glacier valley, ice load, orientation of the glacier, slope and debris cover. In this study, we have used latest multi-temporal Landsat-8 satellite images to calculate the surface ice velocity of different glaciers from the Himalayan region and a relationship of velocity and geomorphology and geo-morphometry of the glacier has been studied. The standard procedure has been implied to estimate the glacial velocity using image to image correlation technique. The geo-morphometric parameters of the glacier surface have been derived using SRTM 90 m global DEM. It has been observed that the slope of the glacier is one of the main factors on which the velocity is dependent i.e. higher the slope higher is the velocity and more ice is brought by the glacier to the ablation zone. The debris cover over the glacier and at the terminus also affects the velocity of the glacier by restricting ice flow. Thus, observations suggest that the geomorphology and geo-morphometry of the glacier has a considerable control on the surface ice velocity of the glacier.

  6. Spatiotemporal variations in the surface velocities of Antarctic Peninsula glaciers

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-11-01

    Full Text Available Velocity is an important parameter for the estimation of glacier mass balance, which directly signals the response of glaciers to climate change. Antarctic ice sheet movement and the associated spatiotemporal velocity variations are of great significance to global sea level rise. In this study, we estimate Antarctic Peninsula glacier velocities using the co-registration of optically sensed images and correlation (hereafter referred to as COSI-Corr based on moderate-resolution imaging spectroradiometer Level 1B data (hereafter referred to as MODIS L1B. The results show that the glaciers of Graham Land and the Larsen Ice Shelf have substantially different velocity features. The Graham Land glaciers primarily flow from the peninsula ridge towards the Weddell Sea and Bellingshausen Sea on the east and west sides, respectively. There are very large velocity variations among the different ice streams, with a minimum of −1 and a maximum of 1500 m a−1 (with an average of 100–150 m a−1. Over the period 2000–2012, the glaciers of Graham Land accelerated in the south but slowed down in the north. In contrast, the Larsen Ice Shelf flows in a relatively uniform direction, mainly towards the northeast into the Weddell Sea. Its average velocity is 750–800 m a−1 and the maximum is > 1500 m a−1. During the period 2000–2012, the Larsen Ice Shelf experienced significant acceleration. The use of COSI-Corr based on MODIS L1B data is suitable for glacier velocity monitoring on the Antarctic Peninsula over long time series and large spatial scales. This method is clearly advantageous for analysing macro-scale spatiotemporal variations in glacier movement.

  7. Constraints on the original ejection velocity fields of asteroid families

    CERN Document Server

    Carruba, Valerio

    2016-01-01

    Asteroid families form as a result of large-scale collisions among main belt asteroids. The orbital distribution of fragments after a family-forming impact could inform us about their ejection velocities. Unfortunately, however, orbits dynamically evolve by a number of effects, including the Yarkovsky drift, chaotic diffusion, and gravitational encounters with massive asteroids, such that it is difficult to infer the ejection velocities eons after each family's formation. Here we analyze the inclination distribution of asteroid families, because proper inclination can remain constant over long time intervals, and could help us to understand the distribution of the component of the ejection velocity that is perpendicular to the orbital plane ($v_{W}$). From modeling the initial breakup, we find that the distribution of $v_{W}$ of the fragments, which manage to escape the parent body's gravity, should be more peaked than a Gaussian distribution (i.e., be leptokurtic) even if the initial distribution was Gaussia...

  8. Reconstructing the velocity field beyond the local universe

    CSIR Research Space (South Africa)

    Johnston, R

    2014-10-01

    Full Text Available this distance to estimate a peculiar velocity u via the well known relation u = czobs − H0d, (1) where c is the speed of light, H0 is the Hubble constant and zobs is the observed redshift, measured spectroscopically. The scatter in distance indicator relations... is the speed of light, z is the observed redshift for the galaxy, H0 is the Hubble constant, r ≡ |r| is the true distance to the object, v(r = 0) denotes the the observer’s velocity assumed to be at r = 0, and ˆr represents the unit vector along the object’s...

  9. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  10. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films.

    Science.gov (United States)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  11. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  12. Detailed documentation of dynamic changes in flow depth and surface velocity during a large flood in a steep mountain stream

    Science.gov (United States)

    Asano, Yuko; Uchida, Taro

    2016-10-01

    Understanding the discharge capacity of channels and changes in hydraulic properties during large storms is essential for prediction of flash floods. However, such information is limited for steep mountain channels because of their complex nature and the lack of measured data. Thus, we obtained detailed water-level and surface-velocity data during large floods of a steep mountain channel, and documented how complex channel morphology affected water flow during large storms. We installed water-level and surface-velocity sensors at a cascade and at a pool that was 10 m downstream at the Aono Research Forest of the Arboricultural Research Institute of the University of Tokyo Forests in Japan. We successfully obtained 1-min interval data for a major storm with total precipitation of 288 mm that fell over 59 h and a maximum rainfall intensity of 25 mm/h. During the storm, height of the water surface from the deepest point of each cross section ranged from 0.35 to 1.57 m and surface velocity ranged from 0.35 to 4.15 m/s. As expected, the changes in flow depth, surface velocity, and velocity profiles were complex and differed even between the cascade and adjacent pool cross sections. Dramatic changes in flow conditions first occurred at the cascade when discharge increased to a certain point, when water suddenly stagnated at the foot of the cascade and submerged flow might have occurred. Thereafter, the water level increased remarkably but surface velocity and the velocity profile stayed almost constant at the cascade cross section. At the downstream pool, where most rocks were submerged at a mean water depth of 0.7 m, surface velocity suddenly increased dramatically and the velocity profile changed as very slow flow developed in the lower portion of the profile, while water levels increased only slightly. When the rainfall diminished, first, the surface velocity markedly declined, then the velocity profile returned to its original state at the pool, and then submerged

  13. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  14. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  15. River-ice and sea-ice velocity fields from near-simultaneous satellite imagery

    Science.gov (United States)

    Kaeaeb, A.; Leprince, S.; Prowse, T. D.; Beltaos, S.; Lamare, M.; Abrams, M.

    2013-12-01

    Satellite stereo and satellites that follow each other on similar orbits within short time periods produce near-simultaneous space imagery, a kind of data that is little exploited. In this study, we track river-ice and sea-ice motion over time periods of tens of seconds to several minutes, which is the typical time lag between the two or more images of such near-simultaneous acquisition constellations. Using this novel approach, we measure and visualize for the first time the almost complete two-dimensional minute-scale velocity fields over several thousand square-kilometers of sea ice cover or over up to several hundred kilometers long river reaches. We present the types of near-simultaneous imagery and constellations suitable for the measurements and discuss application examples, using a range of high and medium resolution imagery such as from ASTER, ALOS PRISM, Ikonos, WorldView-2, Landsat and EO-1. The river ice velocities obtained provide new insights into ice dynamics, river flow and river morphology, in particular during ice breakup. River-ice breakup and the associated downstream transport of ice debris is often the most important hydrological event of the year, producing flood levels that commonly exceed those for the open-water period and dramatic consequences for river infrastructure and ecology. We also estimate river discharge from ice/water surface velocities using near-simultaneous satellite imagery. Our results for sea ice complement velocity fields typically obtained over time-scales of days and can thus contribute to better understanding of a number of processes involved in sea ice drift, such as wind impact, tidal currents and interaction of ice floes with each other and with obstacles.

  16. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  17. An improved near-surface velocity climatology for the global ocean from drifter observations

    Science.gov (United States)

    Laurindo, Lucas C.; Mariano, Arthur J.; Lumpkin, Rick

    2017-06-01

    This work updates the methods of Lumpkin and Johnson (2013) to obtain an improved near-surface velocity climatology for the global ocean using observations from undrogued and 15-m drogued Global Drifter Program (GDP) drifters. The proposed procedure includes the correction of the slip bias of undrogued drifters, thus recovering about half of the GDP dataset; and a new approach for decomposing Lagrangian data into mean, seasonal and eddy components, which reduces the smoothing of spatial gradients inherent in data binning methods. The sensitivity of the results to method parameters, the method performance relative to other techniques, and the associated estimation errors, are evaluated using statistics calculated for a test dataset consisting of altimeter-derived geostrophic velocities subsampled at the drifter locations, and for the full altimeter-derived geostrophic velocity fields. It is demonstrated that (1) the correction of drifter slip bias produces statistically similar mean velocities for both drogued and undrogued drifter datasets at most latitudes and reduces differences between their variance estimates, (2) the proposed decomposition method produces pseudo-Eulerian mean fields with magnitudes and horizontal scales closer to time-averaged Eulerian observations than other methods, and (3) standard errors calculated for pseudo-Eulerian quantities underestimate the real errors by a factor of almost two. The improved decomposition method and the inclusion of undrogued drifters in the analysis allows resolving details of the time-mean circulation not well defined in the previous version of the climatology, such as the cross-stream structure of western boundary currents, recirculation cells, and zonally-elongated mid-ocean striations.

  18. Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules.

    Science.gov (United States)

    Gai, Hongwei; Li, Ying; Silber-Li, Zhanhua; Ma, Yinfa; Lin, Bingcheng

    2005-04-01

    A laser-induced fluorescence imaging method was developed to simultaneously measure flow velocities in the middle and near wall of a channel with particles or single molecules, by selectively switching from the wide field excitation mode to the evanescent wave excitation mode. Fluorescent microbeads with a diameter of 175 nm were used to calibrate the system, and the collisions of microbeads with channel walls were directly observed. The 175 nm microbeads velocities in the main flow and at 275 nm from the bottom of the channel were measured. The measured velocities of particles or single molecules in two positions in a microchannel were consistent with the calculated value based on Poiseuille flow theory when the diameter of a microbead was considered. The errors caused by Brownian diffusion in our measurement were negligible compared to the flow velocity. Single lambda DNA molecules were then used as a flowing tracer to measure the velocities. The velocity can be obtained at a distance of 309.0 +/- 82.6 nm away from bottom surface of the channel. The technique may be potentially useful for studying molecular transportation both in the center and at the bottom of the channel, and interactions between molecules and microchannel surfaces. It is especially important that the technique can be permitted to measure both velocities in the same experiment to eliminate possible experimental inconsistencies.

  19. Characterizing the original ejection velocity field of the Koronis family

    Science.gov (United States)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  20. Global Neuromagnetic Cortical Fields Have Non-Zero Velocity.

    Directory of Open Access Journals (Sweden)

    David M Alexander

    Full Text Available Globally coherent patterns of phase can be obscured by analysis techniques that aggregate brain activity measures across-trials, whether prior to source localization or for estimating inter-areal coherence. We analyzed, at single-trial level, whole head MEG recorded during an observer-triggered apparent motion task. Episodes of globally coherent activity occurred in the delta, theta, alpha and beta bands of the signal in the form of large-scale waves, which propagated with a variety of velocities. Their mean speed at each frequency band was proportional to temporal frequency, giving a range of 0.06 to 4.0 m/s, from delta to beta. The wave peaks moved over the entire measurement array, during both ongoing activity and task-relevant intervals; direction of motion was more predictable during the latter. A large proportion of the cortical signal, measurable at the scalp, exists as large-scale coherent motion. We argue that the distribution of observable phase velocities in MEG is dominated by spatial filtering considerations in combination with group velocity of cortical activity. Traveling waves may index processes involved in global coordination of cortical activity.

  1. Solar velocity field determined tracking coronal bright points

    Science.gov (United States)

    Brajša, R.; Sudar, D.; Skokić, I.; Saar, S. H.; Žic, T.

    Preliminary data from Atmospheric Imaging Assembly (AIA) instrumenton board Solar Dynamics Observatory (SDO) satellite were used to determine solar differential rotation and related phenomena. A segmentation algorithm, which uses multiple AIA channels in search for intensity enhancements in EUV and X-ray parts of the spectrum compared to the background intensity, was applied to obtain positional information of coronal bright points (CBPs). More than 60000 position measurements of more than 10000 identified CBPs from the period 1 - 2 January 2011 were analyzed. Rotational and meridional velocities were determined by tracking identified CBPs and various filters were used to exclude erroneous results. Also, proper motions of CBPs were calculated from rotation velocity residuals and meridional velocities. Proper motions of CBPs were investigated using a random walk model and the diffusion constant was calculated. These results were compared with the previous ones obtained by other instruments and methods (especially with the SOHO-EIT and Hinode data) and a striking agreement of the obtained diffusion constant with results from other studies was found.

  2. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu

    2017-08-17

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source-domain FTI is capable of automatically generating a background velocity that can kinematically match the reconstructed plane-wave sources of early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging aspects of ray-based first-arrival tomographic inversion. Moreover, compared with conventional Born-based methods, source-domain FTI can distinguish between slower or faster initial model errors via providing the correct sign of the model gradient. In addition, this method does not need estimation of the source wavelet, which is a requirement for receiver-domain wave-equation velocity inversion. The model derived from source-domain FTI is then used as input to early-arrival waveform inversion to obtain the short-wavelength velocity components. We have tested the workflow on synthetic and field seismic data sets. The results show source-domain FTI can generate reasonable background velocities for early-arrival waveform inversion even when subsurface velocity reversals are present and the workflow can produce a high-resolution near-surface velocity model.

  3. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  4. Lyapunov exponents for particles advected in compressible random velocity fields at small and large Kubo numbers

    CERN Document Server

    Gustavsson, K

    2013-01-01

    We calculate the Lyapunov exponents describing spatial clustering of particles advected in one- and two-dimensional random velocity fields at finite Kubo number Ku (a dimensionless parameter characterising the correlation time of the velocity field). In one dimension we obtain accurate results up to Ku ~ 1 by resummation of a perturbation expansion in Ku. At large Kubo numbers we compute the Lyapunov exponent by taking into account the fact that the particles follow the minima of the potential function corresponding to the velocity field. In two dimensions we compute the first four non-vanishing terms in the small-Ku expansion of the Lyapunov exponents. For large Kubo numbers we estimate the Lyapunov exponents by assuming that the particles sample stagnation points of the velocity field with det A > 0 and Tr A < 0 where A is the matrix of flow-velocity gradients.

  5. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  6. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material sample...... resistances decrease for increasing airflow velocity above the boundary layer of the material surface. The measured resistances are somewhat smaller than the ones esti-mated by use of the Lewis relation....

  7. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  8. A criterion to detect line plumes from velocity fields in turbulent convection

    CERN Document Server

    Koothur, Vipin

    2015-01-01

    We present a simple, new criterion to extract line plumes from the velocity fields, without using the temperature field, in a horizontal plane close to the plate in turbulent convection. The existing coherent structure detection criteria from velocity fields, proposed for shear driven wall turbulence, are first shown to be inadequate for turbulent convection. Based on physical arguments, we then propose that the negative values of $\\overline{\

  9. Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jusang, E-mail: jsyang@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX 78712-1081 (United States); Beach, Geoffrey S.D. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Knutson, Carl; Erskine, James L. [Department of Physics, The University of Texas at Austin, Austin, TX 78712-1081 (United States)

    2016-01-01

    Spin dynamics of field-driven domain walls (DWs) guided by permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of 10 enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed. The enhanced velocity and drive field range are achieved at the expense of a less compact DW spin distribution. - Highlights: • The transverse magnetic fields can dramatically enhance the domain wall velocity. • The numerical simulation exhibits the four distinct dynamic modes. • Coupled multiple vortex structures within the domain wall become dynamically stable. • The enhanced domain wall velocity is explained by numerical simulations.

  10. Velocity fields of distant galaxies with FORS2 at the VLT

    CERN Document Server

    Ziegler, Bodo L; Da Rocha, Cristiano; Böhm, Asmus; Kapferer, Wolfgang; Kuntschner, Harald; Peletier, Reynier F; Schindler, Sabine; Verdugo, Miguel

    2009-01-01

    We describe a method to efficiently obtain two-dimensional velocity fields of distant, faint and small, emission-line galaxies with FORS2 at the VLT. They are examined for kinematic substructure to identify possible interaction processes. Numerical simulations of tidal interactions and ram-pressure effects reveal distinct signatures observable with our method. We detect a significant fraction of galaxies with irregular velocity fields both in the field and cluster environments.

  11. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  12. Linear stability analysis in a liquid layer with a surface velocity gradient.

    Science.gov (United States)

    Białecki, Jarosław; Hołyst, Janusz A

    2003-06-01

    A case of combined planar Couette-Poiseuille flow corresponding to vanishing horizontal flux has been generalized by the introduction of a model for the surface velocity gradient. A relation corresponding to the Orr-Sommerfeld equation has been derived for this model. The critical value of the surface velocity gradient has been obtained. At the critical point, the corresponding critical Reynolds number equals infinity. Using an approximated method we estimated the behavior of the critical Reynolds number for a slightly overcritical surface velocity gradient.

  13. Characterizing the original ejection velocity field of the Koronis family

    CERN Document Server

    Carruba, Valerio; Aljbaae, Safwan

    2016-01-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of th...

  14. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    Science.gov (United States)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  15. Properties of velocity field in the vicinity of synthetic jet generator

    Science.gov (United States)

    Strzelczyk, P.; Gil, P.

    2016-10-01

    The paper presents the results of experimental investigation of velocity field in the vicinity of synthetic jet actuator as a function of Stokes number and for constant Reynolds number. A constant temperature hot-wire anemometer with tungsten-platinum coated single wire probe used for the velocity measurements. Synthetic jet flow visualization was presented, especially process of vortex ring development. Synthetic jet velocity profiles were compared with a solution to fully-developed pipe flow with an oscillating pressure gradient.

  16. A Study of A Flow through Small Apertures(2nd Report, Experiments on The Velocity Field)

    OpenAIRE

    福冨, 清; 長谷川, 富市; 中野, 裕二; 鳴海, 敬倫; Hasegawa, Tomiichi; Narumi, Takatsune

    1987-01-01

    The velocity field of an inlet and outlet flow through small orifices was experimentally examined. The velocity along the center line near the orifices was measured with a laser doppler anemometer, stream lines in the whole flow region were photographed, and the following points were clarified : (1) The center line velocities of liquid paraffin agree with the theoretical value of Stokes flow in the region of Reynolds numbers below 10. (2) With distilled water, a diverging angle of the issuing...

  17. An Analytical Solution of the Potential Velocity Field Induced by a Growing Bubble from a Plate Orifice

    Institute of Scientific and Technical Information of China (English)

    ZhiTao; NingKang

    1993-01-01

    An analytical solution is derived with the mirror image method of the velocity field of an inviscid liquid induced by a growing bubble from a plate orifice.The flow is assumed potential,and the bubble shape is idealised as sphercal.In deriving the motion equation,the spherical image of a point source,which is a combination of a point source and a line source,is proved approximate to a double source,This approximation enables continuation of the effectiveness of mirror image method to the case studied in this paper.The derived velocity potential equation is verified for the boundary conditions on the bubble surface and the orifice plate.The streamlines of the velocity field are presented and compared with experimental results in the literature.

  18. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2013-01-01

    Full Text Available In the southernmost Longitudinal Valley (LV, Taiwan, we analyzed a dense GPS array composed of 10 continuous stations and 86 campaign-mode stations. By removing the effects of the four major earthquakes (one regional and three local occurred during the 1992 - 2010 observation period, we derived a new horizontal velocity field in this area, which then allows better locating the surface traces of the major active faults, including the Longitudinal Valley Fault (LVF system and the Central Range Fault, and characterizing the slip behaviors along the faults. Note that LVF reveals two sub-parallel strands in the study area: the Luyeh Fault to the west and the Lichi Fault to the east. Based on the results of strain analyses, including dilatation and shear strain, and projected vectors of station velocities across the major faults, we came to the following geological interpretations. During the inter-seismic periods, the surface deformation of the southernmost LV is mainly accommodated by the faulting on the two branches of the LVF; there is very little surface deformation on the Central Range Fault. The Luyeh River appears to act as a boundary to divide the LVF to behave differently to its northern and southern sides. The Lichi Fault reveals a change of slip kinematics from an oblique shearing/thrusting in the north to a nearly pure shearing with minor extension to the south. Regarding the slip behavior of the Luyeh Fault, it exhibits a creeping behavior in the north and a partially near-surface-locked faulting behavior in the south. We interpret that the two strands of the LVF merge together in the northern Taitung alluvial plain and turns to E-W trend toward the offshore area.

  19. OCT-based quantification of flow velocity, shear force, and power generated by a biological ciliated surface (Conference Presentation)

    Science.gov (United States)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.

    2016-03-01

    In cilia-driven fluid flow physiology, quantification of flow velocity, shearing force, and power dissipation is important in defining abnormal ciliary function. The capacity to generate flow can be robustly described in terms of shearing force. Dissipated power can be related to net ATP consumption by ciliary molecular motors. To date, however, only flow velocity can be routinely quantified in a non-invasive, non-contact manner. Additionally, traditional power-based metrics rely on metabolic consumption that reflects energy consumption not just from cilia but also from all active cellular processes. Here, we demonstrate the estimation of all three of these quantities (flow velocity, shear force, and power dissipation) using only optical coherence tomography (OCT). Specifically, we develop a framework that can extract force and power information from vectorial flow velocity fields obtained using OCT-based methods. We do so by (a) estimating the viscous stress tensor from flow velocity fields to estimate shearing force and (b) using the viscous stress tensor to estimate the power dissipation function to infer total mechanical power. These estimates have the advantage of (a) requiring only a single modality, (b) being non-invasive in nature, and (c) being reflective of only the net power work generated by a ciliated surface. We demonstrate our all-optical approach to the estimation of these parameters in the Xenopus animal model system under normal and increased viscous loading. Our preliminary data support the hypothesis that the Xenopus ciliated surface can increase force output under loading conditions.

  20. Notes on the Surface Velocity Profile and Horizontal Shear across the Width of the Gulf Stream

    OpenAIRE

    Arx, William S. Von

    2011-01-01

    During a cruise across the Gulf Stream in October 1950 measurements of surface velocity were made both with the Loran-space-dead method and the electromagnetic method. A short account of the results is given with special reference to the velocity profile and the horizontal shear across the Gulf Stream.DOI: 10.1111/j.2153-3490.1952.tb01006.x

  1. A new surface electromyography analysis method to determine spread of muscle fiber conduction velocities

    NARCIS (Netherlands)

    Lange, F; Van Weerden, TW; Van der Hoeven, JH

    2002-01-01

    Muscle fiber conduction velocity (MFCV) estimation from surface signals is widely used to study muscle function, e. g., in neuromuscular disease and in fatigue studies. However, most analysis methods do not yield information about the velocity distribution of the various motor unit action potentials

  2. Bayesian Estimates of the Large-Scale Velocity Field in Real Space and Redshift Space

    OpenAIRE

    Stebbins, Albert

    1993-01-01

    Methods for inferring the velocity field from the peculiar velocity data are described and applied to old and newer data. Inhomogeneous Malmquist bias and ways to avoid it are discussed and utilized. We infer that these biases are probably important in interpreting the data.

  3. Ultrasonic velocity and amplitude characterization of magnetorheological fluids under magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lopez, J., E-mail: jaimerl@caend.upm-csic.es [Centro de Acustica Aplicada y Ensayos No Destructivos, UPM-CSIC, 28006 Madrid (Spain); Elvira Segura, L.; Montero de Espinosa Freijo, F. [Centro de Acustica Aplicada y Ensayos No Destructivos, UPM-CSIC, 28006 Madrid (Spain)

    2012-01-15

    Variations in velocity of sound and amplitude of the signal of a commercial magnetorheological fluid under different magnetic fields are studied experimentally. Different factors such as orientation, uniformity, geometry and intensity of the magnetic field are investigated. An increase in the change of MR fluid acoustical properties is obtained when the magnetic field intensity is risen. In addition, these properties show an opposite behavior when a magnetic field is applied parallel or perpendicular to the ultrasound propagation. Experiments using an electromagnet and permanent magnets as the source of magnetic field are also compared. Properties such as anisotropy in sound velocity and amplitude make these materials interesting regarding applications. - Highlights: > First sound attenuation measurements as function of the magnetic field in MR fluids. > Sound velocity and attenuation anisotropy due to the microstructure is detected. > Geometry, intensity and uniformity of the magnetic field affect sound propagation.

  4. Rotation and strain rate of Sulawesi from geometrical velocity field

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  5. Hα Line Profile Asymmetries and the Chromospheric Flare Velocity Field

    Science.gov (United States)

    Kuridze, D.; Mathioudakis, M.; Simões, P. J. A.; Rouppe van der Voort, L.; Carlsson, M.; Jafarzadeh, S.; Allred, J. C.; Kowalski, A. F.; Kennedy, M.; Fletcher, L.; Graham, D.; Keenan, F. P.

    2015-11-01

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  6. Persistent small-scale features in maps of the anisotropy of ocean surface velocities

    Science.gov (United States)

    Sen, A.; Arbic, B. K.; Scott, R. B.; Holland, C. L.; Logan, E.; Qiu, B.

    2006-12-01

    Much of the stirring and mixing in the upper ocean is due to geostrophically balanced mesoscale eddies. Ocean general circulation models commonly parameterize eddy effects and can aid in predicting dispersal of materials throughout the ocean or in predicting long-term climate change. Parameterizations of eddy mixing depend on the isotropy of the eddies. Motivated by this, we investigate the isotropy of oceanic mesoscale eddies with seven years of sea surface height data recorded by satellite altimeters. From these data, we determined a sea surface height anomaly, and surface geostrophic velocities u and v in the zonal (east-west) and meridional (north-south) directions, respectively. From the latter two quantities we can calculate zonal and meridional kinetic energies u2 and v2. Integrals of u2 and v2 around latitude bands 10 degrees wide are nearly equal, in contrast with the results of simple beta-plane geostrophic turbulence models, which suggest that zonal motions should predominate. Maps of the quantity u2-v2 (normalized by standard error) show fine-scale structures that persist over times longer than the lifespan of turbulent eddies. Thus the mesoscale eddy field is locally anisotropic almost everywhere. Further investigation into the causes of these small-scale structures is needed and may take advantage of animations of sea surface height, in which quasi- circular, westward-propagating eddies can easily be seen.

  7. Near-Surface Attenuation and Velocity Structures in Taiwan from Wellhead and Borehole Recordings Comparisons

    National Research Council Canada - National Science Library

    Wang, Yu-Ju; Ma, Kuo-Fong; Wu, Shao-Kai; Hsu, Hsuan-Jui; Hsiao, Wen-Chi

    2016-01-01

    By analyzing the data from 28 seismic borehole stations deployed by the Central Weather Bureau Seismic Network throughout Taiwan from 2007 to 2014, we estimated the near-surface velocity (Vp and Vs) and attenuation (Qp and Qs...

  8. Glacier Surface Velocity Measurements from Radar Interferometry and the Principle of Mass Conservation

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels

    2002-01-01

    Presents a relation between the three glacier surface velocity components, the surface flux-divergence, glacier thickness and bottom melt and displacement. The relation can be used as an extension to the surface parallel flow assumption often used with interferometric synthetic aperture...

  9. A Slight Excess of Large Scale Power from Moments of the Peculiar Velocity Field

    CERN Document Server

    Macaulay, Edward; Ferreira, Pedro G; Hudson, Michael J; Watkins, Richard

    2010-01-01

    The peculiar motions of galaxies can be used to infer the distribution of matter in the Universe. It has recently been shown that measurements of the peculiar velocity field indicates an anomalously high bulk flow of galaxies in our local volume. In this paper we find the implications of the high bulk flow for the power spectrum of density fluctuations. We find that analyzing only the dipole moment of the velocity field yields an average power spectrum amplitude which is indeed higher than the LCDM value at over 2 sigma confidence. However, by also including shear and octupole moments of the velocity field, and marginalizing over possible values for the growth rate, an average power spectrum amplitude which is consistent with LCDM is recovered. We attempt to infer the shape of the matter power spectrum from moments of the velocity field, and find a slight excess of power on scales ~ h-1 Gpc.

  10. Establishment and analyses on the unified horizontal crustal velocity fields in the Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The related data of GPS networks in the Chinese mainland and its peripheral areas are collected from internet sites in the paper. And various data fusion methods are presented based on the collected GPS data. Thus the unified horizontal crustal velocity fields can be established in the Chinese mainland and its peripheral areas. The available data of 423 GPS sites are applied to the velocity fields and its area gets to 1.2′107 km2. By analyzing the velocity fields, the basic spatial distribution feature of the horizontal crustal motion in the Chinese mainland and its peripheral area can be obtained preliminarily. Meanwhile, the range of the velocity fields in the Chinese mainland affected by the collision force of India plate to Eurasia plate and the problem of principal direction of the force from India plate are discussed.

  11. Friction velocity u* and roughness length z0 of atmospheric surface boundary layer in sparse-tree land

    Institute of Scientific and Technical Information of China (English)

    Guan Dexin; Zhu Tingyao; Han Shijie

    1999-01-01

    Sparse-tree land is one of the typical lands and can be considered as one typical rough surface in boundary layer meteorology. Many lands can be classified into the kind surface in the view of scale and distribution feature of the roughness elements such as agroforest, scatter planted or growing trees, savanna and so on. The structure of surface boundary layer in sparse-tree land is analyzed and the parameters, friction velocity u* and roughness length z0 are deduced based on energy balance law and other physical hypothesis. The models agree well with data of wind tunnel experiments and field measurements.

  12. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  13. Integral Length and Time Scales of Velocity, Heat and Mass At and Near a Turbulent Free Surface

    Science.gov (United States)

    Curtis, G. M.; Zappa, C. J.; Variano, E. A.

    2010-12-01

    Turbulence enhances both heat and CO2 gas exchange at a free surface. At the air-water interface, heat and mass transport is controlled by a thin thermal/diffusive boundary layer. Turbulence in the flow acts to thin the heat and mass boundary layers, thereby increasing the rate at which surface water is mixed into the bulk. Surface water is typically cool, and mixing replaces it with warmer water from the bulk. In our experiment, and in many environmental cases, the surface has a higher concentration of dissolved CO2 and carbonate species. . The dissolved gas is transported between the surface and bulk in a similar way to the heat. Because of this similarity, attempts are often made to find and exploit a relationship between the heat and mass transfer. Using a laboratory tank, which generates turbulence with very low mean shear flow, we measured heat and mass transfer by using infrared imagery to map the two-dimensional surface temperature field and by using planar laser-induced fluorescence (PLIF) to map the two-dimensional subsurface CO2 flux. In addition, particle image velocimetry (PIV) was used to measure subsurface velocity fields. A comparative analysis of these results allows us to determine the similarities and differences between heat, mass, and momentum transport at a free surface. This will contribute to the use of one quantity to predict transport of the others. The setup used here, i.e., turbulence with very low mean shear at the surface, allows us to evaluate the turbulent components of interfacial flux in a way that can be applied equally well to flows created by wind, waves, or current. Here, we quantify the integral length and time scales of the surface temperature and sub-surface CO2 and velocity measurements. Initial analysis shows that the integral length scales of temperature at the surface are significantly smaller than the sub-surface velocity scales. However, the integral scale of sub-surface velocity decreases approaching the surface. The

  14. A clear and measurable signature of modified gravity in the galaxy velocity field

    CERN Document Server

    Hellwing, Wojciech A; Frenk, Carlos S; Li, Baojiu; Cole, Shaun

    2014-01-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, $v_{12}$, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $\\sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon $f(R)$ gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses exhibit deviations from General Relativity at the 5 to 10 $\\sigma$ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.

  15. Clear and measurable signature of modified gravity in the galaxy velocity field.

    Science.gov (United States)

    Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun

    2014-06-06

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  16. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain)); Pitarke, J.M. (Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain))

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  17. The 6dF Galaxy Survey: peculiar velocity field and cosmography

    Science.gov (United States)

    Springob, Christopher M.; Magoulas, Christina; Colless, Matthew; Mould, Jeremy; Erdoğdu, Pirin; Jones, D. Heath; Lucey, John R.; Campbell, Lachlan; Fluke, Christopher J.

    2014-12-01

    We derive peculiar velocities for the 6dF Galaxy Survey (6dFGS) and describe the velocity field of the nearby (z < 0.055) Southern hemisphere. The survey comprises 8885 galaxies for which we have previously reported Fundamental Plane data. We obtain peculiar velocity probability distributions for the redshift-space positions of each of these galaxies using a Bayesian approach. Accounting for selection bias, we find that the logarithmic distance uncertainty is 0.11 dex, corresponding to 26 per cent in linear distance. We use adaptive kernel smoothing to map the observed 6dFGS velocity field out to cz ˜ 16 000 km s-1, and compare this to the predicted velocity fields from the PSCz Survey and the 2MASS Redshift Survey. We find a better fit to the PSCz prediction, although the reduced χ2 for the whole sample is approximately unity for both comparisons. This means that, within the observational uncertainties due to redshift-independent distance errors, observed galaxy velocities and those predicted by the linear approximation from the density field agree. However, we find peculiar velocities that are systematically more positive than model predictions in the direction of the Shapley and Vela superclusters, and systematically more negative than model predictions in the direction of the Pisces-Cetus Supercluster, suggesting contributions from volumes not covered by the models.

  18. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    Science.gov (United States)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  19. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  20. Turbulent Convection in Stellar Interiors. II. The Velocity Field

    CERN Document Server

    Arnett, David; Young, P A

    2008-01-01

    We analyze stellar convection with the aid of 3D hydrodynamic simulations, introducing the turbulent cascade into our theoretical analysis. We devise closures of the Reynolds-decomposed mean field equations by simple physical modeling of the simulations (we relate temperature and density fluctuations via coefficients); the procedure (CABS, Convection Algorithms Based on Simulations) is terrestrially testable and is amenable to systematic improvement. We develop a turbulent kinetic energy equation which contains both nonlocal and time dependent terms, and is appropriate if the convective transit time is shorter than the evolutionary time scale. The interpretation of mixing-length theory (MLT) as generally used in astrophysics is incorrect; MLT forces the mixing length to be an imposed constant. Direct tests show that the damping associated with the flow is that suggested by Kolmogorov. The eddy size is approximately the depth of the convection zone, and this dissipation length corresponds to the "mixing length...

  1. Influence of Optic-Flow Information Beyond the Velocity Field on the Active Control of Heading

    Directory of Open Access Journals (Sweden)

    Li Li

    2011-05-01

    Full Text Available We examined both the sufficiency of the optic-flow velocity field and the influence of optic-flow information beyond the velocity field on the active control of heading. The display simulated a vehicle traveling on a circular path through a random-dot 3D cloud under a static or a dynamic scene in which dots were periodically redrawn to remove information beyond a velocity field. Participants used a joystick, under either velocity and acceleration control dynamics, to steer and align the vehicle orientation with their perceived heading while experiencing random perturbations to the vehicle orientation. Frequency response (Bode plots show reasonably good performance under both display conditions with a decrease in gain and an increase in phase lag for the dynamic scene for both control dynamics. The performance data were then fit by a Crossover Model to identify reaction time and lead time constant to determine how much participants anticipated future heading to generate lead control. Reaction time was longer and lead time constant was smaller for the dynamic than the static scene for both control dynamics. We conclude that the velocity field alone is sufficient to support closed-loop heading control, but optic-flow information beyond the velocity field improves visuomotor performance in self-motion control.

  2. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  3. Maximum Velocity of a Boulder Ejected From an Impact Crater Formed on a Regolith Covered Surface

    Science.gov (United States)

    Bart, G. D.; Melosh, H. J.

    2007-12-01

    We investigate the effect of regolith depth on boulder ejection velocity. A "boulder" refers to an apparently intact rock or rock fragment lying on a planetary surface, regardless of emplacement mechanism. Boulders appear in planetary images as positive relief features --- bright, sun-facing pixels adjacent to dark, shadowed pixels. We studied 12 lunar craters in high resolution (1~m) photographs from Lunar Orbiter III and V. Local regolith depth was measured using the method of small crater morphology. Ejection velocities of boulders were calculated assuming a ballistic trajectory to the final boulder location. A plot of regolith depth/crater diameter vs. maximum boulder ejection velocity shows that craters formed in deeper regolith (with respect to crater size) eject boulders at lower velocities. When ejection velocity (EjV) is in m/s, and regolith depth (Dr) and crater diameter (Dc) are in meters, the data fit the relation Dr / Dc = 1053 × EjVmax-2.823. To explain the data, we turn to impact cratering theory. An ejected particle will follow a streamline from its place of origin to its ejection point (the Z-model), and then follow a ballistic trajectory. Material ejected along more shallow streamlines is ejected at greater velocities. If shallow regolith covers the surface, the most shallow (greatest velocity) streamlines will travel only through the regolith. Boulders, however, must be ejected from the bedrock below the regolith. Thus, the boulder ejected with the greatest velocity originates just below the regolith, along the most shallow streamline through the bedrock. If the regolith is deeper, the most shallow streamline through the bedrock will be deeper, and the maximum velocity of an ejected boulder will be lower. Hence, the regolith depth and maximum ejection velocity of a boulder are correlated: greater boulder ejection velocities correspond to thinner regolith. We observe this correlation in the data.

  4. Vector fields on nonorientable surfaces

    Directory of Open Access Journals (Sweden)

    Dorin Ghisa

    2003-01-01

    Full Text Available A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOS X and the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV on the orientable double cover of X. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point of X, and the space of vector fields on X are proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.

  5. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  6. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  7. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...

  8. Influence of Rough Flow over Sea Surface on Dry Atmospheric Deposition Velocities

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available A Meteorological model and a dry deposition module were used to estimate the effects of sea surface rough flow (SSRF over the sea surface on dry deposition velocities. The dry deposition turbulence resistance, Ra, and sub-layer resistance, Rb, decreased more than 10% and 5% due to SSRF, respectively. For example, for HNO3, the mean dry deposition velocities (Vd were 0.51 cm s-1 in January, 0.58 in April, 0.65 cm s-1 in July and 0.79 cm s-1 in October with only smooth flow over the sea surface. However, the SSRF increased the Vd of HNO3 by 5 - 20% in the east China seas. These results show that SSRF is an important factor in estimating surface roughness to further improve calculation of the dry deposition velocities over the ocean. Improvements in parameterization of sea roughness length will be a worthwhile effort in related future studies.

  9. Measuring the velocity field from type Ia supernovae in an LSST-like sky survey

    CERN Document Server

    Odderskov, Io

    2016-01-01

    With the upcoming sky survey with the Large Synoptic Survey Telescope a great sample of type Ia supernovae will be observed, allowing for a precise mapping of the velocity structure of the universe. Since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with no information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary different aspects of the analysis, such as the ...

  10. Three-dimensional instantaneous velocity field measurement using digital holography microscope

    Indian Academy of Sciences (India)

    Dhananjay Kumar Singh; P K Panigrahi

    2014-02-01

    In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 2 cross-section. The flow field is seeded with polystyrene microspheres of size $d_p = 2.1$ m. The volumetric flow rate is set equal to 20 l/min. The instantaneous 3D velocity field is obtained by correlating the particles obtained from the 3D numerical reconstruction of holograms using particle tracking velocimetry (PTV).

  11. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    Science.gov (United States)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  12. Creating analytically divergence-free velocity fields from grid-based data

    Science.gov (United States)

    Ravu, Bharath; Rudman, Murray; Metcalfe, Guy; Lester, Daniel R.; Khakhar, Devang V.

    2016-10-01

    We present a method, based on B-splines, to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on a regular grid. A continuous analytically divergence-free velocity field can then be obtained from the curl of the potential. This field can be used to robustly and accurately integrate particle trajectories in incompressible flow fields. Based on the method of Finn and Chacon (2005) [10] this new method ensures that the analytic velocity field matches the grid values almost everywhere, with errors that are two to four orders of magnitude lower than those of existing methods. We demonstrate its application to three different problems (each in a different coordinate system) and provide details of the specifics required in each case. We show how the additional accuracy of the method results in qualitatively and quantitatively superior trajectories that results in more accurate identification of Lagrangian coherent structures.

  13. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    Science.gov (United States)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  14. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    indicates that the flutter condition should be taken when simple harmonic motion occurs and certain additional velocity derivatives are satisfied. 3. The viscoelastic material behavior imposes a flutter time indicating that the presence of flutter should be verified for the entire life time of a flight vehicle. 4. An expanded definition for instability of a lifting surface or panel. Traditionally, instability is treated as a static phenomenon. The static case is only a limiting case of dynamic instability for a viscoelastic structure. Instability occurs when a particular combination of flight velocity and time are reached leading to growing displacements of the structure. 5. The inclusion of flight velocity transients that occur during maneuvers. Two- and three-dimensional unsteady incompressible and compressible aerodynamics were reformulated for a time dependent velocity. The inclusion of flight velocity transients does affect the flutter and instability conditions for a lifting surface and a panel. The applications of aero-servo-viscoelasticity are to aircraft design, wind turbine blades, submarine's stealth coatings and hulls, and land transportation to name a few examples. One caveat regarding this field of research is that general predictions for an application are not always possible as the stability of a structure depends on the phase relations between the various parameters such as mass, stiffness, damping, and the aerodynamic loads. The viscoelastic material parameters in particular alter the system parameters in directions that are difficult to predict. The inclusion of servo controls permits an additional design factor and can improve the performance of a structure beyond the native performance; however over-control is possible so a maximum limit to useful control does exist. Lastly, the number of material and control parameters present in aero-servo-viscoelasticity are amenable to optimization protocols to produce the optimal structure for a given mission.

  15. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  16. 3-D seismic velocity and attenuation structures in the geothermal field

    Science.gov (United States)

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan, Sule, Rachmat

    2013-09-01

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  17. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    on particle velocity input data than when it is based on measurements of sound pressure data, and this is confirmed by a simulation study and by experimental results. A method that combines pressure- and particle velocity-based reconstructions in order to distinguish between contributions to the sound field......The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has...... recently been demonstrated. This paper examines whether there might be a similar advantage in using the particle velocity as the input of NAH based on the equivalent source method (ESM). Error sensitivity considerations indicate that ESM-based NAH is less sensitive to measurement errors when it is based...

  18. Effects of correlated turbulent velocity fields on the formation of maser lines

    CERN Document Server

    Boeger, R; Hegmann, M

    2003-01-01

    The microturbulent approximation of turbulent motions is widely used in radiative transfer calculations. Mainly motivated by its simple computational application it is probably in many cases an oversimplified treatment of the dynamical processes involved. This aspect is in particular important in the analysis of maser lines, since the strong amplification of radiation leads to a sensitive dependence of the radiation field on the overall velocity structure. To demonstrate the influence of large scale motions on the formation of maser lines we present a simple stochastic model which takes velocity correlations into account. For a quantitative analysis of correlation effects, we generate in a Monte Carlo simulation individual realizations of a turbulent velocity field along a line of sight. Depending on the size of the velocity correlation length we find huge deviations between the resulting random profiles in respect of line shape, intensity and position of single spectral components. Finally, we simulate the e...

  19. Spatiotemporal properties of Sub-Rayleigh and supershear rupture velocity fields: Theory and experiments

    Science.gov (United States)

    Mello, Michael; Bhat, Harsha S.; Rosakis, Ares J.

    2016-08-01

    Fundamental spatiotemporal field properties and particle velocity waveform signatures of sub-Rayleigh and supershear ruptures were experimentally investigated through a series of laboratory earthquake experiments. We appeal to dynamic rupture theory to extract and highlight previously unnoticed aspects and results, which are of direct relevance to our new experiments. Kinematic relationships derived from both singular and non-singular solutions are applied to analyze and interpret various features observed in these experiments. A strong correspondence is demonstrated between particle velocity records obtained in lab experiments and synthetic particle velocity waveform profiles derived from theory. Predicted temporal profiles, sense of particle motion, and amplitude decay properties of sub-Rayleigh and supershear particle velocity waveforms are experimentally verified. In a particular set of supershear rupture experiments, the fault-normal (FN) and fault-parallel (FP) velocity waveforms were simultaneously recorded at fixed, off-fault field points as a shear Mach front swept these locations. Particle velocity records collected over a broad range of stable supershear rupture speeds validate the predicted scaling relationship δu˙1s / δu˙2s =√{Vr2 / Cs2-1 } =βs, between the FP (δu1ṡ) and the FN (δu2ṡ) velocity jumps propagated by a shear Mach front. Additional experimental findings include detailed rupture speed measurements of sub-Rayleigh and supershear ruptures and the observation of a supershear daughter crack with vanishing shear Mach front.

  20. Kinematics of the Suez-Sinai area from combined GPS velocity field

    Science.gov (United States)

    Pietrantonio, G.; Devoti, R.; Mahmoud, S.; Riguzzi, F.

    2016-12-01

    A combined GPS velocity solution covering a wide area from Egypt to Middle East allowed us to infer the current rates across the main, already well known, tectonic features. We have estimated 126 velocities from time series of 90 permanent and 36 non permanent GPS sites located in Africa (Egypt), Eurasia and Arabia plates in the time span 1996-2015, the largest available for the Egyptian sites. We have combined our velocity solution in a least-squares sense with two other recent velocity solutions of networks located around the eastern Mediterranean, obtaining a final IGb08 velocity field of about 450 sites. Then, we have estimated the IGb08 Euler poles of Africa, Sinai and Arabia, analyzing the kinematics of the Sinai area, particular velocity profiles, and estimating the 2D strain rate field. We show that it is possible to reliably model the rigid motion of Sinai block only including some GPS sites located south of the Carmel Fault. The estimated relative motion with respect to Africa is of the order of 2-3 mm/yr, however there is a clear mismatch between the modeled and the observed velocities in the southern Sinai sites. We have also assessed the NNE left shear motion along the Dead Sea Transform Fault, estimating a relative motion between Arabia and Africa of about 6 mm/yr in the direction of the Red Sea opening.

  1. Independent constraints on local non-Gaussianity from the peculiar velocity and density fields

    CERN Document Server

    Ma, Yin-Zhe; Scott, Douglas

    2013-01-01

    Primordial, non-Gaussian perturbations can generate scale-dependent bias in the galaxy distribution. This in turn will modify correlations between galaxy positions and peculiar velocities at late times, since peculiar velocities reflect the underlying matter distribution, whereas galaxies are a biased tracer of the same. We study this effect, and show that non-Gaussianity can be constrained by comparing the observed peculiar velocity field to a model velocity field reconstructed from the galaxy density field assuming linear bias. The amplitude of the spatial correlations in the residual map obtained after subtracting one velocity field from the other is directly proportional to the strength of the primordial non-Gaussianity. We construct the corresponding likelihood function use it to constrain the amplitude of the linear flow $\\beta$ and the amplitude of local non-Gaussianity $f^{NL}_{local}$. Applying our method to two observational data sets, the Type-Ia supernovae (A1SN) and Spiral Field \\textit{I}-band (...

  2. Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.

  3. Two-Dimensional Far Field Source Locating Method with Nonprior Velocity

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2016-01-01

    Full Text Available Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating accuracy of far field sources by isometric placed sensors in a straight line, a new locating method with nonprior velocity is proposed. After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and better stability.

  4. The 6dF Galaxy Survey: Peculiar Velocity Field and Cosmography

    CERN Document Server

    Springob, Christopher M; Colless, Matthew; Mould, Jeremy; Erdogdu, Pirin; Jones, D Heath; Lucey, John R; Campbell, Lachlan; Fluke, Christopher J

    2014-01-01

    We derive peculiar velocities for the 6dF Galaxy Survey (6dFGS) and describe the velocity field of the nearby ($z<0.055$) southern hemisphere. The survey comprises 8885 galaxies for which we have previously reported Fundamental Plane data. We obtain peculiar velocity probability distributions for the redshift space positions of each of these galaxies using a Bayesian approach. Accounting for selection bias, we find that the logarithmic distance uncertainty is 0.11 dex, corresponding to $26\\%$ in linear distance. We use adaptive kernel smoothing to map the observed 6dFGS velocity field out to $cz \\sim 16,000$ \\kms, and compare this to the predicted velocity fields from the PSCz Survey and the 2MASS Redshift Survey. We find a better fit to the PSCz prediction, although the reduced $\\chi^2$ for the whole sample is approximately unity for both comparisons. This means that, within the observational uncertainties due to redshift independent distance errors, observed galaxy velocities and those predicted by the l...

  5. Automatic NMO Correction and Full Common Depth Point NMO Velocity Field Estimation in Anisotropic Media

    Science.gov (United States)

    Sedek, Mohamed; Gross, Lutz; Tyson, Stephen

    2017-01-01

    We present a new computational method of automatic normal moveout (NMO) correction that not only accurately flattens and corrects the far offset data, but simultaneously provides NMO velocity (v_nmo) for each individual seismic trace. The method is based on a predefined number of NMO velocity sweeps using linear vertical interpolation of different NMO velocities at each seismic trace. At each sweep, we measure the semblance between the zero offset trace (pilot trace) and the next seismic trace using a trace-by-trace rather than sample-by-sample based semblance measure; then after all the sweeps are done, the one with the maximum semblance value is chosen, which is assumed to be the most suitable NMO velocity trace that accurately flattens seismic reflection events. Other traces follow the same process, and a final velocity field is then extracted. Isotropic, anisotropic and lateral heterogenous synthetic geological models were built to test the method. A range of synthetic background noise, ranging from 10 to 30 %, was applied to the models. In addition, the method was tested on Hess's VTI (vertical transverse isotropy) model. Furthermore, we tested our method on a real pre-stack seismic CDP gathered from a gas field in Alaska. The results from the presented examples show an excellent NMO correction and extracted a reasonably accurate NMO velocity field.

  6. Technical Note: Surface water velocity observations from a camera: a case study on the Tiber River

    Directory of Open Access Journals (Sweden)

    F. Tauro

    2014-10-01

    Full Text Available Monitoring surface water velocity during flood events is a challenging task. Techniques based on deploying instruments in the flow are often unfeasible due to high velocity and abundant sediment transport. A low-cost and versatile technology that provides continuous and automatic observations is still not available. LSPIV (large scale particle imaging velocimetry is a promising approach to tackle these issues. Such technique consists of developing surface water velocity maps analyzing video frame sequences recorded with a camera. In this technical brief, we implement a novel LSPIV experimental apparatus to observe a flood event in the Tiber river at a cross-section located in the center of Rome, Italy. We illustrate results from three tests performed during the hydrograph flood peak and recession limb for different illumination and weather conditions. The obtained surface velocity maps are compared to the rating curve velocity and to benchmark velocity values. Experimental findings confirm the potential of the proposed LSPIV implementation in aiding research in natural flow monitoring.

  7. Seismic tomography of Yunnan region using short-period surface wave phase velocity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 苏伟; 叶太兰

    2004-01-01

    The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.

  8. Transport of ultracold neutrons through a mirror system with surface roughness as a velocity filter

    CERN Document Server

    Chizhova, L A; Jenke, T; Cronenberg, G; Geltenbort, P; Abele, H; Burgdörfer, J

    2012-01-01

    We perform classical Monte Carlo simulations of ultracold neutron transport through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a velocity filter for ultracold neutrons. The range of velocities selected is controlled by geometric parameters of the wave guide. Possible applications include investigations of transport and scattering dynamics in confined systems.

  9. Optimal estimation of absolute geostrophic velocity field in vicinity of the Luzon Strait using variational data assimilation technique

    Institute of Scientific and Technical Information of China (English)

    兰健; 王东晓

    2002-01-01

    A P - vector method is opt'inized using the variational data assimilation technique (VDAT). The absolute geostrophic velocity fields in the vicinity of the Luzon Strait (LS) are calculated, the spatial structures and seasonal variations o{ the absolute geostrophic velocity field are investigated. Our results show that the Kuroshio enters the South China Sea (SCS) in the south and middle of the Luzon Strait and flows out in the north, so the Kuroshio makes a slight clockwise curve in the Luzon Strait, and the curve is strong in winter and weak in summer. During the winter, a westward current appears in the surface, and locates at the west of the Luzon Strait. It is the north part of a cyclonic gyre which exits in the northeast of the SCS; an anti-cyclonic gyre occurs on the intermediate level, and it exits in the northeast of the SCS, and an eastward current exits in the southeast of the anti-cyclonic gyre.

  10. Mesogranulation and the solar surface magnetic field distribution

    CERN Document Server

    Chaouche, L Yelles; Pillet, V Martínez; Wiegelmann, T; Bonet, J A; Knölker, M; Rubio, L R Bellot; Iniesta, J C del Toro; Barthol, P; Gandorfer, A; Schmidt, W; Solanki, S K

    2010-01-01

    The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (~ 100 km) and temporal (~ 30 sec) resolution data obtained with the IMaX instrument aboard SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through Local Correlation Tracking. After ~ 20 min of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Secondly, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density fun...

  11. Variability of surface velocity in the Kuroshio Current and adjacent waters derived from Argos drifter buoys and satellite altimeter data

    Institute of Scientific and Technical Information of China (English)

    MA Chao; WU Dexing; LIN Xiaopei

    2009-01-01

    By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC" The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress.

  12. Effect of Ion Escape Velocity and Conversion Surface Material on H- Production

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Olli [University of Jyvaskyla; Kalvas, T. [University of Jyvaskyla; Komppula, J. [University of Jyvaskyla; Koivisto, H. [University of Jyvaskyla; Geros, E. [Los Alamos National Laboratory (LANL); Stelzer, J. [Los Alamos National Laboratory (LANL); Rouleau, G. [Los Alamos National Laboratory (LANL); Johnson, K.F. [Los Alamos National Laboratory (LANL); Carmichael, Justin R [ORNL

    2011-01-01

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H- production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was affected by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H- no direct gain of extracted beam current can be achieved by increasing the converter voltage. The conversion efficiency of H- was observed to vary with converter voltage and follow the existing theories in qualitative manner. We present calculations predicting relative H- yields from different cesiated surfaces with comparison to experimental observations from different types of H- ion sources. Utilizing materials exhibiting negative electron affinity and exposed to UV-light is considered for Cesium-free H-/D- production.

  13. Tangential Velocity Profile for Axial Flow Through Two Concentric Rotating Cylinders with Radial Magnetic Field

    Directory of Open Access Journals (Sweden)

    Girishwar Nath

    1970-10-01

    Full Text Available A closed form solution of the Navier-Stokes equations has been obtained in the case of steady axisymmetric flow of an incompressible electrically conducting viscous fluid between two concentric rotating cylinders composed of an insulating material under the influence of radial magnetic field. It has been found that the velocity components are less than those of the classical hydrodynamic case. In the presence of the magnetic field, the tangential velocity becomes fully developed in a smaller axial distance than in the absence of the magnetic field. For small Reynolds number, the fully developed tangential velocity is achieved in a small axial distance, but it requires greater axial distance for large Reynolds number.

  14. Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: A comparative study of four nanofluids

    Science.gov (United States)

    Aly, Emad H.; Sayed, Hamed M.

    2017-01-01

    In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.

  15. A bio-inspired, computational model suggests velocity gradients of optic flow locally encode ordinal depth at surface borders and globally they encode self-motion.

    Science.gov (United States)

    Raudies, Florian; Ringbauer, Stefan; Neumann, Heiko

    2013-09-01

    Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.

  16. Preliminary Seismic Velocity Structure Results from Ambient Noise and Teleseismic Tomography: Laguna del Maule Volcanic Field, Chile

    Science.gov (United States)

    Wespestad, C.; Thurber, C. H.; Zeng, X.; Bennington, N. L.; Cardona, C.; Singer, B. S.

    2016-12-01

    Laguna del Maule Volcanic Field is a large, restless, rhyolitic system in the Southern Andes that is being heavily studied through several methods, including seismology, by a collaborative team of research institutions. A temporary array of 52 seismometers from OVDAS (the Southern Andean Volcano Observatory), PASSCAL (Portable Array Seismic Studies of the Continental Lithosphere), and the University of Wisconsin-Madison was used to collect the 1.3 years worth of data for this preliminary study. Ambient noise tomography uses surface wave dispersion data obtained from noise correlation functions (NCFs) between pairs of seismic stations, with one of each pair acting as a virtual source, in order to image the velocity structure in 3-D. NCFs were computed for hour-long time windows, and the final NCFs were obtained with phase-weighted stacking. The Frequency-Time Analysis technique was then utilized to measure group velocity between station pairs. NCFs were also analyzed to detect temporal changes in seismic velocity related to magmatic activity at the volcano. With the surface wave data from ambient noise, our small array aperture limits our modeling to the upper crust, so we employed teleseismic tomography to study deeper structures. For picking teleseismic arrivals, we tested two different correlation and stacking programs, which utilize adaptive stacking and multi-channel cross-correlation, to get relative arrival time data for a set of high quality events. Selected earthquakes were larger than magnitude 5 and between 30 and 95 degrees away from the center of the array. Stations that consistently show late arrivals may have a low velocity body beneath them, more clearly visualized via a 3-D tomographic model. Initial results from the two tomography methods indicate the presence of low-velocity zones at several depths. Better resolved velocity models will be developed as more data are acquired.

  17. Velocity dependence of vestibular information for postural control on tilting surfaces.

    Science.gov (United States)

    Horak, Fay B; Kluzik, JoAnn; Hlavacka, Frantisek

    2016-09-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25-1 deg/s) and fell only very rarely during faster tilts (16-32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia.

  18. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  19. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    Science.gov (United States)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  20. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  1. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  2. Determine of velocity field with PIV and CFD during the flow around of bridge piers

    Directory of Open Access Journals (Sweden)

    Picka D.

    2013-04-01

    Full Text Available The article describes the processing of specific junior research FAST-J-11-51/1456 which dealt with physical and CFD of the velocity field during the flow around of bridge piers. Physical modelling has been carried out in Laboratory of water management research in Institute of Water Structures in Brno University of Technology – Faculty of Civil Engineering. To measure of the velocity field in profile of bridge piers were used laser measuring method PIV (Particle Image Velocimetry. The results of PIV served as a basis for comparing experimental data with CFD results of this type of flow in the commercial software ANSYS CFX.

  3. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography

    Science.gov (United States)

    Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa

    2017-01-01

    The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.

  4. Kriging interpolating cosmic velocity field. II. Taking anistropies and multistreaming into account

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2017-02-01

    Measuring the volume-weighted peculiar velocity statistics from inhomogeneously and sparsely distributed galaxies/halos, by existing velocity assignment methods, suffers from a significant sampling artifact. As an alternative, the Kriging interpolation based on Gaussian processes was introduced and evaluated [Y. Yu, J. Zhang, Y. Jing, and P. Zhang, Phys. Rev. D 92, 083527 (2015), 10.1103/PhysRevD.92.083527]. Unfortunately, the most straightforward application of Kriging does not perform better than the existing methods in the literature. In this work, we investigate two physically motivated extensions. The first takes into account of the anisotropic velocity correlations. The second introduces the nugget effect, on account of multistreaming of the velocity field. We find that the performance is indeed improved. For sparsely sampled data [nP≲6 ×10-3(h-1 Mpc )-3 ] where the sampling artifact is the most severe, the improvement is significant and is two-fold: 1) The scale of reliable measurement of the velocity power spectrum is extended by a factor ˜1.6 , and 2) the dependence on the velocity correlation prior is weakened by a factor of ˜2 . We conclude that such extensions are desirable for accurate velocity assignment by Kriging.

  5. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment.

    Science.gov (United States)

    Ma, Teng-Fei; Chen, You-Peng; Kang, Jia; Gao, Xu; Guo, Jin-Song; Fang, Fang; Zhang, Xiao-Tian

    2016-12-01

    Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).

  6. Magnetic and Velocity Field Variations in the Active Regions NOAA 10486 and NOAA 10488

    Indian Academy of Sciences (India)

    Ram Ajor Maurya; Ashok Ambastha

    2008-03-01

    We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003.We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and transient phenomena. In particular, we report detection of rapid moving features observed in NOAA 10486 during the maximum phase of the X17.2/4B superflare of October 28, 2003. The velocity of this moving feature is estimated around 40 km/s, i.e., much greater than the usual H flare-ribbons’ separation speed of 3–10 km/s, but similar to the velocity of seismic waves, i.e., ∼ 45 km/s reported earlier by Kosovichev & Zharkova (1998).

  7. Measurements of Dendritic Growth Velocities in Undercooled Melts of Pure Nickel Under Static Magnetic Fields

    Science.gov (United States)

    Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie

    2012-01-01

    Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.

  8. Numerical Investigation of Viscous Flow Velocity Field around a Marine Cavitating Propeller

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhu

    2014-11-01

    Full Text Available Velocity field around a ship cavitating propeller is investigated based on the viscous multiphase flow theory. Using a hybrid grid, the unsteady Navier-stokes (N-S and the bubble dynamics equations are solved in this paper to predict the velocity in a propeller wake and the vapor volume fraction on the back side of propeller blade for a uniform inflow. Compared with experimental results, the numerical predictions of cavitation and axial velocity coincide with the measured data. The evolution of tip vortex is shown, and the interaction between the tip vortex of the current blade and the wake of the next one occurs in the far propeller wake. The frequency of velocity signals changes from shaft rate to blade rate. The phenomena reflect the instability of propeller wake.

  9. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service

    Science.gov (United States)

    Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.

    2017-01-01

    Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications

  10. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service

    Science.gov (United States)

    Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.

    2016-10-01

    Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS datasets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online PPP services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS dataset (spanning ten years) with the online Jet Propulsion Laboratory (JPL) Automated Precise Positioning Service (APPS) service. This dataset is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand (NZ). This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS dataset has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilised GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the

  11. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  12. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  13. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  14. Thermocapillary motion of bubbles inside drops. [in free fall environment with axisymmetric surface temperature field

    Science.gov (United States)

    Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A quasi-static analysis is performed for the thermocapillary motion of a bubble located inside a drop in free fall, with arbitrary axisymmetric temperature fields prescribed on the drop surface. It is shown that in the case of an axially symmetric temperature field, the bubble moves along the axis of symmetry toward the nearest warm pole. The bubble velocity as well as the velocity and temperature fields in the drop can be predicted on the basis of the quasi-static assumptions. An approximation is presented which adequately describes bubble migration velocities in the case where the ratio of the bubble radius to the drop radius is relatively small.

  15. Field theoretic description of partially reflective surfaces

    CERN Document Server

    Barone, F E

    2014-01-01

    The issue of electric charges in interaction with partially reflective surfaces is addressed by means of field theoretic methods. It is proposed an enlarged Maxwell lagrangian, describing the electromagnetic field in the presence of a semitransparent surface, and its corresponding photon propagator is computed exactly. The amended Green function reduces to the one for a perfect conductor in the appropriate limit, and leads to the interaction between charges and surfaces with varying degrees of transparency, featured by a phenomenological parameter. The interaction found via image method is recovered, in the limiting case of perfect mirrors, as a testimony to the validity of the model.

  16. Imaging interferometry to measure surface rotation field

    DEFF Research Database (Denmark)

    Travaillot, Thomas; Dohn, Søren; Boisen, Anja

    2013-01-01

    This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process....... The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen....

  17. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  18. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    Science.gov (United States)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  19. A test field for Gaia. Radial velocity catalogue of stars in the South Ecliptic Pole

    CERN Document Server

    Frémat, Y; Pancino, E; Soubiran, C; Jofré, P; Damerdji, Y; Heiter, U; Royer, F; Seabroke, G; Sordo, R; Blanco-Cuaresma, S; Jasniewicz, G; Martayan, C; Thévenin, F; Vallenari, A; Blomme, R; David, M; Gosset, E; Katz, D; Viala, Y; Boudreault, S; Cantat-Gaudin, T; Lobel, A; Meisenheimer, K; Nordlander, T; Raskin, G; Royer, P; Zorec, J

    2016-01-01

    Gaia is a space mission currently measuring the five astrometric parameters as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The sixth parameter in phase space (radial velocity) is also measured thanks to medium-resolution spectroscopy being obtained for the 150 million brightest stars. During the commissioning phase, two fields, one around each ecliptic pole, have been repeatedly observed to assess and to improve the overall satellite performances as well as the associated reduction and analysis software. A ground-based photometric and spectroscopic survey was therefore initiated in 2007, and is still running in order to gather as much information as possible about the stars in these fields. This work is of particular interest to the validation of the Radial Velocity Spectrometer (RVS) outputs. The paper presents the radial velocity measurements performed for the Southern targets in the 12 - 17 R magnitude range on high- to mid-resolution spectra obtained...

  20. The Friction Law Stress Exponent under Pine Island Glacier from 15 Years of Surface Elevation and Velocity Measurements

    Science.gov (United States)

    Gillet-chaulet, F.; Durand, G.; Gagliardini, O.; Mosbeux, C.; Mouginot, J.; Remy, F.; Ritz, C.

    2015-12-01

    Polar the ice-sheets mass balance largely depends on the flow of ice-streams. Rapid basal motion generally accounts for most of the velocities. In flow models, the conditions at the base of the ice in contact with the bedrock are generally parameterised using a friction law that relates the sliding velocity to the basal shear stress. The most common law has two poorly constrained parameters, the basal slipperiness c and the stress exponent m. The basal slipperiness is expected to depend on local unobservable quantities and is routinely tuned from observed surface velocities using inverse methods. Different values for m are expected depending on the processes, from hard-bed sliding to soft bed deformation, and no consensus has emerged so far for its value that range from 1 to infinity. However, several studies have shown that the transient response of the ice-sheet models to external forcing is highly sensitive to m. Therefore, the uncertainty attached to the friction law is an important limit to our ability to evaluate future dynamical evolution of coastal regions. Calibrating m can be done only if either basal stresses and/or velocities have changed significantly while c can be assumed constant in time. Here, we use Elmer/Ice to model the flow of Pine Island Glacier (PIG), Antarctica, sufficiently far upstream of the grounding line so that we can assume no change in c. Observations show an increase of surface velocities by up to 50% between 1996 and 2010, associated with an important dynamical thinning. Using a control inverse method and different values of m, we tune a spatially varying basal slipperiness field that best fit, in the same time, observed surface velocities for years 1996, 2007, 2008, 2009 and 2010. These years correspond to the MeaSUREs project velocity datasets that have the best spatial coverage for our model domain. Surface elevations for the corresponding years are constructed using ERS and Envisat radar altimetry data. We show that the

  1. Event Detection and Visualization of Ocean Eddies based on SSH and Velocity Field

    Science.gov (United States)

    Matsuoka, Daisuke; Araki, Fumiaki; Inoue, Yumi; Sasaki, Hideharu

    2016-04-01

    Numerical studies of ocean eddies have been progressed using high-resolution ocean general circulation models. In order to understand ocean eddies from simulation results with large amount of information volume, it is necessary to visualize not only distribution of eddies of each time step, but also events or phenomena of eddies. However, previous methods cannot precisely detect eddies, especially, during the events such as eddies' amalgamation, bifurcation. In the present study, we propose a new approach of eddy's detection, tracking and event visualization based on sea surface height (SSH) and velocity field. The proposed method detects eddies region as well as streams and currents region, and classifies detected eddies into several types. By tracking the time-varying change of classified eddies, it is possible to detect not only eddies event such as amalgamation and bifurcation but also the interaction between eddy and ocean current. As a result of visualizing detected eddies and events, we succeeded in creating the movie which enables us to intuitively understand the region of interest.

  2. Detecting planets around active stars: impact of magnetic fields on radial velocities and line bisectors

    Science.gov (United States)

    Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Boisse, I.; Moutou, C.; Hébrard, G.

    2014-09-01

    Although technically challenging, detecting Earth-like planets around very low mass stars is in principle accessible to the existing velocimeters of highest radial-velocity (RV) precision. However, low-mass stars being active, they often feature dark spots and magnetic regions at their surfaces generating a noise level in RV curves (called activity jitter) that can severely limit our practical ability at detecting Earth-like planets. Whereas the impact of dark spots on RV data has been extensively studied in the literature, that of magnetic features only received little attention up to now. In this paper, we aim at quantifying the impact of magnetic fields (and the Zeeman broadening they induce) on line profiles, line bisectors and RV data. With a simple model, we quantitatively study the RV signals and bisector distortions that small magnetic regions or global magnetic dipoles can generate, especially at infrared wavelengths where the Zeeman broadening is much larger than that in the visible. We report in particular that the impact of magnetic features on line bisectors can be different from that of cool spots when the rotational broadening is comparable to or larger than the Zeeman broadening; more specifically, we find in this case that the top and bottom sections of the bisectors are anticorrelated, i.e. the opposite behaviour of what is observed for cool spots. We finally suggest new options to show and ultimately filter the impact of the magnetic activity on RV curves.

  3. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  4. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  5. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  6. Direct velocity measurement and enhanced mixing in laminar flows over ultrahydrophobic surfaces

    Science.gov (United States)

    Ou, Jia

    2005-11-01

    A series of experiment are presented studying the kinematics of water flowing over drag-reducing ultrahydrophobic surfaces. The surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate patterns of microridges with precise spacing and alignment. These surfaces are reacted with an organosilane to achieve high hydrophobicity. Microridges with different widths, spacing and alignments are tested in a microchannel flow cell with rectangular cross-section. The velocity profile across the microchannel is measured with micro particle image velocimetry (μ-PIV) capable of resolving the flow down to length scales well below the size of the surface features. A maximum slip velocity of >60% of the average velocity in the flow is observed at the center of the air-water interface supported between these hydrophobic microridges, and the no-slip boundary condition is found at the hydrophobic microridges. The μ-PIV measurements demonstrate that slip along the shear-free air-water interface supported between the hydrophobic micron-sized ridges is the primary mechanism responsible for the drag reduction. The experiment velocity and pressure drop measurement are compared with the prediction of numerical simulation and an analytical model. By aligning the hydrophobic microridges at an acute angle to the flow direction a secondary flow is produced which can significantly enhance mixing in this laminar flow.

  7. Velocity field measurements in an evaporating sessile droplet by means of micro-PIV technique

    Directory of Open Access Journals (Sweden)

    Yagodnitsyna Anna

    2016-01-01

    Full Text Available Velocity fields are measured in evaporating sessile droplets on two substrates with different contact angles and contact angle hysteresis using micro resolution particle image velocimetry technique. Different flow patterns are observed in different stages of droplet evaporation: a flow with vortices and a radial flow. Flow structure is found to be similar for droplets on different substrates.

  8. Measuring the Phase Velocity of Light in a Magnetic Field with the PVLAS Detector

    OpenAIRE

    Melissinos, A. C.

    2002-01-01

    A method is suggested for measuring the velocity of light in a magnetic field using the PVLAS detector. It is proposed to modulate the linear polarization of the input light. In that case the feedback signal necessary to keep the high finesse Fabry-Perot cavity on resonance is a measure of the change in the speed of light for the two orthogonal polarizations.

  9. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements

    Science.gov (United States)

    Wang, Wei; Qiao, Xuejun; Yang, Shaomin; Wang, Dijin

    2017-02-01

    In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ˜1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a-1 compared to the mean uncertainty of 1.36 mm a-1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5-12 mm a-1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.

  10. A hidden state space modeling approach for improving glacier surface velocity estimates using remotely sensed data

    Science.gov (United States)

    Henke, D.; Schubert, A.; Small, D.; Meier, E.; Lüthi, M. P.; Vieli, A.

    2014-12-01

    A new method for glacier surface velocity (GSV) estimates is proposed here which combines ground- and space-based measurements with hidden state space modeling (HSSM). Examples of such a fusion of physical models with remote sensing (RS) observations were described in (Henke & Meier, Hidden State Space Models for Improved Remote Sensing Applications, ITISE 2014, p. 1242-1255) and are currently adapted for GSV estimation. GSV can be estimated using in situ measurements, RS methods or numerical simulations based on ice-flow models. In situ measurements ensure high accuracy but limited coverage and time consuming field work, while RS methods offer regular observations with high spatial coverage generally not possible with in situ methods. In particular, spaceborne Synthetic Aperture Radar (SAR) can obtain useful images independent of daytime and cloud cover. A ground portable radar interferometer (GPRI) is useful for investigating a particular area in more detail than is possible from space, but provides local coverage only. Several processing methods for deriving GSV from radar sensors have been established, including interferometry and offset tracking (Schubert et al, Glacier surface velocity estimation using repeat TerraSAR-X images. ISPRS Journal of P&RS, p. 49-62, 2013). On the other hand, it is also possible to derive glacier parameters from numerical ice-flow modeling alone. Given a well-parameterized model, GSV can in theory be derived and propagated continuously in time. However, uncertainties in the glacier flow dynamics and model errors increase with excessive propagation. All of these methods have been studied independently, but attempts to combine them have only rarely been made. The HSSM we propose recursively estimates the GSV based on 1) a process model making use of temporal and spatial interdependencies between adjacent states, and 2) observations (RS and optional in situ). The in situ and GPRI images currently being processed were acquired in the

  11. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Directory of Open Access Journals (Sweden)

    J. Wuite

    2014-12-01

    Full Text Available We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a−1 in 2007 to 1.72 Gt a−1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38%, respectively 45%, higher than in 1995.

  12. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Science.gov (United States)

    Wuite, J.; Rott, H.; Hetzenecker, M.; Floricioiu, D.; De Rydt, J.; Gudmundsson, G. H.; Nagler, T.; Kern, M.

    2015-05-01

    We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B Ice Shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of most of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a-1 in 2007 to 1.72 Gt a-1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased 2-3-fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38% and 46% higher than in 1995.

  13. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    Science.gov (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  14. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  15. The Effect of "Pumping" and "Nonpumping" Techniques on Velocity Production and Muscle Activity During Field-Based BMX Cycling.

    Science.gov (United States)

    Rylands, Lee P; Hurst, Howard T; Roberts, Simon J; Graydon, Robert W

    2017-02-01

    Rylands, LP, Hurst, HT, Roberts, SJ, and Graydon, RW. The effect of "pumping" and "nonpumping" techniques on velocity production and muscle activity during field-based BMX cycling. J Strength Cond Res 31(2): 445-450, 2017-The aim of the current study was to determine if a technique called "pumping" had a significant effect on velocity production in Bicycle Motocross (BMX) cycling. Ten National standard male BMX riders fitted with surface electromyography (sEMG) sensors completed a timed lap of an indoor BMX track using the technique of pumping, and a lap without pumping. The lap times were recorded for both trials and their surface sEMG was recorded to ascertain any variation in muscle activation of the biceps brachii, triceps brachii, vastus lateralis, and medial gastrocnemius. The findings revealed no significant differences between any of muscle groups (p > 0.05). However, significant differences (p < 0.001) were observed between the pumping and nonpumping trials for both mean lap velocity (42 ± 1.8 km·h, 33 ± 2.9 km·h, respectively) and lap times (43.3 ± 3.1 seconds, 34.7 ± 1.49 seconds, respectively). The lap times recorded for the pumping trials were 19.50 ± 4.25% lower than the nonpumping, whereas velocity production was 21.81 ± 5.31% greater in the pumping trial compared with the nonpumping trial. The technique of pumping contributed significantly to velocity production, although not at the cost of additional muscle activity. From a physiological and technical perspective, coaches and riders should prioritize this technique when devising training regimes.

  16. Factors controlling the field settling velocity of cohesive sediment in estuaries

    DEFF Research Database (Denmark)

    Pejrup, Morten; Mikkelsen, Ole

    2010-01-01

    this paper expressed as the root mean square [rms] velocity gradient, [G]) in the water on the W-50 in situ. There is a strong need to establish algorithms based on in situ measurements describing the dual impact of both SSC and G on the flocculation process, and hence, W-50. The present paper addresses...... in the correlation of the description of W-50 and the controlling parameters from each area can be obtained. A generic algorithm describing the data from all the investigated areas is suggested. It works well within specific tidal areas but fails to give a generic description of the field settling velocity....

  17. Imaginary particle tracking accelerometry based on time-resolved velocity fields

    Science.gov (United States)

    Wang, Zhongyi; Gao, Qi; Pan, Chong; Feng, Lihao; Wang, Jinjun

    2017-09-01

    An accurate calculation of material acceleration is important for particle image velocimetry-based pressure reconstruction. Therefore, an imaginary particle tracking accelerometry (IPTA) approach based on time-resolved velocity fields is described in this paper for a better determination of acceleration. Multi-velocity fields and a least squares polynomial fitting of the velocity along imaginary particle trajectories are introduced to improve the acceleration accuracy. The process of imaginary particle tracking is operated iteratively until a convergence condition is satisfied. Then the Lagrangian acceleration (or the material acceleration in the Eulerian coordinates) is acquired by the first-order time derivation of the fitting polynomial. In addition, the sensitivity of the IPTA approach to different levels of noise and parameters that affect its performance is investigated. A criterion is proposed to determine these parameters when using IPTA to calculate the acceleration. Performance of the IPTA method is compared with other velocity-based accelerometry methods, including both Eulerian and Lagrangian methods. Assessments are conducted in a synthetic solid body rotation flow, a synthetic flow of a vortex ring, and an experimental jet flow. The results show that IPTA is a robust method for experimental acceleration determination that can both improve the accuracy of acceleration and provide better physical characteristics of the flow field.

  18. Numerical Investigation Of Surface Roughness Effects On The Flow Field In A Swirl Flow

    Directory of Open Access Journals (Sweden)

    Ali SAKİN

    2014-12-01

    Full Text Available The aim of this study is to investigate axial and tangential velocity profiles, turbulent dissipation rate, turbulent kinetic energy and pressure losses under the influence of surface roughness for the swirling flow in a cyclone separator. The governing equations for this flow were solved by using Fluent CFD code. First, numerical analyses were run to verify numerical solution and domain with experimental results. Velocity profiles, turbulent parameters and pressure drops were calculated by increasing inlet velocity from 10 to 20 m/s and roughness height from 0 to 4 mm. Analyses of results showed that pressure losses are decreased and velocity field is considerably affected by increasing roughness height.

  19. Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy

    CERN Document Server

    Kutdemir, E; Peletier, R F; Da Rocha, C; Kronberger, T; Kapferer, W; Schindler, S; Böhm, A; Jäger, K; Kuntschner, Harald; Verdugo, M

    2008-01-01

    (Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and parallel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cl...

  20. Comparison of the terminal fall velocity, surface roughness and erosion threshold for volcanic particles.

    Science.gov (United States)

    Douillet, G. A.; Seybold, L.; Rasmussen, K. R.; Kueppers, U.,; Lo Castro, D.; Dingwell, D. B.

    2012-04-01

    Pyroclasts are particles emitted during explosive volcanic eruptions. They exhibit highly variable porosities, shapes, and densities. As such, their behaviors differ from the wind-blown and fluvial sand usually studied in clastic sedimentology. In order to better constrain the specificities of pyroclastic material, and gain insights into the flow and depositional processes within dilute pyroclastic density currents, the terminal fall velocity was experimentally measured in air and compared to surface roughness and saltation threshold data obtained from wind tunnel experiments as well as with shape parameters. Two types of particles were investigated (scoriaceous material and pumices), as well as different grain sizes (0.125-4mm for scoria and 0.125-16mm for pumices in half phi fractions). The terminal fall velocity corresponds to the velocity for which the drag exerted by air on a particle counteracts its weight, so that acceleration becomes null and the velocity constant. In order to measure the terminal fall velocity, particles were dropped in a closed and large vertical tube (to avoid any perturbation by air movement present in the lab) and the velocity derived from high speed video recorded near the bottom of the tube. By repeating the experiments from different heights, the velocity was seen to increase with increasing drop-height, until reaching a constant value, taken as the terminal fall velocity. The surface roughness is a value that defines how rough a bed of particles is seen by a wind. The saltation threshold corresponds to the near-bed shear-stress necessary for particles to leave the surface and begin to bounce on the bed. Both are derived from wind profiles experimentally measured in a wind tunnel in Aarhus (Denmark; see abstract 2128). Shape parameters were measured with a Camsizer (from Retsch) in Catania (Italy) and the sphericity, symmetry, aspect ratio, and convexity derived. Since the surface roughness, saltation threshold, and terminal fall

  1. A comparison of measured and modeled velocity fields for a laminar flow in a porous medium

    Science.gov (United States)

    Wood, B. D.; Apte, S. V.; Liburdy, J. A.; Ziazi, R. M.; He, X.; Finn, J. R.; Patil, V. A.

    2015-11-01

    Obtaining highly-resolved velocity data from experimental measurements in porous media is a significant challenge. The goal of this work is to compare the velocity fields measured in a randomly-packed porous medium obtained from particle image velocimetry (PIV) with corresponding fields predicted from direct numerical simulation (DNS). Experimentally, the porous medium was comprised of 15 mm diameter spherical beads made of optical glass placed in a glass flow cell to create the packed bed. A solution of ammonium thiocyanate was refractive-index matched to the glass creating a medium that could be illuminated with a laser sheet without distortion. The bead center locations were quantified using the imaging system so that the geometry of the porous medium was known very accurately. Two-dimensional PIV data were collected and processed to provide high-resolution velocity fields at a single plane within the porous medium. A Cartesian-grid-based fictitious domain approach was adopted for the direct numerical simulation of flow through the same geometry as the experimental measurements and without any adjustable parameters. The uncertainties associated with characterization of the pore geometry, PIV measurements, and DNS predictions were all systematically quantified. Although uncertainties in bead position measurements led to minor discrepancies in the comparison of the velocity fields, the axial and normal velocity deviations exhibited normalized root mean squared deviations (NRMSD) of only 11.32% and 4.74%, respectively. The high fidelity of both the experimental and numerical methods have significant implications for understanding and even for engineering the micro-macro relationship in porous materials. The ability to measure and model sub-pore-scale flow features also has relevance to the development of upscaled models for flow in porous media, where physically reasonable closure models must be developed at the sub-pore scale. These results provide valuable data

  2. Velocity Field of Thermocapillary Convection in High-Temperature Oxide Solution

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-Qing; LIANG Xin-An; PAN Zhi-Lei; LIU Zhao-Hua; YODA Shinichi; JIANG Yuan-Fang; SHEN Guo-Tu

    2001-01-01

    We have investigated experimentally and theoretically the thermocapillary convective flow phenomena in a loopshaped Pt wire heater of KNbO3 (20wt.%) and Li2B4O7 solutions. Optical evaluations in connection with thermocouple measurements made it possible to get a new type of thermocapillary convective flow in the considered system. To study the kinematical behaviour of thermocapillary convection, we have measured the stream flow velocities. In a theoretical analysis, the flow velocity due to the thermocapillary effect alone was estimated by balancing the surface tension forces by viscous forces. The velocity distribution in the solution near the margin of the heater was obtained, which is in agreement with the experimental result.

  3. Field Ovservation of Threshold Frictional Velocity on Different Types of Famland

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-hua; ZHANG Cheng-zhong; LAI Zhi-qiang; WANG Ying-zhao; LIU Chu-quan; LI Zhi-yan

    2010-01-01

    To quantize the difficulty level of dust production on the surface of different types of farmland,the Marticorena threshold frictional velocity pattern was used in this study to simulate the dust threshold frictional velocity.The results showed that the dust threshold fnctionai velocity of desertification farmland was 7.39cm/s,while it was 29.05 cm/s after the wheat harvested and the farmland ploughed; the turning green period was 46.85 cm/s; shooting period was 98.93 cm/s,the uncovered and the establishment period of fruit tree farmland was 26.0 and 139.15cm/s.It was concluded that,bare desertification farmland could be changed into source of dust release easier.

  4. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  5. Photogrammetric determination of spatio-temporal velocity fields at Glaciar San Rafael in the Northern Patagonian Icefield

    Directory of Open Access Journals (Sweden)

    H.-G. Maas

    2010-11-01

    Full Text Available Glaciar San Rafael in the Northern Patagonian Icefield, with a length of 46 km and an ice area of 722 km2, is the lowest latitude tidewater outlet glacier in the world and one of the fastest and most productive glaciers in southern South America in terms of iceberg flux. In a joint project of the TU Dresden and CECS, spatio-temporal velocity fields in the region of the glacier front were determined in a campaign in austral spring of 2009. Monoscopic terrestrial image sequences were recorded with an intervallometer mode high resolution digital camera over several days. In these image sequences, a large number of glacier surface points were tracked by subpixel accuracy feature tracking techniques. Scaling and georeferencing of the trajectories obtained from image space tracking was performed via a multi-station GPS-supported photogrammetric network.

    The technique allows for tracking hundreds of glacier surface points at a measurement accuracy in the order of one decimeter and an almost arbitrarily high temporary resolution. The results show velocities of up to 16 m per day. No significant tidal signals could be observed. Our velocities are in agreement with earlier measurements from theodolite and satellite interferometry performed in 1986–1994, suggesting that the current thinning of 3.5 m/y at the front is not due to dynamic thinning but rather by enhanced melting.

  6. An Inexpensive Field-Widened Monolithic Michelson Interferometer for Precision Radial Velocity Measurements

    CERN Document Server

    Mahadevan, Suvrath; Fleming, Scott W; Wan, Xiaoke; DeWitt, Curtis; van Eyken, Julian C; McDavitt, Dan

    2008-01-01

    We have constructed a thermally compensated field-widened monolithic Michelson interferometer that can be used with a medium-resolution spectrograph to measure precise Doppler radial velocities of stars. Our prototype monolithic fixed-delay interferometer is constructed with off-the-shelf components and assembled using a hydrolysis bonding technique. We installed and tested this interferometer in the Exoplanet Tracker (ET) instrument at the Kitt Peak 2.1m telescope, an instrument built to demonstrate the principles of dispersed fixed delay interferometry. An iodine cell allows the interferometer drift to be accurately calibrated, relaxing the stability requirements on the interferometer itself. When using our monolithic interferometer, the ET instrument has no moving parts (except the iodine cell), greatly simplifying its operation. We demonstrate differential radial velocity precision of a few m s$^{-1}$ on well known radial velocity standards and planet bearing stars when using this interferometer. Such mon...

  7. Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis

    Science.gov (United States)

    Pillet, R.; Rouland, D.; Roult, G.; Wiens, D. A.

    1999-02-01

    Direct earthquake-to-station Rayleigh and Love wave data observed on high gain broadband records are analyzed in order to improve the lateral resolution of the uppermost mantle in the southwest Pacific region. We used data of nine permanent Geoscope and Iris stations located in the southern hemisphere and nine other stations as part of two temporary networks, the first one installed in New Caledonia and Vanuatu (hereafter named Cavascope network) by ORSTOM and the EOST from Louis Pasteur University in Strasbourg (France) and the second one installed in the Fiji, Tonga and Niue islands (hereafter named Spase network) by Washington University in St. Louis (USA). In order to collect more significant details on the surficial structures, we included the analysis of short period waves down to 8 s. A multiple frequency filtering technique has been used to recover phase velocities of Rayleigh and Love waves for selected earthquakes with magnitude greater than 5.5 and with known centroid moment tensor (CMT). About 1100 well-distributed seismograms have been processed in the period range 8-100 s and corrections for topography and water depth have been applied to the observed phase velocities. The geographical distribution of phase velocity anomalies have then been computed using the tomographic method developed by Montagner [Montagner, J.P., 1986a. Regional three-dimensional structures using long-period surface waves. Ann. Geophys. 4 (B3), 283-294]. Due to a poor knowledge of dense, well-distributed, crustal thickness values and corresponding velocity models, we did not perform or speculate on the construction of an S-wave 3D velocity model; therefore, we limited this study to the interpretation of the phase velocity distribution. The location of phase velocity anomalies are well determined and the deviations are discussed within the framework of the geological context and compared with other tomographic models. At long periods, from 40 s to 100 s, our results agree well

  8. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid withfractional anomalous diffusion

    Institute of Scientific and Technical Information of China (English)

    徐明瑜; 谭文长

    2001-01-01

    The velocity field of generalized second order fluid with fractional anomalous diffusion caused by a plate moving impulsively in its own plane is investigated and the anomalous diffusion problems of the stress field and vortex sheet caused by this process are studied. Many previous and classical results can be considered as particular cases of this paper, such as the solutions of the fractional diffusion equations obtained by Wyss; the classical Rayleigh' s time-space similarity solution; the relationship between stress field and velocity field obtained by Bagley and co-worker and Podlubny' s results on the fractional motion equation of a plate. In addition, a lot of significant results also are obtained. For example, the necessary condition for causing the vortex sheet is that the time fractional diffusion index β must be greater than that of generalized second order fluid α; the establishment of the vorticity distribution function depends on the time history of the velocity profile at a given point, and the time history can be described by the fractional calculus.

  9. Topographic Influence on Near-Surface Seismic Velocity in southern California

    Science.gov (United States)

    Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.

    2016-12-01

    Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment

  10. Horizontal velocity field near the hot plate in turbulent natural convection

    CERN Document Server

    Koothur, Vipin

    2014-01-01

    We study the velocity field in a horizontal (x-y) plane 1.5 mm above the hot plate in turbulent natural convection using PIV at a Rayleigh number Raw=106 and Prandtl number Pr=5.2. The plane of measurement is inside the velocity boundary layer estimated from the natural convection boundary layer equations[7] as well as inside the velocity boundary layer due to the large scale flow[2, 5].The boundary layer comprises of line plumes with sinking fluid between them. The instantaneous velocity variation from the center of the sinking fluid to the line plumes is found to deviate with the classical Prandtl-Blasius laminar boundary layer profile, which is assumed to be the nature of boundary layer by the GL theory [2, 5]. Our results agree well with the natural convection boundary layer profile. The time averaged mean velocity variation deviates from both natural convection and Blasius type profiles as expected as it depends on the orientation of the line plumes. Our measurement result is a proof to the theory of the...

  11. An Inexpensive Field-Widened Monolithic Michelson Interferometer for Precision Radial Velocity Measurements

    Science.gov (United States)

    Mahadevan, Suvrath; Ge, Jian; Fleming, Scott W.; Wan, Xiaoke; DeWitt, Curtis; van Eyken, Julian C.; McDavitt, Dan

    2008-09-01

    We have constructed a thermally compensated field-widened monolithic Michelson interferometer that can be used with a medium-resolution spectrograph to measure precise Doppler radial velocities of stars. Our prototype monolithic fixed-delay interferometer is constructed with off-the-shelf components and assembled using a hydrolysis bonding technique. We installed and tested this interferometer in the Exoplanet Tracker (ET) instrument at the Kitt Peak 2.1 m telescope, an instrument built to demonstrate the principles of dispersed fixed-delay interferometry. An iodine cell allows the interferometer drift to be accurately calibrated, relaxing the stability requirements on the interferometer itself. When using our monolithic interferometer, the ET instrument has no moving parts (except the iodine cell), greatly simplifying its operation. We demonstrate differential radial velocity precision of a few m s-1 on well known radial velocity standards and planet bearing stars when using this interferometer. Such monolithic interferometers will make it possible to build relatively inexpensive instruments that are easy to operate and capable of precision radial velocity measurements. A larger multiobject version of the Exoplanet Tracker will be used to conduct a large scale survey for planetary systems as part of the Sloan Digital Sky Survey III (SDSS III). Variants of the techniques and principles discussed in this paper can be directly applied to build large monolithic interferometers for such applications, enabling the construction of instruments capable of efficiently observing many stars simultaneously at high velocity precision.

  12. Simultaneous measurement of droplet size and velocity field by an interferometric imaging technique in spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Hosokawa, A.; Tomimatsu, S. [Niigata Univ. (Japan). Dept. of Mechanical and Production Engineering

    2003-08-01

    The present paper describes an experimental technique of droplet sizing and velocity measurement for application to a luminous flame in spray combustion. The size measurement of unburnt fuel droplets in combustion is carried out by using an interferometric imaging method, while the corresponding velocity field is measured by particle tracking velocimetry (PTV) in combination with the rotary shutter to avoid the high intensity noise of the luminous flame in spray combustion. The measurements are successfully applied to the spray flow from a gun-type burner with and without combustion. The experimental results in spray combustion indicate that the smaller size of fuel droplets are almost burnt in the centre of the flame and the unburnt droplets of larger size remain in the outer region of the burner flow. It was found that the mean droplet velocity measured by the present PTV technique in combustion is almost independent of the droplet size and agrees closely with the gas velocity. However, the velocity magnitude with combustion is increased in comparison with the case without combustion, which suggests the influence of gas expansion at high temperatures. (author)

  13. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    CERN Document Server

    McGaugh, Stacy S

    2015-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For $R_0 = 8$ kpc, the models have stellar mass $5 < M_* < 6 \\times 10^{10}$ M$_{\\odot}$, scale length $2.0 \\le R_d \\le 2.9$ kpc, LSR circular velocity $222 \\le \\Theta_0 \\le 233$ km s$^{-1}$, and solar circle stellar surface density $34 \\le \\Sigma_d(R_0) \\le 61$ M$_{\\odot}$ pc$^{-2}$. The present inter-arm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus A...

  14. Effect of ion excape velocity and conversion surface material on H- production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kenneth F [Los Alamos National Laboratory; Tarvainen, Olli A [Los Alamos National Laboratory; Geros, E. [Los Alamos National Laboratory; Stelzer, J. [Los Alamos National Laboratory; Rouleau, G. [Los Alamos National Laboratory; Kalvas, T. [UNIV OF JYVASKYLA; Komppula, J. [UNIV OF JYASKYLA; Carmichael, J. [ORNL

    2010-10-05

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  15. EFFECTS OF A SAND RUNNING SURFACE ON THE KINEMATICS OF SPRINTING AT MAXIMUM VELOCITY

    Directory of Open Access Journals (Sweden)

    P E Alcaraz

    2011-05-01

    Full Text Available Performing sprints on a sand surface is a common training method for improving sprint-specific strength. For maximum specificity of training the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The aim of this study was to compare the kinematics of sprinting at maximum velocity on a dry sand surface to the kinematics of sprinting on an athletics track. Five men and five women participated in the study, and flying sprints over 30 m were recorded by video and digitized using biomechanical analysis software. We found that sprinting on a sand surface was substantially different to sprinting on an athletics track. When sprinting on sand the athletes tended to ‘sit’ during the ground contact phase of the stride. This action was characterized by a lower centre of mass, a greater forward lean in the trunk, and an incomplete extension of the hip joint at take-off. We conclude that sprinting on a dry sand surface may not be an appropriate method for training the maximum velocity phase in sprinting. Although this training method exerts a substantial overload on the athlete, as indicated by reductions in running velocity and stride length, it also induces detrimental changes to the athlete’s running technique which may transfer to competition sprinting.

  16. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika

    2009-01-01

    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  17. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    Directory of Open Access Journals (Sweden)

    Jang Jyegal

    2015-06-01

    Full Text Available Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.

  18. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    Science.gov (United States)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  19. On density and velocity fields and $\\beta$ from the IRAS PSCz survey

    CERN Document Server

    Schmoldt, I M; Saha, P; Branchini, E; Efstathiou, G P; Frenk, C S; Keeble, O; Maddox, S J; McMahon, R; Oliver, S; Rowan-Robinson, M; Saunders, W J; Sutherland, W J; Tadros, H; White, S D M; Schmoldt, Inga M.; Saar, Veikko; Saha, Prasenjit

    1999-01-01

    We present a version of the Fourier Bessel method first introduced by Fisher et al (1994) and Zaroubi et al (1994) with two extensions: (a) we amend the formalism to allow a generic galaxy weight which can be constant rather than the more conventional overweighting of galaxies at high distances, and (b) we correct for the masked zones by extrapolation of Fourier Bessel modes rather than by cloning from the galaxy distribution in neighbouring regions. We test the procedure extensively on N-body simulations and find that it gives generally unbiased results but that the reconstructed velocities tend to be overpredicted in high-density regions. Applying the formalism to the PSZz redshift catalog, we find that beta = 0.7 +/- 0.5 from a comparison of the reconstructed Local Group velocity to the CMB dipole. From an anisotropy test of the velocity field, we find that beta = 1 CDM models models normalized to the current cluster abundance can be excluded with 90% confidence. The density and velocity fields reconstruct...

  20. Velocity field measurements in sedimentary rock cores by magnetization prepared 3D SPRITE.

    Science.gov (United States)

    Romanenko, Konstantin; Xiao, Dan; Balcom, Bruce J

    2012-10-01

    A time-efficient MRI method suitable for quantitative mapping of 3-D velocity fields in sedimentary rock cores, and granular samples is discussed. The method combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T(1) Enhancement (SPRITE). Collecting a few samples near the q-space origin and employing restricted k-space sampling dramatically improves the performance of the imaging method. The APGSTE-SPRITE method is illustrated through mapping of 3-D velocity field in a macroscopic bead pack and heterogeneous sandstone and limestone core plugs. The observed flow patterns are consistent with a general trend for permeability to increase with the porosity. Domains of low permeability obstruct the flow within the core volume. Water tends to flow along macroscopic zones of higher porosity and across zones of lower porosity.

  1. Velocity field in a vicinity of cylinder bouncing off horizontal wall

    Science.gov (United States)

    Chara, Z.; Kysela, B.; Dolansky, J.

    2016-06-01

    The paper describes experimental and numerical investigations of velocity fields around a circular cylinder colliding perpendicularly with a plane wall. The cylinder of the diameter D = 20 mm was moving vertically in a water tank and the motion was recorded by a fast digital camera. Reynolds numbers ranged from 3000 to 8100 and the initial positions L of the cylinder above the wall were L/D = 2.5; 3.5; 4.5 and 5.5. An evolution of fluid agitation in an area close to the impact point was based on the results of the velocity field measurements. The numerical simulations were performed using a 2D-LES model.

  2. Investigation of Horizontal Velocity Fields in Stirred Vessels with Helical Coils by PIV

    Directory of Open Access Journals (Sweden)

    Volker Bliem

    2014-01-01

    Full Text Available Horizontal velocity flow fields were measured by particle image velocimetry for a stirred vessel with baffles and two helical coils for enlargement of heat transfer area. The investigation was carried out in a cylindrical vessel with flat base and two different stirrers (radial-flow Rushton turbine and axial-flow propeller stirrer. Combined velocity plots for flow fields at different locations are presented. It was found that helical coils change the flow pattern significantly. Measurements for the axial-flow Rushton turbine showed a strong deflection by the coils, leading to a mainly tangential flow pattern. Behind baffles large areas of unused heat transfer area were found. First results for the axial-flow propeller reveal an extensive absence of fluid movement in the horizontal plane. Improved design considerations for enhanced heat transfer by more compatible equipment compilation are proposed.

  3. Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.

  4. Numerical studies of light-matter interaction driven by plasmonic fields: the velocity gauge

    CERN Document Server

    Chacón, A; Ciappina, M F

    2015-01-01

    Theoretical approaches to strong field phenomena driven by plasmonic fields are based on the length gauge formulation of the laser-matter coupling. From the theoretical viewpoint it is known there exists no preferable gauge and consequently the predictions and outcomes should be independent of this choice. The use of the length gauge is mainly due to the fact that the quantity obtained from finite elements simulations of plasmonic fields is the plasmonic enhanced laser electric field rather than the laser vector potential. In this paper we develop, from first principles, the velocity gauge formulation of the problem and we apply it to the high-order harmonic generation (HHG) in atoms. A comparison to the results obtained with the length gauge is made. It is analytically and numerically demonstrated that both gauges give equivalent descriptions of the emitted HHG spectra resulting from the interaction of a spatially inhomogeneous field and the single active electron (SAE) model of the helium atom. We discuss, ...

  5. Measuring drift velocity and electric field in mirror machine by fast photography

    Science.gov (United States)

    Be'ery, I.; Seemann, O.; Fruchtman, A.; Fisher, A.; Nemirovsky, J.

    2013-02-01

    The flute instability in mirror machines is driven by spatial charge accumulation and the resulting E × B plasma drift. On the other hand, E × B drift due to external electrodes or coils can be used as a stabilizing feedback mechanism. Fast photography is used to visualize Hydrogen plasma in a small mirror machine and infer the plasma drift and the internal electric field distribution. Using incompressible flow and monotonic decay assumptions we obtain components of the velocity field from the temporal evolution of the plasma cross section. The electric field perpendicular to the density gradient is then deduced from E=-V × B. With this technique we analyzed the electric field of flute perturbations and the field induced by electrodes immersed in the plasma.

  6. VLA Observations of the Magnetic Field of the Smith High Velocity Cloud

    Science.gov (United States)

    Betti, Sarah; Hill, Alex S.; Mao, Sui Ann; McClure-Griffiths, Naomi M.; Lockman, Felix J.; Benjamin, Robert A.; Gaensler, Bryan M.

    2017-01-01

    High velocity clouds (HVCs) are hydrogen gas clouds around galaxies with velocities inconsistent with Galactic rotation. HVCs may fuel future star formation and drive galaxy evolution. The Smith Cloud is an HVC with an orbit suggesting it has made at least one passage through the disk. A measured magnetic field suggests how it survived passage through the Galactic halo. The Faraday rotation measure (RM) provides information about the strength and direction of the magnetic field. We use the Karl G. Jansky Very Large Array (VLA) to obtain reliable RMs towards ~950 background point sources to measure the geometry of the magnetic field of the Smith Cloud. These RMs constrain the strength of the magnetic field at the head, tail, and body of the Smith Cloud while RMs directly behind the Smith Cloud suggest there is ionized gas associated with the cloud that has not previously been detected. The confirmation of the magnetic field of the Smith Cloud along with a detailed morphology of the magnetic field structure will constrain how HVCs pass through the Galactic halo without losing their gas and survive the passage through the intergalactic and interstellar media.

  7. The passage of a distorted velocity field through a cascade of airfoils

    Science.gov (United States)

    Adamczyk, J. J.

    1976-01-01

    An analysis has been developed to predict the unsteady force and moment generated by the passage of a timewise periodic total pressure distortion through an arbitrary cascade of airfoils. The mathematical formulation of this analysis is based on the assumption that the magnitudes of the timewise fluctuations of the variables which describe the flow field are small compared to their time average values. This assumption permits the development of a linear unsteady perturbation analysis about a steady flow field. In addition to this linearization assumption the fluid medium is assumed to be incompressible and inviscid. The mathematical development begins by decomposing the velocity field surrounding an infinite cascade of airfoils into its irrotational and rotational components. The rotational component is associated with an upstream unsteady total pressure distortion and is defined in terms of the vorticity field associated with the distortion pattern. The irrotational component is further decomposed into a steady and unsteady part. A combined analytical and numerical procedure has been developed to solve the field equations which govern the rotational and irrotational velocity fields. Results of this analysis show a strong influence of mean loading on the unsteady force generated by the passage of a one dimensional gust through a cascade of compressor blades.

  8. LDA Characterization of the Velocity Field around a Growing and Rising Bubble in Shear-thinning Fluid

    OpenAIRE

    2014-01-01

    Laser Doppler anemometry (LDA) has been employed to quantify the liquid velocity field around a single bubble in its generating and accelerating stage in carboxymethylcellulose (CMC) aqueous solution. The instantanoues velocities were treated by Reynolds time-averaged method, and mean velocities and its contours in both axial and radial directions were investigated. The results show that in vertical direction, the flow field characteristics of the liquids around the bubble are determined by b...

  9. An Inexpensive Field-Widened Monolithic Michelson Interferometer for Precision Radial Velocity Measurements

    OpenAIRE

    Mahadevan, Suvrath; Ge, Jian; Fleming, Scott W.; Wan, Xiaoke; DeWitt, Curtis; van Eyken, Julian C.; McDavitt, Dan

    2008-01-01

    We have constructed a thermally compensated field-widened monolithic Michelson interferometer that can be used with a medium-resolution spectrograph to measure precise Doppler radial velocities of stars. Our prototype monolithic fixed-delay interferometer is constructed with off-the-shelf components and assembled using a hydrolysis bonding technique. We installed and tested this interferometer in the Exoplanet Tracker (ET) instrument at the Kitt Peak 2.1m telescope, an instrument built to dem...

  10. Scaling of velocity and mixture fraction fields in laminar counterflow configurations

    Science.gov (United States)

    Bisetti, Fabrizio; Scribano, Gianfranco

    2015-11-01

    Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.

  11. Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel

    Science.gov (United States)

    Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2015-03-01

    Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (pB-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).

  12. Simultaneous Concentration and Velocity Field Measurements in a Shock-accelerated Mixing Layer

    Science.gov (United States)

    Reese, Daniel; Oakley, Jason; Weber, Chris; Rothamer, David; Navarro, Jose; Bonazza, Riccardo

    2013-11-01

    The Richtmyer-Meshkov instability (RMI) is experimentally investigated at the Wisconsin Shock Tube Laboratory. Simultaneous concentration and velocity field measurements from the mixing layer of experimental RMI images are obtained through the application of the Advection-Corrected Correlation Image Velocimetry (ACCIV) technique. A statistically repeatable broadband initial condition is created by first setting up a gravitationally stable stagnation plane of helium +acetone over argon and then injecting the gases horizontally at the interface to create a shear layer. The shear layer is then accelerated by a Mach 2.2 planar shock wave that causes the growth of any perturbations present at the interface, and time-separated image pair data of the mixing layer are obtained using planar laser induced fluorescence (PLIF). The image pair is corrected to show relative acetone concentration, and is then used as input to the ACCIV algorithm to obtain velocity field results. These velocity field measurements are compared with those obtained from numerical simulations. Turbulent kinetic energy spectra are compared with particle imaging velocimetry (PIV) and simulation results to validate regions of applicability. We wish to thank the Department of Energy National Nuclear Security Administration for supporting this work.

  13. Kernel Bundle Diffeomorphic Image Registration Using Stationary Velocity Fields and Wendland Basis Functions.

    Science.gov (United States)

    Pai, Akshay; Sommer, Stefan; Sorensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2016-06-01

    In this paper, we propose a multi-scale, multi-kernel shape, compactly supported kernel bundle framework for stationary velocity field-based image registration (Wendland kernel bundle stationary velocity field, wKB-SVF). We exploit the possibility of directly choosing kernels to construct a reproducing kernel Hilbert space (RKHS) instead of imposing it from a differential operator. The proposed framework allows us to minimize computational cost without sacrificing the theoretical foundations of SVF-based diffeomorphic registration. In order to recover deformations occurring at different scales, we use compactly supported Wendland kernels at multiple scales and orders to parameterize the velocity fields, and the framework allows simultaneous optimization over all scales. The performance of wKB-SVF is extensively compared to the 14 non-rigid registration algorithms presented in a recent comparison paper. On both MGH10 and CUMC12 datasets, the accuracy of wKB-SVF is improved when compared to other registration algorithms. In a disease-specific application for intra-subject registration, atrophy scores estimated using the proposed registration scheme separates the diagnostic groups of Alzheimer's and normal controls better than the state-of-the-art segmentation technique. Experimental results show that wKB-SVF is a robust, flexible registration framework that allows theoretically well-founded and computationally efficient multi-scale representation of deformations and is equally well-suited for both inter- and intra-subject image registration.

  14. Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities

    Science.gov (United States)

    Kavanaugh, J. L.; Cuffey, K. M.; Morse, D. L.; Conway, H.; Rignot, E.

    2009-11-01

    Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a “cascade” it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.

  15. Atlantic sea surface height and velocity spectra inferred from satellite altimetry and a hierarchy of numerical simulations

    Science.gov (United States)

    Biri, Stavroula; Serra, Nuno; Scharffenberg, Martin G.; Stammer, Detlef

    2016-06-01

    Frequency and wavenumber spectra of sea surface height (SSH) and surface geostrophic velocity are presented, as they result for the Atlantic Ocean from a 23 year long altimeter data set and from a hierarchy of ocean model simulations with spatial resolutions of 16, 8, and 4 km. SSH frequency spectra follow a spectral decay of roughly f-1 on long periods; toward higher frequencies a spectral decay close to f-2 is found. For geostrophic velocity spectra, a somewhat similar picture emerges, albeit with flatter spectral relations. In terms of geostrophic velocity wavenumber spectra, we find a general relation close to k-3 in the high-resolution model results. Outside low-energy regions all model spectra come close to observed spectra at low frequencies and wavenumbers in terms of shape and amplitude. However, the highest model resolution appears essential for reproducing the observed spectra at high frequencies and wavenumbers. This holds especially for velocity spectra in mid and high latitudes, suggesting that eddy resolving ocean models need to be run at a resolution of 1/24° or better if one were to fully resolve the observed mesoscale eddy field. Causes for remaining discrepancies between observed and simulated results can be manifold. At least partially, they can be rationalized by taking into account an aliasing effect of unresolved temporal variability in the altimetric observations occurring on periods smaller than the 20 days Nyquist period of the altimetric data, thereby leading to an overestimate of variability in the altimetric estimates, roughly on periods below 100 days.

  16. Simultaneous measurements of air-sea gas transfer velocity and near surface turbulence at low to moderate winds (Invited)

    Science.gov (United States)

    Wang, B.; Liao, Q.; Fillingham, J. H.; Bootsma, H. A.

    2013-12-01

    Parameterization of air-sea gas transfer velocity was routinely made with wind speed. Near surface turbulent dissipation rate has been shown to have better correlation with the gas transfer velocity in a variety of aquatic environments (i.e., the small eddy model) while wind speed is low to moderate. Wind speed model may underestimate gas transfer velocity at low to moderate winds when the near surface turbulence is produced by other environmental forcing. We performed a series of field experiments to measure the CO2 transfer velocity, and the statistics of turbulence immediately below the air-water interface using a novel floating PIV and chamber system. The small eddy model was evaluated and the model coefficient was found to be a non-constant, and it varies with the local turbulent level (figure 1). Measure results also suggested an appropriate scaling of the vertical dissipation profile immediately below the interface under non-breaking conditions, which can be parameterized by the wind shear, wave height and wave age (figure 2). Figure 1. Relation between the coefficient of the small eddy model and dissipation rate. The data also include Chu & Jirka (2003) and Vachon et al. (2010). The solid regression line: α = 0.188log(ɛ)+1.158 Figure 2. Non-dimensional dissipation profiles. Symbols: measured data with the floating PIV. Solid line: regression of measured data with a -0.79 decaying rate. Dash line with -2 slope: Terray et al. (1996) relation. Dash line with two layer structure: Siddiqui & Loewen (2007) relation.

  17. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  18. Ab initio velocity-field curves in monoclinic β-Ga2O3

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  19. Numerical Analysis of the Turbine 99 Draft Tube Flow Field Provoked by Redesigned Inlet Velocity Profiles.

    Science.gov (United States)

    Galván, S.; Reggio, M.; Guibault, F.; Castro, L.

    2014-03-01

    In recent years, several investigations on hydraulic turbine draft tube performance have shown that the hydrodynamic flow field at the runner outlet determines the diffuser efficiency affecting the overall performance of the turbine. This flow field, for which the principal characteristics are the flow rate and the inlet swirling flow intensity, is mostly developed on turbines designed for low head (high specific velocity) and operated away from their best efficiency point. To identify factors of the flow field responsible for loosing draft- tube efficiency, the correlations between the flow pattern along the diffuser and both swirl intensity and flow rate have been examined. An analytical representation of inlet flow field has been manipulated by a Multi Island Genetic Algorithm through the automatic coupling of multidisciplinary commercial software systems in order to obtain redesigned inlet velocity profiles. This loop allowed determining the profile for which the minimum energy loss factor was reached. With different flow field patterns obtained during the optimization process it was possible to undertake a qualitative and quantitative analysis which has helped to understand how to suppress or at least mitigate undesirable draft tube flow characteristics. The direct correlation between the runner blade design and the kinematics of the swirl at the draft tube inlet should suppose the perfect coupling at the runner-draft tube interface without compromising the overall flow stability of the machine.

  20. Kriging Interpolating Cosmic Velocity Field - II: Improvement from More Delicate Kriging

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2016-01-01

    Measuring the large-scale volume-weighted peculiar velocity statistics from galaxy and simulated halo/particle velocity data suffers sampling artifacts from the velocity assignment methods. In previous work [Y. Yu, J. Zhang, Y. Jing, and P. Zhang, Phys. Rev. D 92, 083527 (2015)], we proposed Kriging interpolation to obtain the volume-weighted velocity field and found that the most straightforward Kriging does not perform over the existing methods in the literature. In this work we improve the Kriging performance by considering more delicate Kriging. The improvement mainly comes from considering the anisotropy in the input variogram prior for Kriging. We find that the improvement is obvious for low sampling density cases ($n_P\\lesssim 6\\times 10^{-3}(h^{-1} {\\rm Mpc})^{-3}$), in the sense of the alleviation of severe power spectrum suppression in small scales. It pushes the scale of reliable measurement by a factor $\\sim 1.6$. Furthermore, the dependence on variogram prior is significantly weakened. Comparing ...

  1. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    Science.gov (United States)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  2. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  3. The Characteristics of Near-surface Velocity During the Upwelling Season on the Northern Portugal Shelf

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Observations made on the northern Portugal mid-shelf between May 13 and June 15, 2002 were used to characterise the near-surface velocity during one upwelling season. It was found that in the surface mixed layer, the 'tidal current' was diurnal, but the tidal elevation was semi-diurnal. Both the residual current and the major axes of all tidal constituents were nearly perpendicular to the isobaths and the tidal current ellipses rotated clockwise; the major axis of the major tidal ellipse was about 3 cm s-1. The extremely strong diurnal current in the surface layer was probably due to diurnal heating, cooling, and wind mixing that induced diurnal oscillations, including the diurnal oscillation of wind stress. This is a case different from the results measured in the other layers in this area. The near-inertial spectral peaks occurred with periods ranging from 1 047 min to 1 170 min, the longest periods being observed in deeper layers, and the shortest in the surface layer. Weak inertial events appeared during strong upwelling events, while strong inertial events appeared during downwelling or weak subinertial events. The near-inertial currents were out of phase between 5 m and 35 m layers for almost the entire measurement period, but such relationship was very weak during periods of irregular weak wind. Strong persistent southerly wind blew from May 12 to 17 and forced a significant water transport onshore and established a strong barotropic poleward jet with a surface speed exceeding 20 cm s-1. The subinertial current was related to wind variation, especially in the middle layers of 15 m and 35 m, the maximum correlation between alongshore current and alongshore wind was about 0.5 at the 5 m layer and 0.8 at the 35 m layer. The alongshore current reacted more rapidly than the cross-shore current. The strongest correlation was found at a time lag of 20 h in the upper layer and of 30 h in the deeper layer. The wind-driven surface velocity obtained from the PWP model

  4. Derivation of GNSS derived station velocities for a surface deformation model in the Austrian region

    Science.gov (United States)

    Umnig, Elke; Weber, Robert; Maras, Jadre; Brückl, Ewald

    2016-04-01

    This contribution deals with the first comprehensive analysis of GNSS derived surface velocities computed within an observation network of about 100 stations covering the whole Austrian territory and parts of the neighbouring countries. Coordinate time series are available now, spanning a period of 5 years (2010.0-2015.0) for one focus area in East Austria and one and a half year (2013.5-2015.0) for the remaining part of the tracking network. In principle the data series are stemming from two different GNSS campaigns. The former was set up to investigate intra plate tectonic movements within the framework of the project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics), the latter was designed to support a number of various requests, e.g. derivation of GNSS derived water vapour fields, but also to expand the foresaid tectonic studies. In addition the activities within the ALPAACT project supplement the educational initiative SHOOLS & QUAKES, where scholars contribute to seismological research. For the whole period of the processed coordinate time series daily solutions have been computed by means of the Bernese software. The processed coordinate time series are tied to the global reference frame ITRF2000 as well as to the frame ITRF2008. Due to the transition of the reference from ITRF2000 to ITRF2008 within the processing period, but also due to updates of the Bernese software from version 5.0 to 5.2 the time series were initially not fully consistent and have to be re-aligned to a common frame. So the goal of this investigation is to derive a nationwide consistent horizontal motion field on base of GNSS reference station data within the ITRF2008 frame, but also with respect to the Eurasian plate. In this presentation we focus on the set-up of the coordinate time series and on the problem of frame alignment. Special attention is also paid to the separation into linear and periodic motion signals, originating from tectonic or non

  5. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    Energy Technology Data Exchange (ETDEWEB)

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  6. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  7. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  8. An experimental study on low-velocity low-gravity collisions into granular surfaces

    Science.gov (United States)

    Sunday, C.; Murdoch, N.; Mimoun, D.

    2014-07-01

    The Japanese Space Agency (JAXA) is scheduled to launch the asteroid sample-return mission, Hayabusa-2, to target body 1999 JU_3 in December 2014 [1]. The spacecraft will arrive at the C-type near-Earth asteroid in mid-2018 and deploy several science payloads to its surface. Among these payloads is a 10-kg lander, the Mobile Asteroid Surface Scout (MASCOT), provided by the German Space Agency (DLR) with cooperation from the Centre National d'Etudes Spatiales (CNES). MASCOT will reach the asteroid's surface with an anticipated impact speed of 10--20 cm/s. In addition to housing four instruments for in-situ science investigation, MASCOT contains a mobility mechanism that will correct its orientation and enable it to ''hop'' to various measurement sites [2]. Based on thermal infrared observations [3,4,5] and previous space missions [6,7], it is strongly believed that 1999 JU_3 is covered by loose regolith. The asteroid's granular surface, in combination with the low surface gravity, makes it difficult to predict the lander's collision behavior from existing theoretical models. However, to ensure that MASCOT can successfully fulfill its mission, it is vital to understand the rebound dynamics of the lander in the asteroid surface environment. The objective of this work, derived from the needs of current and future asteroid missions, is to present an experiment designed to study low-velocity, low-gravity collisions into granular surfaces. The experiment measures the amount of energy lost during impact via a projectile's coefficient of restitution and also the acceleration profile of the projectile during collision. The key challenge to designing an asteroid collision experiment is finding a way to simulate reduced gravity conditions on the Earth so that the prevailing forces in micro-gravity collisions can be reflected in the experimental results. The proposed way to achieve this goal is to let a free-falling projectile impact a surface with a constant downward

  9. ANALYTICAL SOLUTION FOR THE VELOCITY FIELD INDUCED BY A UNIFORMLY MOVING HELICAL VORTEX FILAMENT IN CYLINDRICAL TUBE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A derivation of an analytical expression for the inviscid velocity field induced by a single right-handed helical vortex filament is presented. The vortex filament moves uniformly and rigidly without change of form in a cylindrical tube, where the vortex filament rotates around its axis with a constant angular velocity and translates along its axis with a constant translational velocity. The key to solve the problem is to set up a moving cylindrical coordinate system fixed on the vortex filament. The result shows that the velocity field is a time-periodic function, and may degenerate into Okulovs's formula when the helical vortex filament slips along the filament itself or stays immobile.

  10. Magnetic Field Strength in an Intermediate-velocity Ionized Filament in the First Galactic Quadrant

    Science.gov (United States)

    Stil, J. M.; Hryhoriw, A.

    2016-08-01

    We investigate the magnetic field in an intermediate-velocity filament for which the Hα intensity in the WHAM survey correlates with excess Faraday rotation of extragalactic radio sources over the length of the filament from b ≈ 20° to b ≈ 55°. The density-weighted mean magnetic field is 2.8 +/- 0.8 μ {{G}}, derived from rotation measures and an empirical relation between Hα emission measure and dispersion measure from Berkhuijsen et al. In view of the uncertainties in the derived magnetic field strength, we propose an alternative use of the available data, rotation measure, and emission measure, to derive a lower limit to the Alfvén speed, weighted by electron density {n}e3/2. We find lower limits to the Alfvén speed that are comparable to or larger than the sound speed in a {10}4 {{K}} plasma, and conclude that the magnetic field is dynamically important. We discuss the role of intermediate-velocity gas as a locus of Faraday rotation in the interstellar medium, and propose that this lower limit to the Alfvén speed may also be applicable to Faraday rotation by galaxy clusters.

  11. Magnetic field strength in an intermediate-velocity ionized filament in the First Galactic Quadrant

    CERN Document Server

    Stil, Jeroen M

    2016-01-01

    We investigate the magnetic field in an intermediate-velocity filament for which the H$\\alpha$ intensity in the WHAM survey correlates with excess Faraday rotation of extragalactic radio sources over the length of the filament from b ~ 20 degr. to b ~ 55 degr. The density-weighted mean magnetic field is 2.8 +/- 0.8 microgauss, derived from rotation measures and an empirical relation between H-alpha emission measure and dispersion measure from Berkhuijsen et al. (2006). In view of the uncertainties in the derived magnetic field strength, we propose an alternative use of the available data, rotation measure and emission measure, to derive a lower limit to the Alfven speed, weighted by electron density n_e^1.5. We find lower limits to the Alfven speed that are comparable to, or larger than the sound speed in a 10^4 K plasma, and conclude that the magnetic field is dynamically important. We discuss the role of intermediate-velocity gas as a locus of Faraday rotation in the interstellar medium, and propose this lo...

  12. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  13. Experimental analysis of the velocity field of the air flowing through the swirl diffusers

    Science.gov (United States)

    Jaszczur, M.; Branny, M.; Karch, M.; Borowski, M.

    2016-09-01

    The article presents the results of experimental studies of flow of air through diffusers. Presented laboratory model is a simplification of the real system and was made in a geometric scale 1:10. Simplifying refer both to the geometry of the object and conditions of air flow. The aim of the study is to determine the actual velocity fields of air flowing out of the swirl diffuser. The results obtained for the diffuser various settings are presented. We have tested various flow rates of air. Stereo Particle Image Velocimetry (SPIV) method was used to measure all velocity vector components. The experimental results allow to determine the actual penetration depth of the supply air into the room. This will allow for better definition of the conditions of ventilation in buildings.

  14. Temperature and velocity fields in natural convection by PIV and LIF

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Larsen, Poul Scheel; Westergaard, C. H.

    2002-01-01

    plate and cooled walls is 1.4×10^10. The flow is turbulent and is similar to some indoor room flows. Combined Particle Image Velocimetry (PIV) and Planar Light Induced Fluorescence (LIF) are used to measure local velocities and temperatures. Data measured in a symmetry plane parallel to a sidewall......Natural convection in a cubical cavity (L = 250 mm) filled with water is created by heating a square plate (0.5 L) centred in the bottom wall and by cooling the sidewalls, while the remaining walls are insulated. The Rayleigh number based on cavity side length and temperature difference between...... are presented in terms of mean velocities and temperature and in terms turbulent quantities including Reynolds fluxes. The flow consists a plume rising above the heated plate into an almost stagnant fluid with a weakly stratified temperature field, as well as thin buoyancy driven boundary layers down...

  15. Filaments from the galaxy distribution and from the velocity field in the local universe

    CERN Document Server

    Libeskind, Noam I; Hoffman, Yehuda; Tully, R Brent; Courtois, Helene

    2015-01-01

    The cosmic web that characterizes the large-scale structure of the Universe can be quantified by a variety of methods. For example, large redshift surveys can be used in combination with point process algorithms to extract long curvilinear filaments in the galaxy distribution. Alternatively, given a full 3D reconstruction of the velocity field, kinematic techniques can be used to decompose the web into voids, sheets, filaments and knots. In this paper we look at how two such algorithms - the Bisous model and the velocity shear web - compare with each other in the local Universe (within 100 Mpc), finding good agreement. This is both remarkable and comforting, given that the two methods are radically different in ideology and applied to completely independent and different data sets. Unsurprisingly, the methods are in better agreement when applied to unbiased and complete data sets, like cosmological simulations, than when applied to observational samples. We conclude that more observational data is needed to i...

  16. A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    CERN Document Server

    Thom, C; Christlieb, N; Thom, Christopher; Gibson, Brad K.; Christlieb, Norbert

    2005-01-01

    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.

  17. Experimental and Theoretical Studies on Velocity Field of Buoyancy Convection in KNbO3 Melt

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-Qing; Shinichi YODA; JIANG Yuan-Fang; PAN Zhi-Lei; LIANG Xin-An

    2001-01-01

    The Schlieren technique coupling with a differential interference microscope was applied to visualize the KNbOa melt motion in a loop-shaped Pt wire heater. The natural convection in KNbOa melt was traced by observing themovement of the tiny KNbO3 crystals (~ 10 μm) and the stream velocities of these tracer crystals were measured. In theoretical analysis, the Navier-Stokes equation was solved as a stable field. The general solution for this system of the differential equation was expressed by an approximate power series of azimuth and radius vector. The expression was substituted in the differential equation; a non-trivial solution was obtained exactly. The velocity distribution in the vertical section was obtained which is in qualitative agreement with the experimental result.

  18. EXPERIMENTAL AND THEORETICAL STUDIES ON VELOCITY FIELD OF BUOYANCY CONVECTION IN KNbO3 MELT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The Schlieren technique coupling with a differential interference microscope was applied to visualize the KNbO3 melt motion in a loop-shaped Pt wire heater. The natural convection in KNbO3 melt was traced by observing the movement of the tiny KNbO3 crystals (~10μm) and the stream velocities of these tracer crystals were measured. In theoretical analysis, the Navier-Stokes equation was solved as a stable field. The general solution for this system of the differential equation was expressed by an approximate power series of azimuth and radius vector. The expression was substituted in the differential equation; a non-trivial solution was obtained exactly.The velocity distribution in the vertical section was obtained which is in qualitative agreement with the experimental result.

  19. Direct multi-scale reconstruction of velocity fields from measurements of particle tracks

    CERN Document Server

    Kelley, Douglas H

    2010-01-01

    We present a method for reconstructing two-dimensional velocity fields at specified length scales using observational data from tracer particles in a flow, without the need for interpolation or smoothing. The algorithm, adapted from techniques proposed for oceanography, involves a least-squares projection of the measurements onto a set of two-dimensional, incompressible basis modes with known length scales. Those modes are constructed from components of the velocity potential function, which accounts for inflow and outflow at the open boundaries of the measurement region; and components of the streamfunction, which accounts for the remainder of the flow. All calculations are evaluated at particle locations, without interpolation onto an arbitrary grid. Since the modes have a well-defined length scales, scale-local flow properties are available directly. The technique eliminates outlier particles automatically and reduces the apparent compressibility of the data. Moreover the technique can be used to produce s...

  20. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  1. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  2. Velocity and magnetic field measurements of Taylor plumes in SSX under different boundary conditions

    Science.gov (United States)

    Kaur, Manjit; Brown, M. R.; Han, J.; Shrock, J. E.; Schaffner, D. A.

    2016-10-01

    The SSX device has been modified by the addition of a 1 m long glass extension for accommodating pulsed theta pinch coils. The Taylor plumes are launched from a magnetized plasma gun and flow to an expansion volume downstream. The time of flight (TOF) measurements of these plumes are carried out using a linear array of Ḃ probes (separated by 10cm). TOF of the plasma plumes from one probe location to the next is determined by direct comparison of the magnetic field structures as well as by carrying out a cross-correlation analysis. With the glass boundary, the typical velocity of the Taylor plumes is found to be 25km /s , accompanied by a fast plasma (>= 50km /s) at the leading edge. Magnetic field embedded in the Taylor plumes is measured in the expansion chamber using a three-dimensional array of Ḃ probes and is found to be 700G . Some flux conservation of the Taylor plumes is provided by using a resistive (soak time 3 μs) and a mesh (soak time 170 μs > discharge time) liner around the glass tube for improving the downstream Taylor state velocity as well as the magnetic field. The results from these different boundary conditions will be presented. Work supported by DOE OFES and ARPA-E ALPHA programs.

  3. The interseismic velocity field of the central Apennines from a dense GPS network

    Directory of Open Access Journals (Sweden)

    Alessandro Galvani

    2013-02-01

    Full Text Available Since 1999, we have repeatedly surveyed the central Apennines through a dense survey-style geodetic network, the Central Apennines Geodetic Network (CAGeoNet. CAGeoNet consists of 123 benchmarks distributed over an area of ca. 180 km × 130 km, from the Tyrrhenian coast to the Adriatic coast, with an average inter-site distance of 3 km to 5 km. The network is positioned across the main seismogenic structures of the region that are capable of generating destructive earthquakes. Here, we show the horizontal GPS velocity field of both CAGeoNet and continuous GPS stations in this region, as estimated from the position–time series in the time span from 1999 to 2007. We analyzed the data using both the Bernese and GAMIT software, rigorously combining the two solutions to obtain a validated result. Then, we analyzed the strain-rate field, which shows a region of extension along the axis of the Apennine chain, with values from 2 × 10–9 yr–1 to 66·× 10–9 yr–1, and a relative minimum of ca. 20 × 10–9 yr–1 located in the L'Aquila basin area. Our velocity field represents an improved estimation of the ongoing elastic interseismic deformation of the central Apennines, and in particular relating to the area of the L'Aquila earthquake of April 6, 2009.

  4. Temporal changes in shear velocity from ambient noise at New Zealand geothermal fields

    Science.gov (United States)

    Civilini, F.; Savage, M. K.; Townend, J.

    2016-12-01

    We use ambient noise to compare shear velocity changes with geothermal production processes at the Ngatamariki and Rotokawa geothermal fields, located in the central North Island of New Zealand. We calculate shear velocity changes through an analysis of cross correlation functions of diffusive seismic wavefields between stations, which are proportional to Green's functions of the station path. Electricity production at Ngatamariki uses an 82 MW binary type power station manufactured by Ormat Technologies, which began operations in mid-2013 and is owned and operated by Mighty River Power. The "Nga Awa Purua" triple flash power plant at the Rotokawa geothermal field was established in 2010 with parnership between Mighty River Power and Tauhara North No. 2 trust and currently operates 174 MW of generation. The seismometers of both networks, deployed primarily to observe microseismicity within the field, were installed prior to well stimulation and the start of production. Although cultural noise dominates the energy spectrum, a strong natural ambient noise signal can be detected when filtering below 1 Hz. Despite similar noise settings, the signal-to-noise ratio of cross correlation stacks at Rotokawa was more than two times greater than at Ngatamariki. We use stacks of cross correlations between stations prior to the onset of production as references, and compare them with cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production.

  5. The influence of surface on the running velocities of elite and amateur orienteer athletes.

    Science.gov (United States)

    Hébert-Losier, K; Jensen, K; Mourot, L; Holmberg, H-C

    2014-12-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic power. In the forest, the elites ran at a slightly higher percentage of their 2-km (∼3%) and 20-m (∼4%) road velocities. Although these differences did not exhibit traditional statistical significance, magnitude-based inferences suggested likely meaningful differences, particularly during 20-m sprinting. Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist in tailoring training and identifying individual strengths and/or weaknesses in an orienteer.

  6. Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter

    Science.gov (United States)

    Zhu, Weishan; Feng, Long-Long

    2017-03-01

    We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2–1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ∼ 2–3. Tenuous filaments assembled with each other to form prominent ones at z < 2. In accordance with the construction of the frame of the sheets, the cosmic divergence velocity, v div, was already well-developed above 2–3 Mpc by z = 3. Afterwards, the curl velocity, v curl, grew dramatically along with the rising of filaments, becoming comparable to v div, for <2–3 Mpc at z = 0. The scaling of v curl can be described by the hierarchical turbulence model. The alignment between the vorticity and the eigenvectors of the shear tensor in the baryonic matter field resembles that in the dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2–3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ∼ 2–3 on galaxy formation and evolution is shortly discussed.

  7. A sound field separation technique based on measurements with pressure-velocity probes

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Chen, Xin-Zhao; Jacobsen, Finn

    2009-01-01

    It has recently been shown that statistically optimized near field acoustic holography based on measurement with an array of pressure-velocity transducers makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of a disturbing source [F....... Jacobsen and V. Jaud, J. Acoust. Soc. Am. 121, 1550-1558 (2007)]. However, the suggested technique uses a transfer matrix optimized for the source under test and may be expected to perform less well when the disturbing source is not placed symmetrically on the other side of the array, and this will usually...

  8. What causes the Ly$\\alpha$ forest, clouds or large-scale velocity fields ?

    CERN Document Server

    Kegel, W H

    1997-01-01

    We show that in stochastic large scale velocity fields superposed on the general Hubble flow, the formation of the GP-depression in QSO spectra is intimately related to the formation of the absorption-line structure usually called `Ly-alpha forest'. Therefore the HI-density in the diffuse IGM might be substaintially underestimated if one determines the GP-effect from the apparent continuum in high resolution spectra of QSOs. Our tentative calculations imply a current baryon density Omega_b h^2_{100} = 0.015 which agrees well with the baryon density determination from the deuterium abaundance measurement by Levshakov, Kegel and Takahara (the same volume).

  9. A molecular model of proton neutralization at solid surface: the intermediate velocity region

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Nedeljkovic, L.D. (Faculty of Physics, Belgrade Univ. (Yugoslavia)); Janev, R.K. (Inst. of Physics, Belgrade (Yugoslavia)); Miskovic, Z.L. (Boris Kidric Inst. of Nuclear Sciences, Belgrade (Yugoslavia))

    1991-06-01

    The proton neutralization (into ground hydrogen state) at solid surface is treated in the normal emergence geometry. For the intermediate proton velocity region (between v{approx equal}1 and 4 a.u.) a new, molecular-type dynamic model of the process is proposed. Evaluation of the electron transition amplitude is based on an elaboration of the Demkov-Ostrovsky method. The calculation showed that the electron transitions have a nonresonant character. Comparison with experiments leads to the conclusion that the electron capture into ground state is almost sufficient to explain the experiment data. (orig.).

  10. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Achim, E-mail: achim-kimmerle@gmx.de; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany); Haug, Halvard [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway)

    2016-01-14

    We investigate the surface recombination velocity S{sub p} at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased S{sub p} at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].

  11. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    Science.gov (United States)

    Kimmerle, Achim; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin; Haug, Halvard

    2016-01-01

    We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1-14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953-959 (1992); 35, 961-967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598-1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684-3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1-6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30-36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181-1183 (1993)].

  12. Green's function of a massless scalar field in curved space-time and superluminal phase velocity of the retarded potential

    CERN Document Server

    Dai, De-Chang

    2012-01-01

    We study a retarded potential solution of a massless scalar field in curved space-time. In a special ansatz for a particle at rest whose magnitude of the (scalar) charge is changing with time, we found an exact analytic solution. The solution indicates that the phase velocity of the retarded potential of a non-moving scalar charge is position dependent, and may easily be greater than the speed of light at a given point. In the case of the Schwarzschild space-time, at the horizon, the phase velocity becomes infinitely faster than the coordinate speed of light at that point. Superluminal phase velocity is relatively common phenomenon, with the the phase velocity of the massive Klein-Gordon field as the best known example. We discuss why it is possible to have modes with superluminal phase velocity even for a massless field.

  13. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  14. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities

    Science.gov (United States)

    D'Alessio, M. A.; Johanson, I. A.; Bürgmann, R.; Schmidt, D. A.; Murray, M. H.

    2005-06-01

    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (B?V?, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ± 0.6 mm yr-1 directed toward N30.4°W ± 0.8° at San Francisco (±2σ). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ± 1.0; West Napa fault, 4.0 ± 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ± 1.0; and Mount Diablo thrust, 3.9 ± 1.0 of reverse slip and 4.0 ± 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.

  15. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  16. Advantages and Limitations of Cluster Analysis in Interpreting Regional GPS Velocity Fields in California and Elsewhere

    Science.gov (United States)

    Thatcher, W. R.; Savage, J. C.; Simpson, R.

    2012-12-01

    Regional Global Positioning System (GPS) velocity observations are providing increasingly precise mappings of actively deforming continental lithosphere. Cluster analysis, a venerable data analysis method, offers a simple, visual exploratory tool for the initial organization and investigation of GPS velocities (Simpson et al., 2012 GRL). Here we describe the application of cluster analysis to GPS velocities from three regions, the Mojave Desert and the San Francisco Bay regions in California, and the Aegean in the eastern Mediterranean. Our goal is to illustrate the strengths and shortcomings of the method in searching for spatially coherent patterns of deformation, including evidence for and against block-like behavior in these 3 regions. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, is subjective and usually guided by the distribution of known faults. Cluster analysis applied to GPS velocities provides a completely objective method for identifying groups of observations ranging in size from 10s to 100s of km in characteristic dimension based solely on the similarities of their velocity vectors. In the three regions we have studied, statistically significant clusters are almost invariably spatially coherent, fault bounded, and coincide with elastic, geologically identified structural blocks. Often, higher order clusters that are not statistically significant are also spatially coherent, suggesting the existence of additional blocks, or defining regions of other tectonic importance (e.g. zones of localized elastic strain accumulation near locked faults). These results can be used to both formulate tentative tectonic models with testable consequences and to suggest focused new measurements in under-sampled regions. Cluster analysis applied to GPS velocities has several potential limitations, aside from the

  17. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    Science.gov (United States)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  18. External Field QED on Cauchy Surfaces

    CERN Document Server

    Deckert, D -A

    2015-01-01

    The Shale-Stinespring Theorem (1965) together with Ruijsenaar's criterion (1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spacial components of the external electromagnetic four-vector potential $A_\\mu$ are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general $A_\\mu$, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of $A_\\mu$ w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  19. Estimation of the p-wave velocity profile of elastic real data based on surface wave inversion

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Recently, we proposed an analytical approach to invert for a smoothly varying near-surface P-wave velocity profile that has a squared slowness linearly decreasing with depth. The exact solution for such a velocity profile in the acoustic approximation can be expressed in terms of Airy functions and

  20. Microscale Controls on Ultrasonic Velocity Dispersion in Near-Surface Marine Sediments

    Science.gov (United States)

    Gettemy, G. L.

    2006-05-01

    This effort demonstrates a technique to measure poroelastic and petrophysical parameters that can be monitored over time to document diagenetic and consolidation alterations in the shallow biogeosphere. The signatures of these process effects are revealed largely through scale-dependent estimates of porosity, permeability, and the effective framework moduli that describe particle-particle mechanical interactions. Near- surface marine sediments of the Peru margin (ODP Leg 201) provide a unique dataset with which to study such near-surface processes, especially those associated with depositional, tectonic, and biogeochemical dynamics. Scanning electron microscope (SEM) image analysis and broadband (100-1000 kHz) ultrasonic compressional wave experiments are combined to interpret the microscale parameters revealed through velocity dispersion analysis. In particular, (i) back-scattered electron (BSE) images are processed to estimate the local porosity, tortuosity, and resultant permeability of the characteristic topology of each sample; and (ii) bounds for complex-valued grain and frame moduli, following an amended Biot formulation, are estimated by using the microscale imaging parameters and observed velocity dispersion. Several key results are highlighted, with regard to BSE imaging and velocity dispersion analysis, beyond the imaging and Biot parameter inversion. For example, microscale permeabilities are typically an order-of- magnitude larger than core (~2 cm) measurements. This discrepancy is critical to understanding spatial and temporal scale differences between, for example, diffusion and advection of nutrients supplying microbial communities versus tectonic dewatering and the resulting transient meter-scale pore pressure modulation. Broadband velocity dispersion analysis proves to be a powerful tool for detecting sub-wavelength sedimentological heterogeneity. Negative velocity dispersion, for example, can be used to estimate scatterer dimensions, consistent

  1. Estimating a continuous p-wave velocity profile with constant squared-slowness gradient models from seismic field data

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2015-01-01

    We inverted seismic field data for a continuous, laterally invariant P-wave velocity profile. Instead of the usual approach that involves horizontal layers with piecewise constant densities and velocities, we consider models of one or two layers with a constant gradient of the squared slowness above

  2. Ising systems with pairwise competing surface fields

    Energy Technology Data Exchange (ETDEWEB)

    Milchev, A [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany); Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); De Virgiliis, A [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany); Binder, K [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany)

    2005-11-02

    The magnetization distribution and phase behaviour of large but finite Ising simple cubic L x L x L lattices in d = 3 dimensions and square L x L lattices in d = 2 dimensions are studied for the case where four free boundaries are present, at which surface fields +H{sub s} act on one pair of opposite boundaries while surface fields -H{sub s} act on the other pair (in d 3, periodic boundary conditions are used for the remaining pair). Both the distribution P{sub L}(m) of the global magnetization and also the distribution of the local magnetization m(x,z) are obtained by Monte Carlo simulations, where x and z denote the coordinates when the boundaries are oriented along the x-axis and z-axis (in d = 2); or along the xy-plane and zy-plane (in d = 3, where the periodic boundary condition applies in the y-direction). Varying the temperature T and linear dimension L it is found that a single bulk rounded phase transition occurs, which converges to the bulk transition temperature T{sub cb} as L {yields} {infinity}, unlike other geometric arrangements of competing boundary fields, where a second transition occurs in the bulk due to interface formation or delocalization, related to wedge or corner filling or wetting transitions, respectively. In the present geometry, only precursors of wetting layers form on those boundaries where the field is oppositely oriented to the magnetization in the bulk and the thickness of these layers is found to scale like L{sup 1/2} (in d = 2) or lnL (in d = 3), respectively. These findings are explained in terms of a phenomenological theory based on the effective interface Hamiltonian and scaling considerations.

  3. Ising systems with pairwise competing surface fields

    Science.gov (United States)

    Milchev, A.; DeVirgiliis, A.; Binder, K.

    2005-11-01

    The magnetization distribution and phase behaviour of large but finite Ising simple cubic L × L × L lattices in d = 3 dimensions and square L × L lattices in d = 2 dimensions are studied for the case where four free boundaries are present, at which surface fields +Hs act on one pair of opposite boundaries while surface fields -Hs act on the other pair (in d = 3, periodic boundary conditions are used for the remaining pair). Both the distribution PL(m) of the global magnetization and also the distribution of the local magnetization m(x,z) are obtained by Monte Carlo simulations, where x and z denote the coordinates when the boundaries are oriented along the x-axis and z-axis (in d = 2); or along the xy-plane and zy-plane (in d = 3, where the periodic boundary condition applies in the y-direction). Varying the temperature T and linear dimension L it is found that a single bulk rounded phase transition occurs, which converges to the bulk transition temperature Tcb as L \\rightarrow \\infty , unlike other geometric arrangements of competing boundary fields, where a second transition occurs in the bulk due to interface formation or delocalization, related to wedge or corner filling or wetting transitions, respectively. In the present geometry, only precursors of wetting layers form on those boundaries where the field is oppositely oriented to the magnetization in the bulk and the thickness of these layers is found to scale like L1/2 (in d = 2) or lnL (in d = 3), respectively. These findings are explained in terms of a phenomenological theory based on the effective interface Hamiltonian and scaling considerations.

  4. A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields

    Science.gov (United States)

    Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang

    2016-12-01

    Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.

  5. A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields

    Science.gov (United States)

    Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang

    2017-03-01

    Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.

  6. Ion rotational velocity of a field-reversed configuration plasma measured by neutral beam probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Tanjyo, M.; Ohi, S.; Goto, S.; Ishimura, T.

    1987-01-01

    The ion rotational angular velocity ..cap omega.. and the ion temperature T/sub i/ of a translated field-reversed configuration (FRC) plasma are measured using neutral beam probe spectroscopy. The value of ..cap omega.. is --(1.0--1.2) x ..cap omega..* at the onset time of the n = 2 rotational instability, where ..cap omega..* is the ion diamagnetic frequency for a rigid-rotor equilibrium. The ion rotational direction is the same as the ion diamagnetic direction. The value of ..cap omega.. is smaller than the angular frequency ..omega../sub re/ of the n = 2 instability, which can yield experimental evidence of the ion kinetic effects on the n = 2 instability in the FRC plasma. When the octupole field is applied to the plasma in order to suppress the n = 2 deformation, ..cap omega.. is slightly reduced. The ion temperature T/sub i/ is --70 eV at the onset time of the n = 2 instability.

  7. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Velocity Barb (knots) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind velocity forecasts from the National Digital Forecast Database...

  8. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  9. MUSCLE-FIBER CONDUCTION-VELOCITY IN THE DIAGNOSIS OF FAMILIAL HYPOKALEMIC PERIODIC PARALYSIS - INVASIVE VERSUS SURFACE DETERMINATION

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; LINKS, TP; ZWARTS, MJ; VANWEERDEN, TW

    1994-01-01

    Muscle fiber conduction velocity (MFCV) in the brachial biceps muscle was determined in a large family of patients with hypokalemic periodic paralysis (HOPP) by both a surface and an invasive method. Other surface EMG parameters and the muscle force were also determined. Both the surface and the inv

  10. Numerical study of turbulent diffusion. [Gaussian diffusion, velocity fields, small eddies, two-particle dispersion

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M.G.

    1975-11-01

    The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested. (auth)

  11. Kr II and Xe II axial velocity distribution functions in a cross-field ion source

    Science.gov (United States)

    Lejeune, A.; Bourgeois, G.; Mazouffre, S.

    2012-07-01

    Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,vx) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

  12. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    CERN Document Server

    Pouransari, Z; Johansson, A V

    2015-01-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooli...

  13. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  14. Characterization of azimuthal and radial velocity fields induced by rotors in low-Reynolds number flows

    CERN Document Server

    Köhler, Jannis; Ostendorf, Andreas; Gurevich, Evgeny

    2015-01-01

    We theoretically and experimentally investigate the flow field that emerges from a rod-like microrotor rotating about its center in a non-axisymmetric manner. A simple theoretical model is proposed that uses a superposition of two rotlets as a fundamental solution to the Stokes equation. The predictions of this model are compared to measurements of the azimuthal and radial microfluidic velocity field components that are induced by a rotor composed of fused microscopic spheres. The rotor is driven magnetically and the fluid flow is measured with help of a probe particle fixed by an optical tweezer. We find considerable deviations of the mere azimuthal flow pattern induced by a single rotating sphere as it has been reported by Di Leonardo \\textit{et al.} [Phys. Rev. Lett. 96, 134502 (2006)]. Notably, the presence of a radial velocity component that manifests itself by an oscillation of the probe particle with twice the rotor frequency is observed. These findings open up a way to discuss possible radial transpor...

  15. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  16. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    Science.gov (United States)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  17. MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption and slip velocity

    Directory of Open Access Journals (Sweden)

    Mostafa A.A. Mahmoud

    2012-04-01

    Full Text Available In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.

  18. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  19. Extraction of bulk generation lifetime and surface generation velocity in high-resistivity silicon by means of gated diodes

    CERN Document Server

    Verzellesi, G; Bosisio, L; Dalla Betta, Gian Franco; Pignatel, Giogrio Umberto

    2002-01-01

    We show that the accuracy of the gated diode method for measuring bulk generation lifetime and surface generation velocity in high resistivity silicon depends critically on the gate length of the test device, as a result of nonidealities affecting the gated diode operation. Minimization of the surface generation velocity measurement error requires the gate length to be suitably decreased, while long gate length structures are needed for accurate bulk generation lifetime extraction.

  20. Influence of air velocity on droplet's wetting and evaporation conditions on a flat surface

    Energy Technology Data Exchange (ETDEWEB)

    Zapalowicz, Z. (Technical Univ. of Szczecin (Poland). Dept. of Mechanical Engineering)

    The paper presents results of experimental research on influence of air velocity on characteristic dimensions, spreading ratio and evaporation time of a droplet. The relation between the velocity that initiates droplet's motion and the temperature of the surface has been under research, too, and is presented in the paper as well. The research allows determination of the droplet's rest and motion areas on the wall surface.

  1. The meandering Gulf Stream as seen by the Geosat altimeter - Surface transport, position, and velocity variance from 73 deg to 46 deg W

    Science.gov (United States)

    Kelly, Kathryn A.

    1991-01-01

    Results are presented of an analysis of the surface geostrophic velocity field for the Gulf Stream region for the position, structure, and surface transport of the Gulf Stream for 2.5 yr of the Geosat altimeter Exact Repeat Mission. Synthetic data using a Gaussian velocity profile were generated and fit to the sea surface residual heights to create a synthetic mean sea surface height field and profiles of absolute geostrophic currents. An analysis of the model parameters and the actual geostrophic velocity profiles revealed two different flow regimes for the Gulf Stream connected by a narrow transition region coincident with the New England Seamount Chain. The upstream region was found to exhibit relatively straight Gulf Stream paths, long Eulerian time scales, and eastward propagating meanders. The downstream region had more large meanders, no consistent propagation direction, and shorter Eulerian time scales. A 25-percent reduction in surface transport occurred in the transition region, with a corresponding reduction in current speed and no change in Gulf Stream width.

  2. A test field for Gaia. Radial velocity catalogue of stars in the South Ecliptic Pole

    Science.gov (United States)

    Frémat, Y.; Altmann, M.; Pancino, E.; Soubiran, C.; Jofré, P.; Damerdji, Y.; Heiter, U.; Royer, F.; Seabroke, G.; Sordo, R.; Blanco-Cuaresma, S.; Jasniewicz, G.; Martayan, C.; Thévenin, F.; Vallenari, A.; Blomme, R.; David, M.; Gosset, E.; Katz, D.; Viala, Y.; Boudreault, S.; Cantat-Gaudin, T.; Lobel, A.; Meisenheimer, K.; Nordlander, T.; Raskin, G.; Royer, P.; Zorec, J.

    2017-01-01

    Context. Gaia is a space mission that is currently measuring the five astrometric parameters, as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The sixth parameter in phase space (i.e., radial velocity) is also measured thanks to medium-resolution spectroscopy that is being obtained for the 150 million brightest stars. During the commissioning phase, two fields, one around each ecliptic pole, have been repeatedly observed to assess and to improve the overall satellite performances, as well as the associated reduction and analysis software. A ground-based photometric and spectroscopic survey was therefore initiated in 2007, and is still running to gather as much information as possible about the stars in these fields. This work is of particular interest to the validation of the radial velocity spectrometer outputs. Aims: The paper presents the radial velocity measurements performed for the Southern targets in the 12-17 R magnitude range on high- to mid-resolution spectra obtained with the GIRAFFE and UVES spectrographs. Methods: Comparison of the South Ecliptic Pole (SEP) GIRAFFE data to spectroscopic templates observed with the HERMES (Mercator in La Palma, Spain) spectrograph enabled a first coarse characterisation of the 747 SEP targets. Radial velocities were then obtained by comparing the results of three different methods. Results: In this paper, we present an initial overview of the targets to be found in the 1 sq. deg SEP region that was observed repeatedly by Gaia ever since its commissioning. In our representative sample, we identified one galaxy, six LMC S-stars, nine candidate chromospherically active stars, and confirmed the status of 18 LMC Carbon stars. A careful study of the 3471 epoch radial velocity measurements led us to identify 145 RV constant stars with radial velocities varying by less than 1 km s-1. Seventy-eight stars show significant RV scatter, while nine stars show a composite spectrum

  3. Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy

    Science.gov (United States)

    Weier, T.; Cierpka, C.; Huller, J.; Gerbeth, G.

    2006-12-01

    Velocity measurements and shadowgraph visualizations for copper electrolysis under the influence of a magnetic field are reported. Experiments in a rectangular cell show the expected strong correlation between flow features and limiting current density. The flow can be understood as driven by the interplay of Lorentz force and buoyancy. For a cylindrical cell with only slightly non-parallel electric and magnetic field lines, the presence and importance of the Lorentz force is demonstrated by velocity measurements. Figs 6, Refs 13.

  4. A Layer-Stripping Method for 3D Near-Surface Velocity Model Building Using Seismic First-Arrival Times

    Institute of Scientific and Technical Information of China (English)

    Taikun Shi; Jianzhong Zhang; Zhonglai Huang; Changkun Jin

    2015-01-01

    In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var-ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is ap-proximately hundred times faster than that of grid tomography.

  5. A closure for Lagrangian velocity gradient evolution in turbulence using recent deformation mapping of initially Gaussian fields

    CERN Document Server

    Johnson, Perry L

    2016-01-01

    The statistics of the velocity gradient tensor in turbulent flows are of both theoretical and practical importance. The Lagrangian view provides a privileged perspective for studying the dynamics of turbulence in general, and of the velocity gradient tensor in particular. Stochastic models for the Lagrangian evolution of velocity gradients in isotropic turbulence, with closure models for the pressure Hesssian and viscous Laplacian, have been shown to reproduce important features such as non-Gaussian probability distributions, skewness and vorticity strain-rate alignments. The Recent Fluid Deformation (RFD) closure introduced the idea of mapping an isotropic Lagrangian pressure Hessian as upstream initial condition using the fluid deformation tensor. Recent work on a Gaussian fields closure, however, has shown that even Gaussian isotropic velocity fields contain significant anisotropy for the conditional pressure Hessian tensor due to the inherent velocity-pressure couplings, and that assuming an isotropic pre...

  6. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    Science.gov (United States)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  7. Markov random field modelling for fluid distributions from the seismic velocity structures

    Science.gov (United States)

    Kuwatani, T.; Nagata, K.; Okada, M.; Toriumi, M.

    2011-12-01

    Recent development of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us detailed images of the earth's interior. However, it has still been difficult to interpret these data geologically, including predicting lithology and fluid distributions, mainly because (1) available data usually have large noise and uncertainty, and (2) the number of observable parameters is usually smaller than the number of target parameters. Therefore, the statistical analyses of geophysical data sets are essential for the objective and quantitative geological interpretation. We propose the use of Markov random field (MRF) model to geophysical image data as an alternative to classical deterministic approaches. The MRF model is a Bayesian stochastic model using a generalized form of Markov Chains, and is often applied to the analysis of images, particularly in the detection of visual patterns or textures. The MRF model assumes that the spatial gradients of physical properties are relatively small compared to the observational noises. By hyperparameter estimation, the variances of noises can be appropriately estimated only from available data sets without prior information about observational noises. In this study, we try to image the fluid distributions based on the seismic velocity structure by using the Markov random field model. According to Nakajima et al. (2005), seismic velocities (Vp and Vs) are expressed as functions of porosity and pore geometry using the unified formulation proposed by Takei (2002). Additionally, the spatial continuity of porosity and pore geometry is incorporated by Gaussian Markov Chains as prior probabilities. The most probable estimation can be obtained by maximizing the posterior probability of the fluid distribution given the observed velocity structures. In the present study, the steepest descent method was implemented in order to minimize the free energy (i.e. maximize the posterior

  8. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Directory of Open Access Journals (Sweden)

    Begg Rezaul K

    2010-04-01

    Full Text Available Abstract Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes are potential interventions for maintaining balance and gait skills. The aims of this study were: 1 to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC and foot velocity at MTC (VelMTC] and locomotor control strategies are altered during walking on sloped surfaces, and 2 if altered, are they maintained at two groups (young and elderly female groups. Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3° were analysed for 9 young (Y and 8 elderly (E female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7% at negative slope but decreased (Y = 25%, E = 15% while walking on the positive slope surface compared to their MTC values at the flat surface (0°. Analysis of VelMTC distributions also indicated significantly (p th percentile (Q1 values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.

  9. Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering

    Science.gov (United States)

    Zhu, Liyan; Li, Baowen; Li, Wu

    2016-09-01

    Using a linear-scaling Kubo simulation approach, we have quantitatively investigated the effects of confinement and surface roughness on phonon transport in silicon nanowires (SiNWs) as thick as 55 nm in diameter R . The confinement effect leads to significant reduction of phonon group velocity v in SiNWs compared to bulk silicon except at extremely low phonon frequencies f , which very likely persists in SiNWs several hundreds of nanometers thick, suggesting the inapplicability of bulk properties, including anharmonic phonon scattering, to SiNWs. For instance, the velocity can be reduced by more than 30% for phonons with f >4.5 THz in 55-nm-thick nanowires. In rough SiNWs Casimir's limit, which is valid in confined macroscopic systems, can underestimate the surface scattering by more than one order of magnitude. For a roughness profile with Lorentzian correlation characterized by root-mean-square roughness σ and correlation length Lr, the frequency-dependent phonon diffusivity D follows power-law dependences D ∝Rασ-βLrγ , where α ˜2 and β ˜1 . On average, γ increases from 0 to 0.5 as R /σ increases. The mean free path and the phonon lifetime essentially follow the same power-law dependences. These dependences are in striking contrast to Casimir's limit, i.e., D ˜v R /3 , and manifest the dominant role of the change in the number of atoms due to roughness. The thermal conductivity κ can vary by one order of magnitude with varying σ and Lr in SiNWs, and increasing σ and shortening Lr can efficiently lower κ below Casimir's limit by one order of magnitude. Our work provides different insights to understand the ultralow thermal conductivity of SiNWs reported experimentally and guidance to manipulate κ via surface roughness engineering.

  10. Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow

    Science.gov (United States)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel

    2016-05-01

    Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.

  11. Gravitational spectra from direct measurements. [of surface field

    Science.gov (United States)

    Wagner, C. A.; Colombo, O. L.

    1979-01-01

    A simple rapid method is described for determining the spectrum of a surface field (in spherical harmonics) from harmonic analysis of direct (in situ) measurements along great circle arcs. The method is shown to give excellent overall trends (smoothed spectra) to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point masses using (1) altimetric heights from a low-orbiting spacecraft, (2) velocity (range rate) residuals between a low and a high satellite in circular orbits, and (3) range rate data between a station at infinity and a satellite in a highly eccentric orbit. In particular, the smoothed spectrum of the earth's gravitational field is determined to about degree 400(50-km half wavelength) from 1 x 1 deg gravimetry and the equivalent of 11 revolutions of GEOS 3 and Skylab altimetry. This measurement shows that there is about 46 cm of geoid height (rms worldwide) remaining in the field beyond degree 180.

  12. Persistent small-scale features in maps of the anisotropy of ocean surface velocities--implications for mixing?

    Science.gov (United States)

    Sen, A.; Arbic, B. K.; Scott, R. B.; Holland, C. L.; Logan, E.; Qiu, B.

    2006-12-01

    Much of the stirring and mixing in the upper ocean is due to geostrophically balanced mesoscale eddies. Ocean general circulation models commonly parameterize eddy effects. Geostrophic turbulence models show that parameterizations of eddy mixing depend on the isotropy of the eddies. Motivated by this, we investigate the isotropy of oceanic mesoscale eddies with seven years of sea surface height data recorded by satellite altimeters. From these data, we determined a sea surface height anomaly, and surface geostrophic velocities u and v in the zonal (east-west) and meridional (north-south) directions, respectively. From the latter two quantities we can calculate zonal and meridional kinetic energies u2 and v2. Integrals of u2 and v2 around latitude bands 10 degrees wide are nearly equal, in contrast with the results of simple beta-plane geostrophic turbulence models, which suggest that zonal motions should predominate. Maps of the quantity u2-v2 (normalized by standard error) show fine-scale structures that persist over times longer than the lifespan of a turbulent eddy. Thus the mesoscale eddy field is locally anisotropic almost everywhere. Further investigation into the causes of these small-scale structures is needed and is currently underway.

  13. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  14. Multilayer scaling of mean velocity and thermal fields of compressible turbulent boundary layer

    Science.gov (United States)

    Bi, Weitao; Wu, Bin; Zhang, Yousheng; Hussain, Fazle; She, Zhen-Su

    2014-11-01

    Recently, a symmetry based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially evolving direct numerical simulations (DNS). A momentum mixing length displays a four layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer - consistent with the strong Reynolds analogy. The Lie group based formulization of the two mixing lengths yields a multilayer model for the turbulent Prandtl number, along with predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall bounded turbulent flows, and its mean fields can be accurately described by the SED theory.

  15. Streaming motions of galaxy clusters within 12000 km/s - V. The peculiar velocity field

    CERN Document Server

    Hudson, M J; Lucey, J R; Branchini, E; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.; Branchini, Enzo

    2004-01-01

    We analyze in detail the peculiar velocity field traced by 56 clusters within 120 h^-1 Mpc in the Streaming Motions of Abell Clusters (SMAC) sample. The bulk flow of the SMAC sample is 687 +- 203 km/s, toward l = 260 +- 13, b = 0 +- 11. We discuss possible systematic errors and show that no systematic effect is larger than half of the random error. The flow does not drop off significantly with depth, which suggests that it is generated by structures on large scales. In particular, a Great Attractor as originally proposed by Lynden-Bell et al. cannot be responsible for the SMAC bulk flow. The SMAC data suggest infall into an attractor at the location of the Shapley Concentration, but the detection is marginal (at the 90% confidence level). We find that distant attractors in addition to the Shapley Concentration are required to explain the SMAC bulk flow. A comparison with peculiar velocities predicted from the IRAS PSCz redshift survey shows good agreement with a best fit value of Beta_I = Omega^0.6/b_I = 0.39...

  16. Frequency, delay and velocity analysis for intrinsic channel region of carbon nanotube field effect transistors

    Directory of Open Access Journals (Sweden)

    P. Geetha

    2014-03-01

    Full Text Available Gate wrap around field effect transistor is preferred for its good channel control. To study the high frequency behaviour of the device, parameters like cut-off frequency, transit or delay time, velocity are calculated and plotted. Double-walled and array of channels are considered in this work for enhanced output and impedance matching of the device with the measuring equipment terminal respectively. The perfomance of double-walledcarbon nanotube is compared with single-walled carbon nanotube and found that the device with double-wall shows appreciable improvement in its characteristics. Analysis of these parameters are done with various values of source/drain length, gate length, tube diameters and channel densities. The maximum cut-off frequency is found to be 72.3 THz with corresponding velocity as 5x106 m/s for channel density as 3 and gate length as 11nm. The number of channel is varied from 3 to 21 and found that the perfromance of the device containing double-walled carbon nano tube is better for channel number lesser than or equal to 12. The proposed modelling can be used for designing devices to handle high speed applications of future generation.

  17. Modelling chromospheric line profiles as diagnostics of velocity fields in {\\omega} Centauri red giant stars

    CERN Document Server

    Vieytes, M; Cacciari, C; Origlia, L; Pancino, E

    2010-01-01

    Context. Mass loss of ~0.1-0.3 M$_{\\odot}$ from Population II red giant stars (RGB) is a requirement of stellar evolution theory in order to account for several observational evidences in globular clusters. Aims. The aim of this study is to detect the presence of outward velocity fields, which are indicative of mass outflow, in six luminous red giant stars of the stellar cluster {\\omega} Cen. Methods. We compare synthetic line profiles computed using relevant model chromospheres to observed profiles of the H{\\alpha} and Ca II K lines. The spectra were taken with UVES (R=45,000) and the stars were selected so that three of them belong to the metal-rich population and three to the metal-poor population, and sample as far down as 1 to 2.5 magnitudes fainter than the respective RGB tips. Results. We do indeed reveal the presence of low-velocity outward motions in four of our six targets, without any apparent correlation with astrophysical parameters. Conclusions. This provides direct evidence that outward velocit...

  18. Velocity field investigation inside a bulb turbine runner using endoscopic PIV measurements

    Science.gov (United States)

    Lemay, S.; Aeschlimann, V.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2015-06-01

    The flow in the inter-blade channels of a bulb turbine was measured using endoscopic cameras integrated to a stereoscopic particle image velocimetry (S-PIV) system. This paper presents results from the measurement campaign and also provides some key conclusions based on the dataset. The technical aspect of the measurement configuration is addressed. The main focus is on the novelties and challenges brought by the use of endoscopic cameras to achieve S-PIV measurements between the runner blades. For the first time in hydraulic rotating machinery, velocity measurements covered 62 % of a rotor inter-blade flow. After outlining the techniques used, comparison with laser Doppler velocimetry measurements allows assessing the intrusiveness of the endoscopes. Then, some velocity field analyses are shown. First, the rotor-stator interaction is outlined as the influence of the guide vane wakes on the runner flow. The size, localization, strength and dissipation of those structures are inferred from the information coming from measurements. Finally, the PIV data allow the identification of a vortex located near the suction side of the blades and originating from the corner between the leading edge and the hub when operating the bulb turbine at part-load.

  19. Study of near-surface layers of Omerelu area using low velocity layer (LVL method

    Directory of Open Access Journals (Sweden)

    Ajani, O.O.

    2013-03-01

    Full Text Available It is important that we have good knowledge of the soil type so as to appreciate the enormous resources we are stepping on. It is more compelling for oil explorationists to know more as this will go a long way to determine the success or failure of search for minerals. Seismic methods give a good overview of a wide area though they involve greater logistics and operational requirements than some other geophysical methods. The purpose of present study is to determine the depth of the weathered layer and velocities of near-surface layers over the investigated area. Twelve sample points were picked with a grid system spread over a perimeter of approximately 4km x 4km. The in-house UpSphere computer program was utilised to analyse and display result in a way that makes final interpretation very easy. This program actually removed the burden of plotting the graphs and the contour maps manually. The depth of weathered layer in the study area varies between 12m and 13m. The velocities of the weathered layer and the consolidated layer vary between 500 m/s – 550 m/s and 1790 m/s – 1875 m/s respectively. Also the dip is in the north east – south west direction.

  20. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    Science.gov (United States)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  1. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  2. Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Sommer, Stefan Horst; Sørensen, Lauge;

    by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only...... approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed...... that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (pB-Spline freeform deformation (p

  3. Large scale velocity fields present and future making sense of the data

    CERN Document Server

    Feldman, H A

    1995-01-01

    The large scale velocity field was sampled recently by two independent methods: the supernovae type Ia light curve shapes (Riess, Press \\& Kirshner) and the Abell Cluster Catalog brightest cluster galaxy metric luminosity (Lauer \\& Postman). The results of these investigations seem to be contradictory. I present an analysis of these samples, compare them and investigate whether standard structure formation models and other deep surveys are compatible with them. I also make suggestions as to how to improve the samples so we can actually resolve the bulk flow vectors. I show that although these two samples seem to cover the same volume, their window functions are sufficiently different so that they are only weakly correlated. Further, since both samples are sparse, they are noise dominated and in order to improve the signal to noise they need to either increase their sample size (RPK) or decrease the measurement errors (LP) significantly.

  4. On the Velocity Field and the 3D Structure of the Galactic Soccer Ball Abell 43

    CERN Document Server

    Rauch, T; Ercolano, B; Köppen, J; Rauch, Thomas; Werner, Klaus; Ercolano, Barbara; K\\"oppen, Joachim

    2005-01-01

    Planetary nebulae (PNe) and their central stars (CSs) are ideal tools to test evolutionary theory: photospheric properties of their exciting stars give stringent constraints for theoretical predictions of stellar evolution. The nebular abundances display the star's photosphere at the time of the nebula's ejection which allows to look back into the history of stellar evolution - but, more importantly, they even provide a possibility to investigate on the chemical evolution of our Galaxy because most of the nuclear processed material goes back into the interstellar medium via PNe. The recent developments in observation techniques and a new three-dimensional photoionization code MOCASSIN enable us to analyze PNe properties precisely by the construction of consistent models of PNe and CSs. In addition to PNe imaging and spectroscopy, detailed information about the velocity field within the PNe is a pre-requisite to employ de-projection techniques in modeling the physical structureof the PNe.

  5. Extraction of 3D velocity and porosity fields from GeoPET data sets

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann-Pipke, Johanna; Kulenkampff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Eichelbaum, S. [Nemtics Visualization, Leipzig (Germany)

    2017-06-01

    Geoscientific process monitoring with positron emission tomography (GeoPET) is proven to be applicable for quantitative tomographic transport process monitoring in natural geological materials. We benchmarked GeoPET by inversely fitting a numerical finite element model to a diffusive transport experiment in Opalinus clay. The obtained effective diffusion coefficients, D{sub e}, parallel and D{sub e}, perpendicular to, are well in line with data from literature. But more complex, heterogeneous migration, and flow patterns cannot be similarly evaluated by inverse fitting using optimization tools. Alternatively, we started developing an algorithm that allows the quantitative extraction of velocity and porosity fields, v{sub i=x,y,z} (x,y,z) and n(x,y,z) from GeoPET time series, c{sub PET}(x,y,z,t). They may serve as constituent data sets for reactive transport modelling.

  6. Breakup of a droplet at high velocity impacting a solid surface

    Science.gov (United States)

    Pan, Kuo-Long; Tseng, Kun-Cheng; Wang, Ching-Hua

    2010-01-01

    We have studied the collision between a droplet of different liquids with high impact energy and a solid plate with varied surface roughness, which is characterized by a dimensionless Weber number ( We, defined as the impact inertia of the droplet normalized by its surface force) extending up to 12,000 for water. To make such collision, a technique was developed to generate a single droplet with speed up to 42 m/s, which was initially driven by upstream air flow through a nozzle and accelerated to nearly the same velocity of the high-speed flow downstream. Via a high-speed photographing system, the various splashing mechanisms were investigated and a specific prompt splash on a smooth plate was found at sufficiently high We, which was different somehow from the conventionally defined one that was generally believed to occur only on a rough surface. The radius when multiple secondary droplets were shed out of the rim of the expanding lamella was found to scale almost invariantly with We at large values, whereas the coupled effect of liquid viscosity might affect the ultimate value.

  7. Numerical studies of light-matter interaction driven by plasmonic fields: The velocity gauge

    Science.gov (United States)

    Chacón, A.; Ciappina, M. F.; Lewenstein, M.

    2015-12-01

    Conventional theoretical approaches to model strong field phenomena driven by plasmonic fields are based on the length gauge formulation of the laser-matter coupling. Obviously, from the physical point of view, there exists no preferable gauge and, consequently, the predictions and outcomes should be independent of this choice. The use of the length gauge is mainly due to the fact that the quantity obtained from finite-element simulations of plasmonic fields is the plasmonic enhanced laser electric field rather than the laser vector potential. We develop, from first principles, the velocity gauge formulation of the problem and we apply it to the high-order-harmonic generation (HHG) in atoms. A comparison to the results obtained with the length gauge is made. As expected, it is analytically and numerically demonstrated that both gauges give equivalent descriptions of the emitted HHG spectra resulting from the interaction of a spatially inhomogeneous field and the single active electron model of the helium atom. We discuss, however, advantages and disadvantages of using different gauges in terms of numerical efficiency, which turns out to be very different. In order to understand it, we analyze the quantum mechanical results using time-frequency Gabor distributions. This analysis, combined with classical calculations based on solutions of the Newton equation, yields important physical insight into the electronic quantum paths underlying the dynamics of the harmonic generation process. The results obtained in this way also allow us to assess the quality of the quantum approaches in both gauges and put stringent limits on the numerical parameters required for a desired accuracy.

  8. Advective surface velocity in the north west Pacific derived from NOAA AVHRR images

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Akiyama, M.; Okada, Y.; Sugimori, Y.

    Using sequential AVHRR images in November 1983, nearsurface advective velocities are derived in the region Kuroshio south of Japan. For deriving the velocities two methods are used. One is the Method of Cross Correlation (MCC), using image pair...

  9. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    Science.gov (United States)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  10. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  11. Near Surface Shear Wave Velocity Model of the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Shuler, S.; Craig, M. S.; Hayashi, K.; Galvin, J. L.; Deqiang, C.; Jones, M. G.

    2015-12-01

    Multichannel analysis of surface wave measurements (MASW) and microtremor array measurements (MAM) were performed at twelve sites across the Sacramento-San Joaquin Delta to obtain high resolution shear wave velocity (VS) models. Deeper surveys were performed at four of the sites using the two station spatial autocorrelation (SPAC) method. For the MASW and MAM surveys, a 48-channel seismic system with 4.5 Hz geophones was used with a 10-lb sledgehammer and a metal plate as a source. Surveys were conducted at various locations on the crest of levees, the toe of the levees, and off of the levees. For MASW surveys, we used a record length of 2.048 s, a sample interval of 1 ms, and 1 m geophone spacing. For MAM, ambient noise was recorded for 65.536 s with a sampling interval of 4 ms and 1 m geophone spacing. VS was determined to depths of ~ 20 m using the MASW method and ~ 40 m using the MAM method. Maximum separation between stations in the two-station SPAC surveys was typically 1600 m to 1800 m, providing coherent signal with wavelengths in excess of 5 km and depth penetration of as much as 2000 m. Measured values of VS30 in the study area ranged from 97 m/s to 257 m/s, corresponding to NEHRP site classifications D and E. Comparison of our measured velocity profiles with available geotechnical logs, including soil type, SPT, and CPT, reveals the existence of a small number of characteristic horizons within the upper 40m in the Delta: levee fill material, peat, transitional silty sand, and eolian sand at depth. Sites with a peat layer at the surface exhibited extremely low values of VS. Based on soil borings, the thickness of peat layers were approximately 0 m to 8 m. The VS for the peat layers ranged from 42 m/s to 150 m/s while the eolian sand layer exhibited VS ranging from of 220 m/s to 370 m/s. Soft near surface soils present in the region pose an increased earthquake hazard risk due to the potential for high ground accelerations.

  12. Velocity Field in the NW Himalayan Syntaxis: Implications for Future Seismicity

    Science.gov (United States)

    Bilham, R. G.; Szeliga, W.; Bali, B. S.; Khan, A.; Wahab, A.; Khan, F.; Qazi, S.

    2011-12-01

    For the past eight years we have monitored crustal deformation in Ladakh, the Karakoram, Kohistan, Zanskar, Salt Range and Pir Pinjal, using a combination of fixed and campaign GPS measurements, to provide quantitative constraints on the rates of convergence in the NW syntaxis of the Himalaya. We find a 13-17 mm convergence rate with maximum SSW velocity gradients NE of the Kashmir Valley beneath the Zanskar range, and maximum SSE directed gradients NW of the Peshawar basin beneath the Kohistan range. The inferred locking line appear to follow the 3.5 km contour as it does elsewhere in the Himalaya, however, this results in a 200 km wide décollement, twice the width of the central Himalaya. The SSE velocity of the Potwar Plateau is 3 mm/yr, significantly slower than the 6-12 mm/yr inferred from geological offsets along the Kalabagh fault in the past 10 My, and hence an inferred slip deficit exists between the Kohistan Range and the Salt Range. No great earthquakes are known in this area, and it is unclear whether the deficit is annulled by accelerated salt-decollement creep or by seismic rupture. A brief period of accelerated creep followed the 2005 Kashmir earthquake. Velocities across the Kashmir Valley and Pir Pinjal are suggestive of a locked décollement (no creep) implying possible SE translation of the entire Kashmir Valley in great earthquakes. Were the segment of the Himalaya between the 2005 Kashmir Earthquake, and the Mw7.8 Kangra earthquake to slip 20 m in a single earthquake, it could do so in a Mw=9. No earthquake of this severity is known, although the historical record includes several earthquakes that may account for partial slip of the decollement. Slip on the Reasi fault north of the frontal Pir Pinjal range front can account for less than half the observed convergence at this longitude, and although no surface slip has been detected in the ranges fronting the Punjab plains, we deduce that the frontal folds, and associated blind thrusts, may

  13. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    Science.gov (United States)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  14. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    Science.gov (United States)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  15. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake

    Science.gov (United States)

    Pollitz, F.F.

    2005-01-01

    The M7.9 2002 Denali earthquake, Alaska, is one of the largest strike-slip earthquakes ever recorded. The postseismic GPS velocity field around the 300-km-long rupture is characterized by very rapid horizontal velocity up to ???300 mm/yr for the first 0.1 years and slower but still elevated horizontal velocity up to ???100 mm/yr for the succeeding 1.5 years. I find that the spatial and temporal pattern of the displacement field may be explained by a transient mantle rheology. Representing the regional upper mantle as a Burghers body, I infer steady state and transient viscosities of ??1 = 2.8 ?? 1018 Pa s and ??2 = 1.0 ?? 1017 Pa s, respectively, corresponding to material relaxation times of 1.3 and 0.05 years. The lower crustal viscosity is poorly constrained by the considered horizontal velocity field, and the quoted mantle viscosities assume a steady state lower crust viscosity that is 7??1. Systematic bias in predicted versus observed velocity vectors with respect to a fixed North America during the first 3-6 months following the earthquake is reduced when all velocity vectors are referred to a fixed site. This suggests that the post-Denali GPS time series for the first 1.63 years are shaped by a combination of a common mode noise source during the first 3-6 months plus viscoelastic relaxation controlled by a transient mantle rheology.

  16. Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Indian Academy of Sciences (India)

    J S Prasad; A S Rajawat; Yaswant Pradhan; O S Chauhan; S R Nayak

    2002-09-01

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has been applied. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on a pair of atmospherically corrected and geo-referenced sequential images by Maximum Cross-Correlation (MCC) technique. The MCC technique involves computing matrices of cross-correlation coe#cients and identifying correlation peaks. The movement of the pattern can be calculated knowing the displacement of windows required to match patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along the east coast during the GSI cruise ST-133 of R.V. Samudra Kaustubh in January 2000. The current data were measured using the ocean current meter supplied by the Environmental Measurement and CONtrol (EMCON), Kochi available with the Geological Survey of India, Marine Wing. This current meter can measure direction and magnitude with an accuracy of ± 5° and 2% respectively. The measurement accuracies with coefficient of determination (2) of 0.99, for both magnitude (cm.s-1) and direction (deg.) were achieved.

  17. Estimation of Elastic Constants from Surface Acoustic Wave Velocity by Inverse Analysis using the Downhill Simplex Method

    Science.gov (United States)

    Sato, Harumichi; Nishino, Hideo; Cho, Hideo; Ogiso, Hisato; Yamanaka, Kazushi

    1998-05-01

    The measurement of surface acoustic wave (SAW) velocity is used to estimate the surface properties because the velocity depends on the elastic properties near the surface.To estimate the elastic constants, we developed a new inverse method combining the Monte Carlo method and the downhill simplex method.The initial values are determined using many random numbers, instead of an arbitrarily chosen several sets of values, in order to reduce the risk of trapping by the local pseudo minima.We confirm that the estimated elastic constants agree well with the reported elastic constants of Si and the experimental SAW velocity is quite well reproduced.We estimate the elastic constants of quartz for application purposes.

  18. A Laboratory Modeling of the Velocity Field in the Convective Boundary Layer with the Particle Image Velocimetry Technique

    Institute of Scientific and Technical Information of China (English)

    李萍阳; 蒋维楣; 孙鉴泞; 袁仁民

    2003-01-01

    Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 orders) is used as a tracer particle in the application of the particle image velocimetry (PIV)technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possesses the characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer shows entrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable,which is similar to field observations and other tank results; the error analysis demonstrates the validity of aluminium powder, which implies the reliability of the results.

  19. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Mishima, K. [Kyoto Univ. Kumatori, Research Reactor Institute, Osaka (Japan); Tobita, Y.; Suzuki, T. [O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation (Japan); Matsubayashi, M. [Japan Atomic Energy Institute, Tokai Research Establishment (Japan)

    2001-07-01

    Neutron radiography and PIV (Particle Image Velocimetry) techniques were applied to measurements of velocity field in gas-liquid metal two-phase flow. Visualization and measurements of two-phase flow were conducted using molten lead bismuth and nitrogen gas as working fluids and particles made of gold-cadmium (AuCd{sub 3}) inter-metallic alloy were employed as the tracer. Discrimination method between bubble and tracer images in two-phase flow was developed based on the {sigma}-scaling method. Time-averaged liquid velocity fields, gas velocity fields and void profile were calculated from discriminated images, respectively. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  20. Velocity and Vorticity Fields of a Turbulent Plume under different experimental conditions

    Science.gov (United States)

    Matulka, A. M.; Gonzalez-Nieto, P. L.; Redondo, J. M.; Tarquis, A. M.

    2012-04-01

    The geophysical and practical importance and the applications of turbulent plumes as generators of strong dispersion processes are clearly recognized. In geophysics and astrophysics, it is usual to model as a jet or plume the generation mechanism of turbulent mixing as a part of a dispersion process [1-3]. An interesting geophysical problem is the study of volcanic plumes [2], which are columns of hot volcanic ash and gas emitted into the atmosphere during an explosive volcanic eruption. Another interesting like-plume phenomenon can be observed where a stream, usually a river, empties into a lake, sea or ocean, generating a river plume [3,4]. Turbulent plumes are fluid motions whose primary source of kinetic energy and momentum flux is due to body forces that arise from density inhomogeneities. The plume boundary acts as an interface across which ambient fluid is entrained, and the plume boundary moves at the velocity of the plume fluid. The difference between the plume-fluid radial velocity and the total fluid velocity quantifies in a natural way the purely horizontal entrainment flux of ambient fluid into the plume across the phase boundary at the plume edge [5,6]. We show some results of research on a single turbulent plume as well as on the structure of the interaction between different plumes and jets, We measure and compare velocity and vorticity fields occurring in different experimental configurations (Parametrized by the Atwood number and the initial potential energy as well as the Plume-Jet length scale). This work is based on experiments that have been performed in GFD laboratories (IPD and UPC) using visualizations methods (LIF,PIV) and advanced multiscaling techniques. We calculate velocity and vorticity PDFs and the evolution of the structure of stratified decaying, with DigFlow and Imacalc programs (Matulka 2010)[7], where video sequence processing provides a range of global and local descriptor features designed specifically for analysing fluid

  1. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  2. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    Science.gov (United States)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117

  3. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2015-08-19

    We propose an interferometric least-squares migration method that can significantly reduce migration artifacts due to statics and errors in the near-surface velocity model. We first choose a reference reflector whose topography is well known from the, e.g., well logs. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. These crosscorrelograms are then migrated using interferometric least-squares migration (ILSM). In this way statics and velocity errors at the near surface are largely eliminated for the examples in our paper.

  4. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  5. Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mastikhin, Igor V.; Arbabi, Aidin; Newling, Benedict; Hamza, Abdelhaq; Adair, Alexander [University of New Brunswick, UNB MRI Centre, Department of Physics, Fredericton, NB (Canada)

    2012-01-15

    In acoustic cavitation, the relationship between the bubble dynamics on the microscale and the flow properties on the macroscale is critical in determining sonochemical reaction kinetics. A new technique was developed to measure the void fraction and estimate water mobility in the vicinity of cavitating bubbles using phase-encoded magnetic resonance imaging with short characteristic measurement timescales (0.1-1 ms). The exponential behavior of the NMR signal decay indicated the fast diffusion regime, with the relationship between local mechanical dispersion D{sub mix} and the average bubble radius R, D{sub mix}>>(2R{sup 2})/(10{sup -4}s), resulting in dispersion of orders of magnitude greater than diffusion in quiescent water. For two different samples (water and a surfactant solution), the independent measurements of three-dimensional void fraction and velocity fields permitted the calculation of compressibility, divergence and vorticity of the cavitating medium. The measured dynamics of the dissolved gas, compared with that of the surrounding liquid, reflected the difference in the bubble coalescence and lifetimes and correlated with the macroscopic flow parameters. (orig.)

  6. Metallicity Distribution Functions, Radial Velocities, and Alpha Element Abundances in Three Off-Axis Bulge Fields

    CERN Document Server

    Johnson, Christian I; Kobayashi, Chiaki; Kunder, Andrea; Pilachowski, Catherine A; Koch, Andreas; De Propris, Roberto

    2013-01-01

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch (RGB) stars in three Galactic bulge off-axis fields located near (l,b)=(-5.5,-7), (-4,-9), and (+8.5,+9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R~18,000), high signal-to-noise ratio (S/N~75-300) spectra obtained with the Hydra spectrographs on the Blanco 4m and WIYN 3.5m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H]\\approx-1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in ...

  7. Photoelectric Radial Velocities, Paper XVIII Spectroscopic Orbits for Another 52 Binaries in the Hyades Field

    Indian Academy of Sciences (India)

    R. F. Griffin

    2012-03-01

    Spectroscopic orbits are presented for 52 stars in the Hyades field, of which 41 prove to be actual members of the Hyades (with some reservations in two cases). Most of the stars concerned have not had orbits published for them previously. Three of them are of higher multiplicity. The already-known double-lined eclipsing system van Bueren 22 is demonstrated to be a triple system, as was obliquely announced 25 years ago; its `outer’ orbit, which has a period of about 8 years, is now determined. Van Bueren 75 is already known to be triple, but here the visual secondary is shown to be the (single-lined) spectroscopic sub-system, and an independent spectroscopic solution is given for the 40-year orbit of what has hitherto been regarded as the `visual’ pair. Van Bueren 102, for which a close visual companion was discovered comparatively recently, is a single-lined binary whose -velocity has shown a steady drift over at least the last 30 (probably 50) years. Three stars, vB 39, 50 and 59, have notably high eccentricities of 0.85, 0.98 and 0.94, respectively; they have quite long periods (especially vB 50, which is over 100 years), and every one of them contrived to pass the whole of its recent periastron passage (about 180° of true anomaly) between seasons, at the time of year when the Hyades are unobservable!

  8. Measurements of the velocity fields by PIV method round about titling gate

    Directory of Open Access Journals (Sweden)

    Mistrová Ivana

    2012-04-01

    Full Text Available The article deals with problems of using of measurement method Particle Image Velocimetry (PIV to measure velocity fields in the flowing water in front, above and behind drowned titling weir gate. The aim was to obtain information about the distribution of speed in the area of interest for the verification or calibration of the numerical model. Experiments were carried out in inclinable channel connected to the hydraulic circuit with a pump and storage tank at the Water Management Research Laboratory (LVV of Institute of Water Structures at the Faculty of Civil Engineering in Brno University of Technology. Hydraulic inclinable channel has cross-section with dimensions of 0.4×0.4m and length of 12.5m. The measured area has cross-section approximately 0.2m wide and 0.4m high and its length is 1m. The results of physical modelling allowed a comparison of experimental data with numerical simulation results of this type of flow in the commercial software ANSYS CFX-12.0.

  9. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  10. Prediction of Velocity and Deformation Fields During Multipass Plate Hot Rolling by Novel Mixed Analytical-Numerical Met%Prediction of Velocity and Deformation Fields During Multipass Plate Hot Rolling by Novel Mixed Analytical-Numerical Me

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-ling; CUI Zhen-shan

    2011-01-01

    An integrated mathematical model is proposed to predict the velocity field and strain distribution during multi-pass plate hot rolling. This model is a part of the mixed analytical-numerical method (ANM) aiming at predic- tion of deformation variables, te

  11. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  12. Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column

    Institute of Scientific and Technical Information of China (English)

    Deng Xiao-wei; Liu Jiong-tian; Wang Yong-tian; Cao Yi-jun

    2013-01-01

    Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column.The method of Particle Image Velocimetry (PIV) was used.The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes.The cross sectional vortex was also analyzed.The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m3/h,the flow velocity ranges from 0 to 0.68 m/s.The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input.In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column.The tangential component of the velocity plays a defining role in the cross section.In the longitudinal section the velocity ranges from 0 to 0.08 m/s.The flow velocity increases as does the circulating volume.Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.

  13. A one-dimensional model for the quantum efficiency of front-surface-field solar cells

    Science.gov (United States)

    Yernaux, M. I.; Battochio, C.; Verlinden, P.; van de Wiele, F.

    1984-11-01

    A one-dimensional analytical model is proposed to calculate the photocurrent generated in interdigitated back contact solar cells with a high-low junction at the front illuminated surface. The high-low junction is simulated by constant doping levels, mobilities and lifetimes. A study of the quantum efficiency of front-surface-field (FSF) solar cells is made and the computer results are compared with experimental results. A method of determining the real and the effective surface recombination velocity of FSF solar cells is proposed.

  14. Method of calculation of a methane concentration field in gob areas with a known velocity field based on the model of stream tubes

    Institute of Scientific and Technical Information of China (English)

    Wang Honggang; Wu Fengliang

    2011-01-01

    The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients, whose traditional mathematical calculation methods are very complex. A numerical simulation method can be used to calculate the gas concentration field, but it also needs considerable amounts of computer resources and the relations of gas concentration at different points of the gob area are undefined. Based on the model of stream tubes, the conservation equations of mass and gas components within the stream tube are used to deduce the equations of a gas concentration field in a gob area with a known velocity field. This method of calculation of a gas concentration field is applied in a gob area with a U-type ventilation working face, which suggests that this new method has the virtue of exact calculations is simple to operate and has a clear physical interpretation.

  15. Field test and theoretical analysis of electromagnetic pulse propagation velocity on crossbonded cable systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...

  16. The surface velocity feature of Glacier No.1 at the headwater of Urumqi River,Tianshan Mountain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The movement of a glacier can redistribute glacier mass balance and change water and thermal conditions of the glacier.Thus,the glacier can maintain its dynamic balance.Surface velocity of a glacier is a basic feature of glacier movement.With successive monthly observations from 2006 to 2008,we obtained spatial and temporal variations for surface velocity of Glacier No.1 at the headwater of Urumqi River,Tianshan Mountain.Dynamic simulation was used to verify the findings.Results show that altitudinal distribution of glacier velocity was influenced by synthetic effects such as glacier thickness,slope,and bedrock morphology.However,seasonal variation was influenced by changing glacier thickness.

  17. H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion

    Science.gov (United States)

    Sandage, A.; Tammann, G. A.

    1982-01-01

    An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.

  18. The Ha Velocity Fields and Galaxy Interaction in the Quartet of Galaxies NGC 7769, 7770, 7771 and 7771A

    CERN Document Server

    Yeghiazaryan, A A; Hakobyan, A A

    2015-01-01

    The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry-Perot scanning interferometry of the system in Ha line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of i...

  19. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  20. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  1. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  2. Laboratory observations of velocity and density fields in the entrance of a harbor on a stratified tidal river

    NARCIS (Netherlands)

    Langendoen, E.J.; Karelse, M.

    1990-01-01

    Detailed measurements are presented of velocity and density fields in the entrance of a model harbor on a stratified tidal river. Three geometries of the harbor entrance were examined, (1) a harbor with its length axis perpendicular to the river and an entrance width of 1 m, (2) as (1) but with an

  3. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  4. Aeolian transport in the field: A comparison of the effects of different surface treatments

    Science.gov (United States)

    Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin

    2012-05-01

    Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.

  5. Non-uniform velocity of homogeneous DNA in a uniform electric field: consequence of electric-field-induced slow dissociation of highly stable DNA-counterion complexes.

    Science.gov (United States)

    Musheev, Michael U; Kanoatov, Mirzo; Krylov, Sergey N

    2013-05-29

    Identical molecules move with identical velocities when placed in a uniform electric field within a uniform electrolyte. Here we report that homogeneous DNA does not obey this fundamental rule. While most DNA moves with similar velocities, a fraction of DNA moves with velocities that vary within a multiple-fold range. The size of this irregular fraction increases several orders of magnitude when exogenous counterions are added to DNA. The irregular fraction decreases several orders of magnitude when DNA counterions are removed by dialysis against deionized water in the presence of a strong electric field (0.6 kV/cm). Dialysis without the field is ineffective in decreasing the size of irregular fraction. These results suggest that (i) DNA can form very stable complexes with counterions, (ii) these complexes can be dissociated by an electric field, and (iii) the observed non-uniform velocity of DNA is caused by electric-field-induced slow dissociation of these stable complexes. Our findings help to better understand a fundamental property of DNA: its interaction with counterions. In addition, these findings suggest a practical way of making electromigration of DNA more uniform: removal of strongly bound DNA counterions by electro-dialysis against deionized water.

  6. High surface magnetic field in red giants as a new signature of planet engulfment?

    CERN Document Server

    Privitera, Giovanni; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A; Bianda, Michele; Villaver, Eva; ud-Doula, Asif

    2016-01-01

    Context. Red-giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims. We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of stellar wind magnetic braking on the evolution of the surface velocity of the parent star. Methods. With rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduce the evolution of the surface magnetic field along the red-giant branch. The effects of wind magnetic braking is explored using a relation deduced from MHD simulations. Results. The stellar evolution model of a 1.7 M$_\\odot$ without planet engulfment and that has a time-averaged rotation velocity during the Main-Sequence equal to 100 km s$^{-1}$, shows a surface magnetic f...

  7. Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.

    Science.gov (United States)

    Tatom, J. W.; Cooper, M. A.; Hayden, T. K.

    1972-01-01

    Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.

  8. Estimating mechanical blood trauma in a centrifugal blood pump: laser Doppler anemometer measurements of the mean velocity field.

    Science.gov (United States)

    Pinotti, M; Paone, N

    1996-06-01

    A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage.

  9. Reconstructing the Cosmic Velocity and Tidal Fields with Galaxy Groups Selected from the Sloan Digital Sky Survey

    CERN Document Server

    Wang, Huiyuan; Yang, Xiaohu; Bosch, Frank C van den

    2011-01-01

    [abridge]Cosmic velocity and tidal fields are important for the understanding of the cosmic web and the environments of galaxies, and can also be used to constrain cosmology. In this paper, we reconstruct these two fields in SDSS volume from dark matter halos represented by galaxy groups. Detailed mock catalogues are used to test the reliability of our method against uncertainties arising from redshift distortions, survey boundaries, and false identifications of groups by our group finder. We find that both the velocity and tidal fields, smoothed on a scale of ~2Mpc/h, can be reliably reconstructed in the inner region (~66%) of the survey volume. The reconstructed tidal field is used to split the cosmic web into clusters, filaments, sheets, and voids, depending on the sign of the eigenvalues of tidal tensor. The reconstructed velocity field nicely shows how the flows are diverging from the centers of voids, and converging onto clusters, while sheets and filaments have flows that are convergent along one and t...

  10. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2014-08-01

    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  11. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  12. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  13. The internal solar angular velocity: Theory, observations and relationship to solar magnetic fields; Proceedings of the Eighth Summer Symposium, Sunspot, NM, Aug. 11-14, 1986

    Science.gov (United States)

    Durney, Bernard R.; Sofia, Sabatino

    The conference presents papers on observations of solar p-mode rotational splittings, observations of surface velocity fields, the equatorial rotation rate in the solar convective zone, chromospheric activity in open clusters, and solar rotation variations from sunspot group statistics. Other topics include adiabatic nonradial oscillations of a differentially rotating star, a spherical harmonic decomposition technique for analyzing steady photospheric flows, turbulent transport in the radiative zone of a rotating star, and the generation of magnetic fields in the sun. Consideration is also given to magnetic fields and the rotation of the solar convection zone, the hydrostatic adjustment time of the solar subconvective layer, models for a differentially rotating solar-convection zone, and horizontal Reynolds stress and the radial rotation law of the sun.

  14. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  15. Gaussian vector fields on triangulated surfaces

    DEFF Research Database (Denmark)

    Ipsen, John H

    2016-01-01

    proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...

  16. Shear Wave Velocity Profiles Determined from Surface Wave Measurements at Sites Affected by the August 15th, 2007 Earthquake in Peru

    Science.gov (United States)

    Rosenblad, B. L.; Bay, J. A.

    2008-05-01

    The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed

  17. Effect of Noise and Flow Field Resolution on the Evaluation of Fluid Dynamic Forces on Bodies Using only the Velocity Field and its Derivatives

    Science.gov (United States)

    Breda, Maria Cecilia; Krueger, Paul S.

    2010-11-01

    Determining unsteady fluid dynamic forces on bodies using only measurements of the velocity field and its derivatives is essential in many investigations, including studies of freely swimming or flying animals. In this project, all terms in a control-volume force equation utilizing only the velocity field and its derivatives discussed by Noca et al. (J. Fluids Struct., 13, 551 - 578) will be analyzed with regard to the influence of flow field noise and resolution to determine which terms dominate the error in the computed force and which factor has the greatest effect on the error. Using analytical and computational flow fields for which the lift and drag forces are known, irregularities found in real experimental results including noise and reduced spatial/temporal resolution will be added to assess their effect on the computed forces. Results for several canonical flows will be presented.

  18. Developing Improved Water Velocity and Flux Estimation from AUVs - Results From Recent ASTEP Field Programs

    Science.gov (United States)

    Kinsey, J. C.; Yoerger, D. R.; Camilli, R.; German, C. R.

    2010-12-01

    Water velocity measurements are crucial to quantifying fluxes and better understanding water as a fundamental transport mechanism for marine chemical and biological processes. The importance of flux to understanding these processes makes it a crucial component of astrobiological exploration to moons possessing large bodies of water, such as Europa. Present technology allows us to obtain submerged water velocity measurements from stationary platforms; rarer are measurements from submerged vehicles which possess the ability to autonomously survey tens of kilometers over extended periods. Improving this capability would also allow us to obtain co-registered water velocity and other sensor data (e.g., mass spectrometers, temperature, oxygen, etc) and significantly enhance our ability to estimate fluxes. We report results from 4 recent expeditions in which we measured water velocities from autonomous underwater vehicles (AUVs) to help quantify flux in three different oceanographic contexts: hydrothermal vent plumes; an oil spill cruise responding to the 2010 Deepwater Horizon blowout; and two expeditions investigating naturally occurring methane seeps. On all of these cruises, we directly measured the water velocities with an acoustic Doppler current profiler (ADCP) mounted on the AUV. Vehicle motion was corrected for using bottom-lock Doppler tracks when available and, in the absence of bottom-lock, estimates of vehicle velocity based on dynamic models. In addition, on the methane seep cruises, we explored the potential of using acoustic mapping sonars, such as multi-beam and sub-bottom profiling systems, to localize plumes and indirectly quantify flux. Data obtained on these expeditions enhanced our scientific investigations and provides data for future development of algorithms for autonomously processing, identifying, and classifying water velocity and flux measurements. Such technology will be crucial in future astrobiology missions where highly constrained

  19. Effect of Gas Velocity on the Dust Sediment Layer in the Coupled Field of Corona Plasma and Cyclone

    Science.gov (United States)

    Wei, Mingshan; Ma, Chaochen; Li, Minghua; S, N. Danish

    2006-09-01

    A dust sediment layer was found on the outer tube wall when the ESCP (electrostatic centrifugal precipitator) trapped diesel particulates or ganister sand. The Compton back scatter method was used to measure the sediment thickness during the experiment. The effect of the inlet gas velocity on the dust sediment layer was investigated. PIV (Particle Image Velocimetry) was used to measure the velocity field between the inner barb tube wall and the outer tube wall. Experiments showed that the thickness of the sediment increased with time, and the sediment layer at the lower end was much thicker than that at the upper end. The agglomeration on the outer tube wall could be removed when the inlet gas velocity was increased to a certain value.

  20. The Tate conjecture for K3 surfaces over finite fields

    Science.gov (United States)

    Charles, François

    2013-10-01

    Artin's conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin's conjecture over fields of characteristic p>3. This implies Tate's conjecture for K3 surfaces over finite fields of characteristic p>3. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p>3.

  1. NS shear kinematics across the Lut block from a dense GPS velocity field in eastern Iran

    Science.gov (United States)

    Walpersdorf, A.; Tavakoli, F.; Hatzfeld, D.; Jadidi, A. M.; Vergnolle, M. M.; Aghamohammadi, A.; Djamour, Y.; Nankali, H. R.; Sedighi, M.

    2009-12-01

    Since 2004, extensive GPS campaigns and the upcoming Iranian permanent GPS network are monitoring the present-day deformation in eastern Iran. We present a new GPS velocity field extending from Central Iran to the Hellmand block on the Eurasian plate. It permits to monitor the right lateral NS shear across the aseismic Lut block between Central Iran and the Hellmand block. While existing tectonic models propose an increase of slip rate from west to east, we find balanced slip rates on both Lut block boundaries. The total shear between Central Iran and the Lut block (the western limit) is evaluated to 7.0 ± 0.5 mm/yr that are accommodated by the Gowk-Nayband fault system and the Anar fault. It even slightly exceeds the 5.5 ± 0.5 mm/yr of shear between the Lut block and stable Eurasia (the eastern limit), localized on different faults of the Sistan Suture zone. Tectonic models propose that at the northern Lut block limit the regional NS shear leads to left lateral activity of large EW trending strike-slip faults (Doruneh and Dasht-e-Bayaz faults). On none of them a significant left lateral displacement is observed, in spite of the recent seismic activity of the Dasht-e-Bayaz and Abiz faults. The instantaneous active deformation is localized rather on oblique NW-SE oriented thrust faults (Janggal and Ferdows thrusts). Individual instantaneous fault slip rates are compared to short term and long term geological estimates. We find that GPS slip rates are in most cases coherent with short term geologic determinations (from dating of geomorphologic offsets over some 10-100 ka). Some differences with respect to long term estimates (from total geologic fault offsets and onset ages of several Ma) indicate non-constant slip rates over different time scales or that the onset of the present-day deformation presumed to 3-7 Ma in eastern Iran has to be revised.

  2. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    CERN Document Server

    Sedarsky, David; Blaisot, Jean-Bernard; Rozé, Claude

    2013-01-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the 'fast' and 'slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the 'fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization b...

  3. On the velocity field of sunspot penumbrae - I. A global view

    CERN Document Server

    Franz, Morten

    2009-01-01

    We investigated the vertical penumbral plasma flow on small spatial scales using data recorded by the spectropolarimeter of the solar optical telescope onboard Hinode. To this end we computed maps of apparent Doppler velocities by comparing the spectral position of the Fe I 630.15 nm & Fe I 630.25 nm lines with the averaged line profiles of the quiet Sun. To visualize the flow pattern in the low photosphere, we used a bisector of the wing of the absorption lines. Due to the small heliocentric angle (3 0.6 km/s down-flows prevail. Additionally, the maximal up-flow velocity in penumbrae is smaller, while the maximal down-flow velocity is larger with respect to the QS velocities. Furthermore, on a spatial average, the penumbra shows a red-shift, corresponding to a down-flow of more than 0.1 km/s. Up-flows are elongated and appear predominately in the inner penumbra. Strong down-flows with velocities of up to 9 km/s are concentrated at the penumbra-QS boundary. They are magnetized and are rather round in sha...

  4. Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto

    2015-04-01

    Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.

  5. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    Directory of Open Access Journals (Sweden)

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  6. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  7. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  8. A NEW NUMERICAL METHOD FOR GROUNDWATER FIOW AND SOLUTE TRANSPORT USING VELOCITY FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-fei; LAN Shou-qi; WANG Yan-ming; XU Yong-fu

    2008-01-01

    A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.

  9. Three-Dimensional Velocity Structure of The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Yoo, S.

    2012-12-01

    The aim of our project is to understand the relationship between geothermal operations and medium size earthquakes (M>3) at The Geysers Geothermal Reservoir, CA, USA. To reach that goal we have devised an approach combining 4-D seismic characterization of the reservoir structure, full moment tensor analysis of the source rupture processes, geomechanical modeling of the reservoir stresses and temperatures and seismic hazard analyses. In our presentation, we will present results based on seismic data collected by the Lawrence Berkeley National Laboratory with a 34-station seismic network from 2003 through present. Specifically, we will present 3-D P- and S-wave velocity structure of the reservoir for each year of data availability and investigate temporal changes between different epochs. The spatial pattern of temporal velocity changes is subsequently correlated to the available injection and production data to investigate the cause for the observed velocity changes.

  10. VELOCITY FIELD OF THERMOCAPILLARY CONVECTION IN HIGH-TEMPERATURE OXIDE SOLUTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We have investigated experimentally and theoretically the thermocapillary convec tive flow phenomena in a loop-shaped Pt wire heater of KNbO3 (20wt.%) and Li2B4O7 solutions. Optical evaluations in connection with thermocouple measure ments made it possible to get a new type of thermocapillary convective flow in the considered system. To study the kinematical behaviour of thermocapillary convec tion, we have measured the stream flow velocities. In a theoretical analysis, the flow velocity due to the thermocapillary effect alone was estimated by balancing the sur face tension forces by viscous forces. The velocity distribution in the solution near the margin of the heater was obtained, which is in agreement with the experimental result.

  11. Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    许增裕; 康伟山; 潘传杰

    2004-01-01

    The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.

  12. The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation

    CERN Document Server

    Hellwing, Wojciech A; Frenk, Carlos S; Theuns, Tom; Schaye, Joop; Bower, Richard G; Crain, Robert A

    2016-01-01

    We use the EAGLE galaxy formation simulation to study the effects of baryons on the power spectrum of the total matter and dark matter distributions and on the velocity fields of dark matter and galaxies. On scales $k\\geq \\sim4{h\\,{\\rm Mpc}^{-1}}$ the effect of baryons on the amplitude of the total-matter power spectrum is greater than $1\\%$. The back-reaction of baryons affects the density field of the dark matter at the level of $\\sim3\\%$ on scales of $1\\leq k/({h\\,{\\rm Mpc}^{-1}})\\leq 5$. The dark matter velocity divergence power spectrum at $k\\leq \\sim0.5{h\\,{\\rm Mpc}^{-1}}$ is changed by less than $1\\%$. The 2D redshift-space power spectrum is affected at the level of $\\sim6\\%$ at $k_\\perp\\geq \\sim1{h\\,{\\rm Mpc}^{-1}}$, but for $k_\\perp\\leq 0.4{h\\,{\\rm Mpc}^{-1}}$ the amplitude differs by less than $1\\%$. We report vanishingly small baryonic velocity bias for haloes: the peculiar velocities of haloes with with $M_{200}>3\\times10^{11}{{\\rm M}_{\\odot}}$ (hosting galaxies with $M_{*}>10^9{{\\rm M}_{\\odot}}$)...

  13. Experimental Investigation of Longitudinal Space-Time Correlations of the Velocity Field in Turbulent Rayleigh-B\\'{e}nard Convection

    CERN Document Server

    Zhou, Quan; Lu, Zhi-Ming; Liu, Yu-Lu

    2010-01-01

    We report an experimental investigation of the longitudinal space-time cross-correlation function of the velocity field, $C(r,\\tau)$, in a cylindrical turbulent Rayleigh-B\\'{e}nard convection cell using the particle image velocimetry (PIV) technique. We show that while the Taylor's frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows [He & Zhang, \\emph{Phys. Rev. E} \\textbf{73}, 055303(R) (2006)] is valid for the present velocity field for all over the cell, i.e., the isocorrelation contours of the measured $C(r,\\tau)$ have a shape of elliptical curves and hence $C(r,\\tau)$ can be related to $C(r_E,0)$ via $r_E^2=(r-\\beta\\tau)^2+\\gamma^2\\tau^2$ with $\\beta$ and $\\gamma$ being two characteristic velocities. We further show that the fitted $\\beta$ is proportional to the mean velocity of the flow, but the values of $\\gamma$ are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell...

  14. Continuos incremental field test to estimate velocity and maximal oxygen consumption in non-expert runners

    OpenAIRE

    José A. Bragada; Moreno, R; Barbosa, Tiago M

    2009-01-01

    Parameters such as a maximal oxygen uptake (VO2max) and velocity at which VO2max occurs (VelVO2max) are often used to training control purposes to enhance runner’s performance. This study had two purposes: (i) determine the relationship between VelVO2max obtained in continuous incremental filed test (CIFT) and VelVO2max determined on a treadmill in a laboratory; and (II) verify if it is possible to estimate the VO2max based on CIFT velocity

  15. Electric field dependence of drift velocity and electron temperature of GaAs/AlGaAs 2DEG in the low electric field region

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Mehmet; Turkoglu, Orhan

    2004-05-01

    Experimental and theoretical results on low electric field transport of two-dimensional electron gas (2DEG) in AlGaAs/GaAs high electron mobility transistor (HEMT) channel are reported at lattice temperature T{sub L}=1.7 K under zero magnetic field. The electron temperature (T{sub e}) and the drift velocity ({upsilon}{sub d}) dependence on the electric field (F) and the electron density in the 2DEG channel are presented. In addition, the variation of the electron temperature with the drift velocity is obtained. The results are obtained for the electric field in the region of 0.01-100 V/cm and in the electron temperature range of 1.7-60 K. It is shown that the electron temperature of 2DEG is a non-monotonous function of the electric field. The results also indicate that electron heating is seen to occur for the electric field F>0.1 V/cm which corresponds to the electron temperature T{sub e}=2 K. A sharp increase in the electron temperature T{sub e} and in the drift velocity {upsilon}{sub d} with the electric field below electron temperature of 40 K is seen. The variation of electron temperature with drift velocity is very slow in the same electron temperature range where acoustic phonon emission due to deformation potential is the dominant energy loss mechanism of electronic system. When F>5 V/cm and T{sub e}>40 K, where the optic phonon emission is a dominant relaxation mechanism, the electron temperature changes linearly with electric field and the drift velocity increases very rapidly with electron temperature. Also, the drift velocity starts to saturate in this regime. The experimental results are compared with theoretical results and a good agreement is obtained at the electron temperatures of T{sub e}<50 K. Above the electron temperature of 50 K, a disagreement is observed between the experimental and the theoretical results which indicates that additional scattering mechanisms should be taken into account and the accuracy of the assumptions concerning the

  16. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  17. A geometric Model for the Spatial Correlation of an Acoustic Vector Field in Surface-generated Noise

    Institute of Scientific and Technical Information of China (English)

    Yiwang Huang; Qunyan Ren; Ting Li

    2012-01-01

    Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.

  18. Earth's field NMR; a surface moisture detector?

    Science.gov (United States)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  19. Potential, velocity, and density fields from redshift-distance samples: Application - Cosmography within 6000 kilometers per second

    Science.gov (United States)

    Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David

    1990-01-01

    A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.

  20. Technique of calculating and studying stability of three dimensional velocity fields of longitudinal waves

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarova, N.B.; Slavina, L.B.

    1981-01-01

    The features of a technique for determining the velocity of spread of longitudinal waves in the epicenter zone are briefly formulated. Results are presented from studying the technique in the example of model and experimental data in the focal zone of Kamchatka.

  1. Predicting present-day rates of glacial isostatic adjustment using a smoothed GPS velocity field for the reconciliation of NAD83 reference frames in Canada

    Science.gov (United States)

    Craymer, M. R.; Henton, J. A.; Piraszewski, M.

    2008-12-01

    the continuous GPS data were combined with those from other agencies as part of the North American Reference Frame (NAREF) effort to improve the reliability of the results. This NAREF solution has then been combined with our CBN results to obtain a denser velocity sampling for fitting different types of surfaces in a first attempt to determine a continuous GPS velocity field for the entire country. Expressing this velocity field as a grid enables users to interpolate to any location in Canada, allowing for the propagation of coordinates to any desired reference epoch. We examine the accuracy and limitations of this GPS velocity field by comparing it to other published GPS velocity solutions (which are all based on less data) as well as to GIA models, including versions of ICE-3G, ICE-5G and the recent Stable North America Reference Frame (SNARF) model. Of course, the accuracy of the GPS velocity field depends directly on the density of the GPS coverage. Consequently, the GPS velocity field is unable to fully represent the actual GIA motion in the far north and tends to smooth out the signal due to the spatially sparse coverage. On the other hand, the model performs quite well in the southern parts of the country where there is a much greater spatial density of GPS measurements.

  2. Inertial-diffusive range for a passive scalar advected by a white-in-time velocity field

    Science.gov (United States)

    Frisch, U.; Wirth, A.

    1996-09-01

    It is shown analytically and by Monte Carlo simulations that a passive scalar with finite diffusivity, advected by a white-in-time velocity field with a power law spectrum propto k-1-ξ (0 Batchelor-Howells-Townsend (J. Fluid Mech., 5 (1959) 134) phenomenological derivation of the k-17/3 law for low-Schmidt-number passive-scalar dynamics in ordinary turbulence.

  3. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    boundary layer evolution through summer, highl ighting in particular the role of melt pond drainage on the upper ocean stratification and ice -ocean...stratification and velocity field about the seasonality-retreating marginal ice zone 5b. GRANT NUMBER N00014-12-1-0140 Sc. PROGRAM ELEMENT NUMBER 6...STATEMENT UNLIMITED - UNCLASSIFIED 13. SUPPLEMENTARY NOTES 14. ABSTRACT As a contribution to the Marginal Ice Zone ORI, this research element was

  4. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    summer, highlighting in particular the role of melt pond drainage on the upper ocean stratification and ice -ocean interaction, Figure 7 (Gallaher et al...stratification and velocity field about the seasonality-retreating marginal ice zone Sb. GRANT NUMBER N00014-12-1 -0140 Sc. PROGRAM ELEMENT NUMBER 6...STATEMENT UNLIMITED- UNCLASSIFIED 13. SUPPLEMENTARY NOTES 14. ABSTRACT As a contribution to the Marginal Ice Zone DRI , this research element was

  5. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  6. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  7. Analytical calculation of electron group velocity surfaces in uniform strained graphene

    Science.gov (United States)

    Gómez-Arias, Wilfrido A.; Naumis, Gerardo G.

    2016-12-01

    Electron group velocity for graphene under uniform strain is obtained analytically by using the tight-binding (TB) approximation. Such closed analytical expressions are useful in order to calculate the electronic, thermal and optical properties of strained graphene. These results allow to understand the behavior of electrons when graphene is subjected to strong strain and nonlinear corrections, for which the usual Dirac approach is no longer valid. Some particular cases of uniaxial and shear strain were analyzed. The evolution of the electron group velocity indicates a break-up of the trigonal warping symmetry, which is replaced by a warping consistent with the symmetry of the strained reciprocal lattice. To do this, analytical expressions for the shape of the first Brillouin zone (BZ) of the honeycomb strained reciprocal lattice are provided. Finally, the Fermi velocity becomes strongly anisotropic, i.e., for a strong pure shear strain (20% of the lattice parameter), the two inequivalent Dirac cones merge and the Fermi velocity is zero in one of the principal axis of deformation. We found that nonlinear terms are essential to describe the effects of deformation for electrons near or at the Fermi energy.

  8. Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields

    Science.gov (United States)

    Gouttebroze, P.

    2008-09-01

    Context: Time-resolved observations of loops embedded in the solar corona show the existence of motions of matter inside these structures, as well as the global motions of these objects themselves. Aims: We have developed a modeling tool for cylindrical objects inside the solar corona, including 2-dimensional (azimuth-dependent) radiative transfer effects and 3-dimensional velocity fields. Methods: We used numerical methods to simultaneously solve the equations of NLTE radiative transfer, statistical equilibrium of hydrogen level populations, and electric neutrality. The radiative transfer equations were solved using cylindrical coordinates and prescribed solar incident radiation. In addition to the effects of anisotropic incident radiation, treated in previous papers, we took into account the Doppler shifts produced by a 3-dimension velocity field. Results: The effects of different types of velocity fields on hydrogen line profiles and intensities are described. Motions include loop oscillations, rotation, and longitudinal flows, which produce different deformations of profiles. Doppler brightening and dimming effects are also observed. Conclusions: This is a new step in the diagnostic of physical conditions in coronal loops, allowing the study of dynamical phenomena.

  9. A HYBRID MODEL FOR SIMULATING VELOCITY FIELD OF A RIVER WITH COMPLEX GEOMETRY PLUNGED BY MULTIPLE JETS

    Institute of Scientific and Technical Information of China (English)

    LI Lian-xia; LIAO Hua-sheng; LI Tian-xiang

    2006-01-01

    A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments concerning energy dissipation and scour prevention at the Xiluodu Hydropower Station on the Yangtze River. The calculated results indicate that the complex geometry of the river area has a significant influence on the velocity field, especially on the circulation flow pattern at upstream and downstream of the plunging area and on the asymmetric characteristics of the spiral flow near both banks. The scour characteristics of the downstream river bed caused by the multiple jets were also predicted and analyzed according to the characteristics of the calculated velocity field. The good agreement between the simulated and experimental results indicates that the hybrid model can be used to effectively solve complicated 3-D problems with complex geometric and inlet conditions. Such problems may not easily be solved by using either a physical or a numerical model alone, and therefore the method presented in this article is considered to be a practical and effective way of dealing with this kind of problems.

  10. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    Science.gov (United States)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  11. Free-surface flow of liquid oxygen under non-uniform magnetic field

    Science.gov (United States)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  12. Effect of solute transfer and interfacial instabilities on scalar and velocity field around a drop rising in quiescent liquid channel

    Science.gov (United States)

    Khanwale, Makrand A.; Khadamkar, Hrushikesh P.; Mathpati, Channamallikarjun S.

    2015-11-01

    Physics of development of flow structures around the drop rising with solute transfer is highly influenced by the interfacial behaviour and is remarkably different than a particle rising under the same conditions. We report on the use of simultaneous particle image velocimetry-planar laser induced fluorescence technique to measure scalar and velocity fields around a drop rising in a quiescent liquid channel. The selected continuous phase is glycerol, and the drop consists of a mixture of toluene, acetone, and a dye rhodamine-6G, with acetone working as a interfacial tension depressant. The drop lies in the spherical region with Eötvös number, Eo = 1.95, Morton number, M = 78.20 and the particle Reynolds number being, Rep = 0.053. With Rep approaching that of creeping flow, we analyse the effect of interfacial instabilities solely, contrary to other investigations [M. Wegener et al., "Impact of Marangoni instabilities on the fluid dynamic behaviour of organic droplets," Int. J. Heat Mass Transfer 52, 2543-2551 (2009); S. Burghoff and E. Y. Kenig, "A CFD model for mass transfer and interfacial phenomena on single droplets," AIChE J. 52, 4071-4078 (2006); J. Wang et al., "Numerical simulation of the Marangoni effect on transient mass transfer from single moving deformable drops," AIChE J. 57, 2670-2683 (2011); R. F. Engberg, M. Wegener, and E. Y. Kenig, "The impact of Marangoni convection on fluid dynamics and mass transfer at deformable single rising droplets—A numerical study," Chem. Eng. Sci. 116, 208-222 (2014)] which account for turbulence as well as interfacial instabilities with Rep in the turbulent range. The velocity and concentration fields obtained are subjected to scale-wise energy decomposition using continuous wavelet transform. Scale-wise probability distribution functions of wavelet coefficients are calculated to check intermittent non-Gaussian behaviour for simultaneous velocity and scalar statistics. Multi-fractal singularity spectra for scalar

  13. The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation

    Science.gov (United States)

    Hellwing, Wojciech A.; Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Schaye, Joop; Bower, Richard G.; Crain, Robert A.

    2016-09-01

    We use the Evolution and Assembly of GaLaxies and their Environments (EAGLE) galaxy formation simulation to study the effects of baryons on the power spectrum of the total matter and dark matter distributions and on the velocity fields of dark matter and galaxies. On scales k ≳ 4 h Mpc-1 the effect of baryons on the amplitude of the total matter power spectrum is greater than 1 per cent. The back-reaction of baryons affects the density field of the dark matter at the level of ˜3 per cent on scales of 1 ≤ k/( h Mpc-1) ≤ 5. The dark matter velocity divergence power spectrum at k ≲ 0.5 h Mpc-1 is changed by less than 1 per cent. The 2D redshift space power spectrum is affected at the level of ˜6 per cent at |k|≳ 1 h Mpc^{-1} (for μ > 0.5), but for |k|≤ 0.4 h Mpc^{-1} it differs by less than 1 per cent. We report vanishingly small baryonic velocity bias for haloes: the peculiar velocities of haloes with M200 > 3 × 1011 M⊙ (hosting galaxies with M* > 109 M⊙) are affected at the level of at most 1 km s-1, which is negligible for 1 per cent-precision cosmology. We caution that since EAGLE overestimates cluster gas fractions it may also underestimate the impact of baryons, particularly for the total matter power spectrum. Nevertheless, our findings suggest that for theoretical modelling of redshift space distortions and galaxy velocity-based statistics, baryons and their back-reaction can be safely ignored at the current level of observational accuracy. However, we confirm that the modelling of the total matter power spectrum in weak lensing studies needs to include realistic galaxy formation physics in order to achieve the accuracy required in the precision cosmology era.

  14. Negative Differential Velocity in Artificial Crystals Probed by High Magnetic Fields

    Science.gov (United States)

    Patanè, A.

    velocity (NDV) effect: at large F (> 1 kV/cm), electrons gain sufficient energy to approach the energy of the resonant N-level, where they become spatially localized.7-10 This Resonant Electron Localization in Electric Field, to which we give the acronym RELIEF, leads to NDV and strongly non-linear current-voltage characteristics. We envisage that the RELIEF-effect could be observed in other III-N-V alloys, such as InP1-xNx and InAs1-xNx. In these compounds the nature of the resonant interaction between the N-level and the conduction band states of the host-crystal is still relatively unexplored. However, it is clear that the different energy positions of the N-level relative to the conduction band minimum of different materials could offer new degrees of freedom in the design of the electronic band structure and electron dynamics. The RELIEF-effect may open up prospects for future applications in fast electronics. We have shown that the maximum response frequency, fmax, of a RELIEF-diode can be tuned by the applied electric field in the THz frequency range.7 This is of potential technological significance for the development of detectors/sources in the 0.6-1 THz region, which is not currently attainable using conventional Transferred Electron Devices and Quantum Cascade Lasers. Our recent studies of GaAs1-xNx have also shown a fast response of the current in the sub-THz frequency range.11 Experiments involving diodes optimized for THz-operation coupled with a quantitative theoretical model of the THz dynamics will be now needed to assess the use of GaAs1-xNx and other III-N-V alloys in detectors/sources of THz radiation. Note from Publisher: This article contains the abstract only.

  15. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    Science.gov (United States)

    Ghorbanpour Arani, A.; Roudbari, M. A.

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  16. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  17. Model for seawater fouling and effects of temperature, flow velocity and surface free energy on seawater fouling☆

    Institute of Scientific and Technical Information of China (English)

    Dazhang Yang; Jianhua Liu; Xiaoxue E; Linlin Jiang

    2016-01-01

    A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers. The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model. The present model parameters include the integrated kinetic rate of deposition (kd) and the integrated kinetic rate of removal (kr), which have clear physical significance. A seawater-fouling monitoring de-vice was established to validate the model. The experimental data were wel fitted to the model, and the param-eters were obtained in different conditions. SEM and EDX analyses were performed after the experiments, and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hy-droxide. The effects of surface temperature, flow velocity and surface free energy were assessed by the model and the experimental data. The results indicate that the seawater fouling becomes aggravated as the surface tem-perature increased in a certain range, and the seawater fouling resistance reduced as the flow velocity of seawater increased. Furthermore, the effect of the surface free energy of metals was analyzed, showing that the lower sur-face free energy mitigates the seawater fouling accumulation.

  18. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  19. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  20. Application of photogrammetry to transforming PIV-acquired velocity fields to a moving-body coordinate system

    Science.gov (United States)

    Nikoueeyan, Pourya; Naughton, Jonathan

    2016-11-01

    Particle Image Velocimetry is a common choice for qualitative and quantitative characterization of unsteady flows associated with moving bodies (e.g. pitching and plunging airfoils). Characterizing the separated flow behavior is of great importance in understanding the flow physics and developing predictive reduced-order models. In most studies, the model under investigation moves within a fixed camera field-of-view, and vector fields are calculated based on this fixed coordinate system. To better characterize the genesis and evolution of vortical structures in these unsteady flows, the velocity fields need to be transformed into the moving-body frame of reference. Data converted to this coordinate system allow for a more detailed analysis of the flow field using advanced statistical tools. In this work, a pitching NACA0015 airfoil has been used to demonstrate the capability of photogrammetry for such an analysis. Photogrammetry has been used first to locate the airfoil within the image and then to determine an appropriate mask for processing the PIV data. The photogrammetry results are then further used to determine the rotation matrix that transforms the velocity fields to airfoil coordinates. Examples of the important capabilities such a process enables are discussed. P. Nikoueeyan is supported by a fellowship from the University of Wyoming's Engineering Initiative.